## The Dehn function of Baumslag's metabelian group

Cornell University

## Tim Riley

February I7, 2011
work with Martin Kassabov

Geometry and Topology Seminar - Binghamton

Baumslag, 1972. A finitely presented metabelian group with an infinite rank free abelian normal subgroup:

$$
\begin{aligned}
\Gamma=\langle a, s, t|\left[a, a^{t}\right] & \left.=1,[s, t]=1, a^{s}=a a^{t}\right\rangle \\
\langle a, t\rangle=\mathbb{Z} \imath \mathbb{Z} & =\left(\bigoplus_{i \in \mathbb{Z}} \mathbb{Z}\right) \rtimes \mathbb{Z} \\
& =\left\langle a, t \mid\left[a, a^{t^{k}}\right]=1(k \in \mathbb{Z})\right\rangle
\end{aligned}
$$

## Notation

$$
\begin{aligned}
{[x, y] } & =x^{-1} y^{-1} x y \\
x^{n y} & =y^{-1} x^{n} y
\end{aligned}
$$

$[\Gamma, \Gamma]=\bigoplus_{i \in \mathbb{Z}} \mathbb{Z}$, so $\Gamma$ is metabelian but not polycyclic.

$$
\begin{gathered}
\Gamma_{m}=\left\langle a, s, t \mid a^{m}=1,\left[a, a^{t}\right]=1,[s, t]=1, a^{s}=a a^{t}\right\rangle \\
\langle a, t\rangle=C_{m} \imath \mathbb{Z}
\end{gathered}
$$

$C_{2} \backslash \mathbb{Z}$ is the lamplighter group.

$$
C_{2} \imath \mathbb{Z}=\left\langle a, t \mid a^{2}=1,\left[a, a^{t^{k}}\right]=1(k \in \mathbb{Z})\right\rangle
$$

$$
\begin{aligned}
& C_{2} \backslash \mathbb{Z}=\left\langle a, t \mid a^{2}=1,\left[a, a^{t^{k}}\right]=1(k \in \mathbb{Z})\right\rangle \\
& \gamma=t^{n}\left(a t^{-1}\right)^{2 n} a t^{n}
\end{aligned}
$$


$d(1, \gamma)=6 n+1$
Distance from $\gamma$ to a group element further than $6 n+1$ from 1 is $>n$.

- "unbounded dead-end depth" (Cleary-Taback; Erschler)

Cleary-R., 2007. With respect to a suitable generating set, $\Gamma_{2}$ has unbounded dead-end depth.

- the first finitely presentable example

$C_{m} \backslash \mathbb{Z}=\left\langle a, t \mid a^{m}=1,\left[a, a^{t^{k}}\right]=1(k \in \mathbb{Z})\right\rangle$

$$
\cong\left\{\left.\left(\begin{array}{cc}
t^{k} & P \\
0 & 1
\end{array}\right) \right\rvert\, k \in \mathbb{Z}, P \in C_{m}\left[t, t^{-1}\right]\right\}
$$

$$
C_{m}\left[t, t^{-1}\right]=\text { ring of }
$$ Laurent polynomials with coefficients in $C_{m}$

via $\quad a \mapsto\left(\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right), \quad t \mapsto\left(\begin{array}{cc}t & 0 \\ 0 & 1\end{array}\right)$

$$
\begin{aligned}
& \Gamma_{m}=\left\langle a, s, t \mid a^{m}=1,\left[a, a^{t}\right]=1,[s, t]=1, a^{s}=a a^{t}\right\rangle \\
& \cong\left\{\left.\left(\begin{array}{cc}
t^{k}(t+1)^{l} & P \\
0 & 1
\end{array}\right) \right\rvert\, k, l \in \mathbb{Z}, P \in \mathcal{R}_{m}\right\} \\
& \mathcal{R}_{m}:=C_{m}\left[t, t^{-1},(1+t)^{-1}\right]
\end{aligned}
$$

via $a \mapsto\left(\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right), \quad s \mapsto\left(\begin{array}{cc}1+t & 0 \\ 0 & 1\end{array}\right), \quad t \mapsto\left(\begin{array}{cc}t & 0 \\ 0 & 1\end{array}\right)$
$\left\{t^{i},(1+t)^{j} \mid i \in \mathbb{Z}, j<0\right\}$ is a basis for $\mathcal{R}_{m}$

Horocyclic products of trees


Bartholdi, Neuhauser,Woess


Picture of a portion of the horocyclic product of two 3-valent trees by Tullia Dymarz

For $p$ prime,
$C_{p} \imath \mathbb{Z}$ embeds as a cocompact lattice in $\mathrm{SOL}_{3}\left(\mathbb{F}_{p}((t))\right)$.
$\Gamma_{p}$ embeds as a cocompact lattice in $\operatorname{SOL}_{5}\left(\mathbb{F}_{p}((t))\right)$.

