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Abstract. We analyse the geometry and complexity of the conjugacy problem in a family
of free-by-cyclic groups Hm = Fm o Z where the defining free-group automorphism is
positive and polynomially growing. We prove that the conjugator length function of Hm
is linear, and describe polynomial-time solutions to the conjugacy problem and conjugacy
search problem in Hm.
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1. introduction

Suppose G is a finitely generated group. The conjugacy problem asks for an algorithm
that, given any words u and v on the generators and their inverses, decides whether or not
these words represent conjugate elements in G. We write u∼ v to denote conjugacy. The
conjugacy search problem asks for an algorithm that, given a pair of words u and v such
that u ∼ v, will output a word w with uw = wv in G. The conjugator length function
CL : N→ N quantifies these problems: CL(n) is the least integer N such that for all words
u and v that represent conjugate elements in G and have length |u| + |v| ≤ n, there is a
word w of length at most N such that uw = wv in G. The conjugator length functions of G
with respect to different finite generating sets are '-equivalent, where ' is the equivalence
relation that identifies functions N→ N that dominate each other modulo affine distortions
of their domain and their range. Extensive background on conjugator length can be found
in [BRSb].

Fix an integer m ≥ 1 and let F = F(a1, . . . , am) be a rank-m free group. Define ϕ ∈ Aut(F)
by ϕ(ai) = aiai−1 for 2 ≤ i ≤ m and ϕ(a1) = a1. This paper concerns the free-by-cyclic
groups

Hm = F oϕ Z = 〈a1, . . . , am, s | s−1ais = ϕ(ai)〉.

The inclusions Hm−1 ↪→ Hm (excluding am) and retractions Hm → Hm−1 (killing a1) will
facilitate induction arguments.

The groups Hm have many useful properties and have appeared regularly in the literature.
They appear as ‘hydra groups’ in [BR20, DR13, DER18, Pue16]. Each is the fundamental
group of a compact non-positively curved 2-complex built from squares [Sam06]; in partic-
ular it is biautomatic and CAT(0). Each can be expressed as a 2-generator 1-relator group,
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or as a free-by-cyclic group Fr o Z with r arbitrarily large [But07]. H2 is famous as a 3-
manifold group that is not subgroup separable [BKS87]. But, most obviously, these groups
Hm serve as natural prototypes for the mapping tori of free-group automorphisms that have
maximal polynomial growth [BBMS97, Bri02, CM11, Ger94, Mac02, Mac13, Sam06],
and for the most part this is how we shall regard them.

Our main results here are:

Theorem 1. For all m ≥ 2, the conjugator length function of Hm satisfies CL(n) ' n.

Theorem 2. For all m ≥ 2, there exist algorithms solving the conjugacy problem and the
conjugacy search problem of Hm in time polynomial in the sum of the lengths of the input
words.

Our proofs of these theorems are intertwined and are constructive. We first describe in de-
tail an algorithmic procedure that solves the conjugacy problem and the conjugacy search
problem of Hm; this is summarized in Section 10. A naı̈ve analysis shows that this al-
gorithm will output a conjugator whose length is bounded by a quadratic function of the
lengths of the input words, but a more careful analysis shows that with minor modifications
this quadratic bound can be reduced to a linear one—see Remark 10.1.

We regard these results as a significant step towards bounding the complexity of the con-
jugacy problem and conjugacy search problem in arbitrary free-by-cyclic groups (where
the free group has finite rank, which will be a standing assumption throughout our discus-
sion). Free-by-cyclic groups provide a rich and challenging arena for the study of geo-
metric invariants of groups associated with various weak forms of non-positive curvature
(as discussed in [BG10], for example). For any free-by-cyclic group, there is an algorithm
solving its word problem in polynomial time [Sch08]. There are also algorithms solving
the conjugacy problem [BMMV06, BG10], but these do not provide reasonable bounds on
time complexity. In particular, it is unknown whether the conjugacy problem and conju-
gacy search problem can be solved in polynomial time. The results in this paper add weight
to the conviction that this is likely.

When a free-by-cyclic group is hyperbolic or its conjugacy problem and conjugacy search
problem can be solved in linear time. These are basic examples of a much more general
result: there are polynomial-time solutions for all groups which are hyperbolic relative to a
finite family of peripheral subgroups in which one can solve the corresponding problems in
polynomial time—see [Bum15, EH06, JOR10, O’C]. Free-by-cyclic groups are hyperbolic
relative to a finite family of free-by-cyclic subgroups, each of which has the property that
the defining automorphism is polynomial-growing—see [BFW19] for history and refer-
ences. Thus the search for a polynomial time solution to the conjugacy problem reduces to
the case where the defining automorphism is polynomial-growing, and Theorem 2 solves
this problem for a natural family of prototypes.

It seems reasonable to expect that the conjugator length function of an arbitrary free-by-
cyclic group is linear. This is true in the hyperbolic case [BH99, Lys89], but beyond
that little is known. However, by appealing to the relative hyperbolicity result mentioned
above, one can again reduce to the case where the defining automorphism is polynomially
growing, because Sale proved [AS16] that if G is non-degenerately hyperbolic relative to
parabolic subgroups Pω (ω ∈ Ω), then CLG(n) ' max{CLPω (n) : ω ∈ Ω} + n. As in the
case of complexity, Theorem 1 assures us that the desired bound CLG(n) ' n is valid in a
natural class of prototypes.
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The role that the groups Hm play as prototypes among free-by-cyclic groups is analogous
to the role that the model filiform groups

Γm = Zm o Z = 〈 a1, . . . , am, s | aia j = a jai ∀i, j, s−1ais = aiai−1∀i ≥ 2, s−1a1s = a1 〉,

play among (free-abelian)-by-cyclic groups. In [BR] we prove that, in contrast to Theo-
rem 1, the conjugator length function of Γm is polynomial of degree m.

The proofs is this paper are largely combinatorial and typically require a delicate analysis
of cases. We make heavy use of the notion of ‘decomposing reduced words into pieces.’
This tool is from [DR13], and can be viewed as a special case of the train-track machin-
ery of [BH92, BFH00, BFH05]. We have favoured using pieces here because they lend
themselves well to the detailed study of cancellation in the free group that we need, and
to the precise understanding of how words in the free group grow under iteration of the
automorphism. Nevertheless, we have structured our proofs with an eye to how they might
be adapted to cover more general polynomially growing automorphisms. In particular, we
have not relied on any of the alternative ways of viewing Hm = F o Z that were discussed
earlier. Instead, we consistently view Hm as a semidirect product and work with elements
in the form wtn, where w ∈ F and n ∈ Z. From this viewpoint, the complexity of the
conjugacy problem in Hm translates into a collection of twisted conjugacy problems in F.
A benefit of this direct approach is that the outlines of various arguments carry over to the
general case.

In a sequel to this paper [BRSa], we will present a different approach to the conjugacy
problem in Hm that does rely on one of these alternative perspectives, namely the fact that
Hm can be obtained from Z2 by a sequence of HNN extensions with cyclic amalgamated
groups. The more geometric arguments in [BRSa] are framed with an eye to further gen-
eralisations.

In the next section we will translate the conjugacy problem in Hm into a suite of twisted
conjugacy problems in F and lay out the framework for the rest of this article. It is the
analysis of these twisted problems that forms the bulk of what follows. Throughout, we
shall write H in place of Hm when there is no danger of ambiguity.

2. Reduction to twisted problems in F

Conjugacy in the free group F = F(a1, . . . , am) can be fully understood thanks to the
following well-known result (e.g. [LS07]).

Lemma 2.1. If words u and v on a±1
1 , . . . , a±1

m represent conjugate elements of F, then there
is a word w on a±1

1 , . . . , a±1
m which is a concatenation of a prefix of u−1 with a suffix of v

such that uw = wv in F. (If v is cyclically reduced—that is, vv is reduced—then w need
only be a prefix of u−1.)

Assume u does not represent the identity. Take k to be the maximal integer such that there
exists u0 with uk

0 = u in F. (So u0 generates the centralizer of u in F.) Then for any such w
and u0, {

W ∈ F
∣∣∣ uW = Wv in F

}
=

{
ul

0

∣∣∣ l ∈ Z} w.

The conjugacy problem for H. Given words u and v on a±1
1 , . . . , a±1

m , s±1 does there exist
a word w on a±1

1 , . . . , a±1
m , s±1 such that uw = wv in H?
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We will use a standard free-by-cyclic normal form: each element in H = F o 〈s〉 can be
expressed uniquely as ũsp for some reduced word ũ on a±1

1 , . . . , a±1
m and p ∈ Z.

Suppose we have conjugate elements u and v of H expressed in normal form as ũsp and
ṽsq, respectively. The conjugacy relation uw = wv in H, where w has normal form w̃sr,
implies p = q and amounts to the ‘ϕ-twisted conjugacy relation’

(1) ũϕ−p(w̃) = w̃ϕ−r(ṽ) in the free group F.

This problem is much harder than the conjugacy problem for free groups, although as we
will see, in some instances its solution ultimately reduces to Lemma 2.1.

In the instance where p = q = 0, the conjugacy problem in H therefore amounts to:

The 0-twisted-conjugacy problem. Given words ũ, ṽ on a±1
1 , . . . , a±1

m , do there exist r ∈ Z
and w̃ ∈ F such that ũw̃ = w̃ϕ−r(ṽ) in F?

This problem is addressed in Section 5. Proposition 5.1 gives both complexity and conju-
gator length bounds.

The conjugacy problem in H with p < 0 is equivalent to that with p > 0 since we can
exchange u and v with their inverses. So in place of p , 0, let us just consider p = q > 0.

From uw = wv in H, we get that u(u jw) = (u jw)v for all j ∈ Z, and so there exists a w such
that uw = wv in H and such that the normal form of w is w̃sr for some reduced word w̃ on
a±1

1 , . . . , a±1
m and some integer r satisfying 0 ≤ r < p.

The Cayley graph of F is a tree, so the geodesics joining 1, ũ, w̃, and ũϕ−p(w̃) form either
the ‘H-configuration’ (left) or the ‘I-configuration’ (right) shown in Figure 1. Accordingly,
we can find prefixes u0, v0 and suffixes u1, v1 of ũ, ϕ−r(ṽ), respectively, and two words x, y,
at least one the empty word, such that w̃ = u0xv−1

0 and ϕ−p(w̃) = u−1
1 xv1, where ũ = u0yu1

and ϕ−r(ṽ) = v0yv1 as freely reduced words.

ũ

w̃1

ũϕ−p(w̃) = w̃ϕ−r(ṽ)

u0

u1 v1

v0

u0 v0

u1 v1

w̃

ũ

1

ũϕ−p(w̃) = w̃ϕ−r(ṽ)

x
y

Figure 1. The two possibilities for the relative locations of 1, ũ, w̃, and
ũϕ−p(w̃) in the Cayley graph of F: the ‘H-configuration’ on the left and
the ‘I-configuration’ on the right.

