Math 4320 : Introduction to Algebra

Final Exam

(May 15, 2009, 2-4pm)

Books and calculators are not allowed.

1. (basic notions in group theory)

(a) (5 pts) Is D_{2n} an abelian (commutative) group? How about S_n ? (Your answer might depend on n.)

 D_{2n} and S_n are abelian only for n = 2.

(b) (5 pts) Define a simple group and give an example. (Giving the symbol of the group is not sufficient. Describe the group you suggest.)

A simple group is a group of which there is no normal subgroup other than $\{1\}$ and itself. An example is the group of even permutations A_5 on five letters.

(c) (5 pts) Is every finite group isomorphic to a subgroup of S_n for some n? Explain your answer.

Yes, by Cayley theorem, since a finite group G acts on itself by conjugation.

2. (group isomorphism)

(a) (7 pts) Prove that no pair of the following groups of order 8 are isomorphic:

 $\mathbb{I}_8, \quad \mathbb{I}_4 \times \mathbb{I}_2, \quad \mathbb{I}_2 \times \mathbb{I}_2 \times \mathbb{I}_2, \quad D_8.$

 D_8 is non-isomorphic to the rest because it is non-abelian (where are all the others are). Among the rest, I_8 is the only group having an element of order 8, thus non-isomorphic to the rest. We are left with two groups : $I_4 \times I_2$ has an element of order 4, but I_x^3 does not, so they are non-isomorphic.

(b) (8 pts) Prove that \mathbb{I}_6 is isomorphic to $\mathbb{I}_2 \times \mathbb{I}_3$.

Define a homomorphism $\mathbb{Z} \to I_2 \times I_3$, by sending $a \mapsto ([a]_2, [a]_3)$. It is clearly well-defined, and it is a surjective homomorphism since it is a product of projections. The kernel is the set of elements which are zero modulo 2 and zero modulo 3, thus 6 \mathbb{Z} . By the first isomorphism theorem, $I_6 = \mathbb{Z}/6\mathbb{Z}$ is isomorphic to $I_2 \times I_3$.

3. (class equation) (5 pts each) Find the class equation $|G| = |Z(G)| + \sum [G: C_G(x)]$ of

(a) the four group V,

The group V is abelian, thus 4 = 4 is the class equation.

(b) the symmetric group S_3 .

4. (basic notions in rings and fields) (5 pts each)

(a) Describe elements of each of the field Frac(R[x]) and the field (Frac(R))(x)? Are they isomorphic? Why?

Elements of Frac(R[x]) are of the form f/g where f, g are polynomials with coefficients in R. The elements of (FracR)(x) are of the form f/gwhere f, g are polynomials with coefficients in Frac(R). They are isomorphic. The first field is clearly a subset of the second field, and by multiplying by the common denominator of coefficients of f, g the second field is also contained in the first field.

(b) Give an example of a field which is not a set of numbers (nor a set of equivalence classes of numbers).

The field $\mathbb{Q}[x]$ of rational functions f/g of polynomials f, g in $\mathbb{Q}[x]$.

5. (field isomorphisms)(5 pts each)

(a) Explain why a field of order 4 and \mathbb{I}_4 are not isomorphic (as rings).

Because one is a field and the other is not : $I_4 = \mathbb{Z}/4\mathbb{Z}$ is not a field since $4\mathbb{Z}$ is not a maximal ideal ($2\mathbb{Z}$ is a maximal ideal containing it).

(b) Are 𝔽₃[x]/(x² + 1) and 𝔽₃[x]/(x² + x − 1) isomorphic as fields? Why? Yes, because there is a unique field for each order, and they have the same order since they are both vector spaces of dimension 2 over 𝔽₃.

6. (Irreducibles)(10 pts each)

(a) List all the irreducible polynomials in $\mathbb{F}_2[x]$ of degree less than or equal to 3. (First list all polynomials and show your process of elimination.)

All polynomials : $x, x + 1, x^2, x^2 + x, x^2 + x + 1, x^2 + 1, x^3, x^3 + x^2, x^3 + x^2 + x, x^3 + x, x^3 + x^2 + x + 1, x^3 + x, x^3 + x + 1, x^3 + x^2 + 1.$

All irreducible polynomials : $x, x + 1, x^2 + x + 1, x^3 + x + 1, x^3 + x^2 + 1$.

(b) Show that the *p*-th cyclotomic polynomial $x^{p-1} + x^{p-2} + \cdots + x + 1$ is an irreducible polynomial in $\mathbb{Q}[x]$.

The polynomial $\Phi_p(x) = (x^p - 1)/(x - 1)$. Since $\Phi_p(x + 1) = [(x + 1)^p - 1]/x = x^{p-1} + ... + p$ where all the intermediate coefficients are divisible by p. By Eisenstein criterion, it is irreducible in $\mathbb{Q}[x]$, thus so is $\Phi_p(x)$.

7. (fields and domains)(5 pts each) Let R be the ring $R = \mathbb{Z}[\theta] = \{a + b\theta : a, b \in \mathbb{Z}\}$, where $\theta = \frac{1+\sqrt{-19}}{2}$.

(a) Define $N(a + b\sqrt{-19}) = a^2 + 19b^2$. Show that ± 1 are the only units in R. (Hint : Use the fact that N is multiplicative, i.e. $N(\alpha\beta) = N(\alpha)N(\beta)$.) If u is a unit, N(u) = 1. Thus $a = \pm 1$ and b = 0. (b) What is the fraction field F = Frac(R) of R? What is the prime field of F?

The fraction field is $\mathbb{Q}[\sqrt{-19}] = \{a + b\sqrt{-19} : a, b \in \mathbb{Q}.$ The prime field is Q.

8. (prime ideals and maximal ideals)(5 pts each)

(a) Given an example of a prime ideal I in $\mathbb{Z}[x]$.

(x).

(b) Is your example I in part (a) a maximal ideal? If not, find a maximal ideal containing I.

No. The maximal ideal containing x is the set of all polynomials such that the constant coefficient is even. It is maximal since the quotient is isomorphic to the field \mathbb{F}_2 .

(c) Show that if R is a PID, then every nonzero prime ideal I is a maximal ideal.

9. (field automorphism) (5 pts each) Let $E = \mathbb{Q}(\xi_5)$ be the field obtained from \mathbb{Q} by adjoining $\xi_5 = e^{2\pi i/5}$.

- (a) Find an automorphism of F fixing \mathbb{Q} . The map fixing \mathbb{Q} and sending ξ_5 to ξ_5^2 .
- (b) What is the dimension of F as a vector space over \mathbb{Q} ? Find a basis of F over \mathbb{Q} .

A polynomial having ξ_3 as a root is $x^5 - 1$. An irreducible polynomial having ξ_3 as a root is $x^4 + x^3 + x^2 + x + 1$. $\{1, \xi, \xi^2, \xi^3\}$ is a basis, and the dimension is 4.

(c) Find a principal ideal I such that the field $\mathbb{Q}[x]/I$ is isomorphic to E. The ideal generated by $x^4 + x^3 + x^2 + x + 1$.

Extra problem A. (1 pt) State Galois Theorem (in Galois Theory). Outline the proof of "insolvability of the general quintic polynomials" using Galois Theorem.

Extra problem B. (ϵ **pt**) State the most interesting theorem you learned in this course.