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Outline Introduction Large deviations Fluctuation exponents

Directed polymer in a random environment
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0 space Zd

time N simple random walk path (x(t), t), t ∈ Z+

space-time environment {ω(x , t) : x ∈ Zd , t ∈ N}

inverse temperature β > 0

quenched probability measure on paths

Qn{x(·)} =
1

Zn
exp
{
β

n∑
t=1

ω(x(t), t)
}

partition function Zn =
∑
x(·)

exp
{
β

n∑
t=1

ω(x(t), t)
}

(summed over all n-paths)

P probability distribution on ω, often {ω(x , t)} i.i.d.
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Outline Introduction Large deviations Fluctuation exponents

Key quantities again:

Quenched measure Qn{x(·)} = Z−1
n exp

{
β

n∑
t=1

ω(x(t), t)
}

Partition function Zn =
∑
x(·)

exp
{
β

n∑
t=1

ω(x(t), t)
}

Questions:

Behavior of walk x(·) under Qn on large scales: fluctuation
exponents, central limit theorems, large deviations

Behavior of log Zn (now also random as a function of ω)

Dependence on β and d
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Outline Introduction Large deviations Fluctuation exponents

Large deviations

Question: describe quenched limit lim
n→∞

n−1 log Zn (P-a.s.)

Large deviation perspective.

Generalize: E0 = expectation under background RW Xn on Zν .

n−1 log Zn = n−1 log E0

[
eβ

Pn−1
k=0 ωXk

]
= n−1 log E0

[
e

Pn−1
k=0 g(ωXk

)
]

= n−1 log E0

[
e

Pn−1
k=0 g(TXk

ω,Zk+1,k+`)
]

Introduced shift (Txω)y = ωx+y , steps Zk = Xk − Xk−1 ∈ R,

Z1,` = (Z1,Z2, . . . ,Z`).

g(ω, z1,`) is a function on Ω` = Ω×R`.
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Outline Introduction Large deviations Fluctuation exponents

Define empirical measure Rn = n−1
n−1∑
k=0

δTXk
ω,Zk+1,k+`

.

It is a probability measure on Ω`.

Then n−1 log Zn = n−1 log E0

[
enRn(g)

]
Task: understand large deviations of P0{Rn ∈ · } under P-a.e. fixed ω
(quenched).

Process: Markov chain (TXnω,Zn+1,n+`) on Ω` under a fixed ω.

Evolution: pick random step z from R, then execute move

Sz : (ω, z1,`)→ (Tz1ω, z2,`z).

Defines kernel p on Ω` : p(η,Szη) = |R|−1.
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Outline Introduction Large deviations Fluctuation exponents

Entropy

For µ ∈M1(Ω`), q Markov kernel on Ω`, usual relative entropy on Ω2
` :

H(µ× q |µ× p) =

∫
Ω`

∑
z∈R

q(η,Szη) log
q(η,Szη)

p(η,Szη)
µ(dη).

The effect of P in the background?

Let µ0 = Ω-marginal of µ ∈M1(Ω`). Define

HP(µ) =

{
inf
{
H(µ× q |µ× p) : µq = µ

}
if µ0 � P

∞ otherwise.

Infimum taken over Markov kernels q that fix µ.

HP is convex but not lower semicontinuous.
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Outline Introduction Large deviations Fluctuation exponents

Assumptions.

Environment {ωx} IID under P.

g local function on Ω` , E|g |p <∞ for some p > ν.

Theorem. (Rassoul-Agha, S, Yilmaz) Deterministic limit

Λ(g) = lim
n→∞

n−1 log E0

[
enRn(g)

]
exists P-a.s.

and Λ(g) = H#
P (g) ≡ sup

µ
sup
c>0

{
Eµ[g ∧ c] − HP(µ)

}
.

Remarks.

With higher moments of g admit mixing P.

Λ(g) > −∞.

IID directed + above moment ⇒ Λ(g) finite.
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}
.

Remarks.

With higher moments of g admit mixing P.

Λ(g) > −∞.

IID directed + above moment ⇒ Λ(g) finite.
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Outline Introduction Large deviations Fluctuation exponents

Quenched weak LDP (large deviation principle) under Qn.

Qn(A) =
1

E0

[
enRn(g)

] E0

[
enRn(g)1A(ω,Z1,∞)

]

Rate function I (µ) = inf
c>0
{HP(µ)− Eµ(g ∧ c) + Λ(g) }.

