2.22 Find sgn(α) and α^{-1} , where $$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}.$$ **Solution.** In cycle notation, $\alpha = (19)(28)(37)(46)$. Thus, α is even, being the product of four transpositions. Moreover, being a product of disjoint transpositions, $\alpha = \alpha^{-1}$. 2.24 (i) If $1 < r \le n$, prove that there are $$\frac{1}{r}[n(n-1)\cdots(n-r+1)]$$ r-cycles in S_n . **Solution.** In the notation $(i_1 \ i_2 \ \dots \ i_r)$, there are n choices for i_1 , n-1 choices for $i_2, \dots, n-(r-1)=n-r+1$ choices for i_r . We conclude that there are $n(n-1)\cdots(n-r+1)$ such notations. However, r such notations describe the same cycle: $$(i_1 \ i_2 \ \dots \ i_r) = (i_2 \ i_3 \ \dots \ i_1) = \dots = (i_r \ i_1 \ \dots \ i_{r-1}).$$ Therefore, there are $\frac{1}{r}[n(n-1)\cdots(n-r+1)]$ r-cycles in S_n . - **2.26** Show that an r-cycle is an even permutation if and only if r is odd. **Solution.** In the proof of Proposition 2.35, we showed that any r-cycle α is a product of r-1 transpositions. The result now follows from Proposition 2.39, for $sgn(\alpha) = (-1)^{r-1} = -1$. - **2.32** If $n \ge 2$, prove that the number of even permutations in S_n is $\frac{1}{2}n!$. Solution. Let $\tau = (1\ 2)$, and define $f: A_n \to O_n$, where A_n is the set of all even permutations in S_n and O_n is the set of all odd permutations, by $$f: \alpha \mapsto \tau \alpha$$. If σ is even, then $\tau \sigma$ is odd, so that the target of f is, indeed, O_n . The function f is a bijection, for its inverse is $g: O_n \to A_n$, which is given by $g: \alpha \mapsto \tau \alpha$. **2.34** If $n \ge 3$, show that if $\alpha \in S_n$ commutes with every $\beta \in S_n$, then $\alpha = (1)$. Solution. If $\alpha \ne (1)$, then it moves some i; say, $\alpha i = j \ne i$. There is β with $\beta j = j$ and $\beta i = k \ne i$. Then $\beta \alpha i = \beta j = j$, while $\alpha \beta i = \alpha k \ne j$ (for α is injective, and so $k \ne i$ implies $\alpha k \ne \alpha i = j$). 2.35 Can the following 15-puzzle be won? | 4 | 10 | 9 | 1 | |----|----|----|---| | 8 | 2 | 15 | 6 | | 12 | 5 | 11 | 3 | | 7 | 14 | 13 | # | Solution. No, because the associated permutation is odd.