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1 Introduction

Let X be a finite set and let p a probability distribution on X. Let

Xn =
{
xn = (x1..., xn) : xk ∈ X

}
be the usual cardinal product of n copies of X and let pn be the independent
product on Xn of n copies of p. One calls the sequence (pn)n≥1 an (Information)
Source with stationary, independent letters from the alphabet X. For a fixed ε,
0 < ε < 1, one is interested in the smallest cardinality β(n, ε) of subsets E ⊆ Xn

with pn(E) ≥ 1− ε. Let
h(x) = − log p(x).

One calls the quantity

H = −
∫
hdp = −

∑
p(x)>0

p(x) log p(x)

the entropy of the source (pn)n≥1.
It is well-known that

(1.1) log β(n, ε) = nH +O(
√
n).

(One may find a summary of the literature about this result and further
generalizations in [2]). Recall that enH is an approximation of β(n, ε) with
relative error eO(

√
n), and note that this error could potentially go very rapidly

to infinity.
Let S be the variance of h. We will write Φ to denote the Gaussian distri-

bution. Let λ be the unique positive real number determined by

(1.2) Φ(λ) = 1− ε.
∗This English translation was made from the original German text by Peter Luthy. This

translation would not have been possible without support from Aaron Wagner.
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Juschkewitsch [3] proved the following tighter version of (1.1) (not only for
sources with stationary, independent letters, but rather for the more general
case for stationary Markovian sources):

log β(n, ε) = nH + λS
√
n+ o(

√
n).

We will exclude the trivial case S = 0. Define the real polynomial Q by

(1.3) Q(t) =
∫

(h−H)3dp

6S2
(t2 − 1).

For a given % > 0, let d(t) be the smallest remainder of t mod % so that

d(t) = t− k%
(
1− %

2 < t− k% ≤ %
2

)
,

and define w, with help from d, by

(1.4) w = −d+ log
(
d+

%

2
e% + 1
e% − 1

)
.

The quantity w is a continuous, periodic (hence bounded) function with period
%.

Theorem 1.1 Provided that the distribution of h is not lattice-like (see [4]):

(1.5) log β(n, ε) = nH + λS
√
n− 1

2
log n+Q(λ)− 1

2
λ2 − log(

√
2πS) + o(1).

If the distribution of h is lattice-like with lattice parameter (span) %, then

log β(n, ε) = nH + λS
√
n− 1

2
log n+Q(λ)− 1

2
λ2 − log(

√
2πS)

+ w
(
−na+ λS

√
n+Q(λ)

)
+ o(1)

and where a is a real number so that p(h−H = a) > 0.

From Theorem 1, it follows that the relative error of both

1
S
√

2πn
exp{nH + λS

√
n+Q(λ)− 1

2
λ2}

and

1
S
√

2πn
exp{nH + λS

√
n+Q(λ)− 1

2
λ2 + w

(
−na+ λS

√
n+Q(λ)

)
}

as approximations of log β(n, ε) go to zero as n tends to infinity. Now, let Y be
second finite set, Yn =

{
yn = (y1..., yn) : yk ∈ Y

}
, and P a Markov kernel (tran-

sition probability function) from Y to X. For every y ∈ Y , the function P (· , y)
is therefore a probability distribution in X. Rather than writing P ({x}, y), we
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will write P (x, y). The independent product Pn of n copies of P is then defined
by

Pn(xn, yn) = P (x1, y1) . . . P (xn, yn).

One calls the sequence (Pn)n≥1 a stationary, memoryless channel from Y to
X.

An ε-code for Pn is a mapping f of a subset of Xn to Yn such that the
following holds for every yn ∈ f(Xn):

(1.6) Pn(f−1{yn}, yn) ≥ 1− ε.

The number of points in f(Xn) is called the length of the code. One is interested
in the maximal length N(n, ε) of ε-codes for Pn. For any probability distribution
α in Y we define the probability distribution Pα in X and P × α in X × Y by

(1.7) (Pα){x} =
∫
P (x, y)α(dy) =

∑
y∈Y

P (x, y)α{y}

and

(1.8) (P × α){(x, y)} = P (x, y)α{y}.

Let

(1.9) iα(x, y) = log
P (x, y)

(Pα){x}

and

(1.10) Iα =
∫
iαd(P × α) =

∑
x,y:P (x,y)α{y}>0

P (x, y)α{y} log
P (x, y)

(Pα){x}
,

and let

(1.11) C = sup
α
Iα.

One calls C the capacity of the channel (Pn)n≥1. It is well known that

nC +O(
√
n) < logN(n, ε) < nC + εO(n).

(One can find an overview of the literature concerning the Coding Theorem with
weak converse in [2],[5],[6],[8], and [16].)

Wolfowitz [5] observed and proved that if, in the above estimate, one replaced
the εO(n) with O(

√
n) (strong converse) so that

logN(n, ε) = nC +O(
√
n)

then for ε > 1
2 the term O(

√
n) is eventually positive.
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For a special class of stationary, memoryless channels (symmetric channels
with two-point input alphabet), Weiss [7] showed that for ε < 1

2 , the term
O(
√
n) will eventually be negative; more precisely,

(1.12) logN(n, ε) ≤ nC − Tλ
√
n+ o(

√
n)

holds, where T > 0 is the variance of iα relative to P × α where we require the
condition Iα = C, holding for a uniquely defined α (aside from some trivial,
degenerate cases which we disregard).

For stationary, memoryless channels, the set

(1.13) Ā = {α|α is a probability distribution in Y, Iα = C}

is generally not a single point. Let Gα be the variance of iα relative to P × α
and

(1.14) T1 = min
α∈Ā

Gα

T−1 = max
α∈Ā

Gα

Theorem 1.2 It holds that

logN(n, ε) = nC − λTsignλ

√
n+O(log n),

more precisely

(1.15) logN(n, ε) ≤ nC − λTsignλ

√
n+ |Y | log n for sufficiently large n,

(1.16) logN(n, ε) ≥ nC − λTsignλ

√
n+O(1) for Tsignλ > 0,

(1.17) logN(n, ε) ≥ nC − 1
2

log n for sufficiently large n, Tsignλ = 0,

where |Y | is the cardinality of Y and sign λ = 1 (λ ≥ 0) and sign λ = −1
(λ < 0).1

Theorem 1.2 shows among other things that the upper bound for logN(n, ε)
in (1.12) is the best possible within the context of the given error term.

From Theorem 1.1 and 1.2, together, it follows that (Section 5) a stationary,
memoryless Channel with capacity C from a signal with stationary source and
independent letters and with entropy H = C can only be transmitted with large
probability of error (but we assume that one of the numbers S, T1 is positive).

One can generalize Theorem 1.1 to non-stationary sources with independent
letters by relaxing the o(1) to O(1) (Section 3). The corresponding statement
for Theorem 1.2 also follows (but this is not proven here, cf. also [8]).

1For symmetric Channels, one can replace |Y | logn in (1.15) with O(1) if T = 0 or 1
2

logn+
O(1) if T > 0. The details in this case are greatly simplified.
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For channels that are stationary and memoryless and satisfy a slightly stronger
symmetry condition than in [7], Dobruschin [6] had given, without proof, the
estimate

(1.18) logN ′(n, ε) = nC − λT
√
n− 1

2
log n+O(1),

where N ′(n, ε) is defined as in Section 5 (iv). From (5.5) and (1.16) it follows
that (1.18) is not correct in general.1

The details of the proofs of Theorems 1.1 and 3.1 employ essential ideas of
Cramér [18] (see also Feller [19]). The proof of Theorem 1.2 is supported by
methods from Feinstein and Wolfowitz. A series of work (Feinstein [20], Elias
[21], Shannon, Fano [2]) concerned with the estimate of εn when N(n, εn) is
given (for a stationary, memoryless channel). Theorem 1.2 can be adapted to
this problem, provided N(n, εn) grows like enC . Namely, it follows that

N(n, εn) = enC−Kn
√
n,

where the Kn are bounded (not necessarily ≥ 0) and we suppose that T1 > 0,
so it follows easily from Theorem 1.2 that

εn =
1√
2π

∫ ∞
Kn/Tsign Kn

e−t
2/2dt+O(

log n√
n

)

(One remarks that Theorem 1.2 applies uniformly for ε from any compact set
in the open unit interval). [20] to [22] provide in this case less exact asymptotic
estimates, whereupon e.g. εn could go continuously to zero (the stated results
are, however, broad for finite n and can apply to an arbitrary sequenceN(n, εn)).

