Project Based Math 112, Fall 2001 Activity #3

Part I: Barehands Integration (15 min.)

1. Using the definition of the definite integral, calculate	$= \int_0^b x dx.$
---	---------------------

2. Use this to find $F_1(h)$, where $F_1(h) = \int_0^h x \, dx$.

3. Use the definition of the definite integral to calculate $\int_a^b x \, dx$.

4. Express the answer to (3) in terms of F_1 .

 $Over \Longrightarrow$

Part II: Properties of Integrals (15 min.)

Justify the equalities below, using what you know about the properties of sums, and the definition of the definite integral.

(Below, c is any constant.)

5.
$$\int_a^b [f(x) + g(x)] dx =$$

$$= \int_a^b f(x) \, dx + \int_a^b g(x) \, dx$$

$$6. \int_a^b cf(x) \, dx =$$

$$= c \int_a^b f(x) \, dx$$

7. If $f(x) \ge 0$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge 0$.

8. If $f(x) \ge g(x)$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.