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MATH 4320: Solutions to Prelim 1

Instructor: Yuri Berest

Problem 1.

a. Solving the congruence 72z = 36 (mod 376) is equivalent to solving
the equation 72z + 376y = 36. Now, using Euclid’s algorithm, we compute
(72,376) = 8. Since 8 does not divide 36, the equation 72z + 376y = 36
(and hence the congruence) has no solutions in integers.

b. The problem is to find a common solution to the system of three
congruences:

x=1(mod9) , (1)
=3 (mod7) , (2)
r =4 (mod?5) . (3)

To do this we use the Chinese Remainder Theorem as follows. First, we solve
the first two congruences: it follows from (1) and (2) that x = 1+9k = 3+7m
for some m, k € Z. This gives 9k—Tm = 2; whence m = k =1 and z = 10.
Thus, by the Chinese Remainder Theorem, a common solution of (1) and (2)
is given by

z =10 (mod 63) . (4)

Now, we find a common solution to the system of congruences (3) and
(4). We have z = 4 + 5s = 10 + 63t, so that 5s — 63t = 6. Since
5-(—25)+63-2=1, we see that s = —150, t = —12 and x = —746. Thus,
a common solution to the system (1)-(3) is = —746 (mod 315), or equiva-
lently x € {—746+ 315k : k € Z} . The smallest positive integer in this last
set corresponds to k = 3 and is equal to 315 -3 — 746 = 945 — 746 = 199.

Problem 2.

a. This is a standard application of the Fundamental Theorem of Arith-
metic. Write a, b and ¢ as products of primes: a = [T, p;*, b =[], pf
and ¢ =[], pi*. Now, observe that (a,b) =1 implies that either e; or f;
is 0 for each ¢ = 1,2,3,...,n. Hence the sum e; + f; is either equal to ¢;
or f;, and min(e; + fi, s;) is either min(e;, s;) or min(f;, s;). It follows that



min(e; + fi, ;) = min(e;, s;) + min(f;, s;) for each i =1,2,3,...n, which is
equivalent to the equation (ab,c) = (a,c)(b,c).
b. Assume to the contrary that there is an integer c¢q € Z, such that
we have (a + bxr,co) # 1 for any = € Z. By the Fundamental Theorem
e1 . es

of Arithmetic, we can write ¢y = p7' p5* ... p&*, where p;’s are some primes
and e; > 0 for all = 1,2,...n. Now, for each i, define the sets

Zi={x€Z : plla+ab)} CZ.

Clearly, if (a + bx,co) # 1 for all x € Z, then for each x € Z there is
1=1,2,...n, such that p; divides a + bx. Hence, we have

z:Uz, (5)

and in particular, Z; # (0 for some i’s. Note, if Z; # (), then p; does
not divide b (for otherwise p; |b and p;|(a + bx) would imply that p;|a
and we would get p;|(a,b) with contradiction to the fact that (a,b) = 1).
Thus, we have (b,p;) = 1 whenever Z; # (), and hence in this case br; =
1 (modp;) for some r; € Z by Bezout’s identity. Now, if x € Z;, we have
bx = —a (modp;) and hence x = —ar; (modp;).

Summing up, (5) says that every integer x is congruent to one of the num-
bers —ar; (modulo p; ), where r; depends only on b and p; (and not on z).
This obviously contradicts the Chinese Remainder Theorem: indeed, by the
latter theorem, we can always find x € Z such that * = —ar; + 1 (mod p;)
for each ¢ = 1,2,...n, but such x can’t be in any of the sets Z;’s. This
contradiction proves the result.

Problem 3.

a. If f is injective then |f(X)| = |X|. Since |X| = |Y|, this implies
|lf(X)] =1Y]. But f(X) CY. Hence f(X) =Y, which means that f is
surjective. Conversely, if f is surjective then |X| > |f(X)| = |Y]|. This
implies that |X| = |f(X)|, because |X| = |Y|, and therefore f is injective.

b. The main problem is to compute the values of o. First of all, we
obviously have ¢(0) = 0, o(1) = 1 and ¢(10) = 7. The latter is true
because 10 = —1 (mod 11) and hence 4-102—3-10" =4-(-1)2-3-(-1)" =
4+ 3 = 7. For other values of n, we can also do arithmetic modulo 11 to
simplify calculations. For example, take n = 7. We have 72 =49 =5 =



=-T7T=4 =>

14=3=7"=21=-1 = 76

=3=2 = 7=
7 =28=6. Thus, 4- 7> —-3-7=4-5-3-6=20—18 = 2, so we get
o(7)=2.

As a result, we obtain the permutation

123 456 7 8910 11
o= (6)
127106411 39 5 8

(Note that we have shifted all the numbers by 1 because permutations act on
the indices numbering the position of elements in a finite set.) The complete

(7)

factorization of our permutation is given by

o=(1)(2)(3,7,11,8) (4,10,5,6)(9) .

A factorization into a product of transpositions is
o= (1,2)(1,2)(2,1) (2,1) (3.8) (3, 11) (3,7) (4,6) (4, 5) (4, 10) (9, 10) (9, 10) ,
-(=1)-1 =1. Thus

Finally, we see from (7) that sign(c) =1-1-(-1)
o is an even permutation. (Here we use the fact that an r-cycle is an even

permutation iff r is odd, see HW problem 2.26.)

Problem 4.
a. See (the proof of) Proposition 2.55(ii) on page 137.

b. Define a function ¢: {1,2, ..., r} — {0, 1} by the rule: £(I) =1 if
k=0, and ¢(l) =1 if k; # 0. Since the order of a cycle of length [ is equal

to [, by part (a), we have
lo| =lem{e(1), £(2), ..., e(r)} .