Theorem. (RSY) Assumptions as above and Λ(g) finite. Then

P-a.s. for compact F ⊆M1(Ω`) and open G ⊆M1(Ω`):

lim
n→∞

n−1 log Qn{Rn ∈ F} ≤ − inf
µ∈F

I (µ)

lim
n→∞

n−1 log Qn{Rn ∈ G} ≥ − inf
µ∈G

I (µ)

IID environment, directed walk: full LDP holds.
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Return to d + 1 dim directed polymer in i.i.d. environment.

Question: Is the path x(·) diffusive or not, that is, does it scale like
standard RW?

Early results: diffusive behavior for d ≥ 3 and small β > 0:

1988 Imbrie and Spencer: n−1EQ(|x(n)|2)→ c P-a.s.

1989 Bolthausen: quenched CLT for n−1/2x(n).

In the opposite direction: if d = 1, 2, or d ≥ 3 and β large enough, then
∃ c > 0 s.t.

lim
n→∞

max
z

Qn{x(n) = z} ≥ c P-a.s.

(Carmona and Hu 2002, Comets, Shiga, and Yoshida 2003)
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Definition of fluctuation exponents ζ and χ

Fluctuations of the path {x(t) : 0 ≤ t ≤ n} are of order nζ .

Fluctuations of log Zn are of order nχ.

Conjecture for d = 1: ζ = 2/3 and χ = 1/3.

Results: these exact exponents for three particular 1+1 dimensional
models.
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Earlier results for d = 1 exponents

Past rigorous bounds give 3/5 ≤ ζ ≤ 3/4 and χ ≥ 1/8:

Brownian motion in Poissonian potential: Wüthrich 1998, Comets
and Yoshida 2005.

Gaussian RW in Gaussian potential: Petermann 2000 ζ ≥ 3/5,
Mejane 2004 ζ ≤ 3/4

Licea, Newman, Piza 1995-96: corresponding results for first passage
percolation
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Rigorous ζ = 2/3 and χ = 1/3 results

exist for three “exactly solvable” models:

(1) Log-gamma polymer: β = 1 and e−ω(x ,t) ∼ Gamma, plus
appropriate boundary conditions.

(2) Polymer in a Brownian environment (joint with B. Valkó)
Model introduced by O’Connell and Yor 2001.

(3) Continuum directed polymer, or Hopf-Cole solution of the
Kardar-Parisi-Zhang (KPZ) equation:

(i) Initial height function given by two-sided Brownian motion
(joint with M. Balázs and J. Quastel).

(ii) Narrow wedge initial condition (Amir, Corwin, Quastel).

Next details on (3.i), then details on (1).
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Hopf-Cole solution to KPZ equation

KPZ eqn for height function h(t, x) of a 1+1 dim interface:

ht = 1
2 hxx − 1

2 (hx)2 + Ẇ

where Ẇ = Gaussian space-time white noise.

Initial height h(0, x) = two-sided Brownian motion for x ∈ R.

Z = exp(−h) satisfies Zt = 1
2 Zxx − Z Ẇ that can be solved.

Define h = − log Z , the Hopf-Cole solution of KPZ.

Bertini-Giacomin (1997): h can be obtained as a weak limit via a
smoothing and renormalization of KPZ.
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

WASEP connection

ζε(t, x) height process of weakly asymmetric simple exclusion s.t.

ζε(x + 1)− ζε(x) = ±1

rate up 1
2 +
√
ε

rate down 1
2
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

WASEP connection

Jumps:

ζε(x) −→

{
ζε(x) + 2 with rate 1

2 +
√
ε if ζε(x) is a local min

ζε(x)− 2 with rate 1
2 if ζε(x) is a local max

Initially: ζε(0, x + 1)− ζε(0, x) = ±1 with probab 1
2 .

hε(t, x) = ε1/2
(
ζε(ε

−2t, [ε−1x ]) − vεt
)

Theorem (Bertini-Giacomin 1997) As ε↘ 0, hε ⇒ h
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Fluctuation bounds

From coupling arguments for WASEP

C1t
2/3 ≤ Var(hε(t, 0)) ≤ C2t

2/3

Theorem (Balázs-Quastel-S) For the Hopf-Cole solution of KPZ,

C1t
2/3 ≤ Var(h(t, 0)) ≤ C2t

2/3

Lower bound comes from control of rescaled correlations

Sε(t, x) = 4ε−1 Cov
[
η(ε−2t, ε−1x) , η(0, 0)

]
where η(t, x) ∈ {0, 1} is the occupation variable of WASEP
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Rescaled correlations again:

Sε(t, x) = 4ε−1 Cov
[
η(ε−2t, ε−1x) , η(0, 0)

]

E
[
〈ϕ′, hε(t) 〉 〈ψ′, hε(0) 〉

]
= 1

2

∫ [ ∫
ϕ

(
y + x

2

)
ψ

(
y − x

2

)
dy

]
Sε(t, x) dx

Let ε↘ 0. On the left increments of hε so total control !