In theH-configuration, the conjugacy problem amounts to:

TheH-twisted conjugacy problem. Given reduced words ũ, ṽ on a±1
1 , . . . , a±1

m and p > 0,
do there exist 0 ≤ r < p and words x, u0, v0, u1, v1 ∈ F such that ũ = u0u1 and ϕ−r(ṽ) =

v0v1, as words, and
ϕ−p(u0xv−1

0 ) = u−1
1 xv1 in F?

Most of the difficulties and technicalities lie in this problem. Section 6 addresses a special
case of the H-twisted conjugacy problem when ũ is the empty word. As explained there,
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this amounts to understanding the structure of common prefixes of a word w̃ with its image
ϕr(w̃), a crucial ingredient in the general case of the H-twisted conjugacy problem. In
Section 7, specifically Proposition 7.1, we describe how to use a solution (that is, the
integer r and the words x, u0, u1, v0, v1) to obtain a ‘nicer’ solution in which x is replaced by
a word X whose structure can be described in terms of short chunks that come as subwords
of u0, u1, v0, v1, their inverses and the iterates under powers of ϕ. This ‘chunky’ structure
enables us, in Section 8, to find a short conjugator and describe a polynomial-time solution
to this problem.

Unfortunately, the short conjugator that one obtains from the ‘chunky’ structure of Propo-
sition 7.1 actually only has a quadratic upper bound in terms of its length in H, relative to
those of u and v. Lemma 8.4 describes how to replace one of the chunks with a suitable
power of s to obtain a linearly bounded conjugator.

In the I-configuration, x is the empty word and w̃ = u0v−1
0 , and so the conjugacy problem

amounts to:

The I-twisted conjugacy problem. Given reduced words ũ, ṽ on a±1
1 , . . . , a±1

m and p > 0,
do there exist 0 ≤ r < p and prefixes u0 of ũ and v0 of ϕ−r(ṽ) such that

ũϕ−p(u0v−1
0 ) = u0v−1

0 ϕ−r(ṽ) in F?

This problem is easy to solve by an exhaustive search. Indeed, given ũ, ṽ and p as in the
I-twisted conjugacy problem, define I to be the set of all pairs (w̃, r), where 0 ≤ r < p,
and w̃ is a word of the form UV where U is a prefix of ũ and V−1 is a prefix of ϕ−r(ṽ). A
solution, if it exists, can be found by applying the solution to the word problem in F to
check the validity of each equation ũϕ−p(w̃) = w̃ϕ−r(ṽ) for each (w̃, r) ∈ I.

Like the conjugacy problem, the 0-twisted-conjugacy problem, the H-twisted conjugacy
problem, and the I-twisted conjugacy problem all have ‘search’ variants in which one is
given that a collection of integers and words solving the problem exists and is required to
exhibit one.

For g ∈ H, let |g|H denote the length of a shortest word on {a1, . . . , am, s} that represents g.
If g ∈ F, let |g|F be the length of a shortest word on {a1, . . . , am} that represents g. For a
word (not necessarily reduced) w, `(w) denotes the number of letters in w.

The following summarises results from Proposition 5.1 and Corollary 8.3, along with the
discussion above for the I-twisted case.

Proposition 2.2. With the notation established above, in Hm, the 0-twisted conjugacy prob-
lem, the H-twisted conjugacy problem, and the I-twisted conjugacy problem can each be
solved by deterministic algorithms with input (ũ, ṽ, p) whose running time is bounded by
a polynomial in p + `(ũ) + `(ṽ). And the same is true for the ‘search’ variants of these
problems.

Given that |p| ≤ `(u), `(ũ) ≤ C`(u)m, and `(ṽ) ≤ C`(v)m for a suitable constant C > 0,
Theorem 2 follows from Proposition 2.2 as per the above discussion.

Turning to conjugator length, since we want to bound conjugator length in H, bounds
pertaining to the three subordinate problems in F will need to be given in terms of the
word metric on H rather than on F. The issue of comparing these two metrics is delicate
and is the subject of Section 4.
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In summary, the article is structured as follows. Section 3 introduces piece decompositions,
a useful technical tool. Section 4 addresses the distortion of F in H. Section 5 deals with
the 0-twisted conjugacy problem. After technical results in Section 6 on common prefixes
of words w̃ ∈ F and their iterates under powers of ϕ, we handle the H-twisted-conjugacy
problem instances in Sections 7 and 8. The conjugator length argument in H is completed
in Section 9. Section 10 summarizes how to assemble our results into an algorithm for
Theorem 2. In Section 11 we focus on the structure of Hm as an iterated HNN extension
and outline an alternative solution to the conjugacy problem.

3. Preliminaries: piece decompositions, definitions, and conventions

3.1. Some notations, and conventions. For a word w on a set of letters, we let `(w) denote
its length. As mentioned in Section 2, |·|H and |·|F denote the word length of an element
in H or F respectively, with respect to generating sets {a1, · · · , am, s} and {a1, · · · , am}

respectively.

The rank, written rank(w), of a word w on a±1
1 , . . . , a±1

m is the maximal i such that a±1
i

appears in w. The empty word has rank 0. The rank of g ∈ F is the rank of the reduced
word w representing g.

For a word w, when we write ϕ(w) we mean the reduced word representing ϕ(w) in F.

3.2. Positivity of ϕ and ϕ−1. The inverse of ϕ is

(2) ϕ−1(ai) =


a2ka2(k−1) · · · a2a−1

1 a−1
3 · · · a

−1
2k−1 when i = 2k,

a2k+1a2k−1 · · · a1a−1
2 a−1

4 · · · a
−1
2k when i = 2k + 1.

A useful feature of ϕ is that it is a positive automorphism: whenever g ∈ F is represented
by a positive word, so is ϕ(g). This is not true of ϕ−1. However ϕ−1 is positive with respect
to the basis b1, . . . , bm, defined by bi = a(−1)i+1

i for all i, since

(3) ϕ−1(bi) =


b2k−1 · · · b3b1b2 · · · b2(k−1)b2k when i = 2k,

b2k+1b2k−1 · · · b1b2b4 · · · b2k when i = 2k + 1.

3.3. Pieces and their types. We will find it useful to split w into pieces that behave well
when one takes iterated images under ϕ. A rank-i piece in w is a maximal subword of one
of the following four types:

aiu, ua−1
i , aiua−1

i , u,

where u is a (possibly empty) word of rank at most i − 1. Pieces of the first three types
are said to be of strict rank-i. Each rank-i word can be expressed as a concatenation of a
minimal number of rank-i pieces in a unique manner. We call this the rank-i decomposition
of w and refer to the pieces involved as the pieces of w. We denote the number of these
pieces by ||w||π. For example, w = a3a2a−1

1 a3a3a1a−1
3 a2 = (a3a2a−1

1 )(a3)(a3a1a−1
3 )(a2) is a

rank-3 word with ||w||π = 4.

For g ∈ F we write ||g||π := ||w||π, where w is a reduced word representing g.
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We need the following facts about pieces:

Lemma 3.1. If a reduced word π is a piece of rank i, then both ϕ(π) and ϕ−1(π) are also
pieces of rank-i and have the same type as π.

Lemma 3.2. Let w be a reduced word of rank i. Let w = π1 · · · πp be its rank-i decom-
position. Then there is no cancellation between pieces on applying ϕ or ϕ−1—that is, for
k = 1, . . . , p − 1, the words ϕ±1(πk+1) and ϕ±1(πk) start and end (respectively) with letters
that are not mutual inverses. As a consequence, ϕr(π1) · · ·ϕr(πp) is freely reduced and is
the rank-i decomposition of ϕr(w) for all r ∈ Z.

We leave the proofs of Lemmas 3.1 and 3.2 as exercises. Very similar observations are
made in [DR13].

4. Growth rates and distortion

In order to analyze the ϕ-twisted conjugacy problem in F we will examine in Section 4.1
how free group elements grow in length on repeated application of ϕ. Then in Section 4.2
we establish some useful inequalities relating the normal form of g ∈ H to |g|H .

4.1. Growth rates. Our next few results lead into Proposition 4.4, which gives a precise
estimate of how words grow on repeated applications of ϕ±1. (Cf. [Lev09] in which bounds
are given, but with the constants depending on the group element.)

Lemma 4.1. Fix(ϕ) = 〈a1, a2a1a−1
2 〉.

Proof. That Fix(ϕ) ⊇ 〈a1, a2a1a−1
2 〉 is straight-forward. For the reverse inclusion, first

observe that by Lemmas 3.1 and 3.2, w is fixed by ϕ if and only if its pieces are all fixed
by ϕ. So we can focus on the case where w is a single non-empty piece π = aδi ua−δ

′

i such
that π = ϕ(π) in F, and δ, δ′ ∈ {0, 1} are not both zero, and u a reduced word of rank at
most i − 1 with i ≥ 2. Applying ϕ to π adds δ − δ′ to the exponent sum of the ai−1 present.
But since π = ϕ(π), the exponent sum of the ai−1 in π and ϕ(π) must agree, and therefore
δ = δ′ = 1 and π = aiua−1

i (and, in particular, u is non-empty).

It remains to show that i = 2. Assume, for contradiction, that i > 2. Well, π = ϕ(π) tells
us that aiua−1

i = ϕ(aiua−1
i ) = aiai−1ϕ(u)a−1

i−1a−1
i , and so ϕ(u) = a−1

i−1uai−1. Reapplying ϕ
multiple times gives

ϕr(u) = ϕr−1(a−1
i−1) · · · a−1

i−1uai−1 · · ·ϕ
r−1(ai−1), for r ≥ 1.

By Lemma 3.2, the number of pieces p in the rank-(i − 1) decompositions of u and ϕr(u)
are the same for all r ≥ 1. Hence there is cancellation in our expression for ϕr(u). This
cancellation can occur only at either end of u. For r large enough, say r > p + 1, we will
need u to completely cancel out under free reduction. In particular, there are some α and β
such that

1 = ϕα(a−1
i−1) . . . a−1

i−1uai−1 . . . ϕ
β(ai−1)

and so
u = ai−1 · · ·ϕ

α(ai−1)ϕβ(a−1
i−1) · · · a−1

i−1.

If α = β, then we get complete cancellation and u = 1, a contradiction. So we assume
α , β. We can count the number of pieces p of u by observing the locations of letters a±1

i−1
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(we use here that i > 2). We get p = ||u||π = α + β + 1 (the terms ϕα(ai−1)ϕβ(a−1
i−1) merge

into one piece). We also, from above, have

ϕr(u) = ϕr−1(a−1
i−1) · · ·ϕα+1(a−1

i−1)ϕβ+1(ai−1) · · ·ϕr−1(ai−1),

which has to cancel down to p pieces. Since i > 2, and α , β, this cancels down to
2r − α − β − 3 = 2r − p − 2 pieces. Since r > p + 1, we get a contradiction. �

The following argument is well known (cf. Lemmas 3.5 and 5.6 in [BR09] and Example 3.3
[Bri02]).

Lemma 4.2. Let i ≥ 2. There exist Ci,Di > 0 such that for all r ∈ Z r {0},

Ci |r|i−1 ≤ |ϕr(ai)|F ≤ Di |r|i−1 .

