2.39 (i) How many elements of order 2 are there in S_5 and in S_6 ? Solution. In S_5 , there are $\frac{1}{2}(5 \times 4) = 10$ transpositions and

$$\frac{1}{2} \left[\frac{1}{2} (5 \times 4) \times \frac{1}{2} (3 \times 2) \right] = 15$$

products of two disjoint transpositions (the extra factor $\frac{1}{2}$ so that $(a\ b)(c\ d) = (c\ d)(a\ b)$ not be counted twice). In S_6 , there are $\frac{1}{2}(6 \times 5) = 15$ transpositions,

$$\frac{1}{2}[\frac{1}{2}(6 \times 5) \times \frac{1}{2}(4 \times 3)] = 45$$

products of two disjoint transpositions, and

$$\frac{1}{6} \left[\frac{1}{2} (6 \times 5) \times \frac{1}{2} (4 \times 3) \times \frac{1}{2} (2 \times 1) \right] = 15$$

products of three disjoint transpositions.

(ii) How many elements of order 2 are there in S_n ? Solution.

$$\frac{1}{2}n(n-1) + \frac{1}{2!} \left[\frac{1}{2}n(n-1)\frac{1}{2}(n-2)(n-3) \right] + \frac{1}{3!} \left[\frac{1}{2}n(n-1)\frac{1}{2}(n-2)(n-3)\frac{1}{2}(n-4)(n-5) \right] + \cdots$$

2.40 Let y be a group element of order m; if m = dt for some $d \ge 1$, prove that y^t has order d.

Solution. Let $x = y^t$. Now $x^d = (y^t)^d = t^{td} = y^m = 1$, and so the order k of x is a divisor of d, by Lemma 2.53. But if x has order 1, then x = 1 and so $y^t = 1$. This contradicts m = pt being the smallest positive integer with $y^m = 1$. Therefore, x has order p.

2.42 Let $G = GL(2, \mathbb{Q})$, and let $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$. Show that $A^4 = I = B^6$, but that $(AB)^n \neq I$ for all n > 0. Conclude that AB can have infinite order even though both factors A and B have finite order. Solution.

$$AB = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \text{ and } (AB)^n = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}.$$

2.44 If G is a group in which $x^2 = 1$ for every $x \in G$, prove that G must be abelian.

Solution. If $x \in G$, then $x^2 = 1$ implies $x^{-1} = x$. Let $y \in G$. Since $1 = (xy)^2 = xyxy$, we have $xy = y^{-1}x^{-1} = yx$.

2.47 What is the largest order of an element in S_n , where n = 1, 2, ..., 10? Solution. Denote the largest order of an element in S_n by $\mu(n)$. There is

n	1	2	3	4	5	6	7	8	9	10
$\mu(n)$	1	2	3	4	6	6	12	15	20	100
										20

no known formula for $\mu(n)$, though its asymptotic behavior is known, by a theorem of E. Landau.

2.50 Prove that every element in a dihedral group D_{2n} has a unique factorization of the form $a^i b^j$, where $0 \le i < n$ and j = 0 or 1.

Solution. The cyclic subgroup $\langle a \rangle$ has order n, hence index 2, so that D_{2n} is the disjoint union $\langle a \rangle \cup \langle a \rangle b$.

This solution will make more sense after learning about indices.

As an alternate solution, note that $|D_{2n}|=2n$ and $|\{a^ib^j| i=0,...,n-1 \text{ and } j=0,1\}|=2n$. Since $\{a^ib^j| i=0,...,n-1 \text{ and } j=0,1\}\subseteq D_{2n}$ they must be equal.