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Problem 1.
(a) This is straightforward: for example, we have

π1[(x1, x2) · (y1, y2))] = π1[(x1y1, x2y2)] = x1y1 = π1[(x1, x2)]π1[(y1, y2)] ,

and similarly for π2. Both π1 and π2 are surjective, because given any x1 ∈ H1

and any x2 ∈ H2, we have π1[(x1, x2)] = x1 and π2[(x1, x2)] = x2. Finally,
Ker(π1) = (e1, H2) and Ker(π2) = (H1, e2) .

(b) Given any group G with two homomorphisms f1 : G→ H1 and f2 :
G→ H2 , we define ϕ : G→ H1 ×H2 by ϕ(x) := (f1(x), f2(x)) for x ∈ G.
Then, we see at once that (π1◦ϕ)(x) = π1[ϕ(x)] = π1[(f1(x), f2(x))] = f1(x)
and (π2 ◦ ϕ)(x) = π2[ϕ(x)] = π2[(f1(x), f2(x))] = f2(x) for all x ∈ G . In
other words, f1 = π1 ◦ ϕ and f2 = π2 ◦ ϕ as required.

Now, suppose there is another homomorphism, say ψ : G → H1 × H2 ,
satisfying f1 = π1 ◦ ψ and f2 = π2 ◦ ψ . By definition of H1 × H2 , the
elements ψ(x) in the image of ψ can be written as ψ(x) = (g1(x), g2(x)) ,
where g1(x) ∈ H1 and g2(x) ∈ H2 . Since f1 = π1 ◦ ψ and f2 = π2 ◦ ψ ,
we have f1(x) = (π1 ◦ ψ)(x) = π1[ψ(x)] = π1[(g1(x), g2(x))] = g1(x) and
f2(x) = (π2 ◦ ψ)(x) = π2[ψ(x)] = π2[(g1(x), g2(x))] = g2(x) for all x ∈ G.
Thus, g1(x) = f1(x) and g2(x) = f2(x) , and therefore ψ(x) = ϕ(x) for all
x ∈ G. This proves that ψ = ϕ , which means the uniqueness of ϕ.

Problem 2.
(a) For each h ∈ H and for all x1 and x2 in N , we have

f(h)(x1 x2) := h (x1 x2)h
−1 = hx1 (h−1h)x2 h

−1 = (hx1 h
−1) (hx2 h

−1) .

So f(h)(x1 x2) = f(h)(x1) f(h)(x2) , which means that f(h) is a group ho-
momorphism N → N . Moreover, f(h) is bijective for each h ∈ H, because
it has an inverse (namely f(h−1)). Thus, f : H → Aut(N) is a well-defined
map, assigning to elements of H the group automorphisms of N . It remains
to show that this map is a homomorphism of groups.



Fix any h1 and h2 in H. Then f(h1 h2) : N → N is given by

f(h1 h2)(x) := (h1 h2)x (h1 h2)
−1 = (h1 h2)x (h−1

2 h−1
1 ) = h1 (h2 xh

−1
2 )h−1

1 ,

where x ∈ N . Since h2 xh
−1
2 = Adh2(x) = f(h2)(x) , we see that

f(h1 h2)(x) = h1 [f(h2)(x)]h
−1
1 = f(h1)[f(h2)(x)] = [f(h1) ◦ f(h2)](x) .

This holds for all x ∈ N , so we conclude f(h1 h2) = f(h1)◦f(h2) as functions
N → N . Since the composition “ ◦ ” is precisely the group operation on
Aut(N), the last equality implies that f is a group homomorphism.

(b) The map π : N ×H → NH , (x, h) 7→ xh , is obviously surjective.
To show that π is injective consider (x1, h1) and (x2, h2) in N × H , such
that x1h1 = x2h2 . The last equation is equivalent to x−1

1 x2 = h1 h
−1
2 in

G . Now, since x−1
1 x2 ∈ N , while h1 h

−1
2 ∈ H , we must have x−1

1 x2 = e
and h1 h

−1
2 = e , because N ∩H = {e} . It follows that x1 = x2 in N and

h1 = h2 in H, and therefore (x1, h1) = (x2, h2) in N ×H .
The map π is an isomorphism of groups iff

π[(x1, h1) (x2, h2)] = π[(x1x2, h1h2)] = π[(x1, h1)]π[(x2, h2)] .

for all (x1, h1) and (x2, h2) in N ×H . This last equation says that

x1 x2 h1 h2 = x1 h1 x2 h2 (1)

for all x1, x2 ∈ N and h1, h2 ∈ H. Letting x1 = h2 = e in (1), we see that
x2 h1 = h1 x2 for all x2 ∈ N and h1 ∈ H. Conversely, if x2 h1 = h1 x2 for
all x2 ∈ N and for all h1 ∈ H, then (1) obviously holds. Thus, π being a
group homomorphism is equivalent to the condition xh = hx for all x ∈ N
and for all h ∈ H. The latter can be written as hxh−1 = x , or equivalently
f(h)(x) = x . The last equation simply says that the map f sends every
element h ∈ H to the identity map IdN on N .