2 Formulation and Proof of A Generalization of
Theorem 1.1

Let q be a finite measure in X different from p, and assume q is absolutely
continuous with respect to p. Let qn be the product measure in Xn of n copies
of q, and let

(2.1) β(n, ε) = min
E⊆Xn,pn(E)≥1−ε

qn(E)

We define the function h on X by

(2.2) h(x) = − log
p(x)
q(x)

= − log
dp

dq
(x)

1after a communication from Mr. Prof. Dobruschin, one must put + 1
2

logn in lieu of

− 1
2

logn. From this and from (5.5) and (5.7) one gets for T > 0 exactly the result in the
previous addendum and (1.16) (under Dobruschin’s symmetry condition). Provided Dobr-
uschin’s result is true in the case where T = 0 (which appears doubtful), one obtains through
comparison to the previous addendum and (5.7) even that

logN(n, ε) = nC +O(1)

for such channels.
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and set

(2.3) H =
∫
hdp = −

∑
x:p(x)>0

p(x) log
p(x)
q(x)

Let S be the variance of h relative to p (in what follows, for a distribution or the
moments of a function defined on X or Xn, this quantity will always be with
respect to p or pn) and let Q be defined formally as in (1.3), but with the present
meaning of h, H, and S. We prove Theorem 1.1 in this new interpretation, where
the other relevant quantities are defined by (2.1) and (2.2). One can then choose
the measure q to be the counting measure so that one obtains Theorem 1.1 as
a special case.

In the case that q is a probability measure, β(n, ε) is the probability of type
II error of an optimal non-random test with probability of type I error ε, null
hypothesis pn, and alternate hypothesis qn.

Let
hn = − log

dpn
dqn

and

(2.4) hn(xn) =
n∑
i=1

h(xi)

pn–almost everywhere, and let µn > 0 chosen so that

(2.5) pn

{
dpn
dqn
≥ µn

}
≤ 1− ε

pn

{
dpn
dqn

> µn

}
< 1− ε

Let

(2.6) β̄(n, ε) = minR
fdpn≥1−ε

∫
fdqn,

where f is a variable of functions on Xn taking values in the closed unit interval
(in the case where q is a probability distribution, β̄(n, ε) is the probability of
type II errors of an optimal randomized test). From the Lemma of Neyman and
Pearson [9] it follows 2

qn

{
dpn
dqn

> µn

}
≤ β̄(n, ε) = qn

{
dpn
dqn

> µn

}
+(2.7)

+
1
µn

(
1− ε− pn

{
dpn
dqn

< µn

})
≤ qn

{
dpn
dqn
≥ µn

}
2For this relation, I am very thankful to Honorable Dr. W. Fieger for his critical (in the

helpful sense) remarks
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and hence
β̄(n, ε) ≤ β(n, ε) ≤ β̄(n, ε) +

1
µn

max
Xn

pn(xn).

One remarks that since S > 0, maxxn pn(xn) goes exponentially to zero and one
uses the asymptotic approximation for µn, so that by comparison with Theorem
1.1, it suffices to prove this theorem for β̄(n, ε) in lieu of β(n, ε).

Now, it is true that

qn

{
dpn
dqn

> µn

}
=
∫
dpn/dqn>µn

1
dpn/dqn

dpn =
∫
hn<− log µn

exp{hn}dpn =

= exp{nH}
∫
t<λn

exp{tS
√
n}dFn(t)

with

(2.8) Fn = pn

{
hn − nH
S
√
n
≤ t
}

and

(2.9) λ=
− logµn − nH

S
√
n

Therefore,

qn

{
dpn
dqn

> µn

}
= exp{nH}

∫
t<λn

exp{tS
√
n}dFn(t) =(2.10)

= exp{nH + λnS
√
n}
∫
t<λn

exp{(t− λn)S
√
n}dFn(t) =

= exp{nH + λnS
√
n}
∫
z<0

ezdFn

(
z

S
√
n

+ λn

)
.

Likewise, one obtains

(2.11) qn

{
dpn
dqn
≥ µn

}
= exp{nH + λnS

√
n}
∫
z≤0

ezdFn

(
z

S
√
n

+ λn

)
,

and therefore by (2.7)∫
z>0

ezdFn

(
z

S
√
n

+ λn

)
≤ β̄(n, ε) exp{−nH − λnS

√
n} ≤(2.12)

≤
∫
z≤0

ezdFn

(
z

S
√
n

+ λn

)
.

From (2.8) and (2.9) it follows that

Fn(λn) = pn

{
dpn
dqn
≥ µn

}
(2.13)

Fn(λn − 0) = pn

{
dpn
dqn

> µn

}
,
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therefore as a consequence of (2.5),

Fn(λn) ≥ 1− ε(2.14)
Fn(λn − 0) < 1− ε.

Due to (2.4), Fn is the distribution function of the normalized sum of n in-
dependent and identically distributed random variables (mean 0 and variance
1).

Let h have a non-lattice-like distribution. By a well-known theorem of
Cramér and Esseen ([11],[4]), one has

(2.15) Fn(t) = Φ(t) +
1√
2πn

e−t
2/2Q1(t) + o

(
1√
n

)
,

uniformly in t, where

Q1(t) =
1

6S3

∫
(h−H)3dp(t− t2) =

1
S
Q(t).

We set

(2.16) B(t) =
1√
2π
e−t

2/2Q1(t) = Φ′(t)Q1(t)

and obtain ∫
z>0

ezdFn

(
z

S
√
n

+ λn

)
=
∫
z<0

ezdΦ
(

z

S
√
n

+ λn

)
+(2.17)

+
1√
n

∫
z<0

ezdB

(
z√
n

+ λn

)
+ o

(
1√
n

)
=

=
1√
n

(
1

S
√

2π

∫
z<0

exp

{
z − 1

2

(
z

S
√
n

+ λn

)2
}
dz +B(λn)−

−
∫
z<0

ezB

(
z

S
√
n

+ λn

)
dz + o(1)

)
=

=
1√
n

(
1

S
√
n
e−t

2/2 + o(1)
)

=
1

S
√

2πn
e−λ

2/2+o(1)

then by (1.2), (2.14) and the central limit theorem one has

(2.18) lim
n→∞

λn = λ.

Likewise, one deduces

(2.19)
∫
z≤0

ezdFn

(
z

S
√
n

+ λn

)
=

1
S
√

2πn
exp

{
−λ

2

2
+ o(1)

}
.

From (2.17), (2.19), and (2.12) it follows that

(2.20) β̄(n, ε) =
1

S
√

2πn
exp

{
nH + λnS

√
n− λ2

2
+ o(1)

}
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We still estimate λn. Let

∆λn = λn − λ

∆Φn = Φ(λn)− Φ(λ) = Φ(λn)− (1− ε).

From (2.15), (2.16), (2.14), and (1.2) it follows that

Φ(λn) +
1√
n
B(λn) + o

(
1√
n

)
= Fn(λn − 0) < Φ(λ) ≤ Fn(λn) =

= Φ(λn) +
1√
n
B(λn) + o

(
1√
n

)
therefore

(2.21) ∆Φn = − 1√
n
B(λn) + o

(
1√
n

)
= − 1√

n
B(λ) + o

(
1√
n

)
=

= − 1√
n

Φ′(λ)Q1(λ) + o

(
1√
n

)
owing to (2.18), the continuity of B, and (2.16). On the other hand, one has

∆Φn = Φ′(λ)∆λn + o(∆λn) = Φ′(λ)∆λn + o(∆Φn)

and in any case by (2.21)

∆Φn = O

(
1√
n

)
,

and

∆Φn = Φ′(λ)∆λn + o

(
1√
n

)
.

From this and from (2.21) it follows that

∆λn = − 1√
n
Q1(λ) + o

(
1√
n

)
,

therefore

(2.22) λn = λ+
1

S
√
n
Q(λ) + o

(
1√
n

)
.

Together with (2.20) this finally gives

β̄(n, ε) =
1

S
√

2πn
exp

{
nH + λS

√
n+Q(λ)− λ2

2
+ o(1)

}
.

