Math 4320 : Introduction to Algebra

Prelim II (Chapter 2& 3)

Part I. Group theory

1. (2.88) Show that a finite group G generated by two elements of order 2 is
isomorphic to a dihedral group Ds,, for some n.

Proof. Let G be generated by ¢, b, where ¢ = b? = 1. Let a = cb be an element

of order, say n. (The element a is of finite order since G is finite.) G is clearly
generated by a, b, since ¢ = cbb = ab is generated by a,b. Note that a=! = be
since bca = beeb = 1. Therefore bab = bebb = be = a~!. Therefore we can find
a homomorphism ¢ from G to Ds, sending a to a and b to b. Since all the
relations of Dy, are also relations in G, ker ¢ = {1}, i.e. ¢ is injective.

To show that ¢ is surjective, it is enough to show that G has exactly 2n
elements. Using the relation ba = a~1'b (which tells us how to exchange the
order of elements a and b), we can express every element of G as a'b’ where
0<i<mnand 0 <j < 2 Thus G has at most 2n elements. The group G
contains two subgroups H; = (a) and Hy = (b), of order n and 2, respectively.
Note that Hy N Hy = 1 since a # b, and if a* = b for some 2 < i < n/2, then
a*~! = a’bc = bbe = ¢, which is a contradiction to the fact that a is of order n.

(If a* = b for some i > n/2 then a"~* = a~* = b, which is a similar contradic-
tion.) Therefore G contains the subgroup Hy Hs which has 2n elements. Thus G
has exactly 2n elements. O

2. Let G be a group of order n, and let F' be any field. Prove that G is isomor-
phic to a subgroup of GL,,(F).

Proof. By Cayley theorem, G is isomorphic to a subgroup of S,,. By mapping
o € S, to a permutation matrix (permuting rows according to o), S,, is isomor-
phic to a subgroup of GL,,(F).

3. Rule out as many of the followings as possible as Class Equations for a group
of order 10:

3+24+5,1+2+2+45,14+2+3+4,24+24+2+2+2.

Proof. The first and the third expressions is ruled out because 3 does not divide
10.

2424242+ 2is ruled out (5pts) : from the first term of the expression, the
center (which is a group) has order 2, so there is an element a of order 2 in the
center. There is an element b of order 5 in the group by Cauchy theorem. Since
they are of order coprime, they generate a group of order 10, thus the whole



group. Since b commutes with b and with a (since a is in the center), b is in the
center. Thus the center contains the group generated by b, thus has order at
least 5, a contradiction.

4. Determine the class equation for each of the following groups.
(3) Da, (5 pts)

Answer : For n odd, the conjugacy classes are {1}, {a’,a"*}(i < (n—1)/2) and
{a'b}. The class equation is 1 + 2+ --- + 2 + n (there are (n — 1)/2 two’s).

For n even, the conjugacy classes are {1},{a"/?}, {a’,a="}(i < n/2),{a®*1b},
and {a?'b}. The class equation is 242+ - -+2+n/2+n/2 (there are n/2 two’s).

(4) the group of upper triangular matrices in GLs(F3) (5 pts)

. +1 =+1 +1 0
Answer: The elements of GL(FF3) can be written as ( 0 41 ) and ( 0 41 )

Thus the group is of order 12. Note that C' = ( (1) :1 > and B = < (1) _01 >
both have order 2 and B, C generate the whole group. By problem 1, GL(F3)
is isomorphic to a dihedral group Ds,. Since |G| = 12, n = 6. Thus the class
equation is 2 + 2 + 2+ 3+ 3 by part (3).

5. Show that A,, is a simple group for all n > 5 by showing Exercise 2.127.

Proof. Any product of two transposition is a product of 3-cycles (proof of Lemma
2.155). Any two 3-cycles are conjugate in S,, (Prop. 2.33), but the point here
is to show that they are conjugate in A,,. This is achieved by showing that any
3-cycle (ijk) is conjugate to (123) by (14)(27)(3k) € S,,. Thus any (ijk), (i'5'k’)
are cojugate by (17)(27)(3k)(st).

6. Determine all finite groups which contain at most three conjugacy classes.
Proof : Divide according to the number ¢ of conjugacy classes. Let |G| = n.

¢ =1: trivial group, as {1} is always one conjugacy class.
c=2:n=14+(n-1),n—1nthusn =2, and G =15.
c=3:n=1+a+D,say a <b. Since a|n and b|n, thus a|(b+1) and b|(a + 1).
It follows that {(a,b)} = {(1,1),(1,2),(2,3)}.

1. If n =1+41+41, then G is abelian (since G = Z(@G)), thus I3.

2. If n =141+ 2, then G is a group of order 4 which is not abelian. There
is no such group (Prop. 2.134).

3. If n =142+ 3, then G is a group of order 6, thus isomorphic to Ig or
S3. Since it is not abelian, it is isomorphic to S3. We’ve already seen in



Problem 4 that 1+ 2 + 3 is the class equation of D3 which is isomorphic
to S3, thus S3 indeed has 3 conjugacy classes.

Answer :{1}, 15,15 and Ss.
Part II. Rings and fields

7. Let F={a+by/-19:0a,be Q} CC.

(a) Show that R is a ring, R C F and F' is a field. Conclude that R is an
integral domain. Show that F' is the field of fractions of R.

(b) Define N(a + by/—19) = a® + 19b%. Prove that N(a) > 0 for a € F — {0},
and that N is multiplicative, i.e. N(af) = N(a)N(3). Also prove that
N (o) is a positive integer for every a € R.

(¢) Prove that +1 are the only units in R.

Proof. (a) R C F, and R is contains 1,a—b, ab if a,b € R, thus it is a subring
of F' which is a field. Thus R is an integral domain. By definition, Frac(R) C F.
If a + by/—19 € F, then by using the common denominator, we can express it
as a quotient a/3 where o € R, and b € Z C R. Thus F' C Frac(R).
(b) N(a) > 0 since it is sum of squares of real numbers. N(af) = |af|?
|oa|?|B]> = N(a)N(B). N(a+b0) =a?+ ab+ 5b° € Z.
(c) If w is a unit, say uv = 1, then from N(u) > 1, N(v) > 1, and N(u)N(v) =
N(uv) = 1, it follows that N(u) = 1. Let u = a + b so that a® + ab + 5b* = 1.
Since a, b are integers, the only solutions are (a,b) = (£1,0), i.e. u = £1.

8, 9, 10 Proof. Just follow the hint.



