MATH 4320: Solutions to Prelim 2

Instructor: Yuri Berest

Problem 1.

(a) This is straightforward: for example, we have

$$\pi_1[(x_1, x_2) \cdot (y_1, y_2))] = \pi_1[(x_1y_1, x_2y_2)] = x_1y_1 = \pi_1[(x_1, x_2)] \pi_1[(y_1, y_2)] ,$$

and similarly for π_2 . Both π_1 and π_2 are surjective, because given any $x_1 \in H_1$ and any $x_2 \in H_2$, we have $\pi_1[(x_1, x_2)] = x_1$ and $\pi_2[(x_1, x_2)] = x_2$. Finally, $\operatorname{Ker}(\pi_1) = (e_1, H_2)$ and $\operatorname{Ker}(\pi_2) = (H_1, e_2)$.

(b) Given any group G with two homomorphisms $f_1: G \to H_1$ and $f_2: G \to H_2$, we define $\varphi: G \to H_1 \times H_2$ by $\varphi(x) := (f_1(x), f_2(x))$ for $x \in G$. Then, we see at once that $(\pi_1 \circ \varphi)(x) = \pi_1[\varphi(x)] = \pi_1[(f_1(x), f_2(x))] = f_1(x)$ and $(\pi_2 \circ \varphi)(x) = \pi_2[\varphi(x)] = \pi_2[(f_1(x), f_2(x))] = f_2(x)$ for all $x \in G$. In other words, $f_1 = \pi_1 \circ \varphi$ and $f_2 = \pi_2 \circ \varphi$ as required.

Now, suppose there is another homomorphism, say $\psi : G \to H_1 \times H_2$, satisfying $f_1 = \pi_1 \circ \psi$ and $f_2 = \pi_2 \circ \psi$. By definition of $H_1 \times H_2$, the elements $\psi(x)$ in the image of ψ can be written as $\psi(x) = (g_1(x), g_2(x))$, where $g_1(x) \in H_1$ and $g_2(x) \in H_2$. Since $f_1 = \pi_1 \circ \psi$ and $f_2 = \pi_2 \circ \psi$, we have $f_1(x) = (\pi_1 \circ \psi)(x) = \pi_1[\psi(x)] = \pi_1[(g_1(x), g_2(x))] = g_1(x)$ and $f_2(x) = (\pi_2 \circ \psi)(x) = \pi_2[\psi(x)] = \pi_2[(g_1(x), g_2(x))] = g_2(x)$ for all $x \in G$. Thus, $g_1(x) = f_1(x)$ and $g_2(x) = f_2(x)$, and therefore $\psi(x) = \varphi(x)$ for all $x \in G$. This proves that $\psi = \varphi$, which means the uniqueness of φ .

Problem 2.

(a) For each $h \in H$ and for all x_1 and x_2 in N, we have

$$f(h)(x_1 x_2) := h(x_1 x_2) h^{-1} = h x_1 (h^{-1} h) x_2 h^{-1} = (h x_1 h^{-1}) (h x_2 h^{-1}) .$$

So $f(h)(x_1 x_2) = f(h)(x_1) f(h)(x_2)$, which means that f(h) is a group homomorphism $N \to N$. Moreover, f(h) is bijective for each $h \in H$, because it has an inverse (namely $f(h^{-1})$). Thus, $f: H \to \operatorname{Aut}(N)$ is a well-defined map, assigning to elements of H the group automorphisms of N. It remains to show that this map is a homomorphism of groups.

Fix any h_1 and h_2 in H. Then $f(h_1 h_2) : N \to N$ is given by

$$f(h_1 h_2)(x) := (h_1 h_2) x (h_1 h_2)^{-1} = (h_1 h_2) x (h_2^{-1} h_1^{-1}) = h_1 (h_2 x h_2^{-1}) h_1^{-1} ,$$

where $x \in N$. Since $h_2 x h_2^{-1} = \operatorname{Ad}_{h_2}(x) = f(h_2)(x)$, we see that

$$f(h_1 h_2)(x) = h_1 [f(h_2)(x)] h_1^{-1} = f(h_1)[f(h_2)(x)] = [f(h_1) \circ f(h_2)](x).$$

This holds for all $x \in N$, so we conclude $f(h_1 h_2) = f(h_1) \circ f(h_2)$ as functions $N \to N$. Since the composition " \circ " is precisely the group operation on $\operatorname{Aut}(N)$, the last equality implies that f is a group homomorphism.