This proves the statements of the theorem for non-lattice-like distributions h.
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Let h now be lattice-like distributed with maximal step-size % and let a a
real number with p(h−H = a) > 0. By a well-known theorem of Esseen ([11],
[4]) we have

(2.23) Fn(t) = Φ(t) +
1√
n
B(t) +

1√
n
Gn(t) + o

(
1√
n

)
uniformly in t, where B has the same meaning as earlier and

Gn(t) =
%

S
Φ′(t)

([(
t− a

√
n

S

)
S
√
n

%

]
−
(
t− a

√
n

S

)
S
√
n

%
+

1
2

)
([t] means the largest whole number ≤ t).

We tie on some estimates to the right side of (2.10). From (2.23) and (2.18)
it follows that

(2.24)
∫
z<0

ezdFn

(
z

S
√
n

+ λn

)
=

1√
n

(
1
S

Φ′(λ) + o(1)+

+
∫
z<0

ezdGn

(
z

S
√
n

+ λn

)
.

Further,

(2.25)
∫
z<0

ezdGn

(
z

S
√
n

+ λn

)
= Gn(λn− 0)−

∫
z<0

Gn

(
z

S
√
n

+ λn

)
ezdz.

By assumption the random variable h takes with positive probability a value no
greater than

H + a+ k% for k a whole number

and the random variable hn therefore the quantity

n(H + a) + k% for k a whole number

By (2.5), − logµn is one of these numbers, so that

(2.26)
1
%

(Sλn
√
n− na) =

1
%

(− logµn − n(H + a))

is a whole number. We obtain

(2.27) Gn

(
z

S
√
n

+ λn

)
=
%

S
Φ′
(

z

S
√
n

+ λn

)([
z

%
+

1
%

(Sλn
√
n− an)

]
−

−
(
−z
%

+
1
%

(Sλn
√
n− an)

)
+

1
2

)
=
%

S
Φ′
(

z

S
√
n

+ λn

)([
z

%

]
− z

%
+

1
2

)
,

specifically,

(2.28) Gn(λn) =
%

2S
Φ′(λn)
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and

(2.29) Gn(λn − 0) = − %

2S
Φ′(λn),

therefore by (2.25) and the theorem of Lebesgue,∫
z<0

ezdGn

(
z

S
√
n

+ λn

)
= − %

2S
Φ′(λ)− %

S
Φ′(λ)

∫
z<0

ez
([

z

%

]
− z

%
+

1
2

)
dz+

+ o(1) =
1
S

Φ′(λ)
(
−%−

∫
z<0

ez
[
z

%

]
%dz +

∫
z<0

ezzdz + o(1)
)

=

=
1
S

Φ′(λ)

(
−%− %

−1∑
−∞

∫ (k+1)%

k%

ezdz − 1 + o(1)

)
=

=
1
S

Φ′(λ)
(
−%+

%

1− e−%
− 1 + o(1)

)
=

=
1
S

Φ′(λ)
(

%

e% − 1
− 1 + o(1)

)
.

Together with (2.24) it follows from this that∫
z<0

ezdFn

(
z

S
√
n

+ λn

)
=

1
S
√
n

Φ′(λ)
(

%

e% − 1
+ o(1)

)
so, owing to (2.10),

(2.30) qn

{
dpn
dqn

> µn

}
=

1
S
√
n

Φ′(λ)
(

%

e% − 1
+ o(1)

)
exp{nH + Sλn

√
n}.

Let now 0 < Θn ≤ 1, chosen so that

ΘnFn(λn) + (1−Θn)Fn(λn − 0) = 1− ε

(by way of (2.14) this is possible). If one sets

(2.31) Mn = Φ +
1√
n
B,

then for sufficiently large n, the equalities

Mn(t) = 1− ε

clearly produce the particular solutions λ0
n. Analogously to (2.22) one proves

(2.32) λ0
n = λ+

1
S
√
n
Q(λ) + o

(
1√
n

)
.

Further we have

0 = ΘnFn(λn) + (1−Θn)Fn(λn − 0)−Mn(λ0
n) =

11



ΘnMn(λn) + Θn
%

2S
√
n

Φ′(λn) + o

(
1√
n

)
+ (1−Θn)Mn(λn)+

+(Θn − 1)
%

2S
√
n

Φ′(λn) + o

(
1√
n

)
−Mn(λ0

n)

(owing to (2.23),(2.31),(2.28), and (2.29))

= ΘnMn(λn) + Θn
%

2S
√
n

Φ′(λ) + (1−Θn)Mn(λ)+

= (Θn − 1)
%

2S
√
n

Φ′(λ)−Mn(λn)− (λ0
n − λn)M ′n(λn) + o(λ0

n − λn) + o

(
1√
n

)
(owing to (2.18))

= (2Θn − 1)
%

2S
√
n

Φ′(λ)− (λ0
n − λn)Φ′(λ) + o(λ0

n − λn) + o

(
1√
n

)
,

therefore

λ0
n − λn = (2Θn − 1)

%

2S
√
n

+ o

(
1√
n

)
,

meaning

− %

2S
√
n

+ o

(
1√
n

)
< λ0

n − λn ≤
%

2S
√
n

+ o

(
1√
n

)
or

−%
2
< (−na+ Sλ0

n

√
n+ o(1))− (Sλn

√
n− na) ≤ %

2
.

From this, it follows by (1.4) and (2.26) that

d(−naSλ0
n

√
n+ o(1)) = S(λ0

n − λn)
√
n+ o(1),

therefore together with (2.32)

(2.33) λn = λ+
1

S
√
n
Q(λ)− 1

S
√
n
d(−na+ Sλ

√
n+Q(λ) + o(1)) + o

(
1√
n

)
.

We apply these to (2.30) and deduce that

(2.34) qn

{
dpn
dqn

> µn

}
=

1
S
√
n

Φ′(λ) exp{nH + Sλ
√
n+Q(λ)−

−d(−na+ Sλ
√
n+Q(λ) + o(1)) + o(1)} %

e% − 1
.

To determine β̄(n, ε) using equation (2.7) we must still calculate µn as well as(
1− ε− pn

{
dpn
dqn

> µn

})
.

12



From (2.9) and (2.33),

(2.35) µn = exp{−nH − Sλn
√
n} = exp{−nH − Sλ

√
n+

+d(−na+ Sλ
√
n+Q(λ) + o(1)) + o(1)}.

According to (2.13), it holds that

(2.36) 1− ε− pn
{
dpn
dqn

> µn

}
= 1− ε− Fn(λn − 0) =

= Φ(λ)− Φ(λn)− 1√
n
B(λn)− 1√

n
Gn(λn − 0) + o

(
1√
n

)
(according to (1.2) and (2.23))

= Φ(λ)− Φ(λ)− Φ′(λ)
(

1
S
√
n
Q(λ)− 1

S
√
n
d(−na+ Sλ

√
n+

+Q(λ) + o(1))
)
− 1√

n
B(λ) +

1√
n

%

2S
Φ′(λ) + o

(
1√
n

)
(according to (2.33) and (2.29))

=
S
√
n

Φ

′

(λ)
(
d(−na+ Sλ

√
nQ(λ) + o(1)) +

%

2
+ o(1)

)
(because of (2.16)).

Putting things together: from (2.7), (2.34), (2.35), and (2.36) it follows that,

β̄(n, ε) =
1

S
√
n

Φ′(λ) exp{nH + Sλ
√
nQ(λ)− d(−na+ Sλ

√
n+Q(λ)+

+o(1))}
(

%

e% − 1
eo(1) +

(
d(−na+ Sλ

√
n+Q(λ) + o(1)) +

%

2
+ o(1)

)
eo(1)

)
and since 0 ≤ d+ 1

2% ≤ %,

=
1

S
√
n

Φ′(λ) exp{nH + Sλ
√
n+Q(λ)− d(−na+ Sλ

√
n+

+Q(λ) + o(1))}eo(1)d(−na+ Sλ
√
n+Q(λ) + o(1)) +

%

2
e% + 1
e% − 1

and by (1.5)

=
1

S
√
n

Φ′(λ) exp{nH + Sλ
√
n+Q(λ) + w(−na+ Sλ

√
n+

+Q(λ) + o(1)) + o(1)}.
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In contrast to d, w is a continuous function so that we can extract a factor o(1)
from the argument of w. Owing to (2.1), we finally obtain

β̄(n, ε) =
1

S
√
n

Φ′(λ) exp{nH + Sλ
√
n+Q(λ)+

+w(−na+ Sλ
√
n+Q(λ)) + o(1)}

and thereby the assertions of the theorems hold for functions h which are lattice-
like distributed.