Proof. First we address the case r > 0. Since ϕr(ai) is a positive word in this case, its length
is the same as its length in the abelianisation of F. With respect to the basis {a1, . . . , am},
the action of ϕ on the abelianisation is via the matrix Φ with ones on the diagonal and im-
mediately above, and zeros elsewhere. Direct calculation yields upper triangular matrices:

Φ =



1 1
1 1

. . .
. . .

. . .
. . .

1 1
1


, Φr =



1
(

r
1

) (
r
2

)
· · ·

(
r

m−1

)
1

(
r
1

)
· · ·

(
r

m−2

)
. . .

...

1
(

r
1

)
1


,

where
(

r
j

)
is understood to be 0 for j > r.

So

|ϕr(ai)|F =

i−1∑
j=0

(
r
j

)
,

which, as a function of r ∈ N, is Lipschitz equivalent to
(

r
i−1

)
∼ ri−1.

To deal with negative powers, we use the fact that ϕ−1 is a positive automorphism with
respect to the basis {b1, . . . , bm} described in Section 3.2. With respect to this basis, the
action of ϕ−1 on the abelianisation of F is given by

Ψ =



1 1 1 · · · · · · 1
1 1 · · · · · · 1

. . .
...

. . .
...

1 1
1


, Ψr =



1
(

r
1

) (
r+1

2

)
· · ·

(
r+m−2

m−1

)
1

(
r
1

)
· · ·

(
r+m−3

m−2

)
. . .

...

1
(

r
1

)
1


.

So

|ϕr(ai)|F =

i−1∑
j=0

(
r + j − 1

j

)
which, as a function of r ∈ N, is Lipschitz equivalent to

(
r+i−2

i−1

)
∼ ri−1. �
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A straight-forward induction (cf. [DR13, Lemma 7.1]) gives:

Lemma 4.3. For i = 2, . . . ,m,

ϕr(ai) =

ai ai−1ϕ(ai−1) · · ·ϕr−1(ai−1) when r > 0
aiϕ
−1(ai−1)−1ϕ−2(ai−1)−1 · · ·ϕr(ai−1)−1 when r < 0.

Furthermore, these expressions are reduced words.

One sees that the second expression is reduced by appealing again to the fact ϕ−1 is positive
with respect to the basis {a1, a−1

2 , a3, . . . , a±1
m }.

Proposition 4.4. Suppose i ∈ {2, . . . ,m} and π is a piece of strict rank-i that is not fixed by
ϕ. Then |ϕr(π)|F ∼ |r|i−1. More precisely, for the constants Ci,Di > 0 of Lemma 4.2, for all
r , 0,

|ϕr(π)|F ≤ Di |r|i−1 |π|F

and when |r|i−1 ≥ 1
Ci
|π|F ,

|ϕr(π)|F ≥
(
C

1
i−1
i |r| − |π|F

1
i−1

)i−1
.

Proof. The upper bound follows via a simple induction argument on the rank i, taking Di

from Lemma 4.2. We therefore focus on the lower bound.

We have π = aδi ua−δ
′

i a rank-i piece with δ, δ′ ∈ {0, 1} not both zero and u a reduced word
of rank at most i − 1. We may assume δ = 1, as otherwise we could replace π by π−1.

Case 1. δ′ = 0 and π = aiu.

Let u = ρ1 · · · ρp be the piece decomposition of u. Our argument will be that any cancel-
lation between the images of ai and u under iterated applications of ϕ or ϕ−1 will occur
within the first p applications. After this, there is no further cancellation, so the length of
π will eventually have growth rate at least that of ai under iterated applications of ϕ or ϕ−1,
which will lead to the required lower bound.

Case 1a. r > 0.

If the first letter of u is ai−1, then there is no cancellation between ϕr(ai) and ϕr(u) for any
r > 0, since ϕr(u) has first letter ai−1 and ϕr(ai) is a positive word.

So suppose, on the other hand, that the first letter of u is not ai−1, and that there is cancel-
lation between ϕ(ai) and ϕ(u). Then we may write ρ1 = va−εi , for ε ∈ {0, 1} and v a word of
rank at most i − 2 (if i = 2 then v is the empty word). Then ϕ(aiva−εi−1) = aiai−1ϕ(v)a−εi−2a−εi−1
(if i = 2, we read a0 as the empty word). But ϕ(v)a−εi−2 has rank strictly less than i − 1,
so in order for there to be cancellation between ϕ(ai) and ϕ(u) we must have ε = 1 and
ai−1ϕ(v)a−1

i−2a−1
i−1 = 1. That is,

ϕ(π) = aiϕ(ρ2) · · ·ϕ(ρp).

We repeat the argument, and conclude that after k ≤ p steps we will reach a situation where
we have

ϕk(π) = aiϕ
k(ρk+1) · · ·ϕk(ρp)
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and there will be no cancellation between images of ai and ϕk(ρk+1) on further applications
of ϕ. (If k = p we understand that ρk+1 · · · ρp is the empty word.) Hence, for r ≥ k, we may
write

ϕr(π) = ϕr−k(ai)ϕr(ρk+1 · · · ρp)

where there is no cancellation in the right-hand side. In particular, this gives

|ϕr(π)|F ≥
∣∣∣ϕr−k(ai)

∣∣∣
F ≥ Ci(r − k)i−1

by Lemma 4.2.

We complete this case by bounding k. Indeed, since ϕk(aiρ1 · · · ρk) = ai, we get
∣∣∣ϕ−k(ai)

∣∣∣
F ≤

|π|F . Then an application of Lemma 4.2 gives Ciki−1 ≤ |π|F , which implies the required
lower bound of |ϕr(π)|F .

Case 1b. Assume r < 0.

The argument is broadly similar to Case 1a. The key observation is that there will be no
cancellation between images of ai and u under applications of ϕ−1 whenever the first piece
of u is of the form va−δi−1, for δ ∈ {0, 1}. By induction, the last letter of ϕr(ai) as a reduced
word on {a1, . . . , am} is a−1

i−1 for all r < 0. (The base case, r = −1, is from (2).) So the only
way we can ever have cancellation between ϕr(ai) and ϕr(u) is if ϕr(ρ1) begins with ai−1.
But since the type of a piece is preserved under applications of ϕ, if ρ1 = va−δi−1, then this
will never occur.

So we may assume ρ1 = ai−1va−δi−1, for δ ∈ {0, 1} and v is a word of rank at most i− 2. Then

ϕ−1(aiρ1) = ϕ−1(aiai−1)ϕ−1(va−δi−1) = aiϕ
−1(va−δi−1).

In particular, if ϕ−1(va−δi−1) , 1 then further applications of ϕ−1 will lead to no cancellation
between the images of ai and of ϕ−1(va−δi−1), and we can stop. Otherwise ϕ−1(va−δi−1) = 1,
which implies that va−δi−1 = 1, and ρ1 = ai−1. This gives

ϕ−1(π) = aiϕ
−1(ρ2) · · ·ϕ−1(ρp).

Repeating this, we find for some k ≤ p that

ϕ−k(π) = aiϕ
−k(ρk+1) · · ·ϕ−k(ρp)

and there will be no cancellation between images of ai and ϕ−k(ρk+1) after further applica-
tions of ϕ−1. (If k = p we understand that ρk+1 · · · ρp is the empty word.) As above we then
yield, for r < −k

|ϕr(π)|F ≥
∣∣∣ϕr+k(ai)

∣∣∣
F ≥ Ci(|r| − k)i−1

by Lemma 4.2, and Ciki−1 ≤ |π|F , completing this case.

Case 2. δ′ = 1 and π = aiua−1
i .

We can apply the arguments from Case 1 to both ends of u and it is not hard to see that the
same conclusion is reached. The key point is that if u is completely cancelled out under
iterated applications of ϕ±1, then the cancellation cannot reach the middle of u simultane-
ously, meaning that either after several applications of ϕ we obtain aiϕ

k(a−1
i ), or ϕk(ai)a−1

i .
The length of these grow as required on further applications of ϕ±1. �
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4.2. Tools for handling the distortion. Recall that for h ∈ H, |h|H denotes the length of
the shortest word on a±1

1 , . . . , a±1
m , s±1 representing h in H.

Proposition 4.5. Suppose h ∈ H has normal form ũsp. If u′ is a subword of ũ, then
|u′|H ≤ (2m + 1) |h|H .

Remark 4.6. This proposition does not rely on any special properties of ϕ: with a change
of constant, it holds for any free-by-cyclic group M = F oψ Z. We shall sketch a geometric
proof of this more general fact that will allow the reader familiar with van Kampen dia-
grams to skip the algebraic proof that follows. This geometric argument assumes that the
reader is familiar with the use of s-corridors (as used in [BG10], for example).

Let w be a shortest word in the generators {a1, . . . , an, s} that equals h in M, and consider
a least-area van Kampen diagram ∆ with boundary label w−1ũsp. This diagram is a union
of its s-corridors and each point along the side of a corridor is a distance at most C from a
point along the other side, where C is a constant that depends on ψ.

Let x and y be the endpoints of the arc in ∂∆ labelled u′. It suffices to argue that x can
be connected to y by a path in the 1-skeleton of ∆ that has length at most 2pC + |w|.
To construct such a path, observe that every vertex z on the arc of ∂∆ labelled ũ can be
connected to a vertex on the arc A of ∂∆ labelled w by crossing at most p of the s-corridors,
i.e. the corridors emanating from the arc of ∂∆ labelled sp. Thus there is a path αz of length
at most pC from z that ends on A. The desired path from x to y is obtained by following αx

then proceeding along A to the endpoint of αy before returning along αy.

To aid the intuition of readers who wish to persist with the algebraic proof, we present an
example.

Example 4.7. Suppose h is represented by the word u = sa6a−1
5 s−2a5s2a3. Advance the s

at the lefthand end through u until it cancels with the first s−1, applying ϕ−1 to the letters
a±1

i it passes, to get

u1 := (a6a4a2a−1
1 a−1

3 a−1
5 )(a4a2a−1

1 a−1
3 a−1

5 )s−1a5s2a3

satisfying u = u1 in H. Then advance the s−1 likewise until it cancels with the s to get

u2 := (a6a4a2a−1
1 a−1

3 a−1
5 )(a4a2a−1

1 a−1
3 a−1

5 )(a5a4)sa3

satisfying u1 = u2 in H. Then advance the remaining s to the right end to get

u3 := (a6a4a2a−1
1 a−1

3 a−1
5 )(a4a2a−1

1 a−1
3 a−1

5 )(a5a4)(a3a1a−1
2 )

satisfying u2 = u3s in H. Then u = u3s in H, and ũ is the reduced version of u3. Suppose
u′ = a−1

3 a4a3, a subword close to the right-hand end of ũ. Let u′3 = a−1
3 a−1

5 a5a4a3, the
subword of u3 that freely reduces to u′. If we take u′2 = a−1

3 a−1
5 a5a4, then u′3 = u′2sa3; if we

take u′1 = a−1
3 a−1

5 s−1a5, then u′2 = u′1s; and if we take u′0 = s−1a5, then u′1 = a−1
3 a−1

5 u′0. In
particular, u′0 is a subword of u, and it is obtained from u′3 by pre- and post-multiplying by
a number (bounded by the exponent sum of s in u, and therefore by |h|H if u is of minimal
length) of short words (the images of letters a±1

i under ϕ±1, with possibly an s added at the
beginning or end).

