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Problem 1.
a. Solving the congruence 72x ≡ 36 (mod 376) is equivalent to solving

the equation 72x + 376y = 36 . Now, using Euclid’s algorithm, we compute
(72, 376) = 8 . Since 8 does not divide 36 , the equation 72x + 376y = 36
(and hence the congruence) has no solutions in integers.

b. The problem is to find a common solution to the system of three
congruences:

x ≡ 1 (mod 9) , (1)

x ≡ 3 (mod 7) , (2)

x ≡ 4 (mod 5) . (3)

To do this we use the Chinese Remainder Theorem as follows. First, we solve
the first two congruences: it follows from (1) and (2) that x = 1+9k = 3+7m
for some m, k ∈ Z . This gives 9k−7m = 2 ; whence m = k = 1 and x = 10.
Thus, by the Chinese Remainder Theorem, a common solution of (1) and (2)
is given by

x ≡ 10 (mod 63) . (4)

Now, we find a common solution to the system of congruences (3) and
(4). We have x = 4 + 5s = 10 + 63t , so that 5s − 63t = 6 . Since
5 · (−25) + 63 · 2 = 1 , we see that s = −150, t = −12 and x = −746. Thus,
a common solution to the system (1)-(3) is x ≡ −746 (mod 315), or equiva-
lently x ∈ {−746+315k : k ∈ Z} . The smallest positive integer in this last
set corresponds to k = 3 and is equal to 315 · 3− 746 = 945− 746 = 199.

Problem 2.
a. This is a standard application of the Fundamental Theorem of Arith-

metic. Write a, b and c as products of primes: a =
∏n

i=1 pei
i , b =

∏n
i=1 pfi

i

and c =
∏n

i=1 psi
i . Now, observe that (a, b) = 1 implies that either ei or fi

is 0 for each i = 1, 2, 3, . . . , n. Hence the sum ei + fi is either equal to ei

or fi, and min(ei + fi, si) is either min(ei, si) or min(fi, si) . It follows that



min(ei + fi, si) = min(ei, si) + min(fi, si) for each i = 1, 2, 3, . . . n , which is
equivalent to the equation (ab, c) = (a, c)(b, c) .

b. Assume to the contrary that there is an integer c0 ∈ Z , such that
we have (a + bx, c0) 6= 1 for any x ∈ Z . By the Fundamental Theorem
of Arithmetic, we can write c0 = pe1

1 pe2
2 . . . pen

n , where pi’s are some primes
and ei > 0 for all i = 1, 2, . . . n. Now, for each i , define the sets

Zi := {x ∈ Z : pi | (a + xb) } ⊆ Z .

Clearly, if (a + bx, c0) 6= 1 for all x ∈ Z, then for each x ∈ Z there is
i = 1, 2, . . . n , such that pi divides a + bx. Hence, we have

Z =
n⋃

i=1

Zi , (5)

and in particular, Zi 6= ∅ for some i’s. Note, if Zi 6= ∅ , then pi does
not divide b (for otherwise pi | b and pi | (a + bx) would imply that pi |a
and we would get pi | (a, b) with contradiction to the fact that (a, b) = 1).
Thus, we have (b, pi) = 1 whenever Zi 6= ∅ , and hence in this case b ri ≡
1 (mod pi) for some ri ∈ Z by Bezout’s identity. Now, if x ∈ Zi , we have
bx ≡ −a (mod pi) and hence x ≡ −ari (mod pi) .

Summing up, (5) says that every integer x is congruent to one of the num-
bers −ari (modulo pi ), where ri depends only on b and pi (and not on x).
This obviously contradicts the Chinese Remainder Theorem: indeed, by the
latter theorem, we can always find x ∈ Z such that x ≡ −ari + 1 (mod pi)
for each i = 1, 2, . . . n , but such x can’t be in any of the sets Zi’s. This
contradiction proves the result.

Problem 3.
a. If f is injective then |f(X)| = |X| . Since |X| = |Y | , this implies

|f(X)| = |Y | . But f(X) ⊆ Y . Hence f(X) = Y , which means that f is
surjective. Conversely, if f is surjective then |X| ≥ |f(X)| = |Y | . This
implies that |X| = |f(X)| , because |X| = |Y | , and therefore f is injective.

b. The main problem is to compute the values of σ . First of all, we
obviously have σ(0) = 0 , σ(1) = 1 and σ(10) = 7 . The latter is true
because 10 ≡ −1 (mod 11) and hence 4 ·102−3 ·107 ≡ 4 · (−1)2−3 · (−1)7 =
4 + 3 = 7 . For other values of n , we can also do arithmetic modulo 11 to
simplify calculations. For example, take n = 7 . We have 72 = 49 ≡ 5 ⇒



73 ≡ 35 ≡ 2 ⇒ 74 ≡ 14 ≡ 3 ⇒ 75 ≡ 21 ≡ −1 ⇒ 76 ≡ −7 ≡ 4 ⇒
77 ≡ 28 ≡ 6 . Thus, 4 · 72 − 3 · 77 ≡ 4 · 5 − 3 · 6 = 20 − 18 = 2 , so we get
σ(7) = 2 .

As a result, we obtain the permutation

σ =

 1 2 3 4 5 6 7 8 9 10 11

1 2 7 10 6 4 11 3 9 5 8

 (6)

(Note that we have shifted all the numbers by 1 because permutations act on
the indices numbering the position of elements in a finite set.) The complete
factorization of our permutation is given by

σ = (1) (2) (3, 7, 11, 8) (4, 10, 5, 6)(9) . (7)

A factorization into a product of transpositions is

σ = (1, 2) (1, 2)(2, 1) (2, 1) (3, 8) (3, 11) (3, 7) (4, 6) (4, 5) (4, 10) (9, 10) (9, 10) ,

Finally, we see from (7) that sign(σ) = 1 · 1 · (−1) · (−1) · 1 = 1 . Thus
σ is an even permutation. (Here we use the fact that an r-cycle is an even
permutation iff r is odd, see HW problem 2.26.)

Problem 4.
a. See (the proof of) Proposition 2.55(ii) on page 137.
b. Define a function ε : {1, 2, . . . , r} → {0, 1} by the rule: ε(l) = 1 if

kl = 0 , and ε(l) = l if kl 6= 0 . Since the order of a cycle of length l is equal
to l, by part (a), we have

|σ| = lcm{ε(1), ε(2), . . . , ε(r)} .