On the right Sε(t, x)dx ⇒ S(t, dx) with control of moments:∫
|x |m Sε(t, x) dx ∼ O(t2m/3), 1 ≤ m < 3.

(Second class particle estimate.)
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

After ε↘ 0 limit

E
[
〈ϕ′, h(t) 〉 〈ψ′, h(0) 〉

]
= 1

2

∫∫
ϕ

(
y + x

2

)
ψ

(
y − x

2

)
dy S(t, dx)

From mean zero, stationary h increments

1
2∂xx Var(h(t, x)) = S(t, dx) as distributions.

With some control over tails we arrive at the result:

Var(h(t, 0)) =

∫
|x |S(t, dx) ∼ O(t2/3).
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

1+1 dimensional lattice polymer with log-gamma weights

Fix both endpoints.

-

6

• ••
•
• • •• •

• •
• • •

0 m
0

n

Πm,n = set of admissible paths

independent weights Yi , j = eω(i ,j)

environment (Yi , j : (i , j) ∈ Z2
+)

Zm,n =
∑
x �

m+n∏
k=1

Yxk

quenched measure Qm,n(x �) = Z−1
m,n

m+n∏
k=1

Yxk

averaged measure Pm,n(x �) = EQm,n(x �)
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Weight distributions

Parameters 0 < θ < µ.

Bulk weights Yi , j for i , j ∈ N
Boundary weights Ui ,0 = Yi ,0 and V0, j = Y0, j .

-

6

0

0 1

V0, j

Ui,0

Yi, j

U−1
i ,0 ∼ Gamma(θ)

V−1
0, j ∼ Gamma(µ− θ)

Y−1
i , j ∼ Gamma(µ)

Gamma(θ) density: Γ(θ)−1xθ−1e−x on R+

Ψn(s) = (dn+1/dsn+1) log Γ(s)

E(log U) = −Ψ0(θ) and Var(log U) = Ψ1(θ)
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Variance bounds for log Z

With 0 < θ < µ fixed and N ↗∞ assume

|m − NΨ1(µ− θ) | ≤ CN2/3 and | n − NΨ1(θ) | ≤ CN2/3 (1)

Theorem

For (m, n) as in (1), C1N
2/3 ≤ Var(log Zm,n) ≤ C2N

2/3 .

Theorem

Suppose n = Ψ1(θ)N and m = Ψ1(µ− θ)N + γNα with γ > 0, α > 2/3.
Then

N−α/2
{

log Zm,n − E
(
log Zm,n

)}
⇒ N

(
0, γΨ1(θ)

)
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Fluctuation bounds for path

v0(j) = leftmost, v1(j) = rightmost point of x � on horizontal line:

v0(j) = min{i ∈ {0, . . . ,m} : ∃k : xk = (i , j)}

v1(j) = max{i ∈ {0, . . . ,m} : ∃k : xk = (i , j)}

Theorem

Assume (m, n) as previously and 0 < τ < 1. Then

(a) P
{

v0(bτnc) < τm − bN2/3 or v1(bτnc) > τm + bN2/3
}
≤ C

b3

(b) ∀ε > 0 ∃δ > 0 such that

lim
N→∞

P
{
∃k such that | xk − (τm, τn)| ≤ δN2/3

}
≤ ε.
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Results for log-gamma polymer summarized

With reciprocals of gammas for weights, both endpoints of the polymer
fixed and the right boundary conditions on the axes, we have identified the
one-dimensional exponents

ζ = 2/3 and χ = 1/3.

Next step is to

eliminate the boundary conditions and

consider polymers with fixed length and free endpoint

In both scenarios we have the upper bounds for both log Z and the path.

But currently do not have the lower bounds.

Next some key points of the proof.
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Burke property for log-gamma polymer with boundary

-

6

0

0 1

V0, j

Ui,0

Yi, j

Given initial weights (i , j ∈ N):

U−1
i,0 ∼ Gamma(θ), V−1

0, j ∼ Gamma(µ− θ)

Y−1
i, j ∼ Gamma(µ)

Compute Zm,n for all (m, n) ∈ Z2
+ and then define

Um,n =
Zm,n

Zm−1,n
Vm,n =

Zm,n

Zm,n−1
Xm,n =

( Zm,n

Zm+1,n
+

Zm,n

Zm,n+1

)−1

For an undirected edge f : Tf =

{
Ux f = {x − e1, x}
Vx f = {x − e2, x}
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6