So there is a word that equals u′ in H and whose length can be bounded from above by the
length of a subword of u plus the sum of the lengths of these short words. The strategy of
the following proof is to bound |u′|H accordingly.
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Proof of Proposition 4.5. Suppose u is a word on a±1
1 , . . . , a±1

m , s±1 representing h. On
account of the free-by-cyclic structure of H and the fact that u = ũsp in H, there is a
sequence of words u0, . . . , ur and integers p0, . . . , pr with the following properties (for all
i):

• r ≤ `(u),
• u0 = u (as words) and p0 = 0,
• ur freely reduces to ũ and pr = p,
• u = uispi in H (and so the exponent sum of the s±1 in uispi is equal to that of u),
• there are letters x1, . . . , xn ∈

{
a1, a−1

1 , . . . , am, a−1
m

}
(which depend on i) such that,

as words, either
(1) ui = αis±1x1 · · · xns∓1βi and ui+1 = αiϕ

∓1(x1) · · ·ϕ∓1(xn)βi and pi+1 = pi, or
(2) ui = αis±1x1 · · · xn and ui+1 = αiϕ

∓1(x1) · · ·ϕ∓1(xn) and pi+1 = pi ± 1,
for some words αi and βi. (In the first case ui = ui+1 in H. In the second, uis∓1 =

ui+1 in H.) The words ui need not be reduced.

Suppose u′i+1 is a subword of ui+1. We claim that there is a subword u′i of ui and there
are words µi+1 and λi+1 with `(µi+1), `(λi+1) ≤ m such that µi+1u′iλi+1 = u′i+1 in H. The
details of the proof of this depend on which of cases (1) and (2) applies and how u′i is
positioned in relation to the various subwords. For instance suppose we are in the first
case, so that ui = αis±1x1 · · · xns∓1βi and ui+1 = αiϕ

∓1(x1) · · ·ϕ∓1(xn)βi and suppose u′i+1 =

α′iϕ
∓1(x1) · · ·ϕ∓1(x j)γ where α′i is a suffix of αi and γ is a prefix of ϕ∓1(x j+1). Then taking

u′i = α′i s
±1x1 · · · x j, the result holds with µi+1 the empty word and λi+1 = s∓1γ. (The length

of γ is strictly less than `(ϕ∓1(x j+1)), which is at most m—see equation (2).) The other
cases are similar.

Take u′r to be a subword of ur which freely reduces to u′. As per the previous paragraph
obtain u′r−1, . . . , u′0 and µr, . . . , µ1 and λr, . . . , λ1 such that µr · · · µ1u′0λ1 · · · λr = u′r = u′

in H. But `(µr · · · µ1u′0λ1 · · · λr) ≤ (2m + 1)`(u) since u′0 is a subword of u, r ≤ `(u) and
`(µi), `(λi) ≤ m for all i.

So when u is a minimal length word representing h in H, we get our result. �

We introduce some notation. If w is the reduced word representing h ∈ F, then i = rank(w)
is the maximum i such that there is a letter a±1

i in w, and then ||h||π denotes the number
of pieces in the rank-i piece decomposition of w. Further, for a word w and a letter a,
the number of occurrences of a in w plus the number of a−1 is wta(w), and the number of
occurrences of a minus the number of a−1 is expa(w).

Lemma 4.8. Suppose h ∈ H is expressed in normal form as ũsr, where ũ is a reduced word
on a±1

1 , . . . , a±1
m and r ∈ Z. Then ||ũ||π ≤ |h|H .

Proof. Let vm be a geodesic word on a±1
1 , . . . , a±1

m , s±1 representing h in H. So `(vm) = |h|H .

The shuffling moves sai 7→ ϕ−1(ai)s and s−1ai 7→ ϕ(ai)s−1 transform vm to a word umsr so
that ũ is the freely reduced form of um. Since these moves do not create or remove them,
the a±1

m in um correspond with those in vm in number, sign, and relative location.

Say that a subword σ in vm is superfluous if it has the form amτa−1
m or a−1

m τam for some
word τ on a±1

1 , . . . , a±1
m and the a±1

m and a∓1
m that bookend σ, correspond to an a±1

m and an
a∓1

m that bookend a subword σ in um that freely reduces to the identity. Given such a σ,
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write vm = σ0σσ1 (as words), let λ = exps(τ), and let µ = exps(σ0). There exists a word ξ
on a±1

1 , . . . , a±1
m arising in the following three cases as follows:

(1) If σ = amτa−1
m , then the shuffling moves give that σ = amξa−1

m sλ in H. Further,
ϕ−µ(amξa−1

m ) = σ. Define σ′ = sλ.
(2) If σ = a−1

m τam and λ ≤ 0, then they give that σ = a−1
m ξama−λm−1sλ in H. Further,

ϕ−µ(ξ) = σ. Define σ′ = a−λm−1sλ.
(3) If σ = a−1

m τam and λ > 0, then moves ais 7→ sϕ(ai) and ais−1 7→ s−1ϕ−1(ai) give
that σ = sλa−λm−1a−1

m ξam in H. Further, ϕ−µ−λ(ξ) = σ. Define σ′ = sλa−λm−1.

In each case ξ = 1, because σ = 1, and so σ = σ′ in H.

Let i = rank(ũ). If i < m, then all the a±1
m in um cancel away on free reduction of um.

So there exists a family of pairwise disjoint superfluous subwords of vm which together
contain every a±1

m in vm. Let vm−1 be the word obtained from vm by replacing each of these
superfluous subwords σ by the corresponding σ′ described above. Then vm−1 = vm in H
and

rank(vm−1) ≤ m − 1,
wts(vm−1) ≤ wts(vm),

wta j (vm−1) ≤ wta j (vm) for j = 1, . . . ,m − 2,
wtam−1 (vm−1) ≤ wtam−1 (vm) + wts(vm),

where the final inequality holds because the a−λm−1 inserted in all instances of cases (2) and
(3) contribute a total of no more than wts(vm) letters a±1

m−1.

If i < m − 1, then, because there are no a±1
m letters in vm−1, we can obtain a word vm−2

from vm−1 in the same manner that we obtained vm−1 from vm and subject to the same
inequalities as displayed above, but with m decremented by 1. Repeat until arriving at vi.
Then rank(vi) = i and

(4) wta1 (vi) + · · · + wtai (vi) ≤ wta1 (vm) + · · · + wtai (vm) + wts(vm) = `(vm).

Now, vi freely equals w0sα1 w1sα2 w2 · · · sαk wk for some reduced words w0, . . . ,wk on a±1
1 , . . . , a±1

i
and some non-zero α1, . . . , αk ∈ Z. For 0 ≤ j ≤ k, let β j = −α1 − · · · − α j, so that ũ freely
equals ϕβ0 (w0) · · ·ϕβk (wk). The number of pieces in the rank-i decomposition of w j is at
most `(w j) since each piece has at least one letter. By Lemma 3.2, the rank-i decom-
positions of w j and of ϕβ j (w j) have the same number of pieces. Free reduction between
an ϕβ j (u j) and the neighbouring ϕβ j+1 (u j+1) can only cause pieces to merge or cancel, so
||ũ||π ≤ `(w0) + · · · + `(wk), which is at most `(vm) by (4). �

Corollary 4.9. For i = 1, . . . ,m, there exists Ki > 0 such that for all g ∈ F of rank i, we
have |g|F ≤ Ki||g||π |g|i−1

H .

Proof. We induct on i. If i = 1, then g = ak
1 for some k ∈ Z, and |k| = |g|F = ||g||π.

Now assume i > 1. Express g, viewed as a reduced word on a±1
1 , . . . , a±1

i , as a rank-i
product of pieces π1 · · · πp. Each piece is πk = aδk

i vka−εk
i for some δk, εk ∈ {0, 1} and vk a

reduced word of rank at most i − 1. By induction |vk |F ≤ Ki−1||vk ||π |vk |
i−2
H . By Lemma 4.8

||vk ||π ≤ |vk |H . So |vk |F ≤ Ki−1 |vk |
i−1
H . We then get

|g|F =

p∑
k=1

|πk |F ≤

p∑
k=1

(Ki−1 |vk |
i−1
H + 2) ≤ ||g||π(Ki−1(2m + 1)i−1 |g|i−1

H + 2)
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where the last inequality follows from Proposition 4.5. �

If g = s−kak
i sk = ϕk(ak

i ), then |g|H ≤ 3k and g is a product of k pieces, each of which is
ϕk(ai), a positive word whose length grows like a polynomial in k of degree i − 1, as we
saw in Lemma 4.2. Thus the bound in Corollary 4.9 is sharp in this case (up to constants).

5. Solving the 0-twisted conjugacy problem

As we saw in Section 2, the conjugacy relation uw = wv in H amounts to the ϕ-twisted
conjugacy relation ũϕ−p(w̃) = w̃ϕ−r(ṽ) in F, where we have normal forms u = ũsp, v = ṽsp,
and w = w̃sr. We assume in this section that p = 0.

Recall that the 0-twisted conjugacy problem asks whether, given words ũ, ṽ on a±1
1 , . . . , a±1

m ,
there exist r ∈ Z and w̃ ∈ F such that

(5) ũw̃ = w̃ϕ−r(ṽ) in F.

Proposition 5.1 (0-twisted conjugacy problem). There exists A > 0 with the following
property. Suppose ũ and ṽ are words on a±1

1 , . . . , a±1
m .

(I) If there exist r ∈ Z and w̃ ∈ F satisfying (5), then there are such r and w̃ with
|r| + |w̃|H ≤ A(|ũ|H + |ṽ|H).

(II) If there exists w̃ ∈ F satisfying (5) with r = 0, then there exists such w̃ with
|w̃|H ≤ A(|ũ|H + |ṽ|H).

(III) There is an algorithm that, given ũ and ṽ will determine whether or not there exist
r ∈ Z and w̃ ∈ F solving (5), and will exhibit them if they exist. The running time
of this algorithm is polynomial in |ũ|H + |ṽ|H .

The proof of Proposition 5.1 uses the following lemma, which determines the form of a
‘short’ solution to (5) whenever any solution exists.

Lemma 5.2. There exists B > 0 with the following property. Suppose ũ, ṽ ∈ F are as
in Proposition 5.1. Suppose there exist r ∈ Z and w̃ ∈ F satisfying (5). Then there exist
w̃0 ∈ F satisfying

(6) ũw̃0 = w̃0ϕ
−r(ṽ) in F,

with w̃0 = UV, where U is a prefix of ũ−1 and ϕr(V) is a suffix of ṽ.

Furthermore, either ũw̃ = w̃ṽ in F, or |r| ≤ B(|ũ|H + |ṽ|H).

