Math 4320: Introduction to Algebra

Prelim II (Chapter 2& 3)

(due April 17, 2009, 1:25pm)

You are not allowed to discuss your answers with others. Books, lecture notes and calculators are allowed.

Part I. Group theory

- 1. (2.88) Show that a finite group G generated by two elements of order 2 is isomorphic to a dihedral group D_{2n} for some n.
- **2.** Let G be a group of order n, and let F be any field. Prove that G is isomorphic to a subgroup of $GL_n(F)$.
- **3.** Rule out as many of the followings as possible as Class Equations for a group of order 10:

$$3+2+5$$
, $1+2+2+5$, $1+2+3+4$, $2+2+2+2+2$.

(Note that the first term in each expression corresponds to the center Z(G) in $|G| = |Z(G)| + \sum [G : C_G(x)]$.)

- 4. Determine the class equation for each of the following groups.
 - $(1) D_6, \quad (2) D_{10}, \quad (3) D_{2n}$
 - (4) the group of upper triangular matrices in $GL_2(\mathbb{F}_3)$

(You may choose not to write down part (1) and part (2) if you know part (3).)

- **5.** Show that A_n is a simple group for all $n \geq 5$ by showing Exercise **2.127**.
- 6. Determine all finite groups which contain at most three conjugacy classes.

Part II. Rings and fields

The following set of problems is to show that the ring

$$R = \mathbb{Z}[\theta] = \{a + b\theta : a, b \in \mathbb{Z}\},\$$

where $\theta = \frac{1+\sqrt{-19}}{2}$, is a principal ideal domain (PID) that is not a Euclidean domain (ED) (a result of Motzkin).

- **7.** Let $F = \{a + b\sqrt{-19} : a, b \in \mathbb{Q}\} \subset \mathbb{C}$.
- (a) Show that R is a ring, $R \subset F$ and F is a field. Conclude that R is an integral domain. Show that F is the field of fractions of R.
- (b) Define $N(a+b\sqrt{-19})=a^2+19b^2$. Prove that $N(\alpha)>0$ for $\alpha\in F-\{0\}$, and that N is multiplicative, i.e. $N(\alpha\beta)=N(\alpha)N(\beta)$. Also prove that $N(\alpha)$ is a positive integer for every $\alpha\in R$.
- (c) Prove that ± 1 are the only units in R.
- **8.** (Criterion of Dedekind and Hasse) Let S be an integral domain and let N denote any function from S to \mathbb{Z} which satisfies $N(\alpha) > 0$ for $\alpha \neq 0$. Suppose that for ever $\alpha, \beta \in S$ with $N(\alpha) \geq N(\beta)$, either β divides α in S, or there exist $s, t \in S$ with

$$0 < N(s\alpha - t\beta) < N(\beta). \tag{*}$$

Show that S is a PID. (Hint: Let I be a nonzero idea in S and let β be a nonzero element of I with $N(\beta)$ minimal. If $\alpha \in I$, then $s\alpha - t\beta$ is also in I for all $s,t \in S$. Use minimality of β .)

9. (R is a PID) Show that the ring R, with the function N defined in problem 7 satisfies the criterion of Dedekind and Hasse. (Hint: Since N is multiplicative, the condition (*) is equivalent to

$$0 < N(\frac{\alpha}{\beta}s - t) < 1.$$

Suppose $\beta \nmid \alpha$. Write $\frac{\alpha}{\beta} = \frac{a+b\sqrt{-19}}{c}$ in F with integers a,b,c having no common divisor and with c > 1. Divide into four cases, $c \ge 5$ and c = 2,3,4.)

10. (R is not a ED) Let D be an integral domain. Recall that a non-zero non-unit element $u \in D$ is called a universal side divisor if for every $x \in D$, there is some unit $z \in D$ such that u divides x-z in D. Prove that the ring R above has no universal side divisors, hence is not a ED. (Hint: Use part (c) of problem 7. Use first x=2, then $x=\theta$. What are the divisors of 2, 3 in R?)