Grigorchuk, Linnell, Schick, Zuk. $\Gamma_{2}$ is a counterexample to a strong version of the Atiyah Conjecture on $L^{2}$-Betti numbers.

Bartholdi, Neuhauser,Woess

- Poisson boundary; random walks
- Finiteness properties

Cleary. $\mathbb{Z} \imath \mathbb{Z}$ is exponentially distorted in $\Gamma$.

## Dehn functions

$\langle A \mid R\rangle$ a finite presentation for a group $\Gamma$

If $w$ represents 1 in $\Gamma$, then $\operatorname{Area}(w)$ is the minimal $N$ such that

$$
w=\prod_{i=1}^{N} u_{i}^{-1} r_{i} u_{i} \text { in } F(A)
$$

for some $u_{i}=u_{i}(A)$ and $r_{i} \in R^{ \pm 1}$.


$$
\operatorname{Area}(n):=\max \{\operatorname{Area}(w) \mid w=1, \ell(w) \leq n\}
$$

a quasi-isometry invariant

- in particular, invariant under passing to a subgroup of finite index.

Kassabov-R. The Dehn function of $\Gamma$ satisfies $\operatorname{Area}(n) \simeq 2^{n}$.

Kassabov-R. The Dehn function of $\Gamma_{m}$ satisfies $\operatorname{Area}(n) \preceq n^{4}$.
de Cornulier, Tessera. The Dehn function of $\Gamma_{m}$ satisfies Area $(n) \preceq n^{2}$.

Gromov. Cocompact lattices in $\operatorname{SOL}_{5}(\mathbb{R})$ have Dehn function $\preceq n^{2}$.

## Central extensions, distortion and Dehn functions

$H \leq G$ a central subgroup

$$
\begin{array}{rll}
1 \rightarrow H \rightarrow G \rightarrow G / H \rightarrow 1 & |A|,|B|,|R|<\infty \\
\| & \| \text { ॥ } & \text { ॥ } \\
\langle B\rangle & \langle A\rangle \quad\langle A \mid R\rangle &
\end{array}
$$

Suppose $w=w(A)$ represents 1 in $G / H$.
Then

$$
w=\prod_{i=1}^{N} u_{i}{ }^{-1} r_{i} u_{i} \text { in } F(A)
$$

for some $u_{i}=u_{i}(A), r_{i} \in R^{ \pm 1}, n \in \mathbb{N}$.
So $w=\prod_{i=1}^{N} r_{i}$ in $G$.

Example. Crazy proof that the Dehn function of $\mathbb{Z}^{2}$ is $\succeq n^{2}$.

$$
\left.\begin{array}{c}
\mathcal{H}_{3}=\left\langle a, b, c \left\lvert\, \begin{array}{c}
{[a, c]=1, \quad[b, c]=1} \\
{[a, b]=c,}
\end{array}\right.\right\rangle \\
1 \rightarrow \mathbb{Z} \rightarrow \mathcal{H}_{3} \rightarrow \mathbb{Z}^{2} \rightarrow 1 \\
\|
\end{array}\right\}
$$


$\Gamma=\left\langle a, s, t \mid\left[a, a^{t}\right]=1,[s, t]=1, a^{s}=a a^{t}\right\rangle$
$\bar{\Gamma}=$
$\left\langle a, p, q, s, t \left\lvert\, \begin{array}{ccccc}{\left[a, a^{t}\right]=p,} & a a^{t}=a^{s} q, & s^{-1} p s=p^{-1}, & t^{-1} p t=p^{-1}, & {[a, p]=1} \\ {[s, t]=1,} & {[p, q]=1,} & s^{-1} q s=q^{-1}, & t^{-1} q t=q^{-1}, & {[a, q]=1}\end{array}\right.\right\rangle$
an extension of $\Gamma$ by $H=\langle p, q\rangle$. NOT CENTRAL!

But we can pass to index -2 subgroups and get a genuine central extension: the kernels of the parity map for the sum of the exponents of $s$ and $t$.