Proof. First replace ũ by a cyclic conjugate u′ such that u′u′ is reduced (i.e. u′ is cyclically
reduced) and the rank-m piece decomposition of u′ u′ is the concatenation of two copies of
the piece decomposition of u′—that is, the rightmost piece in u′ does not combine with the
leftmost piece in u′ to make a single piece in u′ u′. This is achieved by conjugating ũ by a
suitable y that is a prefix of ũ−1, so that y−1ũy = u′ in F.

Likewise, replace ṽ by a similarly structured cyclic conjugate v′. Let z be the prefix of ṽ−1

such that z−1ṽz = v′ in F.

Lemma 3.2 gives us that ϕk(u′) and ϕk(v′) are cyclically reduced for all k ∈ Z.
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By assumption, we have r ∈ Z and w̃ ∈ F satisfying (5). This implies that there is w̃1 ∈ F
satisfying

(7) u′w̃1 = w̃1ϕ
−r(v′) in F.

Since (7) is a conjugacy relation in F and ϕ−r(v′) is cyclically reduced, Lemma 2.1 tells us
that there is a prefix w̃2 of (u′)−1 such that u′w̃2 = w̃2ϕ

−r(v′) in F. Then w̃0 = yw̃2ϕ
−r(z−1)

satisfies (6) with r0 = r. We then take U = yw̃2, which is a prefix of ũ−1 (since y is, and w̃2
is a prefix of (u′)−1 = y−1ũ−1y) and V = ϕ−r(z−1). From the definition of z, ϕr(V) = z−1 is a
suffix of ṽ.

To complete the proof, we need to bound |r|.

If v′ is fixed by ϕ or r = 0, then v′ is conjugate to u′ in F and we have ũw̃ = w̃ṽ in F.

Suppose, then, that v′ is not fixed by ϕ and r , 0. Let i be the rank of v′. As v′ is not fixed
by ϕ, Lemma 4.1 tells us that it has a piece π that is itself of rank i and is not fixed by ϕ.
Proposition 4.4 and Corollary 4.9 give constants Ci,Ki > 0 such that either

Ci |r|i−1 < |π|F ≤ Ki |π|
i−1
H ,(8)

or

Ci

|r| − (
|π|F
Ci

) 1
i−1


i−1

≤
∣∣∣ϕ−r(π)

∣∣∣
F ≤ Ki

∣∣∣ϕ−r(π)
∣∣∣i−1
H .(9)

Since π is a subword of v′, which is a subword of ṽ, Proposition 4.5 gives us |π|H ≤
(2m + 1) |ṽ|H . Then by Corollary 4.9 we get |π|F ≤ Ki(2m + 1)i−1 |ṽ|i−1

H . Meanwhile, since u′

and ϕ−r(v′) are cyclically reduced and conjugate in F, it follows that ϕ−r(π) is a subword
of u′u′. Since the piece decomposition of u′u′ consists of the concatenation of two copies
of that of u′, we must have that ϕ−r(π) is a subword of u′. So |ϕ−r(π)|H ≤ (2m + 1) |ũ|H by
Proposition 4.5. Both (8) and (9) lead to

|r| ≤
(

Ki

Ci

) 1
i−1

(2m + 1)(|ũ|H + |ṽ|H),

showing that a suitable B > 0 exists. �

Proof of Proposition 5.1. We begin by establishing the length bounds in (I) and (II).

Since in Lemma 5.2 the value of r does not change between (5) and (6), case (II) of Propo-
sition 5.1 holds. Indeed, we need only use Proposition 4.5 to bound |U | and |V |. Similarly,
the bound on |r| and the form of w̃0 give (I).

Next we consider the complexity of the algorithms solving the 0-twisted conjugacy prob-
lem and its search variant.

Lemma 5.2 tells us that if a solution exists, then there is a solution of a particularly nice
form. On input ũ and ṽ, we list all pairs (w̃, r), where r is an integer satisfying |r| ≤
B(|ũ|H + |ṽ|H), and w̃ has the form UV , with U a prefix of ũ−1 and V = ϕ−r(V̂), where V̂ is
a suffix of ṽ. It is not hard to see that the number of such pairs is polynomially bounded in
terms of |u|H + |v|H . So a search through this list for a solution to (5) can be completed in
polynomial time. If none is found, we conclude that no solution exists. �
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6. Preserved prefixes

Recall that uw = wv in H amounts to ũϕ−p(w̃) = w̃ϕ−r(ṽ) in F, where u = ũsp, v = ṽsp, and
w = w̃sr are the normal forms. We now assume p , 0. In the specific case when ũ is the
empty word, w̃ is a concatenation of a prefix of ϕ−p(w̃) with a subword of ϕ−r(ṽ)−1. This
points to the fact that, in order to understand the length (or structure) of w̃ (and hence w), it
is important to understand the length (or structure) of the longest common prefix of w̃ and
ϕ−p(w̃).

We begin with the instance where w̃ is a single piece of a type that behaves well with
regards to common prefixes. This will feed into the general case in Corollary 6.2 below.

If π is a2aq
1 for some q ≥ 0, then (assuming r ≥ 0) the length 1 + q of the longest common

prefix a2aq
1 of π and ϕr(π) = a2aq+r

1 can be arbitrarily large compared to
∣∣∣π−1ϕr(π)

∣∣∣
H =∣∣∣ar

1

∣∣∣
H = r. The same can be said when π is aq

1 or aq
1a−1

i for any i ≥ 2 and q ∈ Z. In contrast,
for other types of pieces, the form of the longest common prefix is constrained in a manner
that strongly restricts its length:

Lemma 6.1. For 3 ≤ i ≤ m, there exists Bi > 0 with the following property. Suppose r > 0
and that π is a rank-i piece whose first letter is ai. Then the longest common prefix L of π
and ϕr(π) is a concatenation L = Λ1Λ2 of words, where

• Λ1 is a prefix of ϕk(ai) for some k ∈ Z satisfying |k| ≤ Bi

(∣∣∣π−1ϕr(π)
∣∣∣
H + |r|

)
,

• Λ2 is a subword of ϕr(a−1
i ).

Proof. We may assume that `(L) ≥ 2, else L = ai and the result is immediate with L = Λ1
and k = 0.

Case 1. π = aiu for a word u of rank less than i.

We claim that either there is no cancellation (as in Figure 3) between ϕr(ai) and ϕr(u), or
there is complete cancellation (as in Figure 2) by which we mean that ϕr(ai)ϕr(u), freely
reduces to ai times a suffix of ϕr(u). After all, if there is not complete cancellation, then
the first two letters aiai−1 of ϕr(ai) are not cancelled away on free reduction of ϕr(ai)ϕr(u).
As `(L) ≥ 2, these are also the first two letters of π = aiu, and so the first letter of u is ai−1.
But then the first letter of ϕr(u) must also be ai−1, and as ϕr(ai) is a positive word, there is
no cancellation between it and ϕr(u).

π = aiu

ϕ
r (a

i)

L

ϕ
r (u)

ϕr(π)

ai

ai ρ1 · · · ρk0 · · · ρp

ϕr(ρ1)

ϕr(ρ2)
...

ϕr(ρr)
ϕr(ρr+1)

ϕr−1(ai−1)

ϕr−2(ai−1)
...

ai−1

Figure 2. Cancellation as per Case 1a of the proof of Lemma 6.1.
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Let ρ1 · · · ρp be the rank-(i−1) decomposition of u into pieces. By Lemma 3.2, ϕr(ρ1) · · ·ϕr(ρp)
is the rank-(i − 1) piece decomposition of ϕr(u). Choose k0 so that

(10) L = aiρ1 · · · ρk0−1ρ
′
k0
,

where k0 is chosen so that ρ′k0
is a non-empty prefix of ρk0 .

Case 1a. Complete cancellation.

We will show that aiρ1 · · · ρk0 = ϕ−k0 (ai), and so L is a prefix of this and the result will hold
with L = Λ1 and Λ2 the empty word.

Lemma 4.3 tells us that ϕr(ai) = ai ai−1ϕ(ai−1) · · ·ϕr−1(ai−1). From this we can read off the
first r pieces of ϕr(u) on account of the ‘complete cancellation’ between ϕr(ai) and ϕr(u):
for k = 1, . . . , r we have ϕr(ρk) = ϕr−k(ai−1)−1, or equivalently

(11) ρk = ϕ−k(ai−1)−1.

After ‘complete cancellation’ ϕr(π) = aiϕ
r(ρr+1) · · ·ϕr(ρp). As L is also a prefix of ϕr(π),

L = aiϕ
r(ρr+1) · · ·ϕr(ρr+k0−1)ρ′k0

where, comparing with (10), for k = 1, . . . , k0 − 1 we have ρk = ϕr(ρk+r), or equivalently
ρk+r = ϕ−r(ρk). By induction, we can extend (11) to k = 1, . . . , k0+r − 1. This tells us in
particular that

(12) ρk0 = ϕ−k0 (ai−1)−1,

since r > 0, and
aiρ1 · · · ρk0 = aiϕ

−1(ai−1)−1 · · ·ϕ−k0 (ai−1)−1,

which equals, as a word, ϕ−k0 (ai) by Lemma 4.3. It follows that L is a prefix of ϕ−k0 (ai).

Next we will give an upper bound on k0 that will imply an upper bound on |−k0 + 1|,
proving the condition on Λ1. From (12) we get

(13) Ciki−1
0 ≤

∣∣∣ρk0

∣∣∣
F

by Lemma 4.2. As ρk0 is a single piece, Corollary 4.9 gives

(14)
∣∣∣ρk0

∣∣∣
F ≤ Ki

∣∣∣ρk0

∣∣∣i−1
H .

View ρk0 as a product of ρ′k0
with a subword of π−1ϕr(π). Then apply Proposition 4.5 to

give

(15)
∣∣∣ρk0

∣∣∣
H ≤

∣∣∣ρ′k0

∣∣∣
H

+ (2m + 1)
∣∣∣π−1ϕr(π)

∣∣∣
H .

To bound
∣∣∣∣ρ′k0

∣∣∣∣
H

, observe that ρ′k0
is a prefix of ϕr(ρk0+r), and ρk0+r is a subword of π−1ϕr(π),

since r > 0. So, applying Proposition 4.5, we first get∣∣∣ρ′k0

∣∣∣
H
≤ (2m + 1)

∣∣∣ϕr(ρk0+r)
∣∣∣
H .

Then using that ϕr(ρk0+r) = s−rρk0+r sr, we deduce that∣∣∣ρ′k0

∣∣∣
H
≤ (2m + 1)

(
2r +

∣∣∣ρk0+r

∣∣∣
H

)
.

A last application of Proposition 4.5 then gives

(16)
∣∣∣ρ′k0

∣∣∣
H
≤ (2m + 1)

(
2r + (2m + 1)

∣∣∣π−1ϕr(π)
∣∣∣
H

)
.

