
Math 4320 — Prelim, Part I
1:25pm–2:15pm, Monday 12th March 2012

“Algebra is generous; she often gives more than is asked of her.” Jean-Baptiste le Rond D’Alembert

This exam contains three questions. Choose ONLY TWO to answer — if you attempt

more than two questions, you must indicate which two you would like to be graded.

Calculators, cell phones, music players and other electronic devices are not permitted.

Notes and books may not be used.

Write your name on all exam booklets. Do not hand in any scratch paper. Unless

otherwise indicated, all answers should be justified.

1. (a) Suppose a and b are integers and are not both zero. Define

• d1 to be the greatest integer that divides both a and b, and

• d2 to be the least integer greater than or equal to 1 in the set {as+ bt | s, t ∈ Z}.

Explain why d2 is well defined and show that d1 = d2. (Thus we have equivalent
definitions of gcd(a, b).)

Answer. The set {a,−a, b,−b} is a subset of {as+ bt | s, t ∈ Z} and contains an integer
greater than or equal to one since a and b are not both zero. So d2 exists by the Least
Integer Axiom.

Take s, t ∈ Z so that d2 = as + bt. By the Division Algorithm, a = qd2 + r for some
q, r ∈ Z with 0 ≤ r < a. But then

r = a− qd2 = a− q(as+ bt) = (1− qs)a− qbt,

which must therefore be 0 by definition of d2. So d2|a. Similarly, d2|b, and so d2 is a
common divisor of a and b.

Now d1, being a common divisor of a and b, must also divide d2 = as + bt, and so
d1 ≤ d2. It follows that d1 = d2 since d1 is the greatest common divisor of a and b.

(b) i. A public key for RSA is pair of numbers N, s, where N is a product of two secret
prime numbers p and q both congruent to 2 mod 3, and s (for the purposes of this
question) is always 3. An associated private key is any number t such that st ≡ 1
mod (p− 1)(q − 1). Explain why if you can factorize N , then you can find t. (You
are not required to give the details of the workings of Euclid’s algorithm.)

Answer. Both p − 1 and q − 1, and so (p − 1)(q − 1), are congruent to 1 mod 3,
since p and q are both congruent to 2 mod 3. So gcd(s, (p−1)(q−1)) = 1. So using
Euclid’s algorithm, we can find t, u ∈ Z such that st+ (p− 1)(q − 1)u = 1. This t
has the property that st ≡ 1 mod (p− 1)(q − 1).



ii. On February 14th this year Arjen Lenstra and his coauthors released a paper in
which they exposed a weakness in the implementation of RSA. They analyzed a
large pool of public keys and showed that, while the public keys were all different,
a significant proportion of pairs of the public keys had a common prime factor.
Explain why this constitutes a weakness. Illustrate your answer with an appropriate
calculation of the factorizations of 9167 and 11303, given that both are the products
of two primes and they have a common prime factor.

Answer. The reason this represents a weakness is that Euclid’s algorithm can be
used to find the gcd of pairs of the public keys and in a short amount of time
(“polynomial time” to be more precise), and when the keys have a common factor,
it will be the gcd. Long division can then be used to factor these keys.

Using Euclid’s algorithm we calculate that gcd(9167, 11303) = 89:

(9167, 11303)→ (9167, 2136)→ (623, 2136)→ (623, 267) → (89, 267) → (89, 0).

So the prime 89 divides both 9167 and 11303. Long division then gives 9167 =
89.103 and 11303 = 89.127.

13 + 12 = 25 pts

2. (a) Show that permutations γ and γ′ in Sn have the same cycle structure if and only if
there exists α ∈ Sn such that γ′ = αγα−1.

Answer. See Proposition 2.33 on page 118 of the textbook.

(b) A standard deck of playing cards contains 52 cards. In a perfect shuffle we cut the
deck in half exactly, and then riffle the two halves together, interleaving a card from
the bottom half of the deck in between each pair of adjacent cards from the top half of
the deck. There are two types of perfect shuffle: an inner shuffle and an outer shuffle;
this question concerns the latter. In an outer shuffle the original top card stays on top,
and (counting from the top) the original 27th card becomes the 2nd card, the original
2nd card becomes the 3rd card, the original 28th card becomes the 4th card, and so on.
(In an inner shuffle, the original 27th card becomes the top card, the original top card
becomes the 2nd card, the original 28th card becomes the 3rd card, and so on.)

Calculate the cycle structure of a perfect outer shuffle. What is its order?

Answer. The cycle structure is:

(1) (2 3 5 9 17 33 14 27) (4 7 13 25 49 46 40 28) (6 11 21 41 30 8 15 29)

(10 19 37 22 43 34 16 31) (12 23 45 38 24 47 42 32) (18 35)

(20 39 26 51 50 48 44 36) (52).

The order is the lowest common multiple of the lengths of the cycles. The cycles here
have lengths 1, 2 and 8, and so the order is 8.