3 Non-stationary Sources with Independent Let-
ters

Let n ≥ 1, Xk (1 ≤ l ≤ n) a finite set, pk a probability distribution on Xk, qk

a finite measure on Xk so that pk is absolutely continuous with respect to qk.
Further, let

Xn = X1 × ...×Xn

pn = p1 × ...× pn

qn = q1 × ...× qn.

We set

(3.1) Hk =
∫
hkdpk , hk = − log

dpk

dqk
,

(3.2) Hn =
1
n

n∑
k=1

Hk

(3.3) Sn =

(
1
n

n∑
k=1

∫
|hk −Hk|2

)1/2

(3.4) Rn =

(
1
n

n∑
k=1

∫
|hk −Hk|3

)1/3

and

(3.5) β(n, ε) = min
pn(E)≥1−ε

qn(E) = qn(En,ε) (approximately)

with pn(En,ε) ≥ 1− ε.

14



Theorem 3.1 It holds that

| log β(n, ε)− nHn − Snλ
√
n+

1
2

log n| < 140
δ8(

Sn ≥ δ, Rn ≤
1
δ

, δ ≤ ε ≤ 1− δ,
√
n ≥ 140

δ8

)
.

Proof. Let δ > 0 be given, Sn ≥ δ, Rn ≤ 1
δ and δ ≤ ε ≤ 1 − δ. Without

loss of generality, we take δ ≤ 1
2 . We again determine µn so that

(3.6) pn

{
dpn
dqn
≥ µn

}
≥ 1− ε

pn

{
dpn
dqn

> µn

}
< 1− ε

and set

(3.7) gn =
1

Sn
√
n

(
− log

dpn
dqn
− nHn

)
.

(3.8) λn =
1

Sn
√
n

(− logµn − nHn) .

The distribution function of gn relative to pn we will call Fn. gn is a normalized
sum of n independent random variables with finite third moments such that
the sum of the variances is non-vanishing. A well-known theorem of Berry and
Esseen ([11] S.43) states, in our notation, that

(3.9) |Fn(t)− Φ(t)| ≤ 7.5
R3
n

S3
n

1√
n
≤ 7.5

δ6

1√
n

for t real.

From (3.6) through (3.8) it follows that

(3.10) Fn(λn) ≥ 1− ε

Fn(λn − 0) < 1− ε.
We denote now the solution λ of the equation

Φ(λ) = 1− η

with λ(η), (0 < η < 1). As one can clearly see,

(3.11) Φ′(λ(η)) ≥ η
√

2π for 0 < η ≤ 1
2
.

From (3.9) and (3.10) it follows that

|Φ(λ(ε))− Φ(λn)| ≤ 7.5
δ6

1√
n
,

15



and hence by the mean-value theorem and (3.11)

(3.12) |λn − λ(ε)| ≤ 7.5
δ6
√
n

√
2π
δ
≤ 20
δ7
√
n

as long as
7.5
δ6
√
n
<
δ

2
.

Analogous to (2.7), (2.11), and (2.10) one proves that

(3.13) qn

{
dpn
dqn

> µn

}
≤ β(n, ε) ≤ qn

{
dpn
dqn
≥ µn

}

(3.14) qn

{
dpn
dqn
≥ µn

}
= exp{nHn + Snλn

√
n}
∫
z≤0

ezdFn

(
z

Sn
√
n

+ λn

)

(3.15) qn

{
dpn
dqn
≥ µn

}
= exp{nHn + Snλ

′
n

√
n}
∫
z≤0

ezdFn

(
z

Sn
√
n

+ λ′n

)
,

where it may be that λ′n < λn. Equation (3.9) gives in a similar way to (2.17)
in the proof of Theorem 1.1∫

z≤0

ezdFn

(
z

Sn
√
n

+ λn

)
≤ 1√

n

(
1
Sn

+
15
δ6

)
≤ 16
δ6
√
n
,

and, together with (3.13), (3.14), (3.12), and

(3.16) Sn ≤ Rn ≤
1
δ

therefore

(3.17) log β(n, ε) ≤ nHn + Snλ(ε)
√
n− 1

2
log n+

24
δ8

when
7.5
δ6
√
n
<
δ

2
.

By (3.16) and (3.9),

(3.18)
∫
z≤0

ezdFn

(
z

Sn
√
n

+ λ′n

)
≥
∫
z≤0

ezdFn

(
zδ√
n

+ λ′n

)

=
1√
n

(√
n

∫
z≤0

ezdΦ
(
zδ√
n

+ λ′n

)
+

7.5
δ6

∫
z≤0

ezdVn

(
zδ√
n

+ λ′n

))
,

where the function Vn is of bounded variation with

(3.19) |Vn(t)| ≤ 1 with t real.

We have

(3.20)
√
n

∫
z≤0

ezdΦ
(
zδ√
n

+ λ′n

)
= δ

∫
z≤0

ezΦ′
(
zδ√
n

+ λ′n

)
dz ≥

16



≥ δ
∫
z≤0

ezΦ′
(
zδ√
n
− |λ′n|

)
dz.

Now, let

(3.21) λn −
K√
n
≤ λ′n < λn,

K =
91

δ6Φ′(λ(δ))
.

Through (3.12) and (3.11) it holds that

(3.22) |λ′n − λ(ε)| ≤ 91
δ6Φ′(λ(δ))

+
20

δ7
√
n
≤ 139
δ7
√
n

, so long as
7.5
δ6
√
n
<
δ

2
,

therefore

δ

∫
z≤0

ezΦ′
(
zδ√
n
− |λ′n|

)
dz ≥ δ

∫
z≤0

Φ′
(
zδ√
n

+
139
δ7
√
n

+ λ(δ)
)

> δ

∫ 1

0

Φ′
(

140
δ7
√
n

+ λ(δ)
)
e−zdz, provided

7.5
δ6
√
n
<
δ

2

> δ

∫ 1

0

Φ′(δ + λ(δ))e−zdz, provided
√
n >

140
δ8

> δΦ′(λ(δ))
∫ 1

0

e−zdz ≥ δ

4
Φ′(λ(δ)),

as one easily sees. From this and from (3.20) it follows that

(3.23)
√
n

∫
z≤0

ezdΦ
(
zδ√
n

+ λ′n

)
≥ δ

4
Φ′(λ(δ)), provided

√
n >

140
δ8

.

We now estimate below the second summand of the right side of (3.18). First,∫
z≤0

ezdVn

(
zδ√
n

+ λ′n

)
= Vn(λ′n)−

∫
z≤0

Vn

(
zδ√
n

+ λ′n

)
ezdz.

Claim: For at least one λ′n in the interval given in (3.21),

Vn(λ′n)−
∫
z≤0

Vn

(
zδ√
n

+ λ′n

)
ezdz > − δ

7

45
Φ′(λ(δ)) = −b, approximately.

Otherwise,
(3.24)

Vn(λ′n)−
∫
z≤0

Vn

(
zδ√
n

+ λ′n

)
ezdz ≤ −b, so long as λn −

K√
n
≤ λ′n < λn,

17



by introduction of Un and u whereby

Vn(t) = Un(
√
n

δ
(t− λn))

u =
√
n

δ
(λ′n − λn)

so that

(3.25) Un(u)−
∫
z≤0

Un(z + u)ezdz ≤ −b, for
K

δ
≤ u < 0,

or

(3.26) Un(u)− e−u
∫
t≤u

Un(t)etdt ≤ −b, for
K

δ
≤ u < 0.

From (3.19) it follows that

|Un(t)| ≤ 1 for t real.

We define for a fixed n a sequence of functions U in for i = 1, 2, ... through

U1
n = Un

U i+1
n (u) =

 e−u
∫
b≤u

U in(t)etdt− b : −Kδ ≤ u < 0

Un : otherwise

For i > 1 the U in are continuous in the interval (−L/δ, 0) and satisfy (3.26)
there. The sequence U in(t) is for each fixed n and t monotone non-decreasing
and satisfies

|U in(t)| ≤ 1 for t real.

This gives that the sequence U in converges with increasing i to a function Ūn
with

|Ūn| ≤ 1 for t real,

which, in the interval (−K/δ, 0), satisfies the integral equation

Ūn − e−u
∫
t≤u

Ūn(t)etdt = −b.

The solutions have the form:

Ūn = −bt+ c for − K

δ
≤ t < 0.

