Transition phase for the speed of the biased random walk on a percolation cluster

Alexander Fribergh (NYU)

May 1st, 2011

The biased random walk on a percolation cluster

The biased random walk on a percolation cluster

The biased random walk on a percolation cluster

The mathematical model

The mathematical model

The mathematical model

Percolation

Let us consider \mathbb{Z}^d for $d \ge 2$. We perform an edge percolation of parameter p

• Each edge of \mathbb{Z}^d is open with probability p independently of all others.

Biased random walk

For simplicity in this talk assume the drift is along a direction e_1 of the grid. We take $\exp(\lambda)$ with $\lambda > 0$ to be its strength.

In the environment ω the transitions probabilities are given by

with $\beta = \exp(\lambda)$ \longrightarrow direction of the drift

Biased random walk

For simplicity in this talk assume the drift is along a direction e_1 of the grid. We take $\exp(\lambda)$ with $\lambda > 0$ to be its strength.

In the environment ω the transitions probabilities are given by

with $\beta = \exp(\lambda)$ ----- direction of the drift

We can define a similar model with a drift in any direction.

Transition phase for the speed of the biased random walk on a percolation cluster The mathematical model

Reasons for studying this model

This model was first considered in the physics literature (Barma, Dhar (83); Dhar (84); Dhar, Stauffer (98)).

Reasons for studying this model

This model was first considered in the physics literature (Barma, Dhar (83); Dhar (84); Dhar, Stauffer (98)).

It is a challenging problem of RWRE, considered by Berger, Gantert, Peres (03); Sznitman (03). It is not uniformly elliptic and the environment is asymmetric.

$$c(x,y) = \exp(\lambda(x+y) \cdot e_1)\mathbf{1}\{[x,y] \text{open}\}.$$

Reasons for studying this model

This model was first considered in the physics literature (Barma, Dhar (83); Dhar (84); Dhar, Stauffer (98)).

It is a challenging problem of RWRE, considered by Berger, Gantert, Peres (03); Sznitman (03). It is not uniformly elliptic and the environment is asymmetric.

$$c(x, y) = \exp(\lambda(x + y) \cdot e_1)\mathbf{1}\{[x, y] \text{open}\}.$$

Representative of RWRE with directional transience and trapping.

The mathematical model

Results

Berger, Gantert, Peres and Sznitman 2003

Fix p and d. The random walk is transient in the direction e_1 , i.e.

$$\lim X_n \cdot e_1 = \infty$$
, P^{ω} -a.s. for $\omega - \mathbf{P}_p$ -a.s..

Moreover

$$\lim \frac{X_n}{n} = v(\lambda), \quad P^{\omega}\text{-a.s. for } \omega - \mathbf{P}_p\text{-a.s.}.$$

There exists $\lambda_c^{(1)} \ge \lambda_c^{(2)} > 0$ such that

• if $\lambda < \lambda_c^{(2)}$, then $v(\lambda) \cdot e_1 > 0$, • if $\lambda > \lambda_c^{(1)}$, then $v(\lambda) = 0$.

Behavior of the walk

Behavior of the walk

Behavior of the walk

Behavior of the walk

Local behavior

Transition phase for the speed of the biased random walk on a percolation cluster Behavior of the walk

There are traps in the environment.

To exit a trap the walk has to backtrack (go opposite to the drift) for n steps. It takes

 $T_{\text{exit}} \approx \exp(2\lambda n),$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

units of time to do so.

Transition phase for the speed of the biased random walk on a percolation cluster Behavior of the walk

Global behavior

The trajectory looks uni-dimensional.

The phase transition

The phase transition

The phase transition

The phase transition

The issue

One important conjecture is that $\lambda_c^{(1)} = \lambda_c^{(2)}$ (phase transition).

The phase transition

Backtracking function

The most effective type of traps we encounter (represented dually)

The phase transition

Backtracking function

Let us introduce the number of steps you need to backtrack to exit the trap at $\ensuremath{\mathbf{0}}$

$$\mathcal{BK} = \min_{(p(i))_{i \in \mathbb{N}} \in \mathcal{P}} \max_{i \ge 0} p(i) \cdot (-e_1),$$

where $\ensuremath{\mathcal{P}}$ is the set of infinite open self-avoiding paths starting from 0.

We can prove that there exists $\xi(p,d) \in (0,\infty)$ such that

 $\mathbf{P}[\mathcal{BK} \ge n \mid 0 \text{ is in the infinite cluster}] \approx \exp(-\xi(p, d)n).$

The phase transition

Transition phase for the speed

F. and Hammond 2011

In \mathbb{Z}^d , let us introduce $\gamma = \frac{\xi}{2\lambda}$. We have

$$\lim \frac{X_n}{n} = v, \qquad P^{\omega}\text{-a.s. for } \omega - \mathbf{P}_p\text{-a.s.},$$

where

if
$$\gamma > 1$$
, i.e. $\lambda < \xi/2$, then $v \cdot e_1 > 0$
if $\gamma < 1$, i.e. $\lambda > \xi/2$, then $v = 0$.