(b) The map $\pi: N \times H \to NH$, $(x, h) \mapsto xh$, is obviously surjective. To show that π is injective consider (x_1, h_1) and (x_2, h_2) in $N \times H$, such that $x_1h_1 = x_2h_2$. The last equation is equivalent to $x_1^{-1}x_2 = h_1h_2^{-1}$ in G. Now, since $x_1^{-1}x_2 \in N$, while $h_1h_2^{-1} \in H$, we must have $x_1^{-1}x_2 = e$ and $h_1h_2^{-1} = e$, because $N \cap H = \{e\}$. It follows that $x_1 = x_2$ in N and $h_1 = h_2$ in H, and therefore $(x_1, h_1) = (x_2, h_2)$ in $N \times H$.

The map π is an isomorphism of groups iff

$$\pi[(x_1, h_1)(x_2, h_2)] = \pi[(x_1 x_2, h_1 h_2)] = \pi[(x_1, h_1)] \pi[(x_2, h_2)]$$

for all (x_1, h_1) and (x_2, h_2) in $N \times H$. This last equation says that

$$x_1 x_2 h_1 h_2 = x_1 h_1 x_2 h_2 \tag{1}$$

for all $x_1, x_2 \in N$ and $h_1, h_2 \in H$. Letting $x_1 = h_2 = e$ in (1), we see that $x_2 h_1 = h_1 x_2$ for all $x_2 \in N$ and $h_1 \in H$. Conversely, if $x_2 h_1 = h_1 x_2$ for all $x_2 \in N$ and for all $h_1 \in H$, then (1) obviously holds. Thus, π being a group homomorphism is equivalent to the condition x h = h x for all $x \in N$ and for all $h \in H$. The latter can be written as $h x h^{-1} = x$, or equivalently f(h)(x) = x. The last equation simply says that the map f sends every element $h \in H$ to the identity map Id_N on N.

(c) It is routine to check that (G, *) satisfies the axioms of a group. For example, let's check the associativity of *:

$$[(x_1, h_1) * (x_2, h_2)] * (x_3, h_3) = (x_1 \cdot \alpha_{h_1}(x_2), h_1 \cdot h_2) * (x_3, h_3)$$

= $((x_1 \cdot \alpha_{h_1}(x_2)) \cdot \alpha_{h_1 \cdot h_2}(x_3), (h_1 \cdot h_2) \cdot h_3)$
= $(x_1 \cdot \alpha_{h_1}(x_2) \cdot (\alpha_{h_1} \circ \alpha_{h_2})(x_3), h_1 \cdot h_2 \cdot h_3)$

On the other hand,

$$\begin{aligned} (x_1, h_1) * [(x_2, h_2) * (x_3, h_3)] &= (x_1, h_1) * (x_2 \cdot \alpha_{h_2}(x_3), h_2 \cdot h_3) \\ &= (x_1 \cdot \alpha_{h_1}(x_2 \cdot \alpha_{h_2}(x_3)), h_1 \cdot (h_2 \cdot h_3)) \\ &= (x_1 \cdot \alpha_{h_1}(x_2) \cdot \alpha_{h_1}(\alpha_{h_2}(x_3)), h_1 \cdot h_2 \cdot h_3) \\ &= (x_1 \cdot \alpha_{h_1}(x_2) \cdot (\alpha_{h_1} \circ \alpha_{h_2})(x_3), h_1 \cdot h_2 \cdot h_3). \end{aligned}$$

Comparing the expressions in the right-hand sides, we conclude that

$$[(x_1, h_1) * (x_2, h_2)] * (x_3, h_3) = (x_1, h_1) * [(x_2, h_2) * (x_3, h_3)]$$

Note, in the above calculations we used the formulas $\alpha_{h_1 \cdot h_2}(x) = (\alpha_{h_1} \circ \alpha_{h_2})(x)$ and $\alpha_h(x \cdot y) = \alpha_h(x) \cdot \alpha_h(y)$, which follow from the fact that $\alpha : H \to \operatorname{Aut}(N)$ is a group homomorphism.

The maps $N \to G$, $x \mapsto (x, e_H)$, and $H \to G$, $h \mapsto (e_N, h)$, are obviously injective. Let's check that these are group homomorphisms. For example, under the first map the product $x_1 \cdot x_2 \in N$ goes to $(x_1 \cdot x_2, e_H)$, while by definition of the *-product, we have

$$(x_1 \cdot x_2, e_H) = (x_1 \cdot \alpha_{e_H}(x_2), e_H \cdot e_H) = (x_1, e_H) * (x_2, e_H)$$

Note, here we use the fact that $\alpha_{e_H} = \mathrm{Id}_N$, which is again a consequence of α being a group homomorphism. A similar argument works for $H \to G$.

