3.85 Let $\zeta = e^{2\pi i/n}$.

(i) Prove that

$$x^{n} - 1 = (x - 1)(x - \zeta)(x - \zeta^{2}) \cdots (x - \zeta^{n-1})$$

and, if n is odd, that

$$x^{n} + 1 = (x + 1)(x + \zeta)(x + \zeta^{2}) \cdots (x + \zeta^{n-1}).$$

Solution. The *n* numbers $1, \zeta, \zeta^2, \ldots, \zeta^{n-1}$ are all distinct. But they are all roots of $x^n - 1$, and so Theorem 3.50 gives the first equation:

$$x^{n} - 1 = (x - 1)(x - \zeta)(x - \zeta^{2}) \cdots (x - \zeta^{n-1}).$$

If n is odd, then replace x by -x to get

$$(-x)^n - 1 = (-x - 1)(-x - \zeta)(-x - \zeta^2) \cdots (-x - \zeta^{n-1})$$

= $(-1)^n (x + 1)(x + \zeta)(x + \zeta^2) \cdots (x + \zeta^{n-1}).$

Since n is odd.

$$(-x)^n - 1 = -x^n - 1 = -(x^n + 1),$$

and one can now cancel the minus sign from each side.

(ii) For numbers a and b, prove that

$$a^n - b^n = (a - b)(a - \zeta b)(a - \zeta^2 b) \cdots (a - \zeta^{n-1} b)$$

and, if n is odd, that

$$a^n + b^n = (a+b)(a+\zeta b)(a+\zeta^2 b)\cdots(a+\zeta^{n-1} b).$$

Solution. If b = 0, then both sides equal a^n ; if $b \neq 0$, then set x = a/b in part (ii).

(iii) $f(x) = 2x^3 - x - 6$.

Solution. There are no rational roots: the candidates are

$$\pm \frac{1}{2}$$
, ± 1 , $\pm \frac{3}{2}$, ± 2 , ± 3 , ± 6 .

Therefore, f(x) is irreducible, by Proposition 3.65.

(vi) $f(x) = x^5 - 4x + 2$.

Solution. f(x) is irreducible, by the Eisenstein criterion with p = 2.

(viii)
$$f(x) = x^4 - 10x^2 + 1$$
.

Solution. f(x) has no rational roots, for the only candidates are ± 1 . Suppose that

$$x^4 - 10x^2 + 1 = (x^2 + ax + b)(x^2 - ax + c)$$
 in $\mathbb{Q}[x]$

(we may assume the coefficient of x in the second factor is -a because f(x) has no cubic term). Expanding and equating coefficients gives the following equations:

$$c + b - a^2 = 10$$
$$a(c - b) = 0$$
$$bc = 1.$$

The middle equation gives a(c - b) = 0, so that either a = 0 or b = c. In the first case, we obtain

$$c + b = 10$$
$$cb = 1.$$

Substituting $c=b^{-1}$, the first equation gives $b^2-10b+1=0$. But the quadratic formula gives $b=5\pm 2\sqrt{6}$, which is irrational. On the other hand, if b=c, then bc=1 implies $b=\pm 1=c$. The first equation gives $a^2=-10\pm 2<0$, and this is also impossible. We conclude that there is no factorization of f(x) in $\mathbb{Q}[x]$.

(ix) $f(x) = x^6 - 210x - 616$.

Solution. Eisenstein's criterion applies, for $7 \mid 210$ and $7 \mid 616$, but $7^2 \nmid 616$.

(x) $f(x) = 350x^3 + x^2 + 4x + 1$.

Solution. Reducing mod 3 to gives an irreducible cubic in $\mathbb{F}_3[x]$.