0

0 1

V0, j

Ui,0

Yi, j

Given initial weights (i , j ∈ N):

U−1
i,0 ∼ Gamma(θ), V−1

0, j ∼ Gamma(µ− θ)

Y−1
i, j ∼ Gamma(µ)

Compute Zm,n for all (m, n) ∈ Z2
+ and then define

Um,n =
Zm,n

Zm−1,n
Vm,n =

Zm,n

Zm,n−1
Xm,n =

( Zm,n

Zm+1,n
+

Zm,n

Zm,n+1

)−1
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•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

down-right path (zk) with

edges fk = {zk−1, zk}, k ∈ Z

• interior points I of path (zk)

Theorem

Variables {Tfk ,Xz : k ∈ Z, z ∈ I } are independent with marginals

U−1 ∼ Gamma(θ), V−1 ∼ Gamma(µ− θ), and X−1 ∼ Gamma(µ).

“Burke property” because the analogous property for last-passage is a
generalization of Burke’s Theorem for M/M/1 queues, via the last-passage
representation of M/M/1 queues in series.
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Proof of Burke property

Induction on I by flipping a growth corner:

V

U

•Y •X V’

U’ U ′ = Y (1 + U/V ) V ′ = Y (1 + V /U)

X =
(
U−1 + V−1

)−1

Lemma. Given that (U,V ,Y ) are independent positive r.v.’s,

(U ′,V ′,X )
d
= (U,V ,Y ) iff (U,V ,Y ) have the gamma distr’s.

Proof. “if” part by computation, “only if” part from a characterization
of gamma due to Lukacs (1955). �

This gives all (zk) with finite I. General case follows.
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Proof of off-characteristic CLT

Recall that

n = Ψ1(θ)N

m = Ψ1(µ− θ)N + γNα
γ > 0, α > 2/3.

Set m1 = bΨ1(µ− θ)Nc. Since Zm,n = Zm1,n ·
∏m

i=m1+1 Ui ,n

N−α/2 log Zm,n = N−α/2 log Zm1,n + N−α/2
m∑

i=m1+1

log Ui ,n

First term on the right is O(N1/3−α/2)→ 0. Second term is a sum of
order Nα i.i.d. terms. �
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Variance identity

ξx

Exit point of path from x-axis

ξx = max{k ≥ 0 : xi = (i , 0) for 0 ≤ i ≤ k}

For θ, x > 0 define positive function

L(θ, x) =

∫ x

0

(
Ψ0(θ)− log y

)
x−θyθ−1ex−y dy

Theorem. For the model with boundary,

Var
[
log Zm,n

]
= nΨ1(µ− θ)−mΨ1(θ) + 2 Em,n

[ ξx∑
i=1

L(θ,Y−1
i ,0 )

]
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Variance identity, sketch of proof

W = log Z0,n

S = log Zm,0

N = log Zm,n − log Z0,n

E = log Zm,n − log Zm,0

Var
[
log Zm,n

]
= Var(W + N)

= Var(W ) + Var(N) + 2 Cov(W ,N)

= Var(W ) + Var(N) + 2 Cov(S + E − N,N)

= Var(W )− Var(N) + 2 Cov(S ,N) (E ,N ind.)

= nΨ1(µ− θ)−mΨ1(θ) + 2 Cov(S ,N).
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

To differentiate w.r.t. parameter θ of S while keeping W fixed, introduce a
separate parameter ρ (= µ− θ) for W .

−Cov(S ,N) =
∂

∂θ
E(N)

= Ẽ
[ ∂
∂θ

log Zm,n(θ)
]

when Zm,n(θ) =
∑

x �∈Πm,n

ξx∏
i=1

Hθ(ηi )
−1 ·

m+n∏
k=ξx +1

Yxk
with

ηi ∼ IID Unif(0, 1), Hθ(η) = F−1
θ (η), Fθ(x) =

∫ x

0

yθ−1e−y

Γ(θ)
dy .

Differentiate:
∂

∂θ
log Zm,n(θ) = −EQm,n

[ ξx∑
i=1

L(θ,Y−1
i ,0 )

]
.
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Together:

Var
[
log Zm,n

]
= nΨ1(µ− θ)−mΨ1(θ) + 2 Cov(S ,N)

= nΨ1(µ− θ)−mΨ1(θ) + 2 Em,n

[ ξx∑
i=1

L(θ,Y−1
i ,0 )

]
.

This was the claimed formula. �
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Sketch of upper bound proof

The argument develops an inequality that controls both log Z and ξx
simultaneously. Introduce an auxiliary parameter λ = θ − bu/N.