15 + (5 + 5) = 25 pts



3. Recall that a group is a set G with a binary operation ∗ and a special element e satisfying

i. (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G,

ii. e ∗ a = a for all a ∈ G,

iii. for all a ∈ G there exists a′ ∈ G such that a′ ∗ a = e.

(a) Show carefully how it follows from the three axioms above that in a group G we have

iii′. for all a ∈ G there exists a′ ∈ G such that a ∗ a′ = e.

Answer. See page 127 of the textbook.

(b) Show that there is a binary operation ∗ on the two–element set G = {e, g} which does
not yield a group, but which satisfies axioms i, ii and iii′.

Answer. Define ∗ by

e ∗ e = e

e ∗ g = g

g ∗ e = e

g ∗ g = g.

This operation does not give a group because, contrary to axiom iii, there is no g′ ∈ G
such that g′ ∗ g = e. However it satisfies i by the calculation

(e ∗ e) ∗ e = e ∗ e = e = e ∗ e = e ∗ (e ∗ e)
(e ∗ e) ∗ g = e ∗ g = g = e ∗ g = e ∗ (e ∗ g)
(e ∗ g) ∗ e = g ∗ e = e = e ∗ e = e ∗ (g ∗ e)
(g ∗ e) ∗ e = e ∗ e = e = g ∗ e = g ∗ (e ∗ e)
(e ∗ g) ∗ g = g ∗ g = g = e ∗ g = e ∗ (g ∗ g)
(g ∗ e) ∗ g = e ∗ g = g = g ∗ g = g ∗ (e ∗ g)
(g ∗ g) ∗ e = g ∗ e = e = g ∗ e = g ∗ (g ∗ e)
(g ∗ g) ∗ g = g ∗ g = g = g ∗ g = g ∗ (g ∗ g),

and satisfies ii and iii′ self–evidently.

12 + 13 = 25 pts
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Math 4320 — Prelim, Part II
1:25pm–2:15pm, Wednesday 14th March 2012

“As long as algebra and geometry have been separated, their progress have been slow and their uses

limited; but when these two sciences have been united, they have lent each mutual forces, and have

marched together towards perfection.” Joseph Louis Lagrange

This exam contains three questions. Choose ONLY TWO to answer — if you attempt

more than two questions, you must indicate which two you would like to be graded.

Calculators, cell phones, music players and other electronic devices are not permitted.

Notes and books may not be used.

Write your name on all exam booklets. Do not hand in any scratch paper. Unless

otherwise indicated, all answers should be justified.

1. Recall that Rθ : R2 → R
2 given by

Rθ

(

x
y

)

=

(

cos θ − sin θ
sin θ cos θ

)(

x
y

)

is rotation through an angle θ about the origin, and Tv : R2 → R
2 given by Tv(x) = x + v

is translation by the vector v.

(a) Let Rθ,v be the rotation of the plane through an angle θ about the point with position
vector v. Express Rθ,v in terms of Rθ and Tv.

Answer. Rθ,v = Tv ◦Rθ ◦ T−v = Tv ◦Rθ ◦ (Tv)
−1.

(b) Does the set
{

Rθ,v | θ ∈ [0, 2π),v ∈ R
2
}

form a group under composition? Explain.

Answer. No. For example, when v =

(

1
0

)

,

Rπ,v ◦Rπ,0

(

x
y

)

= Rπ,v

(

−1 0
0 −1

)(

x
y

)

= Rπ,v

(

−x
−y

)

=

(

−1 0
0 −1

)((

−x
−y

)

−

(

1
0

))

+

(

1
0

)

=

(

x
y

)

+

(

2
0

)

and so Rπ,v◦Rπ,0 is a translation rather than a rotation. So composition is not a binary
operation on the given set.



(c) Does the set of reflections of the plane form a group? Explain.

Answer. No. We will see in parts (d) and (e) that the product of two reflections can be
a (non–trivial) translation or rotation, and so composition is not a binary operation on
the set of reflections of the plane.

(d) Copy the left figure below. Draw and label two lines L1 and L2 on your diagram such
that Tv equals reflection in L1 followed by reflection in L2.

Answer. See below.

(e) Copy the right figure below. Draw two lines L1 and L2 on your copy such that Rθ

equals reflection in L1 followed by reflection in L2.

Answer. See below.

(f) Explain why the group Isom(R2) of isometries of the plane is generated by reflections.
(Hint: Use the fact that an isometry is determined by where it maps any three non–
collinear points.)

Answer. Suppose Φ : R2 → R
2 is an isometry. Let x, y, and z be three non–collinear

points in R
2. We will express Φ as a product of reflections by finding a sequence of

reflections that take x to Φ(x), y to Φ(y), and z to Φ(z).

First carry x to Φ(x) using the translation Tv where v = Φ(x)− x (which is a product
of two reflections by part (d)). This carries y to the point y + v, which is the same
distance from Φ(x) as x is from y. So we can next rotate around Φ(x) to take y+ v to
Φ(y). This can be achieved using reflections by parts (a), (d) and (e). Now z has either
now been mapped to Φ(z), in which case we are done, or reflecting in the line through
Φ(x) and Φ(y) completes its journey to Φ(z) (without moving Φ(x) and Φ(y)).