From this and
|Ūn(t)| ≤ 1 for t real.
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it follows that
K

δ
≤ 2
b
,

meaning from (3.21) and the definition of b,

91
δ7Φ′(λ(δ))

≤ 90
δ7Φ′(λ(δ))

,

which is impossible. Thereby assertion (3.24) is proved.
We can therefore for each n pick a λ′n in the interval (λn − L/

√
n, λn) so

that

(3.27)
∫
z≤0

ezdVn

(
zδ√
n

+ λ′n

)
> − δ

7

45
Φ′(λ(δ)).

Now by (3.18), (3.23), and (3.27),∫
z≤0

ezdFn

(
z

Sn
√
n

+ λ′n

)
≥ 1√

n

(
δ

4
Φ′(λ(δ))− δ

6
Φ′(λ(δ))

)
, when

√
n >

140
δ8

≥ 1√
n

δ

12
Φ′(λ(δ))

>
1√
n

δ2

18

(owing to (3.11)).
From this and from (3.15) it follows that

(3.28) qn

{
dpn
dqn

> µn

}
≥ exp{nHn + Snλ

′
n

√
n− 1

2
log n} δ

2

18
, when

√
n >

140
δ8

therefore owing to (3.22) and (3.16)

(3.29) log qn

{
dpn
dqn

> µn

}
≥ nHn+Snλ(ε)

√
n−1

2
log n−140

δ8
, when

√
n >

140
δ8

and by (3.13) finally

(3.30) log β(n, ε) ≥ nHn + Snλ
√
n− 1

2
log n− 140

δ8
, when

√
n >

140
δ8

.

From this and from (3.17) the theorem follows.

Lemma 3.2 Let A be the set of all probability distributions in Y . Iα (see
(1.10)) is a concave function on A. For α0, α1 ∈ A and 0 < t < 1, the relations

I(1−t)α0+tα1 = (1− t)Iα0 + tIα1

and
Pα0 = Pα1
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are equivalent. It holds that

(3.31)
∑

x:P (x,y)>0

P (x, y) log
P (x, y)
(Pα)(x)

≤ C for y ∈ Y, α ∈ Ā

and

(3.32)
∑

x:P (x,y)>0

P (x, y) log
P (x, y)
(Pα)(x)

= C for α(y) > 0, α ∈ Ā.

Conversely, α ∈ Ā is a consequence of

(3.33)
∑

x:P (x,y)>0

P (x, y) log
P (x, y)
(Pα)(x)

≥

≥
∑

x:P (x,z)>0

P (x, z) log
P (x, z)
(Pα)(x)

≥ for y, z ∈ Y, α(y) > 0.

Let ᾱ ∈ Ā be arbitrary. It holds that

(3.34) Ā = {α|α ∈ A,Pα = Pᾱ;α(y) = 0 for all y with∑
x:P (x,y)>0

P (x, y) log
P (x, y)
(Pᾱ)(x)

< C}.

We omit the elementary proofs of these well-known Lemmas. (cf [12]).

4 Proof of Theorem 1.2

Since Iα is a continuous function of α, Ā (see (1.13)) is a compact, non-empty
subset of A.

(4.1) Gα =

 ∑
x,y:P (x,y)α(y)>0

(
log

P (x, y)
(Pα)(x)

− Iα
)2

P (x, y)α(y)

1/2

,

is likewise a continuous function of α so that definitions (1.14) are meaningful.
We pick an

(4.2) ᾱ ∈ Ā

with

(4.3) Gᾱ = Tsignλ

and denote by ᾱn the independent product of n copies of ᾱ. For every yn ∈ Yn
we assign the probability distributions for 1 ≤ k ≤ n,

(4.4) pk = P (·, yk)
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(4.5) qk = Pᾱ

and write Eyn for En,ε−2/
√
n for β(n, ε− 2/

√
n) (see (3.5)). We therefore have

(4.6) Pn(Eyn , yn) ≥ 1− ε+
2√
n

and

(4.7) (Pᾱ)n(Eyn) = min
Pn(Eyn )≥1−ε+w/

√
n
(Pᾱ)n(E) = βyn .

We substitute appropriately Hn, Sn, and Rn (see (3.2) through (3.4)) to produce
Hyn , Syn , and Ryn , so it follows by Lemma 3.2

(4.8) Hyn = −C, ᾱn–almost everywhere.

The function

(4.9) S2(y) =
∑

x:P (x,y)>0

(
log

P (x, y)
(Pᾱ)(x)

− C
)2

P (x, y)

has by (4.1) and (4.3) relative to ᾱ the expected value T 2
signλ and finite variance.

Further,

(4.10) S2
yn =

1
n

n∑
k=1

S2(yk), ᾱn–almost everywhere,

so that for sufficiently large K by the Chebyshev inequality,

(4.11) ᾱn(Dn) >
1
2

, (n ≥ 1)

with

(4.12) Dn =
{
yn

∣∣∣∣|S2
yn − T

2
signλ| <

K√
n
, ᾱn(yn) > 0

}
An ε-code f for Pn is called admissible if

(4.13) f(Xn) ⊆ Dn

and

(4.14) f−1(yn) ⊆ Eyn , for yn ∈ f(Xn).

Let the ε-code f be admissible with maximal length N under all admissible
ε-codes for Pn. Claim:

(4.15) (Pᾱ)n(f−1Yn) ≥ 1√
n

for n sufficiently large.
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Otherwise, we have in particular that

1√
n
> (Pᾱ)n(f−1Yn) = (Pᾱn)(f−1Yn) ≥

≥
∫
Dn

Pn(f−1Yn, yn)ᾱn(dyn) ≥ 1
2

min
yn∈Dn

Pn(f−1Yn, yn).

This therefore gives a y0
n ∈ Dn with

(4.16) Pn(f−1Yn, y
0
n) <

2√
n
.

From this and from (4.6), it follows that

(4.17) Pn(Ey0
n
− f−1Yn.y

0
n) ≥ 1− ε

Let

f0(xn) =
{
f(xn) xn ∈ f−1Yn
y0
n xn ∈ Ey0

n
− f−1Yn

By reason of (4.17) y0
n ∈ Dn, f0 is an admissible ε-code for Pn. By way of (4.16)

and ε < 1, f0 has for sufficiently large n the length N + 1. This violates the
maximality of N , and so (4.15) must be true.

We obtain for sufficiently large n,

1√
n
≤ (Pᾱ)n(f−1Yn) =

∑
yn∈f(Xn)

(Pᾱ)n(f−1(yn)) ≤(4.18)

≤
∑

yn∈f(Xn)

(Pᾱ)n(Eyn) by (4.14)

=
∑

yn∈f(Xn)

βyn by (4.7)

≤ N max
yn∈Dn

βyn by (4.13).

When

(4.19) Tsignλ > 0,

we can by (4.12) for sufficiently large n apply Theorem 3.1 and obtain from
(4.8) and (4.12)

(4.20) max
yn∈Dn

βyn ≤ exp{−nC + λTsignλ

√
n− 1

2
log n+O(1)}.

From (4.18) and (4.20) it gives

(4.21) logN(n, ε) ≥ logN ≥ nC − λTsignλ

√
n+O(1).
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When

(4.22) Tsignλ = 0,

it follows from (4.1) and (4.2) for y with ᾱ(y) > 0

P (x, y
(Pᾱ)(x)

= eC , for P (·, y)-almost every x,

therefore for yn ∈ Dn, for example,

Pn(xn, yn)
Pᾱ)n(xn)

= enC , for Pn(·, y)-almost every xn.

Hence this gives
βyn ≤ e−nC for yn ∈ Dn

therefore
max
yn∈Dn

βyn ≤ e−nC

which, together with (4.18), yields

(4.23) logN(n, ε) ≥ logN ≥ nC − 1
2

log n for n sufficiently large.

In order to prove (1.15), we first take ε ≤ 1
2 so that λ > 0. For each yn ∈ Yn,

we associate a probability distribution αyn ∈ A:

(4.24) αyn =
1
n

n∑
k=1

δyk ,

where δy is the unit mass at the point y (Dirac delta function). Further we set

(4.25) An = {αyn |yn ∈ Yn}.

Let f be an ε-code of maximal length for Pn. We identify f with its graph, a
subset of Xn × Yn, and it is useful to decompose f into subsets fi. Let

(4.26) fα = {(xn, yn)|(xn, yn) ∈ f, αyn = α} for α ∈ An.

