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1 Introduction

Motivating Question There are uncountably many finitely generated groups, but there are only count-
ably many finitely presented ones. Which countably many finitely generated groups then appear as sub-
groups of finitely presented ones?

Higman’s Embedding Theorem (’60s) A finitely generated group is recursively presentable if and
only if it is isomorphic to a subgroup of a finitely presented group.

Recursively Presentable: G = 〈a1, . . . , an︸ ︷︷ ︸
finite

| w1, w2, w3, w4, w5 . . .︸ ︷︷ ︸
recursively enumerable

〉

where a set is recursively enumerable if there exists an algorithm (a Turing machine) that can produce
a complete list of its elements.

Remark.

1. Higman’s embedding theorem provides a complete answer to the motivating question. Its proof how-
ever would take us too far afield from the theory of solvable groups.

2. There is, somewhat astonishingly, a related theorem for solvable groups, or more specifically, for
metabelian groups.

Definition. A group G is metabelian if it has derived length ≤ 2, that is it has an abelian series,

1CH CG

The following theorem was proved independently by Baumslag and Remeslennikov,

Baumslag-Remeslennikov’s Thorem (’73) Every finitely generated metabelian group embeds into a
finitely presented metabelian group.

Remark. In a paper titled ‘Finitely Presented Metabelian Groups’ by Baumslag he sketches a proof of
this theorem in three steps:

(Andrew) Reduce the proof with the Magnus embedding: embed G into W/N where W = A o H where A,H
abelian

(Margarita) Show that W is embedded into a finitely presented metabelian group in the case

W = Z o Z = Γ1

(Amin) Complete the proof...

I am going to use Margarita’s step as an example both of the theorem and of how the proof works. Then
I will use Andrew’s step to reduce the problem, demonstrate Margarita’s step in full generality (not just
when A ∼= H ∼= Z, as Baumslag did) and sketch out the remainder of the proof.

2 Baumslag/Margarita’s Example: Embedding Γ1 = Z o Z into Γ2

In Margarita’s first talk we saw the following presentation for the lamplighter group,

Γ1 = 〈a, s|[a, ask ] = 1, k = 1, 2, . . .〉

This is clearly an infinitely presented group. I claim it is metabelian:

Claim. Γ1 is metabelian
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Proof. Surjective homomorphism

φ : Γ1 → Z
a 7→ 1

s 7→ s

Then ker(φ) ∼= Z∞ is abelian. Thus we have the following abelian series for Γ1,

1C 〈kerφ〉C Γ1

�

So Γ1 is an infinitely presented metabelian group. Baumslag-Remeslennikov’s theorem says that we should
be able to embed this into a finitely presented metabelian group.

Construct G

1. Define an injective endomorphism of Γ1, σ : Γ1 → Γ1 by σ(a) = aas, σ(s) = s.

2. Form HNN extensions of Γ1:
G = 〈t,Γ1|gt = σ(g), g ∈ Γ1〉

Then G has the presentation,

G = 〈a, s, t|at = aas, st = s, [a, as
k
] = 1, k = 1, 2, . . .〉

Proposition. G is metabelian

Proof. Claim: G′ = 〈asi : i ∈ Z〉

(⊇) aas = at ⇒ as = a−1t−1at = [a, t] ∈ G′. Simple induction to complete (e.g. s−1ass = s−1(a−1t−1at)s =
(as)−1t−1(as)t since [s, t] = 1)

(⊆) Basic fact: G/H abelain ⇒ G′ ⊆ H, since G/G′ is the largest abelain quotient of G.

Consider G modulo 〈asi : i ∈ Z〉. Get

G/〈asi : i ∈ Z〉 = 〈s, t|[s, t] = 1〉 = Z2

Proving the claim.

Now G/G′ is abelian (by proceeding proof), and G′ is free abelian of infinite rank. Therefore

1CG′ CG

is an abelian series for G of derived length 2, that is, G is metabelian.

�

Proposition. G is finitely presented. In fact, G = Γ2 = 〈a, s, t|at = aas, [a, as] = 1 = [s, t]〉

Proof. The relations [a, as
i
] = 1 are redundant for i > 1. Indeed, suppose [a, as

j
] = 1 for j = 2, . . . , i

follows from [a, as] = 1. Then

1 = [a, as
i
]t = [at, (as

i
)t] = [at, (at)s

i
] = [aas, (aas)s

i
] = [aas, as

i
as

i+1
] = [a, as

i+1
]

Where the equalities follow (respectively) from:

1. By hypothesis that [a, as
i
] = 1

2. Conjugation is a homomorphism, so [x, y]t = [xt, yt]
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3. [s, t] = 1 commute

4. at = aas

5. Again conjugation is a homomorphism

6. By the inductive hypothesis. (Exersize)

[aas, as
i
as

i+1
] = aasas

i
as

i+1
(as)−1a−1(as

i
)−1(as

i+1
)−1

The underlined terms give [a, as
i+1

]. Use the inductive hypothesis to show that the other stuff com-
mutes and cancels.