L1

L1

L2

L2

v

v/2

θ/2θ

4 + 7 + 2 + 3 + 3 + 6 = 25 pts



2. (a) Explain why every permutation α ∈ Sn can be expressed as a product of transpositions.
(You may assume that every permutation can be expressed as a product of cycles.)

Answer. It is enough to show that every cycle can be expressed as a product of trans-
positions. Well,

(a1 a2 . . . ar) = (a1 ar)(a1 ar−1) · · · (a1 a3)(a1 a2).

(b) One definition of the parity of α ∈ Sn is that α is even (respectively, odd) when it can be
expressed as a product of an even (respectively, odd) number of transpositions. Define
sgn : Sn → {1,−1} by

sgn(α) =

{

1 if α is even

−1 if α is odd.

Why might there be cause for concern about whether this is well defined? (You are not
asked to explain why it is, in fact, well defined.)

Answer. The problem is that conceivably a permutation could be expressed both as
a product of an even number of transpositions and as a product of an odd number of
transpositions.

(c) The set {1,−1} forms a group under multiplication. Show that sgn : Sn → {1,−1} is a
homomorphism.

Answer. We have to show that sgn(αβ) = sgn(α)sgn(β) for all α, β ∈ Sn. Well, if α and
β can be written as the product of m and n transpositions, then αβ can be written as
the product of m+ n transpositions. So if m and n are both even, then m+ n is even
and

1 = sgn(αβ) = sgn(α)sgn(β) = 12,

and if m and n are both odd, then m+ n is even and

1 = sgn(αβ) = sgn(α)sgn(β) = (−1)2,

and if m is even and n is odd, then m+ n is odd and

−1 = sgn(αβ) = sgn(α)sgn(β) = 1(−1),

and if m is odd and n is even, then m+ n is odd and

−1 = sgn(αβ) = sgn(α)sgn(β) = (−1)1.



(d) Show that if α and β are conjugate in Sn, then sgn(α) = sgn(β).

Answer. If α and β are conjugate in Sn, then there exists γ ∈ Sn such that γαγ−1 = β.
And so as sgn is a homomorphism,

sgn(γαγ−1) = sgn(γ)sgn(α)sgn(γ)−1

= sgn(α)

since {1,−1} under multiplication is abelian.

(e) Is the converse to part (d) true? Explain.

Answer. No, for example the identity and (1 2)(3 4) are not conjugate in S4 (as the
identity is only conjugate to itself), but both have sign 1.

5 + 2 + 8 + 5 +5 = 25 pts

3. The Chinese Remainder Theorem gives all the integers x satisfying the simultaneous congru-
ences

x ≡ a1 mod m1,

...
...

x ≡ an mod mn,

when gcd(mi,mj) = 1 for all i 6= j. Specifically, if xi ≡ ai mod mi and Mi|xi, where
Mi = m1 . . .mi−1mi+1 . . .mn, then one solution is x0 := x1 + · · · + xn and the full set of
solutions is

S = {x0 + km1 . . .mn | k ∈ Z} .

(a) i. Explain why such xi exist.

Answer. As mi and Mi are coprime, there exist s, t ∈ Z such that smi + tMi = 1,
and so aismi + aitMi = ai. Take xi = ai − aismi = aitMi. Then xi ≡ ai mod mi

and Mi|xi.

ii. Show that x0 is a solution to the simultaneous congruences.

Answer. x0 ≡ ai mod mi since xi ≡ ai mod mi and xj ≡ 0 mod mi for all i 6= j.



iii. Show that S is the full set of solutions.

Answer. If k ∈ Z then x0 + km1 . . .mn is a solution to the simultaneous congru-
ences since x0 + km1 . . .mn ≡ xi mod mi for all i. And if x is a solution to the
simultaneous congruences then mi|(x−x0) for all i, and so m1 . . .mn|(x−x0) since
gcd(m1, . . . ,mn) = 1. So x ∈ S.

(b) An integer is squarefree when it is not divisible by the square of any integer other than
±1. By applying the Chinese Remainder Theorem with n = 1000, with ai = −(i − 1)
for 1 ≤ i ≤ 1000, and with m1, . . . ,m1000 chosen appropriately, show that there exists
x ∈ Z such that none of x, x+ 1, x+ 2, . . . , x+ 999 are squarefree.

Answer. Let mi denote the square of the i–th prime number. Then gcd(mi,mj) = 1 for
all i 6= j and the Chinese Remainder Theorem applies and tells us there is an integer x
such that

x ≡ 0 mod m1,
x ≡ −1 mod m2,
...

...
x ≡ −999 mod m1000.

That is,

m1|x,

m2|(x+ 1),

...

m1000|(x + 999).

So none of x, x + 1, x+ 2, . . . , x+ 999 are squarefree.

(6 + 6 + 6) + 7 = 25 pts

TRR, 3 March 2012