All fα are ε-codes with length Nα. As f has maximal length,

(4.27) N(n, ε) =
∑
α∈An

Nα.

Let α ∈ An. We select a yn ∈ Yn with αyn = α and set for 1 ≤ k ≤ n

pk = P (·, yk)(4.28)

qk = Pα,
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so that we can can construct β(n, ε) pursuant to (3.5). It is easy to see that
β(n, ε) depends only on α (and not on the particular yn ∈ fα chosen). We
denote β(n, ε) more accurately as βα(n, ε).

In the case that yn ∈ fα(Xn) and owing to

pn(f−1
α (yn)) = Pn(f−1

α (yn), yn) ≥ 1− ε,

we have by (4.28)

(Pα)n(f−1
α (yn)) = qn(f−1

α (yn)) ≥ min
pn(E)≥1−ε

qn(E) = βα(n, ε),

and therefore also

1 ≥ (Pα)n(f−1
α Yn) =

∑
yn∈fα(Xn)

(Pα)n(f−1(y)) ≥ Nαβα(n, ε).

We denote the cardinality of a set M with |M |, so out of this and (4.27) it
follows that

(4.29) (n+ 1)|Y |−1 ≥ |An| ≥
∑
α∈An

Nαβα(n, ε) ≥ N(n, ε) min
α∈An

βα(n, ε).

Now for the moment let

(4.30) T1 > 0.

We can associate every yn ∈ Yn by means of (4.28) with the tripleHn, Sn, Rn.
In the case that αn = αyn and owing to

Hn = − 1
n

∑
1≤k≤n

∑
x:P (x,yk)>0

P (x, yk) log
P (x, yk)
(Pα)(x)

=(4.31)

= −
∑

x,y:P (x,y)α(y)>0

P (x, y)α(y) log
P (x, y)
(Pα)(x)

= −Iα,

(4.32) S2
n =

1
n

∑
k

∑
x:P (x,yk)>0

(
− log

P (x, yk)
(Pα)(x)

+

+
∑

u:p(u,yk)>0

P (u, yk) log
P (u, yk)
(Pα)(x)

2

P (x, yk) =
∑

x,y:P (x,y)α(y)>0

P (x, y)α(y)×

×

log
P (x, y)
(Pα)(x)

−
∑

u:P (u,y)>0

P (u, y) log
P (u, y)
(Pα)(x)

2

= M2
α, say
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R3
n =

∑
x,y:P (x,y)α(y)>0

P (x, y)α(y)
∣∣∣∣log

P (x, y)
(Pα)(x)

−(4.33)

−
∑

u:P (u,y)>0

P (u, y) log
P (u, y)
(Pα)(x)

∣∣∣∣∣∣
3

= L3
α, say.

the functions Hn, Sn, Rn are also functions of α (rather than of yn). In addition
to that, Iα, Mα, and Lα form continuations of Hn, Sn, Rn throughout A. From
Mα > 0 it follows naturally that Lα > 0. The set of the α ∈ A for which ϕ(α)
lies in the strict positive quadrant is a neighborhood of Ā, because for α ∈ Ā it
holds by (4.32), (3.32), (4.1), (1.14), and (4.30)

(4.34) Mα = Gα ≥ T1 > 0.

As one can easily see, every P (·, y) is, for each α ∈ Ā, absolutely continuous
with respect to Pα. This holds then also for the α from a suitable neighborhood
of Ā. In this neighborhood, therefore, Iα and M2

α are arbitrarily differentiable
(smooth) functions of α. Further, Ā is convex (see (3.34)). Let η > 0 and
let U be the closed η-neighborhood of Ā (in A) in such a way that ϕ(U) lies
completely in the strict positive quadrant and so that Iα and M2

α are infinitely
differentiable in U . By the previous remarks, there is such an η, and since
M2
α > 0 for α ∈ U , Mα > 0 is also infinitely differentiable in U . U is (convex

and) compact. ϕ(U) is therefore also compact, and there is a δ > 0 with

Mα ≥ δ, Lα ≤ 1
δ , δ ≤ ε ≤ 1− δ for α ∈ U.

By Theorem 3.1 and (4.31) through (4.33), it follows that

(4.35) βα(n, ε) = exp{−nIα +Mαλ
√
n− 1

2
log n+O(1)}

uniformly for α ∈ U ∩ An. Because A is compact and the open kernel Ů of U
contains the set Ā, there is a C ′ < C with

Iα ≤ C ′ for α ∈ A− Ů .

Let C ′′ = 1
2 (C +C ′). By way of (4.31), (4.32), and because Mα is bounded, we

have uniformly for yn with α = αyn ∈ An − Ů

pn

{
log

dpn
dqn
≤ nC ′′

}
≥(4.36)

≥ 1− pn

{(
log

dpn
dqn
− nIα

)2

> n2(C ′′ − C ′)

}
>

> 1− M2
α

n(C ′′ − C ′)2
≥ 1 + ε

2
for n sufficiently large.
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As En,ε can be defined with help of (4.28) as in (3.5) (En,ε clearly depends on
yn), it follows from (4.36), uniformly for yn with α = αyn ∈ An − Ů

βα(n, ε) = qn(En,ε) ≥ qn
(
En,ε ∩

{
dpn
dqn
≤ enC

′′
})
≥

≥ e−nC
′′
pn

(
En,ε ∩

{
log

dpn
dqn
≤ nC ′′

})
≥ 1− ε

2
e−nC

′′
for n sufficiently large,

so that
βα(N, ε) ≥ exp(−nC ′′ +O(1))

uniformly for α ∈ An − Ů . From this and from (4.35) it follows that

(4.37) min
α∈An

βα(n, ε) ≥ min{ min
α∈An∩Ů

βα(n, ε), min
α∈An−Ů

βα(n, ε)}

≥ min{ inf
α∈U

exp{−nIα +Mαλ
√
n− 1

2
log n+O(1)}, exp{−nC ′′ +O(1)}} =

= inf
α∈U

exp{−nIα +Mαλ
√
n− 1

2
log n+O(1)} =

= exp{ inf
α∈U

(−nIα +Mαλ
√
n− 1

2
log n) +O(1)}.

We now assign each α ∈ U to that ᾱ ∈ Ā for which

inf
ᾱ∈Ā
‖α− ᾱ‖

is attained (‖·‖ = Euclidean distance).
Let I ′α and M ′α be the first derivatives of Iα and Mα, I ′′α the second derivative

of Iα with respect to α (I ′′α is therefore a bilinear form over the vector space that
lies in the hyperplane spanned by A, see for example [13]). After the definition
of Ā and since ᾱ ∈ Ā, we have

(4.38) I ′ᾱ(α− ᾱ) ≤ 0.

Because Iα and Mα have continuous derivatives of all orders in the compact set
U , there is, by the Taylor formula ([13], page 94), a b > 0 so that

(4.39) −nIα + λMα

√
n ≥ −n(Iᾱ + I ′ᾱ(α− ᾱ) +

1
2
I ′′ᾱ(α− ᾱ)(α− ᾱ)+

+b‖α− ᾱ‖3 + λ(Mᾱ − b‖α− ᾱ‖)
√
n for α ∈ U.

Now,

Iᾱ = C(4.40)
Mᾱ = Gᾱ ≥ T1 for α ∈ U

(see (1.14)). One can find an a > 0 with
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(4.41) I ′ᾱ(α− ᾱ) +
1
2
I ′′ᾱ(α− ᾱ)(α− ᾱ) ≤ −a‖α− ᾱ‖2 for α ∈ U

because, assuming this is false, one finds a sequence αj ∈ U (j = 1, 2, ...) with

lim inf
j

(I ′ᾱj (αj − ᾱj) +
1
2
I ′′ᾱj (αj − ᾱj)(αj − ᾱj)) ≥ 0

and by (4.38)
‖αj − ᾱj‖ = η for j = 1, 2, ....

Let α be a limit point of this sequence. Then it holds that

(4.42) ‖α− ᾱ‖ = η > 0 for α ∈ U

(4.43) I ′ᾱ(α− ᾱ) +
1
2
I ′′ᾱ(α− ᾱ)(α− ᾱ) ≥ 0.

Let αt = tα+ (1− t)ᾱ and

It =
∑

x,y:P (x,y)αt(y)>0

P (x, y)αt(y) log
P (x, y)

(Pαt)(x)
.