3.89 Prove that there are exactly 6 irreducible quintics in $\mathbb{F}_2[x]$.

Solution. There are 32 quintics in $\mathbb{F}_2[x]$, 16 of which have constant term 0; that is, have 0 as a root. Of the 16 remaining polynomials, we may discard those having an even number of nonzero terms, for 1 is a root of these; and now there are 8. If a quintic f(x) with no roots is not irreducible, then its factors are irreducible polynomials of degrees 2 and 3; that is,

$$f(x) = (x^2 + x + 1)(x^3 + x + 1) = x^5 + x^4 + 1,$$

or

$$f(x) = (x^2 + x + 1)(x^3 + x^2 + 1) = x^5 + x + 1.$$

Thus, the irreducible polynomials are:

$$x^{5} + x^{3} + x^{2} + x + 1$$
 $x^{5} + x^{4} + x^{2} + x + 1$
 $x^{5} + x^{4} + x^{3} + x + 1$ $x^{5} + x^{4} + x^{3} + x^{2} + 1$
 $x^{5} + x^{3} + 1$ $x^{5} + x^{2} + 1$.

3.91 Let k be a field, and let $f(x) = a_0 + a_1x + \cdots + a_nx^n \in k[x]$ have degree n. If f(x) is irreducible, then so is $a_n + a_{n-1}x + \cdots + a_0x^n$.

Solution. If $f^*(x)$ denotes the polynomial f(x) with coefficients reversed, then a factorization $f^*(x) = g(x)h(x)$ gives a factorization f(x). One sees this just by using the definition of multiplication of polynomials. Let $g(x) = \sum_{i=0}^{p} b_i x^i$ and $h(x) = \sum_{i=0}^{q} c_j x^j$, where p + q = n. Thus,

$$a_{n-m} = \sum_{i+j=m} b_i c_j.$$

It follows that

$$\sum_{i+j = n-m} b_{p-i} c_{q-j} = a_{n-(n-m)} = a_k.$$

Therefore, if we define $g^*(x) = \sum_{i=0}^p b_{p-i} x^i$ and $h^*(x) = \sum_{j=0}^q c_{q-j} x^j$, then $f(x) = g^*(x)h^*(x)$, contradicting the irreducibility of f(x).

Note that $f(x) \mapsto f^*(x)$, which reverses coefficients, is not a well-defined function $k[x] \to k[x]$, because it is not clear how to define $f^*(x)$ if the constant term of f(x) is zero. And even if one makes a bona fide definition, the function is not a homomorphism. For example, let $f(x) = x^5 + 3x^4$; that is, in sequence notation,

$$f(x) = (0, 0, 0, 0, 3, 1, 0, \ldots).$$

Let $g(x) = x^3 + x$; in sequence notation,

$$g(x) = (0, 1, 0, 1, 0, \ldots).$$

Now $f(x)g(x) = [x^8 + 3x^7 + x^6 + 4x^5 + 3x^4]$; in sequence notation,

$$f(x)g(x) = (0, 0, 0, 0, 3, 4, 1, 3, 1, 0, ...).$$

Therefore,

$$[f(x)g(x)]^* = 3x^4 + 4x^3 + x^2 + 3x + 1,$$

which is a quartic. But $f^*(x) = 3x + 1$ and $g^*(x) = x^2 + 1$, so that $f^*(x)g^*(x)$ is a cubic. Therefore, $[fg]^* \neq f^*g^*$.

3.103 If $E = \mathbb{F}_2[x]/(p(x))$, where $p(x) = x^3 + x + 1$, then E is a field with 8 elements. Show that a root π of p(x) is a primitive element of E by writing every nonzero element of E as a power of π .

Solution. See Example 4.127.

3.105 If E is a finite field, use Cauchy's theorem to prove that $|E| = p^n$ for some prime p and some $n \ge 1$.

Solution. If k is the prime field of E, then Proposition 3.110 says that $k \cong \mathbb{Q}$ or $k \cong \mathbb{F}_p$ for some prime p; since \mathbb{Q} is infinite, we have k of characteristic p. Therefore, pa = 0 for all $a \in E$; that is, as an additive abelian group, every nonzero element in E has order p. If there is a prime divisor q of |E| with $q \neq p$, then Cauchy's theorem gives a nonzero element $b \in E$ with qb = 0, contradicting every nonzero element having order p. We conclude that $|E| = p^n$ for some $n \geq 1$.