Note for later: $\left[a, a^{t^{n}}\right]$ is in the kernel.
$\left\langle a, p, q, s, t \left\lvert\, \begin{array}{ccccc}{\left[a, a^{t}\right]=p,} & a a^{t}=a^{s} q, & s^{-1} p s=p^{-1}, & t^{-1} p t=p^{-1}, & {[a, p]=1} \\ {[s, t]=1,} & {[p, q]=1,} & s^{-1} q s=q^{-1}, & t^{-1} q t=q^{-1}, & {[a, q]=1}\end{array}\right.\right\rangle$
Headache. Check $H=\langle p, q\rangle$ is $\mathbb{Z}^{2}$.
$R:=\mathbb{Z}\left[x, x^{-1},(x+1)^{-1}\right]$

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
& 1 & 1 \\
& & 1
\end{array}\right), \quad P=\left(\begin{array}{ccc}
1 & 0 & -2 x-1 \\
& 1 & 0 \\
& & 1
\end{array}\right), \quad Q=\left(\begin{array}{ccc}
1 & 0 & -x-1 \\
& 1 & 0 \\
& & 1
\end{array}\right), \\
S=\left(\begin{array}{ccc}
1 & 0 & 0 \\
& x+1 & 0 \\
& & -x^{2}-x
\end{array}\right), \quad T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
& x & 0 \\
& & -x^{2}-x
\end{array}\right)
\end{gathered}
$$

$$
\tau=(-1+\sqrt{5}) / 2 \quad \begin{array}{rr}
R & \rightarrow \mathbb{Z}[\tau] \\
& f(x) \mapsto f(\tau)
\end{array} \quad \bar{\Gamma} \rightarrow\left(\begin{array}{ccc}
1 & R & \mathbb{Z}[\tau] \\
& R^{*} & R \\
& & R^{*}
\end{array}\right)
$$

The image of $H$ is $\left(\begin{array}{ccc}1 & 0 & \mathbb{Z}[\tau] \\ & 1 & 0 \\ & & 1\end{array}\right) \cong \mathbb{Z}^{2}$.

Lemma. In $\bar{\Gamma}$

$$
\left[a, a^{t^{n}}\right]=p^{(-1)^{n+1} F_{n}}
$$

where $F_{n}$ is the $n$-th Fibonacci number.

$$
\left[A, A^{T^{n}}\right]=\left(\begin{array}{ccc}
1 & 0 & (-x-1)^{n}-x^{n} \\
& 1 & 0 \\
& & 1
\end{array}\right) \mapsto\left(\begin{array}{ccc}
1 & 0 & (-1)^{n} \sqrt{5} F_{n} \\
& 1 & 0 \\
& & 1
\end{array}\right)
$$

Conclusion. In $\Gamma$,

$$
\text { Area }\left[a, a^{t^{n}}\right] \succeq F_{n} \succeq 2^{n}
$$

So the Dehn function of $\Gamma$ is $\succeq 2^{n}$.

## Our upper bound on the Dehn function of $\Gamma$

$$
\begin{aligned}
& \Gamma=\left\langle a, s, t \mid\left[a, a^{t}\right]=1,[s, t]=1, a^{s}=a a^{t}\right\rangle \\
& a^{s}=a a^{t} \quad a^{s}=a^{t} a \\
& a=a \quad=\quad a \\
& a^{s}=\quad a a^{t} \quad=\quad a^{t} a \quad 11 \\
& a^{s^{2}}=\quad a a^{2 t} a^{t^{2}} \quad=\quad a^{t^{2}} a^{2 t} a \quad 121 \\
& a^{s^{3}}=a a^{3 t} a^{3 t^{2}} a^{t^{3}}=a^{t^{3}} a^{3 t^{2}} a^{3 t} a \quad 1331 \\
& a^{s^{4}}=a a^{4 t} a^{6 t^{2}} a^{4 t^{3}} a^{t^{4}}=a^{t^{4}} a^{4 t^{3}} a^{6 t^{2}} a^{4 t} a \quad 14641
\end{aligned}
$$

This leads to Area $\left[a, a^{t^{n}}\right] \preceq 2^{n}$.
From there, one can get that the Dehn function of $\Gamma$ is $\preceq 2^{n}$.

## Our upper bound on the Dehn function of $\Gamma_{2}$

$$
\begin{align*}
& \Gamma_{2}=\left\langle a, s, t \mid a^{2}=1,\left[a, a^{t}\right]=1,[s, t]=1, a^{s}=a a^{t}\right\rangle \\
& a^{s}=a a^{t} \quad a^{s}=a^{t} a \\
& \begin{array}{lllll}
a & = & a & & a \\
a^{s} & = & a a^{t} & & =
\end{array} a^{t} a \\
& a^{s^{2}}=a a^{t^{2}}=a^{t^{2}} a \quad 101 \\
& a^{s^{3}}=a a^{t} a^{t^{2}} a^{t^{3}}=a^{t^{3}} a^{t^{2}} a^{t} a  \tag{1111}\\
& a^{t^{4}}=a^{t^{4}} \tag{10001}
\end{align*}
$$

This leads to Area $\left[a, a^{t^{n}}\right] \preceq n^{2}$ when $n$ is a power of 2 .
This is the beginning of a way to get a quartic upper bound on the Dehn function of $\Gamma_{2}$ and similarly $\Gamma_{m}$.

