1.49 Let p_1, p_2, p_3, \ldots be the list of the primes in ascending order: $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, and so forth. Define $f_k = p_1 p_2 \cdots p_k + 1$ for $k \ge 1$. Find the smallest k for which f_k is not a prime. **Solution.** f_1, f_2, f_3, f_4 , and f_5 are prime, but

$$f_6 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 + 1 = 30031 = 59 \cdot 509.$$

1.50 Prove that if d and d' are nonzero integers, each of which divides the other, then $d' = \pm d$.

Solution. Assume that d = ad' and d' = bd. Then

$$d = ad' = abd$$

so that canceling d gives 1=ab. As a and b are nonzero integers, $|a| \ge 1$ and $|b| \ge 1$. But $1=|ab|=|a|\,|b|$ gives |a|=1=|b|. Hence, a=1=b or a=-1=b.

1.54 (i) Prove that if n is *squarefree* (i.e., n > 1 and n is not divisible by the square of any prime), then \sqrt{n} is irrational.

Solution. We rewrite the proof of Proposition 1.14. Suppose, on the contrary, that \sqrt{n} is rational, where n is squarefree; that is, $\sqrt{n} = a/b$. We may assume that a/b is in lowest terms; that is, (a, b) = 1. Squaring, $a^2 = nb^2$. Let p be a prime divisor of n, so that n = pq. Since n is squarefree, (p, q) = 1. By Euclid's lemma, $p \mid a$, so that a = pm, hence $p^2m^2 = a^2 = pqb^2$, and $pm^2 = qb^2$. By Euclid's lemma, $p \mid b$, contradicting (a, b) = 1.

(ii) Prove that $\sqrt[3]{2}$ is irrational.

Solution. Assume that $\sqrt[3]{4} = a/b$, where (a, b) = 1. Then $4b^3 = a^3$, so that a is even; say, a = 2m. Hence $4b^3 = 8m^3$; canceling, $b^3 = 2m^3$, forcing b to be even. This contradicts (a, b) = 1.

- 1.55 (i) Find $d = \gcd(12327, 2409)$, find integers s and t with d = 12327s + 2409t, and put the fraction 2409/12327 in lowest terms. Solution. One uses the Euclidean algorithm to get: (12327, 2409) = 3 and $3 = 12327 \cdot 299 - 2409 \cdot 1530$; the fraction 2409/12327 = 803/4109 is in lowest terms.
 - (ii) Find $d = \gcd(7563, 526)$, and express d as a linear combination of 7563 and 526.

Solution. The Euclidean algorithm gives

$$(7563, 526) = 1$$
 and $1 = 532 - 526 - 37 - 7563$.

(iii) Find $d = \gcd(73122, 7404621)$ and express d as a linear combination of 73122 and 7404621.

Solution. Here are the equations of the Euclidean algorithm:

$$7404621 = 101 \cdot 73122 + 19299$$

$$73122 = 3 \cdot 19299 + 15225$$

$$19299 = 1 \cdot 15225 + 4074$$

$$15225 = 3 \cdot 4074 + 3003$$

$$4074 = 1 \cdot 3003 + 1071$$

$$3003 = 2 \cdot 1071 + 861$$

$$1071 = 1 \cdot 861 + 210$$

$$861 = 4 \cdot 210 + 21$$

$$210 = 10 \cdot 21.$$

We conclude that the gcd is 21. Following the algorithm in the text, we find that

$$21 = 34531 \cdot 73122 - 341 \cdot 7404621$$
.

1.60 If a and b are relatively prime and if each divides an integer n, prove that their product ab also divides n.

Solution. Assume that (a, b) = 1 and $n = ak = b\ell$. By Corollary 1.40, $b \mid ak$ implies $b \mid k$. Thus, k = bk' and so n = ak = abk'.

1.60 If a and b are relatively prime and if each divides an integer n, prove that their product ab also divides n.

Solution. Assume that (a, b) = 1 and $n = ak = b\ell$. By Corollary 1.40, $b \mid ak$ implies $b \mid k$. Thus, k = bk' and so n = ak = abk'.

1.60 If a and b are relatively prime and if each divides an integer n, prove that their product ab also divides n.

Solution. Assume that (a, b) = 1 and $n = ak = b\ell$. By Corollary 1.40, $b \mid ak$ implies $b \mid k$. Thus, k = bk' and so n = ak = abk'.

1.64 If F_n denotes the nth term of the Fibonacci sequence $0, 1, 1, 2, 3, 5, 8, \ldots$, prove, for all $n \ge 1$, that F_{n+1} and F_n are relatively prime. **Solution.** The hint refers to the fact, which is the key step in antanairesis, that (a, b) = (a - b, b) whenever a > b. The proof is by induction on

inductive step, use antanairesis and the defining recurrence,

$$(F_{n+2}, F_{n+1}) = (F_{n+1} - F_n, F_{n+1})$$

= $(F_n, F_{n+1}) = 1$.

 $n \ge 1$. The base step n = 1 is true, for $(F_2, F_1) = (1, 1) = 1$. For the

Here is a proof that is a variation of the same idea. Let $n \ge 1$ be the smallest integer for which F_{n+1} and F_n have $\gcd d > 1$. We note that n > 1 because $(F_2, F_1) = (1, 1) = 1$, and so $n - 1 \ge 1$. But if d is a common divisor of F_{n+1} and F_n , then d divides $F_{n-1} = F_{n+1} - F_n$, so that $(F_n, F_{n-1}) \ne 1$. This contradicts n being the smallest index for which $(F_{n+1}, F_n) \ne 1$.

1.67 (i) Consider a complex number z = q + ip, where q > p are positive integers. Prove that

$$(q^2 - p^2, 2qp, q^2 + p^2)$$

is a Pythagorean triple by showing that $|z^2| = |z|^2$.

Solution. If z = q + ip, then $|z^2| = |z|^2$, by part (i). Now $z^2 = (q^2 - p^2) + i2qp$, so that $|z^2| = (q^2 - p^2)^2 + (2qp)^2$. On the other hand, $|z|^2 = (q^2 + p^2)^2$. Thus, if we define $a = q^2 - p^2$, b = 2qp, and $c = q^2 + p^2$, then $a^2 + b^2 = c^2$ and (a, b, c) is a Pythagorean triple.

(ii) Show that the Pythagorean triple (9, 12, 15) (which is not primitive) is not of the type given in part (i).

Solution. Suppose there are q and p for (9, 12, 15). Then 2qp = 12 and qp = 6. Since q > p are positive integers, the only possibilities are q = 6 and p = 1 or q = 3 and p = 2. The first possibility gives the Pythagorean triple (12, 35, 37) while the second gives the Pythagorean triple (5, 12, 13).

(iii) Using a calculator which can find square roots but which can display only 8 digits, show that

is a Pythagorean triple by finding q and p. Solution. If q and p exist, then we have

$$q^2 + p^2 = 34503301$$

 $q^2 - p^2 = 19597501$.

Therefore, $2p^2=14905800$ and $p^2=7452900$. Hence, p=2730. Finally, 2qp=28397460, and so q=5201. Since we were able to find q and p, the original trio does form a Pythagorean triple.