Remark. So we have embedded a finitely generated, infinitely presented metabelian group Γ1 into a
finitely presented metabelian group Γ2 by constructing an HNN-extension and showing that it was finitely
presented. This is the underlying idea behind the proof Baumslag-Remeslennikov theorem. Perhaps knowing
now, as we do, that Γ1 is the horocyclic product of two trees, and Γ2 is the horocyclic product of three
trees, this embedding is not so surprising. It is then perhaps more surprising that this works in general.

3 Proof of Baumslag-Remeslennikov Theorem

Magnus Embedding Theorem F a free group on {xi| ∈ I}, RC F . Given an isomorphism F/R→ H
by xiR 7→ hi. Let A be the free abelian group on {ai|i ∈ I}. Then the assignment xiR

′ 7→ hiai determines
an embedding of F/R′ into the wreath product A oH.

Lemma 1. G a finitely generated metabelian group. Then G can be embedded into Gab n A where A is
a finitely generated ZGab-module.

Proof. G = 〈g1, . . . , gn〉, F = F 〈x1, . . . , xn〉, θ : F → G,K := ker θ

G metabelian ⇒ F ′′ ≤ K (for f ′′ ∈ F ′′, θ(f ′′) ∈ G′′ = {1})
R := θ−1(G′)⇒ R = F ′K
R′ ≤ K (indeed, f ∈ F ′, k ∈ K, θ[f, f ] = θ[f, k] = θ[k, k] = 1)

Let A0 be the free abelian group on {a1, . . . , an}. We can apply the Magnus embedding with H = Gab since
F/R ∼= G/G′ = Gab,

ψ : F/R′ → A0 oGab = A
(Gab)
0 oGab = W B := A

(Gab)
0 base group

xiR
′ 7→

(
xiR ∗

0 1

)
where ∗ ∈ B, the base group.

Claim 1 W is finitely generated metabelian group
B and Gab both abelian.

Define N = ψ(K/R′)

Claim 2 N ≤ B

ψ(wR′) 7→
(
wR ∗
0 1

)
. But R = F ′K contains K. So if wR′ ∈ N then w ∈ K ⊂ R, thus upper left entry

is trivial: (
1R ∗
0 1

)
∼=−→ ∗ ≤ B

Claim 3 N C Im(ψ)
Third isomorphism theorem: K/R′ C F/R′. Hence N = ψ(K/R′)C ψ(F/R′) = Im(ψ).
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Claim 4 N CW
Im(ψ) contains all xiR. W is generated by B (abelian) and by (xiR).

Finally, by the third isomorphism theorem again,

G ∼= (F/R′)/(K/R′)

so ψ induces an embedding of G into W/N = Gabn (B/N) where B/N is a finitely generated ZGab-module.

�

Remark The key point here is that we embedded G into a finitely generated metabelian group of the
form H nA where H,A were abelian. So if we can prove Baumslag-Remeslennikov theorem in that case we
are done.

The idea of the proof is to embed G into ascending HNN-extensions and show that eventually we are left
with a finitely presented metabelian group. We need a way to construct these HNN-extensions, namely, we
need an endomorphism:

Lemma 2. H a finitely generated abelian group, A a finitely generated ZH-module. For each h ∈ H
there exists a polynomial

p = 1 + c1x+ · · ·+ cr−1x
r−1 + xr ∈ Z[x]

such that a 7→ ap(h) is an injective ZH-endomorphism of A.

Proof. A is a ZH-module, so multiplication by p(h) is clearly an endomorphism. Need to show it is
injective. Call polynomials of the form above ‘special polynomials’. Define

A0 = {a ∈ A : ap(h) = 0 some special p}

Then A0 is a ZH-submodule (indeed multiplication of two special polynomials is again special).

Fact: G virtually polycyclic then R = ZG is a Noetherian R-module.
Since H is abelian, and since A is finitely generated, then A0 is finitely generated. Say it is generated by

b1, . . . , bs

Then there exist special polynomials pi such that bipi(h) = 0. Define

p = xp1 · · · ps + 1

This is clearly a special polynomial. Suppose ap(h) = 0 some a ∈ A. Then a ∈ A0. Therefore

a = b1f1 + · · ·+ bsfs

some fi ∈ ZH. Notice that

bip(h) = bi(hp1(h) · · · ps(h) + 1) = hp1(h) · · · bipi(h)︸ ︷︷ ︸
=0

· · · ps(h) + bi = bi

Therefore
0 = ap(h) = (b1f1 + · · ·+ bsfs)p(h) = b1f1 + · · ·+ bsfs = a

Thus a = 0 and we see that the map is injective.