Then

I ′′ᾱ(α− ᾱ)(α− ᾱ) =
(
d2

dt2
It
)
t=0

= −
∑

(Pᾱ)(x)>0

((P (α− ᾱ)(x))2

(Pᾱ)(x)
.

From this and from (4.38) and (4.43) it follows that

I ′ᾱ(α− ᾱ) = 0

and
(Pα)(x) = (Pᾱ)(x) for (Pα)(x) > 0,

therefore
Pα = Pᾱ.

By Lemma 3.2, we therefore have

α ∈ Ā

in contradiction to (4.42).
Thereby, (4.41) is proven, and from (4.39) to (4.41) it follows that

−nIα + λMα

√
n ≥ −nC + n‖α− ᾱ‖2(a− b‖α− ᾱ‖)+

+λT1

√
n− λ‖α− ᾱ‖b

√
n.
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By shrinking U (i.e. η) if necessary, we can assume that ‖α − ᾱ‖ ≤ a/2b, so
that

(4.44) −nIα + λMα

√
n ≥ −nC + λT1

√
n+ n‖α− ᾱ‖2 a

2
−

−bλ
√
n‖α− ᾱ‖ ≥ −nC + λT1

√
n− λ2b2

2a
follows.

From (4.29), (4.37), and (4.44) one ultimately gets

(n+ 1)|Y |−1 ≥ N(n, ε) exp{−nC + λT1

√
n− 1

2
log n+O(1)},

and from there

N(n, ε) < exp{nC − λT1

√
n+ (|Y | − 1

2
) log n+O(1)}.

Now let

(4.45) T1 = 0.

We select an ᾱ ∈ Ā and set
(4.46)

Z =
{
y|y ∈ Y, log

dP (·, y)
d(Pᾱ)

has positive variance with respect to P (·, y)
}
.

For y ∈ Y − Z, dP (·, y)/d(Pα) is therefore P (·, y)-almost everywhere con-
stant and indeed it holds by the fact that ᾱ ∈ Ā and Lemma 3.2 that

(4.47) 0 ≤ P (x, y)
(Pᾱ)(x)

≤ eC for P (·, y)-almost every x; y ∈ Y − Z.

In the case that ym ∈ Ym with

(4.48) yk ∈ Z for 1 ≤ k ≤ m,

we form

pk = P (·, yk)

qk = Pᾱ for 1 ≤ k ≤ m.

By (4.46) one can find a δ > 0 with Sm ≥ δ, Rm ≤ 1/δ, and δ ≤ ε ≤ 1 − δ
(independent of ym with (4.48)). From the proof of Theorem 3.1 ((3.6) and
(3.29)) it follows that

(4.49) pm

{
dpm
dqm

> µm

}
< 1− ε,
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and

(4.50) log pm

{
dpm
dqm

> µm

}
≥ mHm + λSm

√
m− 1

2
logm− 140

δ8
if m >

140
δ8

.

But now, Hm ≥ −C (see (3.31)), so that by above,

(4.51) log qmm

{
dpm
dqm

> µm

}
≥ −mC − 1

2
logm− 140

δ8
if m >

140
δ8

,

independent of ym with (4.48).
Now let yn ∈ Yn be arbitrary. We set as above,

pk = P (·, yk)

qk = Pᾱ for 1 ≤ k ≤ n

and denote the β(n, ε) defined in (3.5) with βα(n, ε), where α = αyn ∈ An (this
βα(n, ε) is different from those occurring in (4.29), but the notation βα instead
of βyn is again justified).

In lieu of (4.29), we now obtain

1 ≥ (Pᾱ)n(f−1Yn) =
∑
α∈An

(Pᾱ)n)(f−1
α Yn) ≥

∑
α∈An

Nαβα(n, ε) ≥(4.52)

≥ N(n, ε) min
α∈An

βα(n, ε).

Let α ∈ An be arbitrary. Then either

(4.53) nα(Z) ≤ 140
δ8

or

(4.54) nα(Z) >
140
δ8

In the first case we set

(4.55) M = max
x,y:P (x,y)>0

P (x, y)
(Pᾱ)(x)

.

Since ᾱ ∈ Ā, we have that M <∞ (see (3.31)). From (4.53), (4.55), and (4.47),
it follows that

βα(n, ε) ≥ 1− ε
exp{(n− nα(Z))C}Mnα(Z)

≥(4.56)

≥ 1− ε
exp

{
nC + 140

δ8 logM
} = exp{−nC +O(1)}

uniformly for α with (4.53).
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In the second case, (4.54), we pick a yn with αyn = α so that the first
m = nα(Z) of the yk lie in Z with the others in Y −Z. Then (4.49) implies that

(4.57) pn

{
xn

∣∣∣∣dpmdqm
(xn) > µm,

d(pm+1 × ...× pn)
d(qm+1 × ...× qn)

(xm+1, ..., xn) > 0
}
< 1− ε

and by the definition of Z, one finds a γn with{
xn

∣∣∣∣dpmdqm
(xn) > µm,

d(pm+1 × ...× pn)
d(qm+1 × ...× qn)

(xm+1, ..., xn) > 0
}

=

=
{
xn

∣∣∣∣dpndqn
(xn) > γn

}
.

From this, (4.57), and the definition of βα(n, ε) it holds that

log βα(n, ε) ≥ log qn

{
xn

∣∣∣∣dpmdqm
(xn) > µm,

d(pm+1 × ...× pn)
d(qm+1 × ...× qn)

(xm+1, ..., xn) > 0
}

=

(4.58)

= log qm

{
xn

∣∣∣∣dpmdqm
(xn) > µm

}
+

+ log(qm+1 × ...× qn)
{

(xm+1, ..., xn)
∣∣∣∣d(pm+1 × ...× pn)
d(qm+1 × ...× qn)

> 0
}
≥

(by (4.51) and (4.47))

≥ −mC − 1
2

logm− 140
δ8
− (n−m)C ≥

≥ −nC − 1
2

log n− 140
δ8

uniformly in α with (4.54). Together, (4.56), and (4.58) provide

βα(n, ε) > exp{−nC − 1
2

log n+O(1)}

uniformly in α ∈ An so that from (4.52)

N(n, ε) < exp{nC − λT1

√
n+ (|Y | − 1

2
) log n+O(1)}

holds. This inequality is thereby generally (i.e. for T1 = 0 and T1 > 0) proven.
In a similar way, one obtains for ε > 1

2

N(n, ε) < exp{nC − λT−1

√
n+ (|Y | − 1

2
) log n+O(1)}

whereby the theorem holds.
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5 Notes and Comments

(i) In the proof of Theorem 3.1, the assumption that the underlying spaces Xk

were finite was not used. The theorem is also correct for measurable spaces
Xk. The same goes for the generalized version of Theorem 1.1 if one requires
the occurring moments of h to be finite and one avoids the summation on the
right sides of the definitions of the integrals. In the case that h has a lattice-like
distribution or the distribution satisfies the requirement C [10] (this is possible
only for infinite X), one can probably further sharpen Theorem 1.1 by gathering
the well-known asymptotic developments of Esseen [11] and Cramér [10].

Theorem 1.1 and Theorem 3.1 remain essentially true (see [14]) if one re-
places the probability distribution p, respectively pk, and the finite measures
q, respectively qk, with totally monotone capacities in the sense of Choquet
[15]. This has applications in the Theory of Continuous Information Sources
with Consideration of Observation Errors, whose statistical nature one does not
know exactly (see [14]).

(ii) Example of a Channel with T1 6= T−1: LetX = {0, 1, 2}, Y = {0, 1, 2, 3, 4, 5},

(5.1) P (x, y) =
1
2

(1− δxy) for x, y = 0, 1, 2

and

(5.2) P (x, y) = a(x+ y mod 3) for x ∈ X, y = 3, 4, 5,

where (x + y mod 3) ∈ {0, 1, 2} and a is a probability distribution in X. Let
further,

α =
{

1
3 : y = 0, 1, 2
0 : otherwise.

It is then (Pα)(x) = 1
3 for x ∈ X and

∑
x:P (x,y)>0

P (x, y) log
P (x, y)
(Pα)(x)

= log
3
2

for y = 0, 1, 2.

By the Intermediate Value Theorem, one finds a t with 0 < t < 1 so that for

a(0) =
t

4
, a(1) =

1
4

, a(2) =
3− t

4

one finds ∑
x

a(x) log
a(x)

(Pα)(x)
= log

3
2
.