The
weight of a path x � such that ξx > 0 satisfies

W (θ) =

ξx∏
i=1

Hθ(ηi )
−1 ·

m+n∏
k=ξx +1

Yxk
= W (λ) ·

ξx∏
i=1

Hλ(ηi )

Hθ(ηi )
.

Since Hλ(η) ≤ Hθ(η),

Qθ,ω{ξx ≥ u} =
1

Z (θ)

∑
x �

1{ξx ≥ u}W (θ) ≤ Z (λ)

Z (θ)
·
buc∏
i=1

Hλ(ηi )

Hθ(ηi )
.

Polymer large deviations and fluctuations Ithaca May 1, 2011 33/35



Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Sketch of upper bound proof

The argument develops an inequality that controls both log Z and ξx
simultaneously. Introduce an auxiliary parameter λ = θ − bu/N. The
weight of a path x � such that ξx > 0 satisfies

W (θ) =

ξx∏
i=1

Hθ(ηi )
−1 ·

m+n∏
k=ξx +1

Yxk

= W (λ) ·
ξx∏

i=1

Hλ(ηi )

Hθ(ηi )
.

Since Hλ(η) ≤ Hθ(η),

Qθ,ω{ξx ≥ u} =
1

Z (θ)

∑
x �

1{ξx ≥ u}W (θ) ≤ Z (λ)

Z (θ)
·
buc∏
i=1

Hλ(ηi )

Hθ(ηi )
.

Polymer large deviations and fluctuations Ithaca May 1, 2011 33/35



Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Sketch of upper bound proof

The argument develops an inequality that controls both log Z and ξx
simultaneously. Introduce an auxiliary parameter λ = θ − bu/N. The
weight of a path x � such that ξx > 0 satisfies

W (θ) =

ξx∏
i=1

Hθ(ηi )
−1 ·

m+n∏
k=ξx +1

Yxk
= W (λ) ·

ξx∏
i=1

Hλ(ηi )

Hθ(ηi )
.

Since Hλ(η) ≤ Hθ(η),

Qθ,ω{ξx ≥ u} =
1

Z (θ)

∑
x �

1{ξx ≥ u}W (θ) ≤ Z (λ)

Z (θ)
·
buc∏
i=1

Hλ(ηi )

Hθ(ηi )
.

Polymer large deviations and fluctuations Ithaca May 1, 2011 33/35



Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Sketch of upper bound proof

The argument develops an inequality that controls both log Z and ξx
simultaneously. Introduce an auxiliary parameter λ = θ − bu/N. The
weight of a path x � such that ξx > 0 satisfies

W (θ) =

ξx∏
i=1

Hθ(ηi )
−1 ·

m+n∏
k=ξx +1

Yxk
= W (λ) ·

ξx∏
i=1

Hλ(ηi )

Hθ(ηi )
.

Since Hλ(η) ≤ Hθ(η),

Qθ,ω{ξx ≥ u} =
1

Z (θ)

∑
x �

1{ξx ≥ u}W (θ) ≤ Z (λ)

Z (θ)
·
buc∏
i=1

Hλ(ηi )

Hθ(ηi )
.

Polymer large deviations and fluctuations Ithaca May 1, 2011 33/35



Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

For 1 ≤ u ≤ δN and 0 < s < δ,

P
[
Qω{ξx ≥ u} ≥ e−su2/N

]
≤ P

{ buc∏
i=1

Hλ(ηi )

Hθ(ηi )
≥ α

}

+ P
(

Z (λ)

Z (θ)
≥ α−1e−su2/N

)
.

Choose α right. Bound these probabilities with Chebychev which brings
Var(log Z ) into play. In the characteristic rectangle Var(log Z ) can be
bounded by E (ξx). The end result is this inequality:

P
[
Qω{ξx ≥ u} ≥ e−su2/N

]
≤ CN2

u4
E (ξx) +

CN2

u3

Handle u ≥ δN with large deviation estimates. In the end, integration
gives the moment bounds. END.
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Outline Introduction Large deviations Fluctuation exponents KPZ equation Log-gamma polymer

Polymer in a Brownian environment

Environment: independent Brownian motions B1,B2, . . . ,Bn

Partition function (without boundary conditions):

Zn,t(β) =

∫
0<s1<···<sn−1<t

exp
[
β
(
B1(s1) + B2(s2)− B2(s1) +

+ B3(s3)− B3(s2) + · · ·+ Bn(t)− Bn(sn−1)
)]

ds1,n−1

Polymer large deviations and fluctuations Ithaca May 1, 2011 35/35


	Outline
	Introduction
	Large deviations
	Fluctuation exponents
	KPZ equation
	Log-gamma polymer