�
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Proof of Baumslag-Remeslennikov Theorem
Assume G = H n A where A,H abelian, is a finitely generated metabelian group. If H were finite then G
would be polycyclic and therefore finitely presented. So assume H infinite,

H = 〈h1〉 × · · · × 〈hr〉 × · · · × 〈hn〉

where h1, . . . , hr have infinite order, and hqii = 0, i = r+1, . . . , n. By lemma 2 there exist special polynomials,

p1, . . . , pr

such that a 7→ api(hi) determines an injective ZH-endomorphism of A, say τi.

Constructing the HNN-extensions

1. G0 = G = H nA
Extend τ1 to an injective endomorphism of G0 acting as the identity on H (H abelian). Define,

G1 = 〈t, G0|gt10 = gτ10 , g0 ∈ G0〉

2. Extend τ2 to G1 by requiring it to act as identity on the abelian subgroup 〈H, t1〉. Define,

G2 = 〈t2, G1|gt21 = gτ21 , g1 ∈ G1〉

3. Repeat this r times resulting in Gr.

Claim 1 Gr = G = QnA, where Q = H × 〈t1〉 × · · · × 〈tr〉 and A = A〈t1,...,tr〉 is the normal closure of A
in 〈A, t1, . . . , tr〉.

Pf: Starting with G0 = HnA. Adding ti’s and forcing them to commute with H and with a defined action
of ti on A. So we expect a semi-direct product of this form. The slight question is, why A. To see this
consider conjugation by a negative power of ti. For example, if g = (h, a) ∈ G1

t1gt
−1
1 = τ−11 (g)

τi are not necessarily surjective. Hence we take the normal closure. This is easier to visualise with the
simpler example BS(1, 2) = 〈a, t|at = a2〉.

�

Claim 2 G embeds in G and G is metabelian.

Pf: G is generated by the elements

h1, . . . , hn t1, . . . , tr a1, . . . , am︸ ︷︷ ︸
generators for A

Similarly to before, 1CQCG is an abelian normal series for G because both Q and A are abelian.

�

Constructing G∗

What relations do we have?

1. [hi, hj ] = [ti, tj ] = [hi, tj ] = [ai, aj ] = 1

2. hqii = 1 for i = r + 1, . . . , n

3. a
tj
i = aipj(hj) for i = 1, . . . ,m, j = 1, . . . , r
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Fact: ZH Noetherian⇒ A (a ZH-module) is finitely presented as finitely generated is equivalent to finitely
presented for modules over Noetherian rings. Put these relations in,

4. ari11 ari22 · · · arimm = 1 for i = 1, . . . , k with rij ∈ ZH

Finally need relations to ensure the normal closure of 〈a1, . . . , am〉 in G is abelian,

5. [aνi , a
µ
j ] = 1 for ν, µ of the form hu11 · · ·hunn where 0 ≤ ui ≤ di for di the degree of pi, when 1 ≤ i ≤ r,

and 0 ≤ ui < qi for r + 1 ≤ i ≤ n

Define
G∗ = 〈h1, . . . , hn, t1, . . . , tr, a1, . . . , am|1, 2, 3, 4, 5〉

The Conclusion There is a surjective homomorphism

G∗ → G

Hall (’54) Finitely generated metabelian groups satisfy max-n, the maximum condition on normal sub-
groups. That is, every normal subgroup is finitely generated.

1. Prove G∗ metabelian

2. Then G∗ satisfies max-n

3. Hence G is finitely presented: Indeed, G = G∗/N some normal subgroup N C G∗. Now since G∗

satisfies max-n N is finitely generated. Therefore G is too.

Lemma. G∗ is metabelian.

Sketch of Proof:

1. If we show that A∗ = 〈a1, . . . , am〉G
∗

is abelian, then

G∗ = 〈h1, . . . , hn, t1, . . . , tr, a1, . . . , am|1, 2, 3, 4, 5〉
G∗/A∗ = 〈h1, . . . , hn, t1, . . . , tr|[hi, hj ] = [hi, tj ] = [ti, tj ] = 1〉 is abelain

hence 1CA∗ CG∗ is an abelian series of derived length 2 and therefore G∗ is metabelian.

2. To prove A∗ is abelian one uses the special polynomials pi. It involves bashing out even larger
commutators then in the example of embedding Γ1 into Γ2. The idea is similar enough.

�
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