Together (13)–(16) show k0 is at most a constant times |r| +
∣∣∣π−1ϕr(π)

∣∣∣
H , as required.
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π = aiu

ϕr(ai)

L

ϕ
r (u)

ϕ
r (π)

ai

ai−1 ϕ(ai−1) · · · ϕr−1(ai−1) ϕr(ρ1) · · · ϕr(ρk0−1−r)
ρ1 ρ2 · · · ρr ρr+1 · · · ρk0−1 ρk0 · · · ρp

ϕ
r (ρ p)

Figure 3. Cancellation as per Case 1b of the proof of Lemma 6.1.

Case 1b. No cancellation.

We will show that L is a prefix of ϕk0 (ai) and that the result will again hold with L = Λ1
and Λ2 the empty word.

Comparing pieces along the common prefix L = aiρ1 · · · ρk0−1ρ
′
k0

of π = aiρ1 · · · ρp and

ϕr(π) = ϕr(ai)ϕr(ρ1) · · ·ϕr(ρp) = ai ai−1ϕ(ai−1) · · ·ϕr−1(ai−1)ϕr(ρ1) · · ·ϕr(ρp),

which is a freely reduced word in this case, we claim that

(17) ρk = ϕk−1(ai−1) for k = 1, . . . , k0 − 1.

For k ≤ min{r, k0 − 1} we get ρk = ϕk−1(ai−1) immediately, so there is nothing left to show
when r ≥ k0 − 1. When r < k0 − 1, if k = r + 1, . . . , k0 − 1 then ρk = ϕr(ρk−r), and this gives
the claim inductively.

We claim that ρ′k0
is a prefix of ϕk0−1(ai−1). Indeed, if k0 ≤ r, then this is immediate.

Meanwhile, if k0 > r, ρ′k0
is a subword of ϕr(ρk0−r) which equals ϕk0−1(ai−1) by (17) since

r > 0.

It follows that L is a prefix of aiai−1ϕ(ai−1) · · ·ϕk0−1(ai−1), which equals, as a word, ϕk0 (ai).

We complete this case by bounding k0. The process is similar to Case 1a.

Since ϕr(ρk0 ) is a subword of π−1ϕr(π), we can obtain a bound on the length of ρ′k0
as

follows. Firstly,
∣∣∣∣ρ′k0

∣∣∣∣
H
≤ (2m+1)

∣∣∣ρk0

∣∣∣
H by Proposition 4.5. Then, using ρk0 = srϕr(ρk0 )s−r,

and that ϕr(ρk0 ) is a subword of π−1ϕr(π), we get
∣∣∣ρko

∣∣∣
H ≤ 2 |r|+ (2m+1)

∣∣∣π−1ϕr(π)
∣∣∣
H . Thus,

we have ∣∣∣ρ′k0

∣∣∣
H
≤ (2m + 1)

(
2 |r| + (2m + 1)

∣∣∣π−1ϕr(π)
∣∣∣
H

)
.

Since ϕr(ρk0−r) = ϕk0−1(ai−1), Lemma 4.2 and Corollary 4.9 imply that

Ci(k0 − 1)i−1 ≤
∣∣∣ϕr(ρk0−r)

∣∣∣
F ≤ Ki

∣∣∣ϕr(ρk0−r)
∣∣∣i−1
H .

We can write ϕr(ρk0−r) as a product of ρ′k0
and a subword of π−1ϕr(π). Hence, by Proposi-

tion 4.5, ∣∣∣ϕr(ρk0−r)
∣∣∣
H ≤

∣∣∣ρ′k0

∣∣∣
H

+ (2m + 1)
∣∣∣π−1ϕr(π)

∣∣∣
H .

These displayed inequalities combine to give an upper bound on k0 implying the condition
on Λ1.
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Case 2. π = aiua−1
i for a reduced word u of rank less than i.

Let π0 = aiu. The only a−1
i in π is at the end; ditto in ϕr(π). So if the common prefix L of

π and ϕr(π) is the whole of π, then L = ϕr(π), also, but that cannot be: by Lemma 4.1 π is
not fixed by ϕ and then by Proposition 4.4 it is not fixed by ϕr (as r , 0). So L is, in fact, a
prefix of π0.

As ϕr(π) is the free reduction of ϕr(π0)ϕr(a−1
i ), the word L is the concatenation Λ1Λ2 of a

prefix Λ1 of ϕr(π0) with a subword Λ2 of ϕr(a−1
i ). But then Λ1 is a common prefix of π0

and ϕr(π0) (though it may not be the full common prefix) so we deduce from Case 1 that
Λ1 is a prefix of ϕk(ai), where |k| is bounded by a constant times r +

∣∣∣π−1
0 ϕr(π0)

∣∣∣
H . Since

π−1
0 ϕr(π0) = a−1

i π−1ϕr(π)ai, we have
∣∣∣π−1

0 ϕr(π0)
∣∣∣
H ≤

∣∣∣π−1ϕr(π)
∣∣∣
H +2 and the required bound

on |k| follows. �

Corollary 6.2. For all 1 ≤ i ≤ m, there exists Ai > 0 with the following property. For all
freely reduced w ∈ F of rank i and all r ∈ Z, there exists a freely reduced word w0 ∈ F of
rank at most i such that the following hold.

(P1) If the free reduction of w−1ϕr(w) is αβ, with α a prefix of w−1 and β a suffix of
ϕr(w), then the free reduction of w−1

0 ϕr(w0) is αβ, and α a prefix of w−1
0 and β a

suffix of ϕr(w0).
(P2) The longest common prefix P of w0 and ϕr(w0) has the form P = P1P3 · · · Pi where

• P1 is a prefix of ϕk(at) for some t ≤ i and some k ∈ Z satisfying |k| ≤
Ai

(
|αβ|H + |r|

)
, and

• P j is a subword of ϕr(a−1
j ) for j = 3, . . . , i.

Proof. If w = ϕr(w), then we can take α, β, and w0 to be the empty word. So assume
w , ϕr(w). In particular, r , 0.

The statement for r < 0 will follow from that for r > 0 since we could instead consider the
common prefix of w = ϕr(w) and ϕ−r(w), which of course equals P. So assume r > 0.

We will induct on i = rank(w). The case i = 1 is elementary: w = ϕr(w) and the result
holds as we just explained.

Assume i > 1. Let w = π1 · · · πp be the rank-i decomposition of w into pieces. Our first
step is to reduce the problem to a question concerning a single piece. Take k minimal so
that the longest common prefix of w and ϕ(w) is a subword of π1 · · · πk. Let π := πk. It
follows from Lemma 3.2 that π1, . . . , πk−1 are fixed by ϕr. So (P1) amounts to:

(P1′) If the free reduction of w−1ϕr(w) is αβ, with α a prefix of w−1 and β a suffix of
ϕr(w), then the free reduction of (πk · · · πp)−1ϕr(πk · · · πp) is αβ, with α a prefix of
(πk · · · πp)−1ϕr(πk · · · πp) and β′ a suffix of ϕr(π).

We will find a word π0 such that the longest common prefix P of π0 and ϕr(π0) satisfies the
conditions for (P2), and π0 satisfies:

(P1′′) If the free reduction of π−1ϕr(π) is α′β′, with α′ a prefix of π−1 and β′ a suffix of
ϕr(π), then the free reduction of π−1

0 ϕr(π0) is α′β′, with α′ a prefix of π−1
0 and β′ a

suffix of ϕr(π0).
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Then, setting w0 = π0πk+1 . . . πp, we will get αβ = w−1
0 ϕr(w0) in F by (P1′), with α a

prefix of w−1
0 and β a suffix of ϕr(w0), satisfying (P1). We claim that P being the longest

common prefix of π0 and ϕr(π0) implies it is also the longest common prefix of w0 and
ϕr(w0). Indeed, if w0 = π0 (as words), this is immediate. And if w0 , π0, then either the
prefixes are as claimed, or π0 = ϕr(π0), implying π−1ϕr(π) is trivial, by (P1′′), contradicting
our choice of k.

Now we turn to finding this π0.

Assume that i = 2, which is an exceptional case. By the minimality of k, we cannot have π
equal to aq

1 or a2aq
1a−1

2 for some q ∈ Z, for that would imply that π = ϕr(π). The remaining
possibilities are that π is a2aq

1 or aq
1a−1

2 for some q ∈ Z. Take π0 = a2 or π0 = a−1
2 ,

respectively in these two cases. In the former case, α′ is the empty word, and β′ = ar
1. In

the latter, α′ = a2 and β′ = a−r
1 a−1

2 . Both satisfy (P1′′). The longest common prefix of π0
and ϕr(π0), and hence also of w0 and ϕr(w0), is then either a2 or the empty word. Taking
P1 to be a2 or the empty word, accordingly, and P3, . . . , Pi all the empty word gives us the
required form (P2).

Suppose i ≥ 3. How we proceed depends on the type and rank of the piece π.

Case 1. j := rank(π) < i.

Apply the induction hypothesis to get a freely reduced word π0 of rank at most j sat-
isfying (P1′′) and such that the longest common prefix of π0 and ϕr(π0) has the form
P = P1P3 · · · P j, where P3, . . . , P j are each subwords of ϕr(a−1

j ), and P1 a prefix of ϕk(at),
for some t ≤ j and some |k| ≤ A j(

∣∣∣π−1ϕr(π)
∣∣∣
H + |r|). Since π−1ϕr(π) is a subword of αβ,

taking Ai large enough that Ai ≥ (2m + 1)A j will mean, by Proposition 4.5, that P1 satisfies
the requirements stated in this corollary. Finally, we take P j+1, . . . , Pi to all be the empty
word.

Case 2. The first letter of π is ai.

In this case we take π0 = π, so (P1′′) trivially holds. Lemma 6.1 gives us the structure
of P as required, with P1 = Λ1, with P3, . . . , Pi−1 being empty words, and with Pi = Λ2.
We just note that the power k in P1 satisfies the required bound by taking Ai large enough
so that Ai ≥ (2m + 1)Bi, where Bi is the constant from Lemma 6.1 (as in Case 1, this is
because π−1ϕr(π) is a subword of αβ, and we can apply Proposition 4.5).

Case 3. π = ua−1
i with j := rank(u) < i.

By the inductive hypothesis, there is a word u0 ∈ F of rank at most j such that

(P1′′′) If the free reduction of u−1ϕr(u) is γδ, with γ a prefix of u−1 and δ a suffix of ϕr(u),
then the free reduction of u−1

0 ϕr(u0) is γδ, with γ a prefix of u−1
0 and δ a suffix of

ϕr(u0),

and the maximal common prefix of u0 and ϕr(u0) is of the form P0 = P1P3 · · · P j, with
P1, P3 . . . , P j as per (P2). In particular, P1 is a prefix of ϕk(at), for some t ≤ j and some k
satisfying

(18) |k| ≤ A j

(∣∣∣u−1
0 ϕr(u0)

∣∣∣
H + |r|

)
.
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Let π0 = u0a−1
i . Since ϕr(π0) is the free reduction of ϕr(u0)ϕr(a−1

i ), the common prefix P of
π0 and ϕr(π0) is a concatenation of a common prefix of u0 and ϕr(u0) (hence a prefix of P0),
and a (possibly empty) subword Pi of ϕr(ai)−1. We may therefore write P = P1P3 · · · P′j′Pi

for some j′ ≤ j, where P′j′ is a prefix of P j′ . This fits with the structure in (P2), although
we still need to determine the bound on k, which we will do below, while we verify (P1′′)
holds.

