1.72 Let $n = p^r m$, where p is a prime not dividing an integer $m \ge 1$. Prove that $p \nmid \binom{n}{p^r}$.

Solution. Write $a = \binom{n}{p^r}$. By Pascal's formula:

$$a = \binom{n}{p^r} = \frac{n!}{(p^r)!(n-p^r)!}.$$

Cancel the factor $(n - p^r)!$ and cross-multiply, obtaining:

$$a(p^r)! = n(n-1)(n-2)\cdots(n-p^r+1).$$

Thus, the factors on the right side, other than $n = p^r m$, have the form $n - i = p^r m - i$, where $1 \le i \le p^r - 1$. Similarly, the factors in $(p^r)!$, other than p^r itself, have the form $p^r - i$, for i in the same range: $1 \le i \le p^r - 1$.

If $p^e \mid p^r m - i$, where $e \le r$ and $i \ge 1$, then $p^r m - i = bp^e$; hence, $p^e \mid i$; there is a factorization $i = p^e j$. Therefore, $p^r - i = p^e (p^{r-e} - j)$.

A similar argument shows that if $p^e \mid p^r - i$ for $i \ge 1$, then $p^e \mid p^r m - i$. By the fundamental theorem of arithmetic, the total number of factors p occurring on each side must be the same. Therefore, the total number of p's dividing ap^r must equal the total number of p's dividing $p^r m$. Since $p \nmid m$, the highest power of p dividing $p^r m$ is p^r , and so the highest power of p dividing $p^r m$ is p^r , and so the highest power of p dividing $p^r m$ is p^r , and so the highest power of p dividing $p^r m$ is p^r , and so the highest power of p dividing $p^r m$ is p^r , and so the highest power of p dividing $p^r m$ is p^r , and so the highest power of p dividing $p^r m$ is p^r ; that is, $p \nmid a = \binom{p^r m}{p^r} = \binom{n}{p^r}$, as desired.

1.73 (i) For all rationals a and b, prove that

$$||ab||_p = ||a||_p ||b||_p$$
 and $||a+b||_p \le \max\{||a||_p, ||b||_p\}.$

Solution. If
$$a = p^e p_1^{e_1} \cdots p_n^{e_n}$$
 and $b = p^f p_1^{f_1} \cdots p_n^{f_n}$, then

$$ab = p^{e+f} p_1^{e_1+f_1} \cdots p_n^{e_n+f_n}.$$

Hence

$$||ab||_p = p^{-e-f} = p^{-e}p^{-f} = ||a||_p ||b||_p.$$

Assume $e \le f$, so that $-f \le -e$ and $||a||_p = \max\{||a||_p, ||b||_p\}$.

$$a + b = p^{e} p_{1}^{e_{1}} \cdots p_{n}^{e_{n}} + p^{f} p_{1}^{f_{1}} \cdots p_{n}^{f_{n}}$$
$$= p^{e} \left(p_{1}^{e_{1}} \cdots p_{n}^{e_{n}} + p^{f-e} p_{1}^{f_{1}} \cdots p_{n}^{f_{n}} \right).$$

If $u = p_1^{e_1} \cdots p_n^{e_n} + p^{f-e} p_1^{f_1} \cdots p_n^{f_n}$, then either u = 0 or $||u||_p = p^{-0} = 1$. In the first case, $||a + b||_p = 0$, and the result is true. Otherwise,

$$||a+b||_p = p^{-e}||u||_p = ||a||_p||u||_p$$

 $\leq ||a||_p = \max\{||a||_p, ||b||_p\}.$

(ii) For all rationals a, b, prove $\delta_p(a,b) \ge 0$ and $\delta_p(a,b) = 0$ if and only if a = b.

Solution. $\delta_p(a,b) \ge 0$ because $\|c\|p \ge 0$ for all c. If a=b, then $\delta_p(a,b) = \|a-b\|p = \|0\|p = 0$; conversely, if $\delta_p(a,b) = 0$, then a-b=0 because 0 is the only element c with $\|c\|_p = 0$.

(iii) For all rationals a, b, prove that $\delta_p(a, b) = \delta_p(b, a)$.

Solution. $\delta_p(a, b) = \delta_p(b, a)$ because

$$||-c||p = ||-1||p||c||_p = ||c||_p.$$

(iv) For all rationals a, b, c, prove $\delta_p(a, b) \le \delta_p(a, c) + \delta_p(c, b)$. Solution. $\delta_p(a, b) \le \delta_p(a, c) + \delta_p(c, b)$ because

$$\begin{split} \delta_p(a,b) &= \|a-b\|_p = \|(a-c) + (c-b)\|_p \\ &\leq \max\{\|a-c\|_p, \|c-b\|_p\} \\ &\|a-c\|_p + \|c-b\|_p \\ &= \delta_p(a,c) + \delta_p(c,b). \end{split}$$

(v) If a and b are integers and $p^n \mid (a - b)$, then $\delta_p(a, b) \leq p^{-n}$. (Thus, a and b are "close" if a - b is divisible by a "large" power of p.)

Solution. If $p^n \mid a - b$, then $a - b = p^n u$, where u is an integer. But $||u||_p \le 1$ for every integer u, so that

$$\delta(a, b) = ||a - b||_p = ||p^n u||_p = ||p^n||_p ||u||_p \le p^{-n}.$$

At this point, one could assign a project involving completions, p-adic integers, and p-adic numbers.

1.81 What is the remainder after dividing 10¹⁰⁰ by 7? Solution. Use Corollary 1.67 after noting that 100 = 2 · 7² + 2 (of course, this says that 100 has 7-adic digits 202). Hence

$$10^{100} \equiv 3^{100} \equiv 3^4 = 81 \equiv 4 \mod 7.$$

- 1.83 (i) Show that 1000 ≡ −1 mod 7.
 Solution. Dividing 1000 by 7 leaves remainder 6 ≡ −1 mod 7.
 - (ii) Show that if $a = r_0 + 1000r_1 + 1000^2r_2 + \cdots$, then *a* is divisible by 7 if and only if $r_0 r_1 + r_2 \cdots$ is divisible by 7. **Solution.** If $a = r_0 + 1000r_1 + 1000^2r_2 + \cdots$, then

$$a \equiv r_0 + (-1)r_1 + (-1)^2 r_2 + \dots = r_0 - r_1 + r_2 - \dots \mod 7.$$

Hence a is divisible by 7 if and only if $r_0 - r_1 + r_2 - \cdots$ is divisible by 7.

1.87 If x is an odd number not divisible by 3, prove that x² ≡ 1 mod 24.
Solution. Here are two ways to proceed. The odd numbers < 24 not divisible by 3 are 1, 5, 7, 11, 13, 17, 19, 23; square each mod 24.</p>

Alternatively, Example 1.161 says that the squares mod 8 are 0, 1, and 4. Now $x^2 - 1$ is divisible by 24 if and only if it is divisible by 3 and by 8 (as 3 and 8 are relatively prime). If x is to be odd, then $x \equiv 0 \mod 3$ or $x \equiv 2 \mod 3$; looking at $x \mod 8$, the hypothesis eliminates those x with $x^2 \equiv 0 \mod 8$ or $x^2 \equiv 4 \mod 8$.