Moreover, if $\gamma \leq 1$ then

$$\lim \frac{\ln X_n \cdot e_1}{\ln n} = \gamma, \qquad P^{\omega}\text{-a.s. for } \omega - \mathbf{P}_{\rho}\text{-a.s.}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

The phase transition

Transition phase for the speed

F. and Hammond 2011

In \mathbb{Z}^d , let us introduce $\gamma = \frac{\xi}{2\lambda}$. We have

$$\lim \frac{X_n}{n} = v, \qquad P^{\omega}\text{-a.s. for } \omega - \mathbf{P}_p\text{-a.s.},$$

where

if
$$\gamma > 1$$
, i.e. $\lambda < \xi/2$, then $v \cdot e_1 > 0$
if $\gamma < 1$, i.e. $\lambda > \xi/2$, then $v = 0$.

Moreover, if $\gamma \leq 1$ then

$$\lim \frac{\ln X_n \cdot e_1}{\ln n} = \gamma, \qquad P^{\omega}\text{-a.s. for } \omega - \mathbf{P}_{\rho}\text{-a.s.}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Sketch of proof

Sketch of proof

Sketch of proof

Sketch of proof

Hitting time of level n

From the drawing

we see that ideally the hitting time of the level n is essentially the time spent in the Cn first traps encountered.

イロト 不得 トイヨト イヨト

-

Sketch of proof

Hitting time of level n

From the drawing

we see that ideally the hitting time of the level n is essentially the time spent in the Cn first traps encountered.

Hence the system is similar to a one-dimensional Bouchaud Trap Model (as conjectured by Sznitman 06).

Sketch of proof

Hitting time of level n

Thus the hitting time of the level n is an i.i.d. sum

$$\Delta_n \approx \sum_{i=0}^{Cn} T_{exit}^{(i)},$$

is a sum of i.i.d. times to exit traps. Hence we need to know if the expectation of $T_{exit}^{(i)}$ is finite in an averaged sense.

Sketch of proof

Time spent in a trap

We recall that

- We need $\exp(2\lambda n)$ units of time to backtrack *n* steps in a trap,
- **②** the number of steps we backtrack is typically \mathcal{BK} , which is such that

 $\mathbf{P}[\mathcal{BK} \ge n \mid 0 \text{ is in the infinite cluster}] \approx \exp(-\xi(p, d)n).$

Sketch of proof

Time spent in a trap

We recall that

- We need $\exp(2\lambda n)$ units of time to backtrack *n* steps in a trap,
- (2) the number of steps we backtrack is typically $\mathcal{BK},$ which is such that

 $\mathbf{P}[\mathcal{BK} \ge n \mid 0 \text{ is in the infinite cluster}] \approx \exp(-\xi(p, d)n).$

From this we can see that averaged over the environment

$$\mathbb{P}\big[\mathcal{T}_{\mathsf{exit}}^{(i)} \geq t\big] = \mathbb{P}\big[\mathsf{exp}(2\lambda\mathcal{B}\mathcal{K}) \geq t\big] \approx \mathbb{P}\big[\mathcal{B}\mathcal{K} \geq \frac{1}{2\lambda} \ln t\big] \approx t^{-\gamma},$$

with $\gamma = \xi/2\lambda$.

Sketch of proof

Time spent in a trap

In the end

$$\Delta_n \approx \sum_{i=0}^{Cn} T_{exit}^{(i)},$$

with

$$\mathbb{P}\big[T_{exit}^{(i)} \geq t\big] \approx t^{-\gamma}.$$

Sketch of proof

Time spent in a trap

In the end

$$\Delta_n \approx \sum_{i=0}^{Cn} T_{exit}^{(i)},$$

with

$$\mathbb{P}\big[\mathcal{T}_{exit}^{(i)} \geq t\big] pprox t^{-\gamma}.$$

Then

• if
$$\gamma > 1$$
, $\mathbb{E}[T_{exit}^{(i)}] < \infty$ so $\Delta_n \approx Cn$ and $v = X_n/n \approx 1/C$,
• if $\gamma < 1$, $\mathbb{E}[T_{exit}^{(i)}] = \infty$ so $\Delta_n \approx \infty n$ and $v \approx 1/\infty = 0$.

(ロ)、(型)、(E)、(E)、 E) の(の)

The key ingredients

The key ingredients

The key ingredients

The key ingredients

Technical aspects

1) Condition implying $(T)_{\gamma}$

Lemma

Denoting
$$B(L, L^{\alpha}) = [-L, L]_{e_1} \times [-L^{\alpha}, L^{\alpha}]_{e_1^{\perp}}^{d-1}$$
. For large α

 $\mathbb{P}[X_n \text{ does not exit } B(L, L^{\alpha}) \text{ in the positive direction}] \leq ce^{-cL}.$

The key ingredients

Technical aspects

1) Condition implying $(T)_{\gamma}$

Lemma

Denoting
$$B(L, L^{\alpha}) = [-L, L]_{e_1} \times [-L^{\alpha}, L^{\alpha}]_{e_1^{\perp}}^{d-1}$$
. For large α

 $\mathbb{P}[X_n \text{ does not exit } B(L, L^{\alpha}) \text{ in the positive direction}] \leq ce^{-cL}.$

This lemma proves that regeneration boxes are small ($\approx \ln^{C} t$). So the walk is truly one-dimensional.