1

π0

ϕr(u0)

u0 aiα′

β′

γ

δ

ϕr(π0) ϕr(a−1
j )

P
1

π0

ϕr(u0)

u0 ai

α′

Pi

β′γ

δ

ϕr(π0)
ϕr(a−1

j )
P0

1

π0

ϕr(u0)

u0 aiα′
β′

γ

δ

ϕr(π0)

ϕr(a−1
j )

QP

Figure 4. Three cases of cancellation between ϕr(a−1
i ) and other words

We seek α′ and β′ satisfying (P1′′), so we need to understand the free reduction of π−1
0 ϕr(π0).

We have
π−1

0 ϕr(π0) = aiu−1
0 ϕr(u0)ϕr(ai)−1 = aiγδϕ

r(ai)−1.

Cancellation in aiγδϕ
r(ai)−1 can only occur where δ abuts ϕr(ai)−1. One of three things can

occur. Either

(C1) ϕr(ai)−1 does not cancel into either γ or P0 (the left diagram of Figure 4),
(C2) ϕr(ai)−1 completely cancels with δ and continues cancelling into γ (the middle

diagram in Figure 4), or
(C3) ϕr(ai)−1 completely cancels with δ and continues cancelling into P0 (the right di-

agram in Figure 4).

In (C1) we can take α′ = aiγ and β′ to be the free reduction of δϕr(ai)−1. Then it is
straightforward to see that (P1′′) holds.

For (C2), we take Pi as above: it is the subword of ϕr(ai)−1 that cancels into γ. Then,
setting α′ to be the free reduction of aiγPi and β′ to be the free reduction of P−1

i δϕr(ai)−1,
we can check that (P1′′) is satisfied. Take P = P0Pi.

Finally, for (C3), we let Q be the suffix of P0 that cancels into ϕr(ai)−1, and P be the prefix
of P0 so that P0 = PQ as words. (Note in this case Pi is empty.) Then α′ = aiγQ−1 and β′

equal to the free reduction of Qδϕr(ai)−1 satisfy (P1′′).

In each case, the free reduction of u−1
0 ϕr(u0) is a product of a subword of the free reduction

of π−1
0 ϕr(π0) with a subword of ϕr(ai)±1. By (P1′′′), π−1

0 ϕr(π0) is equal to π−1ϕr(π), which
is a subword of αβ. Hence by Proposition 4.5,

∣∣∣u−1
0 ϕr(u0)

∣∣∣
H ≤ (2m + 1)

(
|αβ|H + 2 |r| + 1

)
.

In each case P has the form required for (P2), and this bound, together with (18) and
increasing the value as Ai if necessary, gives the required bound on |k|. �

7. The inductive structure ofH-twisted conjugacy in F

We explained in Section 2 that the conjugacy problem in H amounts to a twisted conjugacy
problem in F which can take one of three forms. The most involved of the three is what we
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refer to as the H-twisted conjugacy problem. We will show here that when this problem
has a solution, it has a solution of one of a number of particular forms. The large number of
possibilities for this form leads to the following proposition having a somewhat involved
statement. But all the subwords are described in terms of the ‘constants’ p, u0, v0, u1, v1
or inductively in terms of a word x̂ which is a solution to a lower rank instance of the
same problem. This will allow us to estimate the lengths of solutions. Those estimates
will feed into upper bounds on the conjugator length of H. Also this proposition will
mean that solutions to theH-twisted conjugacy problem can found by searching though a
polynomially sized family of possibilities. This will feed into polynomial time solutions to
the conjugacy and conjugacy-search problems in H.

Proposition 7.1. Suppose i ∈ {1, . . . ,m}, p > 0 are integers and u0, v0, u1, v1, x are re-
duced words on a±1

1 , . . . , a±1
m . Suppose x is non-empty word and has rank i. Suppose the

concatenations u0xv−1
0 and u−1

1 xv1 are reduced words and satisfy

(19) ϕ−p(u0xv−1
0 ) = u−1

1 xv1 in F.

Then there exists a word X on a±1
1 , . . . , a±1

m that satisfies

(20) ϕ−p(u0Xv−1
0 ) = u−1

1 Xv1 in F

and takes the following form. If i = 1, then

(X1) X = U1U2U3V as words

for some subwords U1, U2, and U3 of (u1ϕ
−p(u0))±1 and some suffix V of v1ϕ

−p(v0).

There exists a constant C > 0 such that if i > 1, then either

(X2) X = x is a subword L of ϕ−p(u0) or R of ϕ−p(v−1
0 ),

(X3) X = L S M P R as words, or
(X4) X = x = L x̂ R as words,

where

• L is a subword of ϕ−p(u0),
• S is either

– S = S i · · · S 3 S 1 where
∗ S −1

1 is a prefix of ϕk(at) for some t ≤ i and |k| ≤ C (|u0|F + |u1|F + p),
∗ S j is a subword of ϕ−p(a j) for j = 3, . . . , i,

– a subword of Ŝ where ϕ−p(Ŝ ) is a subword of (u1ϕ
−p(u0))−1, or

– a subword of ϕ−p(Ŝ ) where Ŝ is a subword of ϕ−p(u0),
• M = M1M2 or M−1

2 M−1
1 , where

– M1 = πϕp(π) · · ·ϕp(q−1)(π), where
∗ qp ≤ C(|u0|H + |u1|H + |v0|H + |v1|H + p), and
∗ ϕ−p(π) is a concatenation of a subword of (u1ϕ

−p(u0))−1 with S , or of
P with a subword of (v1ϕ

−p(v0))−1,
– ϕp(M2) is a subword of ϕ−p(u0) or ϕ−p(v−1

0 ),
• P is either

– P = P1 P3 · · · Pi, where
∗ P1 is a prefix of ϕk′ (at) for some t ≤ i and |k′| ≤ C (|v0|F + |v1|F + p),
∗ P j is a subword of ϕ−p(a−1

j ) for j = 3, . . . , i, or
– a subword of ϕ−p(P̂) where P̂ is a subword of ϕ−p(v−1

0 ),
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– a subword of P̂ where ϕ−p(P̂) is a subword of v1ϕ
−p(v0),

• R is a subword of ϕ−p(v−1
0 ),

• x̂ has rank j < i and satisfies ϕ−p(û0 x̂v̂−1
0 ) = û−1

1 x̂v̂1 where
– û0û1 is reduced and is a subword of ϕ−p(u0),
– v̂0v̂1 is reduced and is a subword of ϕ−p(v0).

A curious feature of Proposition 7.1 is that if u, v ∈ H satisfy uw = wv in H for some w ∈ F
(not just in H), and w = u0xv−1

0 as per the proposition, then u0Xv−1
0 , which will also be in

F, is another conjugator and also has this ‘nice’ structure.

In general, this structure leads to a quadratic upper bound on the length (see Lemma 8.1
below). To improve it to a linear upper bound we need to replace the word M1 appearing
in (X3) with sqp (see Lemma 8.4 below). We therefore swap X for a word X̂, which unlike
X may represent an element of H r F. Equations (19) and (20) may therefore not make
sense for X̂. For the iteration through case (X4), then, we will instead use:

Lemma 7.2. With the notation from Proposition 7.1, if X has form (X4), and if X̂ ∈ H
satisfies

sp û0 X̂ v̂−1
0 s−p = û−1

1 X̂ v̂1 in H
then

(21) sp u0 L X̂ R v−1
0 s−p = u−1

1 L X̂ R v1 in H.

If w̃ = u0 L X̂ R v−1
0 , then (21) amounts to uw = wv in H, where w = w̃sr, u = ũsp, v = ṽsp,

ũ = u0u1, and ϕ−r(ṽ) = v0v1.

We will prove this lemma after proving Proposition 7.1. Before we prove either, here is a
lemma which is straight-forward, but which we highlight as we will call on it to remove a
subword from x.

Lemma 7.3. Suppose x = x0x1, ϕ−p(u0x0) = u−1
1 x0 , ϕ−p(x1v−1

0 ) = x1v1, and ϕ−p(y) = y in
F. Then ϕ−p(u0x0yx1v−1

0 ) = u−1
1 x0yx1v1 in F.

Proof of Proposition 7.1. We begin with the case i = 1. As rank(x) = 1, ϕ(x) = x, and so
(19) rearranges to the conjugacy relation

(22) u1ϕ
−p(u0)x = xv1ϕ

−p(v0) in F.

Therefore, by Lemma 2.1, there is some x0 ∈ F which satisfies (22) in place of x (but
may fail to satisfy (19) since ϕ need not fix x0) and is the concatenation of some prefix of
(u1ϕ

−p(u0))−1 with some suffix of v1ϕ
−p(v0).

If u1ϕ
−p(u0) = 1, then (20) holds with X the empty word. Assume, then, that u1ϕ

−p(u0) , 1.
Since both x and x0 conjugate u1ϕ

−p(u0) to v1ϕ
−p(v0) in F, we have x = σlx0 in F for

some integer l and some reduced word σ some power of which freely equals u1ϕ
−p(u0). If

rank(σ) = 1, then rank(x0) = 1 also and so ϕ(x0) = x0 and (20) holds with X = x0. If, on
the other hand, the rank(σ) ≥ 2, then take X = x. Then (20) is (19) and so holds. And, as
rank(x) = 1, all of σl apart from some prefix σ′ of σ (if l > 0) or σ−1 (if l < 0) must cancel
into x0 in σlx0, and so X is the concatenation of a prefix σ′ of σ or σ−1 with a suffix of x0.

Let σ0 be the maximal suffix of σ such that σ−1
0 is prefix of σ. Then there is a subword σ1

of σ such that for all c ∈ Z, as words σc = σ−1
0 σc

1σ0. So, as some power of σ freely equals
u1ϕ

−p(u0), we have that σ−1
0 σ1 freely equals a prefix of (u1ϕ

−p(u0))±1 and σ0 freely equals
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a suffix. So σ freely equals the concatenation of two subwords of (u1ϕ
−p(u0))±1, and the

same is true of σ′.

So in each case X is the concatenation of three subwords of (u1ϕ
−p(u0))±1 with a suffix of

v1ϕ
−p(v0), completing the proof in the case i = 1.

Now assume 2 ≤ i ≤ m. By (19), ϕ−p(u0)ϕ−p(x)ϕ−p(v−1
0 ) = u−1

1 xv1 in F. The right-hand
side is reduced, but there may be cancellation on the left at the start and end of ϕ−p(x).
So, after free reduction on the left, a (perhaps empty) subword of ϕ−p(x) remains. This
subword will also be a subword of u−1

1 xv1. Define Π to be its overlap with x.

If Π is the empty word, then x is a subword of either ϕ−p(u0) or ϕ−p(v−1
1 ), and so X = x has

the form of (X2). So for the remainder of the proof we assume that Π is nonempty.