(c) It is routine to check that (G, ∗) satisfies the axioms of a group. For
example, let’s check the associativity of ∗ :

[(x1, h1) ∗ (x2, h2)] ∗ (x3, h3) = (x1 · αh1(x2), h1 · h2 ) ∗ (x3, h3)

= ((x1 · αh1(x2)) · αh1·h2(x3), (h1 · h2) · h3 )

= (x1 · αh1(x2) · (αh1 ◦ αh2)(x3), h1 · h2 · h3 ) .



On the other hand,

(x1, h1) ∗ [(x2, h2) ∗ (x3, h3)] = (x1, h1) ∗ (x2 · αh2(x3), h2 · h3 )

= (x1 · αh1(x2 · αh2(x3)), h1 · (h2 · h3))

= (x1 · αh1(x2) · αh1(αh2(x3)), h1 · h2 · h3)

= (x1 · αh1(x2) · (αh1 ◦ αh2)(x3), h1 · h2 · h3) .

Comparing the expressions in the right-hand sides, we conclude that

[(x1, h1) ∗ (x2, h2)] ∗ (x3, h3) = (x1, h1) ∗ [(x2, h2) ∗ (x3, h3)] .

Note, in the above calculations we used the formulas αh1·h2(x) = (αh1 ◦
αh2)(x) and αh(x · y) = αh(x) · αh(y) , which follow from the fact that
α : H → Aut(N) is a group homomorphism.

The maps N → G , x 7→ (x, eH) , and H → G , h 7→ (eN , h) , are
obviously injective. Let’s check that these are group homomorphisms. For
example, under the first map the product x1 · x2 ∈ N goes to (x1 · x2, eH),
while by definition of the ∗-product, we have

(x1 · x2, eH) = (x1 · αeH
(x2), eH · eH) = (x1, eH) ∗ (x2, eH) .

Note, here we use the fact that αeH
= IdN , which is again a consequence of

α being a group homomorphism. A similar argument works for H → G .
Let’s now identify N and H with their images (N, eH) and (eN , H) in

G. Then it is obvious that N ∩ H = {eG} in G, where eG := (eN , eH) is
the identity element in G. On the other hand, we have G = N ∗H , because
every element (x, h) ∈ G can be written as

(x, h) = (x · eN , eH · h) = (x · αeH
(eN), eH · h) = (x, eH) ∗ (eN , h) ,

where (x, eH) ∈ N and (eN , h) ∈ H . Thus, we conclude that G ∼= N oH .

Problem 3.
First, we observe that N ∩H = {e} in G. Indeed, N ∩H is a subgroup

in both N and H, and hence, by Lagrange’s Theorem, its order |N∩H| must



divide both |N | and |H| . But |N | and |H| are relatively prime. Hence,
|N ∩H| = 1 , meaning that N ∩H = {e} .

Now, take any elements x ∈ N and h ∈ H and consider their commu-
tator [x, h] := xhx−1h−1 in G. Since H is normal, we have h ∈ H ⇒
xhx−1 ∈ H and h−1 ∈ H . Whence [x, h] = (xhx−1)h−1 ∈ H . On the
other hand, N is also normal, so x ∈ N ⇒ x−1 ∈ N ⇒ hx−1h−1 ∈ N ,
whence [x, h] = x (hx−1h−1) ∈ N . Thus, we see that [x, h] ∈ N ∩H and
therefore [x, h] = e .

Problem 4.
It is straightforward to check that the compostion of two functions f1(z) =

(a1z + b1)/(c1z + d1) and f2(z) = (a2z + b2)(c2z + d2) is given by

(f1 ◦ f2)(z) := f1(f2(z)) =
(a1a2 + b1c2)z + (a1b2 + b1d2)

(c1a2 + d1c2)z + (c1b2 + d1d2)
.

So, letting (
a b
c d

)
7→ f(z) =

az + b

cz + d
,

and taking into account that the assumption ad− bc 6= 0 we impose on f(z)

is equivalent to the matrix

(
a b
c d

)
being invertible, we get a surjective

group homomorphism GL(2,C) → F(C) . Its kernel consists of matrices
which correspond to the identity function f(z) = z . These are exactly the

scalar matrices

(
λ 0
0 λ

)
with λ 6= 0. By the First Isomorphism Theorem,

we conclude that F(C) ∼= GL(2,C)/C∗ , where C∗ is identified with a sub-
group of (nonzero) scalar matrices in GL(2,C) .

Problem 5.
This is an immediate consequence of Theorem 2.133 on p. 193.

Problem 6.
Since |H| = p is prime, H must be a cyclic group (see Corollary 2.87

on p. 157). Now, due to HW Problem 2.94 on p. 171 (see also your lecture
notes), we know that the order of the automorphism group Aut(H) of H is
|Aut(H)| = φ(p) = p− 1 .



On the other hand, since H is normal in G, we can define a map f :
G → Aut(H) by g 7→ Adg , where Adg(h) = g h g−1 for h ∈ H. As shown
in Problem 2(b) above, this map is a group homomorphism. Since G is a
p-group, the image of f is also a p-group, so that |Im(f)| = pk for some
k ≥ 0. By Lagrange’s Theorem, |Im(f)| must divide |Aut(H)| = p − 1,
which is possible only if k = 0. Thus, Im(f) is a trivial subgroup of Aut(H)
(consisting only of the identity map IdH). In other words, we have Adg =
IdH for all g ∈ G. This means that Adg(h) = h, and hence g h = h g for all
g ∈ G and all h ∈ H. Whence H ⊆ Z(G) .