Let's now identify N and H with their images (N, e_H) and (e_N, H) in G. Then it is obvious that $N \cap H = \{e_G\}$ in G, where $e_G := (e_N, e_H)$ is the identity element in G. On the other hand, we have G = N * H, because every element $(x, h) \in G$ can be written as

$$(x, h) = (x \cdot e_N, e_H \cdot h) = (x \cdot \alpha_{e_H}(e_N), e_H \cdot h) = (x, e_H) * (e_N, h)$$

where $(x, e_H) \in N$ and $(e_N, h) \in H$. Thus, we conclude that $G \cong N \rtimes H$.

Problem 3.

First, we observe that $N \cap H = \{e\}$ in G. Indeed, $N \cap H$ is a subgroup in both N and H, and hence, by Lagrange's Theorem, its order $|N \cap H|$ must divide both |N| and |H|. But |N| and |H| are relatively prime. Hence, $|N \cap H| = 1$, meaning that $N \cap H = \{e\}$.

Now, take any elements $x \in N$ and $h \in H$ and consider their commutator $[x, h] := x h x^{-1} h^{-1}$ in G. Since H is normal, we have $h \in H \Rightarrow x h x^{-1} \in H$ and $h^{-1} \in H$. Whence $[x, h] = (x h x^{-1})h^{-1} \in H$. On the other hand, N is also normal, so $x \in N \Rightarrow x^{-1} \in N \Rightarrow h x^{-1} h^{-1} \in N$, whence $[x, h] = x (h x^{-1} h^{-1}) \in N$. Thus, we see that $[x, h] \in N \cap H$ and therefore [x, h] = e.

Problem 4.

It is straightforward to check that the composition of two functions $f_1(z) = (a_1z + b_1)/(c_1z + d_1)$ and $f_2(z) = (a_2z + b_2)(c_2z + d_2)$ is given by

$$(f_1 \circ f_2)(z) := f_1(f_2(z)) = \frac{(a_1a_2 + b_1c_2)z + (a_1b_2 + b_1d_2)}{(c_1a_2 + d_1c_2)z + (c_1b_2 + d_1d_2)}$$

So, letting

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right) \ \mapsto \ f(z) = \frac{az+b}{cz+d} \ ,$$

and taking into account that the assumption $ad - bc \neq 0$ we impose on f(z)is equivalent to the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ being invertible, we get a surjective group homomorphism $\operatorname{GL}(2, \mathbb{C}) \to \mathcal{F}(\mathbb{C})$. Its kernel consists of matrices which correspond to the identity function f(z) = z. These are exactly the scalar matrices $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ with $\lambda \neq 0$. By the First Isomorphism Theorem, we conclude that $\mathcal{F}(\mathbb{C}) \cong \operatorname{GL}(2, \mathbb{C})/\mathbb{C}^*$, where \mathbb{C}^* is identified with a subgroup of (nonzero) scalar matrices in $\operatorname{GL}(2, \mathbb{C})$.

Problem 5.

This is an immediate consequence of Theorem 2.133 on p. 193.

Problem 6.

Since |H| = p is prime, H must be a *cyclic* group (see Corollary 2.87 on p. 157). Now, due to HW Problem 2.94 on p. 171 (see also your lecture notes), we know that the order of the automorphism group $\operatorname{Aut}(H)$ of H is $|\operatorname{Aut}(H)| = \phi(p) = p - 1$.

On the other hand, since H is normal in G, we can define a map $f : G \to \operatorname{Aut}(H)$ by $g \mapsto \operatorname{Ad}_g$, where $\operatorname{Ad}_g(h) = g h g^{-1}$ for $h \in H$. As shown in Problem 2(b) above, this map is a group homomorphism. Since G is a p-group, the image of f is also a p-group, so that $|\operatorname{Im}(f)| = p^k$ for some $k \ge 0$. By Lagrange's Theorem, $|\operatorname{Im}(f)|$ must divide $|\operatorname{Aut}(H)| = p - 1$, which is possible only if k = 0. Thus, $\operatorname{Im}(f)$ is a trivial subgroup of $\operatorname{Aut}(H)$ (consisting only of the identity map Id_H). In other words, we have $\operatorname{Ad}_g =$ Id_H for all $g \in G$. This means that $\operatorname{Ad}_g(h) = h$, and hence g h = h g for all $g \in G$ and all $h \in H$. Whence $H \subseteq Z(G)$.