The key ingredients

Technical aspects

2) Exit time of a box

Lemma

For any α , we have for all L not too big (e.g. $\approx \ln^{C} t$)

$$\mathbb{P}[\mathcal{T}^{exit}_{B(L,L^{lpha})} \geq t] pprox t^{-\gamma}.$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

The key ingredients

Technical aspects

Lemma

For any α , we have for all L not too big (e.g. $\approx \ln^{C} t$)

$$\mathbb{P}[\mathcal{T}^{exit}_{B(L,L^{lpha})} \geq t] pprox t^{-\gamma}.$$

This lemma reflects that the time spent in a small box (e.g. a regeneration box) is mainly given by the time spent in traps.

The key ingredients

Exit times for biased reversible random walks can be efficiently approximated through spectral estimates (by Saloff-Coste).

The key ingredients

Proof of $(T)_{\gamma}$

- Exit times for biased reversible random walks can be efficiently approximated through spectral estimates (by Saloff-Coste).
- Interpretended in the contract of the contr

$$P_0[X_n = y] \le 2\Big(\frac{\pi(y)}{\pi(0)}\Big)^{1/2} \exp\Big(-\frac{d(0,y)^2}{2n}\Big),$$

tells us that in short time we can only be at places not too far from 0 and with high invariant measure

The key ingredients

Proof of $(T)_{\gamma}$

- Exit times for biased reversible random walks can be efficiently approximated through spectral estimates (by Saloff-Coste).
- Interpretended in the contract of the contr

$$P_0[X_n = y] \le 2\Big(\frac{\pi(y)}{\pi(0)}\Big)^{1/2} \exp\Big(-\frac{d(0,y)^2}{2n}\Big),$$

tells us that in short time we can only be at places not too far from 0 and with high invariant measure

- By replacing the original graph by one where the traps have been replaced by edges, we can
 - conserve exit probabilities
 - speed up the walk

Related models

Related models

Related models

Another model of biased random walks

Consider the biased random walk in positive conductances c_* (Shen 02).

F. 2011

For $d \geq 2$, we have

$$\lim \frac{X_n}{n} = v, \qquad \mathbb{P}-\text{a.s.},$$

where

Related models

Open problems

- understand the scaling limits,
- Einstein relation,
- Inderstand the behavior of the speed in the ballistic regime.

Related models

Thanks!

Thanks!

Tail estimates on regeneration times

The idea is that if the time spent in a regeneration box is large then

- either the regeneration box is large $(\geq \ln^{C} t)$,
- Or the walk spends a lot of time in a small box.

Tail estimates on regeneration times

The idea is that if the time spent in a regeneration box is large then

- either the regeneration box is large $(\geq \ln^{C} t)$,
- Or the walk spends a lot of time in a small box.

The first part is a consequence of $(T)_{\gamma}$.

The second one has probability $t^{-\gamma}$ from our estimates on exit time of boxes.

Small regeneration boxes

Condition $(T)_{\gamma}$ implies little backtracking

$$\mathbb{P}[(X_{ au_2}-X_{ au_1})\cdotec{\ell}\geq t]\leq Ce^{-ct^{1/3d}},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

so we have small variations along $\vec{\ell}$.

Small regeneration boxes

Condition $(T)_{\gamma}$ implies little backtracking

$$\mathbb{P}[(X_{ au_2}-X_{ au_1})\cdotec{\ell}\geq t]\leq Ce^{-ct^{1/3d}},$$

so we have small variations along $\vec{\ell}$.

Condition $(T)_{\gamma}$ then also implies little variations in orthogonal directions. So introducing the volume of a regeneration box

$$\mathsf{Vol}_{\tau} = \inf\{k, \ (X_i - X_{\tau_1})_{i \in [\tau_1, \tau_2]} \subset B(k, k^{\alpha})\},\$$

Small regeneration boxes

Condition $(T)_{\gamma}$ implies little backtracking

$$\mathbb{P}[(X_{ au_2}-X_{ au_1})\cdotec{\ell}\geq t]\leq Ce^{-ct^{1/3d}},$$

so we have small variations along $\vec{\ell}$.

Condition $(T)_{\gamma}$ then also implies little variations in orthogonal directions. So introducing the volume of a regeneration box

$$\operatorname{Vol}_{\tau} = \inf\{k, \ (X_i - X_{\tau_1})_{i \in [\tau_1, \tau_2]} \subset B(k, k^{\alpha})\},\$$

we have tails on the size of boxes.

$$\mathbb{P}[\operatorname{Vol}_{\tau} \geq k] \leq c e^{-ck^{1/3d}} \text{ or } \operatorname{Vol}_{\tau} \leq \ln^{C} t, \text{ w.h.p.}$$