3.9 Find all the units in the commutative ring $\mathcal{F}(\mathbb{R})$ defined in Example 3.11(i). **Solution.** We claim that f is a unit if and only if $f(r) \neq 0$ for every $r \in \mathbb{R}$. If f is a unit, there is $g \in \mathcal{F}(\mathbb{R})$ with fg = 1; that is, f(r)g(r) = 1 for all $r \in \mathbb{R}$, and so $f(r) \neq 0$ for all $r \in \mathbb{R}$.

Conversely, if $f(r) \neq 0$ for all $r \in \mathbb{R}$, define $g \in \mathcal{F}(\mathbb{R})$ by g(r) = 1/f(r); then fg = 1 and f is a unit.

3.13 Prove that the only subring of $\mathbb Z$ is $\mathbb Z$ itself.

Solution. Every subring R of \mathbb{Z} contains 1, hence 1+1, 1+1+1, etc, so that R contains all positive integers (one needs induction), and finally, R contains the additive inverses of these, i.e., all negative integers, as well.

3.15 (i) Is $R = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ a domain?

Solution. It suffices to show that R contains 1 and is closed under addition and multiplication. Each of these is routine: for example,

$$(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}.$$

- (ii) Is $R = \{\frac{1}{2}(a + b\sqrt{2}) : a, b \in \mathbb{Z}\}$ a domain? Solution. R is not a subring of \mathbb{R} , hence is not a domain, for $(\frac{1}{2})^2 = \frac{1}{4} \notin R$.
- (iii) Using the fact that $\alpha = \frac{1}{2}(1+\sqrt{-19})$ is a root of x^2-x+5 , prove that $R = \{a+b\alpha : a, b \in \mathbb{Z}\}$ is a domain.

Solution. It is clear that R contains 1, and one shows easily that if $a, a' \in A$ and $b, b' \in B$, then R contains a - a', b - b', a - b, and aa'. Write $a = \alpha + \alpha' \sqrt{5}$, $b = \frac{1}{2}(\beta + \beta')\sqrt{5}$, and $b' = \frac{1}{2}(\gamma + \gamma')\sqrt{5}$. It is easy to see that $ab \in A$ if α and α' have the same parity, while $ab \in B$ otherwise; in either case, $ab \in R$. Finally, write

$$\begin{split} bb' &= \left[\frac{1}{2}(\beta+\beta')\sqrt{5}\right] \left[\frac{1}{2}(\gamma+\gamma')\sqrt{5}\right] \\ &= \frac{1}{4} \left[(\beta\gamma+5\beta'\gamma') + \sqrt{5}(\beta\gamma'+\beta'\gamma)\right]. \end{split}$$

Expand and substitute $\beta = 2p + 1$, $\beta' = 2p' + 1$, $\gamma = 2q + 1$, and $\gamma' = 2q' + 1$ (for β , β' , γ , and γ' are odd). After collecting terms, one sees that both the constant term and the coefficient of

 $\sqrt{5}$ are even; moreover, the quotients obtained after dividing each by 2 have the same parity. It follows that $bb' \in R$. This example can be generalized by replacing 5 by any integer D with $D \equiv 1 \mod 4$; the ring R is a special case of the ring of integers in a quadratic number field of the form $\mathbb{Q}(\sqrt{D})$.

- 3.20 Prove that every domain R with a finite number of elements must be a field. Solution. Let R^{\times} denote the set of nonzero elements of R. The cancellation law can be restated: for each $r \in R^{\times}$, the function $\mu_r \colon R^{\times} \to R^{\times}$, defined by $\mu_r \colon x \mapsto rx$, is an injection $R^{\times} \to R^{\times}$. Since R^{\times} is finite, Exercise 2.13 shows that every μ_r must also be a surjection. Hence, there is $s \in R^{\times}$ with $1 = \mu_r(s) = rs$, and so r has an inverse.
- **3.21** Find all the units in the ring $\mathbb{Z}[i]$ of Gaussian integers. Solution. If z = a + ib has an inverse, then there is $u \in \mathbb{Z}[i]$ with zu = 1. By Corollary 1.23, 1 = |zu| = |z||u|. Here, both |z| and |u| are integers, so that $|z| = \pm 1$. But $|z| = a^2 + b^2$, where $a, b \in \mathbb{Z}$. Therefore, either $a = \pm 1$ and b = 0, or a = 0 and $b = \pm 1$. That is, there are only four units: 1, -1, i, and -i.
- 3.23 (i) Show that F = {a + bi : a, b ∈ Q} is a field.
 Solution. It is straightforward to check that F is a subring of C, and so it is a commutative ring; it is a field because the inverse of a + bi is r⁻¹(a bi) ∈ F, where r = a² + b².
 - (ii) Show that every $u \in F$ has a factorization $u = \alpha \beta^{-1}$, where $\alpha, \beta \in \mathbb{Z}[i]$. (See Exercise 3.50.)

Solution. Write

$$a + bi = (p/q) + (r/s)i = (ps + qri)(qs)^{-1},$$

where $p, q, r, s \in \mathbb{Z}$.