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The mathematical model

Percolation

Let us consider Zd for d ≥ 2. We perform an edge percolation of
parameter p

Each edge of Zd is open with probability p independently of
all others.

0
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The mathematical model

Biased random walk

For simplicity in this talk assume the drift is along a direction e1 of
the grid. We take exp(λ) with λ > 0 to be its strength.

In the environment ω the transitions probabilities are given by

with β = exp(λ)

1
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β−1 β−1 β−1 β−1β β

direction of the drift

We can define a similar model with a drift in any direction.
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The mathematical model

Reasons for studying this model

This model was first considered in the physics literature (Barma,
Dhar (83); Dhar (84); Dhar, Stauffer (98)).

It is a challenging problem of RWRE, considered by Berger,
Gantert, Peres (03); Sznitman (03). It is not uniformly elliptic and
the environment is asymmetric.

c(x , y) = exp(λ(x + y) · e1)1{[x , y ]open}.

Representative of RWRE with directional transience and trapping.
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The mathematical model

Results

Berger, Gantert, Peres and Sznitman 2003

Fix p and d . The random walk is transient in the direction e1, i.e.

lim Xn · e1 =∞, Pω-a.s. for ω − Pp-a.s..

Moreover

lim
Xn

n
= v(λ), Pω-a.s. for ω − Pp-a.s..

There exists λ
(1)
c ≥ λ(2)

c > 0 such that

if λ < λ
(2)
c , then v(λ) · e1 > 0,

if λ > λ
(1)
c , then v(λ) = 0.
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Behavior of the walk

Local behavior

There are traps in the environment.

To exit a trap the walk has to backtrack (go opposite to the drift)
for n steps. It takes

Texit ≈ exp(2λn),

units of time to do so.
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Behavior of the walk

Global behavior

The trajectory looks uni-dimensional.
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The phase transition

The issue

0

v(β)

β

1

One important conjecture is that λ
(1)
c = λ

(2)
c (phase transition).
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The phase transition

Backtracking function

The most effective type of traps we encounter (represented dually)

direction of the drift

d = 2 d ≥ 3

a vertical slice
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The phase transition

Backtracking function

Let us introduce the number of steps you need to backtrack to exit
the trap at 0

BK = min
(p(i))i∈N∈P

max
i≥0

p(i) · (−e1),

where P is the set of infinite open self-avoiding paths starting from
0.
We can prove that there exists ξ(p, d) ∈ (0,∞) such that

P[BK ≥ n | 0 is in the infinite cluster] ≈ exp(−ξ(p, d)n).
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The phase transition

Transition phase for the speed

F. and Hammond 2011

In Zd , let us introduce γ = ξ
2λ . We have

lim
Xn

n
= v , Pω-a.s. for ω − Pp-a.s..,

where
if γ > 1, i.e. λ < ξ/2, then v · e1 > 0,

if γ < 1, i.e. λ > ξ/2, then v = 0.

Moreover, if γ ≤ 1 then

lim
ln Xn · e1

ln n
= γ, Pω-a.s. for ω − Pp-a.s..
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Sketch of proof

Hitting time of level n

From the drawing

we see that ideally the hitting time of the level n is essentially the
time spent in the Cn first traps encountered.

Hence the system is similar to a one-dimensional Bouchaud Trap
Model (as conjectured by Sznitman 06).



Transition phase for the speed of the biased random walk on a percolation cluster

Sketch of proof

Hitting time of level n

From the drawing

we see that ideally the hitting time of the level n is essentially the
time spent in the Cn first traps encountered.

Hence the system is similar to a one-dimensional Bouchaud Trap
Model (as conjectured by Sznitman 06).



Transition phase for the speed of the biased random walk on a percolation cluster

Sketch of proof

Hitting time of level n

Thus the hitting time of the level n is an i.i.d. sum

∆n ≈
Cn∑
i=0

T
(i)
exit ,

is a sum of i.i.d. times to exit traps. Hence we need to know if the

expectation of T
(i)
exit is finite in an averaged sense.
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Sketch of proof

Time spent in a trap

We recall that

1 We need exp(2λn) units of time to backtrack n steps in a trap,

2 the number of steps we backtrack is typically BK, which is
such that

P[BK ≥ n | 0 is in the infinite cluster] ≈ exp(−ξ(p, d)n).

From this we can see that averaged over the environment

P
[
T

(i)
exit ≥ t

]
= P

[
exp(2λBK) ≥ t

]
≈ P

[
BK ≥ 1

2λ
ln t
]
≈ t−γ ,

with γ = ξ/2λ.
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Sketch of proof

Time spent in a trap

In the end

∆n ≈
Cn∑
i=0

T
(i)
exit ,

with
P
[
T

(i)
exit ≥ t

]
≈ t−γ .

Then

1 if γ > 1, E[T
(i)
exit ] <∞ so ∆n ≈ Cn and v = Xn/n ≈ 1/C ,

2 if γ < 1, E[T
(i)
exit ] =∞ so ∆n ≈ ∞n and v ≈ 1/∞ = 0.
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The key ingredients

Technical aspects

1) Condition implying (T )γ

Lemma

Denoting B(L, Lα) = [−L, L]e1 × [−Lα, Lα]d−1
e⊥1

. For large α

P[Xn does not exit B(L, Lα) in the positive direction] ≤ ce−cL.

This lemma proves that regeneration boxes are small (≈ lnC t).
So the walk is truly one-dimensional.
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The key ingredients

Technical aspects

2) Exit time of a box

Lemma

For any α, we have for all L not too big (e.g. ≈ lnC t)

P[T exit
B(L,Lα) ≥ t] ≈ t−γ .

This lemma reflects that the time spent in a small box (e.g. a
regeneration box) is mainly given by the time spent in traps.
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The key ingredients

Proof of (T )γ

1 Exit times for biased reversible random walks can be efficiently
approximated through spectral estimates (by Saloff-Coste).

2 The Carne-Varopoulos estimate

P0[Xn = y ] ≤ 2
(π(y)

π(0)

)1/2
exp
(
−d(0, y)2

2n

)
,

tells us that in short time we can only be at places not too far
from 0 and with high invariant measure

3 By replacing the original graph by one where the traps have
been replaced by edges, we can

conserve exit probabilities
speed up the walk
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Related models

Another model of biased random walks

Consider the biased random walk in positive conductances c∗
(Shen 02).

F. 2011

For d ≥ 2, we have

lim
Xn

n
= v , P− a.s.,

where

1 if E∗[c∗] <∞, then v · ~̀ > 0,

2 if E∗[c∗] =∞, then v = 0.
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Related models

Open problems

Open problems

1 understand the scaling limits,

2 Einstein relation,

3 understand the behavior of the speed in the ballistic regime.
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Related models

Thanks!

Thanks!
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Related models

Tail estimates on regeneration times

The idea is that if the time spent in a regeneration box is large
then

1 either the regeneration box is large (≥ lnC t),

2 or the walk spends a lot of time in a small box.

The first part is a consequence of (T )γ .

The second one has probability t−γ from our estimates on exit
time of boxes.
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Related models

Small regeneration boxes

Condition (T )γ implies little backtracking

P[(Xτ2 − Xτ1) · ~̀≥ t] ≤ Ce−ct1/3d
,

so we have small variations along ~̀.

Condition (T )γ then also implies little variations in orthogonal
directions. So introducing the volume of a regeneration box

Volτ = inf{k , (Xi − Xτ1)i∈[τ1,τ2] ⊂ B(k , kα)},

we have tails on the size of boxes.

P[Volτ ≥ k] ≤ ce−ck1/3d
or Volτ ≤ lnC t, w.h.p.
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