We use this a in (5.2).
From Lemma 3.2, it follows now that α ∈ Ā, which together with Gα = 0

gives T1 = 0. In the case that α′(y) = α(5 − y) is α′ also in Ā by Lemma 3.2.
Then Pα′ is the uniform distribution in X, a is everywhere positive (but not the
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uniform distribution), so we have that Gα′ > 0 and therefore T−1 > 0, which
means T1 6= T−1.

From the proof of Theorem 1.2, it is wise in this channel to emit for ε < 1
2 only

the symbols 0,1,2 and for ε > 1
2 only the symbols 3,4,5 (for large n anyway).

This correlates closely with the application of the method of Random Codes
(see [1], [5], [6]): the α ∈ Ā are not equivalent for the construction of a Random
Code. The utility of an α depends on the error probability.

One can obtain the other estimate in Theorem 1.2 under consideration of
these facts also with the help of the Method of Random Codes.

(iii) One defines an “ε-code in mean for Pn” as a mapping g from a subset
of Xn to Yn with

(5.3)
1
N ′

∑
yn∈g(Yn)

Pn(g−1(yn, yn) ≥ 1− ε,

where N ′ is the length of the code, and one denotes with N ′(n, ε) the maximal
length of ε-codes in mean for Pn, wherefore

(5.4) logN ′(n, ε) = nC − λTsignλ

√
n+O(log n).

Because every ε-code is an ε-code in mean for Pn, one has

(5.5) N(n, ε) ≤ N ′(n, ε).

Conversely, in the case that g is an ε-code in mean for Pn with length N ′, let
the (ε+ 1/

√
n)-code for Pn be defined by

(5.6) f =
{

(xn, yn)
∣∣∣∣yn = g(xn), Pn(g−1(yn), yn) ≥ 1− ε− 1√

n

}
.

Let N be the length of f . From (5.3) and (5.6) it follows that

1−ε ≤ 1
N ′

∑
yn∈f(Xn)

Pn(g−1(yn), yn)+
1
N ′

∑
yn∈g(Xn)−f(Xn)

Pn(g−1(yn), yn) ≤ N

N ′
+

+
N ′ −N
N ′

(
1− ε− 1√

n

)
= 1− ε− 1√

n
+
N

N ′

(
ε+

1√
n

)
,

hence
N ′ ≤ (1 + ε

√
n)N

and therefore

(5.7) N ′(n, ε) ≤ (1 + ε
√
n)N

(
n, ε+

1√
n

)
.

Thus (5.5), (5.7), and Theorem 1.2 imply (5.4).
(iv) Suppose we are given a stationary source (pn)n≥1 with independent

letters from an alphabet Z and a stationary, memoryless channel (Pn)n≥1 from
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Y to X. We write (pn
Pn→)ε whenever one can find, for sufficiently large n, a

mapping χ from Zn to Yn and a mapping ϕ from Xn to Zn such that

(5.8)
∑
zn∈Zn

Pn(ϕ−1(zn), χ(zn))pn(zn) ≥ 1− ε

and (pn
Pn⇁)ε whenever, for sufficiently large n, no such mapping exists. ((pn

Pn→)ε
means, for example, that the Channel is capable of broadcasting the message of
the source in perpetuity with probability of error ≤ ε).

In the case where H is the entropy of the source and C is the capacity of
the channel, the well-known ([1], [6], [7]) relations of Shannon,

(pn
Pn→)ε, for 0 < ε < 1 when H < C

and
(pn

Pn⇁)ε, for 0 < ε < 1 when H > C

apply. We consider the case

(5.9) H = C

and assume that at least one of S and T1 is positive. Let 0 < ε < 1, (pn
Pn→)ε,

and n so large that there are χ and ϕ as in (5.8).
Let δ > ε and < 1 and

E = {zn|zn ∈ Zn, Pn(ϕ−1(zn), χ(n)) > 1− δ}.

From (5.8), it follows that

1− ε ≤
∑
zn∈E

Pn(ϕ−1(zn), χ(zn))pn(zn)+

+
∑

zn∈Zn−E
Pn(ϕ−1(zn), χ(zn))pn(zn) ≤ on(E) + (1− δ)(1− pn(E))

and from here
pn(E) ≥ 1− ε

δ
.

Theorem 1.1 and an easy consideration in the case that S = 0, produce

(5.10) |E| ≥ β
(
n,
ε

δ

)
= exp

{
nH + Sλ

( ε
δ

)√
n+O(log n)

}
,

where |E| is the cardinality of E.
Let the mapping f from ϕ−1E to Yn be defined by

f(xn) = χ(ϕ(xn)) for xn ∈ ϕ−1E.

Then f(Xn) = χ(E) and by the definition of E

(5.11) Pn(f−1(yn), yn) = Pn(
⋃
zn∈E

χ(zn)=yn

ϕ−1(zn), yn) =
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=
∑
zn∈E

χ(zn)=yn

Pn(ϕ−1(zn), χ(zn)) > (1− δ)|χ−1(yn) ∩ E| ≥ 1− δ for yn ∈ f(Xn).

Hence f is a δ-code for Pn of length |χ(E)|.
From (5.11), it follows that

|χ−1(yn) ∩ E| ≤ 1
1− δ

for yn ∈ χ(E),

and we obtain
|E| ≤ 1

1− δ
|χ(E)| ≤ 1

1− δ
N(n, δ) =

= exp{nC − λ(δ)Tsignλ(δ)

√
n+O(log n)}.

This, together with (5.10) and (5.9), gives

(5.12) Sλ
( ε
δ

)√
n+O(log n) ≤ −λ(δ)Tsignλ(δ)

√
n+O(log n),

or

(5.13) Sλ
( ε
δ

)
+ λ(δ)Tsignλ(δ) ≤ 0

for all δ with ε < δ < 1 as the necessary condition for (pn
Pn→)ε. Indeed, we have

proved something more. Namely, if, for a δ with ε < δ < 1, it holds that

(5.14) λ
( ε
δ

)
S + λ(δ)Tsignλ(δ) > 0

it holds even that (pn
Pn⇁)ε, since (5.13) still follows whenever (5.12) is true for

infinitely many n. From here one obtains by setting δ = 2ε, for example when
δ = 1/2,

(5.15) (pn
Pn⇁)ε when ε <

1
4
.

In the case where S = 0 or T−1 = 0, setting δ = ε (if S = 0) or δ > 2ε (if
T−1 = 0) implies something sharper,

(pn
Pn⇁)ε for ε <

1
2
.

Now let 0 < γ < 1, 0 < δ < 1 so that

(5.16) λ(γ)S + λ(δ)Tsignλ(δ) < 0.

From Theorem 1.1 (or a simple observation in the case that S = 0) and Theorem
1.2, it follows that

β(n, γ) ≤ N(n, δ)
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for sufficiently large n. For such n one can fins a set En,γ with

pn(En,γ) ≥ 1− γ

and a δ-code f for Pn so that

|En,γ | ≤ |f(Xn)|.

Let χ0 be a bijection from En,γ in f(Xn) and define χ and ϕ by

χ(zn) =
{
χ0(zn) : zn ∈ En,γ
y0
n : zn ∈ Zn − En,γ

ϕ(xn) =
{
χ−1

0 (f(xn)) : xn ∈ f−1χ0(En,γ)
z0
n : xn ∈ Xn − f−1χ0(En,γ) ,

where y0
n and z0

n are fixed arbitrarily chosen elements of Yn and Zn, respectively.
It follows that∑
zn∈Zn

Pn(ϕ−1(zn), χ(zn))pn(zn) ≥
∑

zn∈En,γ

Pn(f−1(χ(zn)), χ(zn))pn(zn)

≥ (1− δ)pn(En,γ) ≥ (1− δ)(1− γ) = 1− (δ + γ − δγ),

so that
(pn

Pn→)δ+γ−δγ .

For δ = γ > 1/2, (5.16) is always satisfied. Hence it holds that

(pn
Pn→)ε when ε > 3/4.

The case where either S = 0 or T1 = 0 implies in a similar fashion as the above
that

(pn
Pn→)ε when ε > 1/2.

I thank Mr. K. Jacobs for his support during the development of this work
and him as well as Mr A. Renyi and Mr. R. Ahlswede for many interesting
comments.
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