As Π is a subword of both x and ϕ−p(x), we can define L, R, Y and Z so that

(23) x = L Π R and ϕ−p(x) = Y Π Z as words.

We have
u−1

1 L Π R v1 = ϕ−p(u0) Y Π Z ϕ−p(v−1
0 ) in F

by (19). We claim that

(E1) L is a subword of ϕ−p(u0),
(E2) R−1 is a subword of ϕ−p(v0),
(E3) Y−1 is a suffix of the freely reduced form of u1ϕ

−p(u0), and
(E4) Z is a suffix of the freely reduced form of v1ϕ

−p(v0).

By definition of Π,

(24) ϕ−p(u0)Y freely reduces to u−1
1 L.

Also, ϕ−p(u0) and Y are freely reduced words, so if Y fully cancels into ϕ−p(u0) on free
reduction of ϕ−p(u0)Y , then Y−1 is a suffix of ϕ−p(u0) and (24) gives us (E1) and (E3). If,
on the other hand, a non-empty suffix of Y survives free reduction of ϕ−p(u0) Y , then L is
the empty word: the last letter of L, were there one, would have to have been part of Π

since it would also have to have been the last letter of Y . So (E1) trivially holds and (E3)
again follows from (24).

To complete the proof, when Π is nonempty we need to explain how to replace Π with
some Π̂ so that X = LΠ̂R is of the required form.

Let π1 · · · πk be the rank-i piece decomposition of x. By Lemma 3.2, ϕ−p(π1) · · ·ϕ−p(πk) is
the rank-i decomposition of ϕ−p(x) into pieces and, in particular, is reduced.

Since Π is a subword of x, there are integers a, b such that x is a subword of πa · · · πb. We
choose a and b so that either

I. a < b and Π = π′aπa+1 · · · πb−1π
′
b, for some (perhaps empty) suffix π′a of πa and

(perhaps empty) prefix π′b of πb, where π′a , πa if 1 < a and π′b , πb if b < k, or
II. a = b and Π = π′a for a nonempty subword π′a of πa.

As Π is a subword of ϕ−p(x), its rank–i pieces line up with those in ϕ−p(π1) · · ·ϕ−p(πk).
This tells us

(S1) Π is a subword of ϕ−p(πa+e) · · ·ϕ−p(πb+e) for some e ∈ Z.
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The value of e will be important.

From (23) and (E1)–(E4) we make the following observations.

(S2) If c < a, then πc is a subword of ϕ−p(u0).
(S3) If c > b, then π−1

c is a subword of ϕ−p(v0).
(S4) If c < a + e, then ϕ−p(πc)−1 is a subword of the freely reduced form of u1ϕ

−p(u0).
(S5) If c > b + e, then ϕ−p(πc) is a subword of the freely reduced form v1ϕ

−p(v0).

Case I. Π = π′aπa+1 · · · πb−1π
′
b.

We make the following further observations that apply in this case. They follow by consid-
ering Π simultaneously as a subword of x, which has piece decomposition π1 · · · πk, and of
ϕ−p(x), with piece decomposition ϕ−p(π1) · · ·ϕ−p(πk). As mentioned, the breaks between
pieces in Π must line up in the two words x and ϕ−p(x).

(S6) π′a is a suffix of ϕ−p(πa+e) (as well as of πa),
(S7) πi = ϕ−p(πi+e) for a + 1 ≤ i ≤ b − 1,
(S8) π′b is a prefix of ϕ−p(πb+e) (as well as of πb).

We will show that the proposition is satisfied with X as per (X3). We will divide into three
subcases according to the value of e. Having e positive is similar to e negative. Indeed,
taking inverses of both sides of equation (19) interchanges the roles of u0 and u1 with v0
and v1, respectively, and puts x−1 in place of x. If π̂i is the i–th piece in the rank i piece
decomposition of x−1, then π̂i = π−1

k−i, and this means that to satisfy (S7) with π̂i instead,
we use −e instead of e. So in Cases Ib and Ic below, when e is negative, swapping the roles
of ui and vi accordingly will give the structure of X−1, and that of X will then be apparent.

Case Ia. When e = 0.

If we remove the pieces πa+1, . . . , πb−1 from x leaving X0 := Lπ′aπ
′
bR, then ϕ−p(u0X0v−1

0 ) =

u−1
1 X0v1 in F by Lemma 7.3. Next we will replace π′a with π̂′a, and π′b with π̂b, which

come from Corollary 6.2, as explained below, giving X := Lπ̂′aπ̂
′
bR. We will show this too

satisfies (20).

As π′a is a common suffix of πa and ϕp(πa) (and so a common prefix of π−1
a and ϕ−p(πa)−1),

Corollary 6.2 gives us a word π̂a so that

(A1) if αβ is the free reduction of πaϕ
−p(πa)−1, with πa = απ′a and ϕ−p(πa) = β−1π′a as

words, then αβ is also the free reduction of π̂aϕ
−p(π̂a)−1 in F, with π̂a = απ̂′a and

ϕ−p(π̂a) = β−1π̂′a as words, and
(A2) the common suffix π̂′a of π̂a and ϕ−p(π̂a) is of the form π̂′a = S i · · · S 3S 1, where

• S −1
1 is a prefix of ϕk(at) for some t ≤ i and |k| ≤ Ai

(∣∣∣πaϕ
−p(πa)−1

∣∣∣
H + p

)
,

• S j is a subword of ϕ−p(a j) for j = 3, . . . , i.

First we check that S = S i · · · S 3S 1 fits the scheme of the proposition. To do this we
need to bound

∣∣∣πaϕ
−p(πa)−1

∣∣∣
H so that (A2) leads to the required bound on |k|. We could

use (E1) and (E3) alongside Proposition 4.5, but we can do better as follows. By (24),
LY−1 = u1ϕ

−p(u0) in F. The last letters of L and Y must be different, since otherwise that
letter could be added into Π. So LY−1 is reduced. The free reduction of πa(π′a)−1 is a suffix
of L, and that of ϕ−p(πa)(π′a)−1 is a suffix of Y . Hence the free reduction of πaϕ

−p(πa)−1 is
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a subword of the free reduction of u1ϕ
−p(u0). So Proposition 4.5 gives the first inequality

of: ∣∣∣πaϕ
−p(πa)−1

∣∣∣
H ≤ (2m + 1)

∣∣∣u1ϕ
−p(u0)

∣∣∣
H ≤ (2m + 1) (|u0|F + |u1|F + 2p) .

We deduce that there is a constant C > 0 such that

|k| ≤ C (|u0|F + |u1|F + p) .

Similarly, π′b is a common prefix of πb and ϕ−p(πb), so Corollary 6.2, tells us that there is
word π̂b such that

(B1) if γδ is the free reduction of π−1
b ϕ−p(πb), with πb = π′bγ

−1 and ϕ−p(πb) = π′bδ as
words, then γδ is also the free reduction of π̂−1

b ϕ−p(π̂b) in F, with π̂b = π̂′bγ
−1 and

ϕ−p(π̂b) = π̂′bδ as words, and
(B2) the common prefix π̂′b of π̂b and ϕ−p(π̂b) is of the form π′b = P1P3 · · · Pi, where

• P1 is a prefix of ϕk′ (at) for some t ≤ i and |k′| ≤ Ai

(∣∣∣π−1
b ϕ−p(πb)

∣∣∣
H + p

)
,

• P j is a subword of ϕ−p(a−1
j ) for j = 3, . . . , i.

Similar reasoning to the above give us |k′| ≤ C(|v0|F + |v1|F + p). It follows that X = LS PR
has form (X3), with M the empty word.

To conclude, we need to prove X will satisfy (20). First we work on the left. Using
the notation from (A1), we have L = π1 · · · πa−1α and Y = ϕ−1(π1 · · · πa−1)β−1, so Y =

ϕ−p(Lα−1)β−1. Then by (24), ϕ−p(u0Lα−1)β−1 = u−1
1 L. Rearranging and using that απ̂′a =

π̂a and β−1π̂a = ϕ−p(πa), we get

ϕ−p(u0Lπ̂′a) = u−1
1 Lβϕ−p(απ̂′a) = u−1

1 Lβϕ−p(π̂a) = u−1
1 Lββ−1π̂′a = u−1

1 Lπ̂′a.

Similar calculations on the right yield ϕ−p(π̂′bRu−1
0 ) = π̂′bRv1. The left and right, working

together, give us (20).

Case Ib. When |e| > b − a − 1.

First assume e > 0. Write Π = S MP, where S = π′a, M = M2 = πa+1 · · · πb−1, and
P = π′b. Then M2 = ϕ−p(πa+1+e · · · πb−1+e) by (S7), and ϕp(M2) = πa+1+e · · · πb−1+e is a
subword of ϕ−p(v0)−1 by (E2). Meanwhile, S is a subword of πa, and ϕ−p(πa) is a subword
of (u1ϕ

−p(u0))−1 by (S4). Finally, P is a subword of ϕ−p(πb+e), and P̂ = πb+e is a subword
of ϕ−p(v−1

0 ) by (S3).

Now assume that e < 0. Then the above gives the structure for Π−1, after swapping the
roles of ui and vi. Hence we get Π = S MP, where S is a subword of ϕ−p(Ŝ ) where Ŝ is a
subword of ϕ−p(u0), M = M2 and ϕ−p(M2) is a subword of v1ϕ

−p(v0), and P is a subword
of P̂, and ϕ−p(P̂) is a subword of v1ϕ

−p(v0).

Case Ic. When 0 < |e| ≤ b − a − 1.

Suppose e > 0. We have
Π = π′aπa+1 · · · πb−1π

′
b.

The number of pieces in Π aside from π′a and π′b is b − a − 1. Let q be the maximal integer
such that qe ≤ b − a − 1. Let

π = πa+1 · · · πa+e.
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By repeated applications of (S7),

Π = S MP in F

where M = M1M2 and

S = π′a

M1 = πϕp(π) · · ·ϕp(q−1)(π)

M2 = ϕpq(πa+1 · · · πb−1−qe)

P = π′b.

Then S and P are as in Case Ib. Notice that ϕ−p(π) is a concatenation of a subword of Y
(so, by (E3), a subword of the freely reduced form of (u1ϕ

−p(u0))−1) with S = π′a. By (S7),
ϕp(M2) = πa+1+(q+1)e · · · πb−1+e. Note that a + 1 + (q + 1)e , b, by our choice of q. So
a + 1 + (q + e) > b, which implies ϕp(M2) is a subword of ϕ−p(v−1

0 ) by (E2).

We now begin the work necessary to establish the required bound on q.

First, for a ≤ c ≤ c′ < a + e, we have that ϕ−p(πc · · · πc′ ) is a subword of Y , and so of the
freely reduced form of (u1ϕ

−p(u0))−1 by (E3). Also ϕ−p(πa+e) is a product of subwords of
(u1ϕ

−p(u0))−1 and πa. So, by Proposition 4.5, there is a constant C > 0, depending only on
m, such that

(25) |πc · · · πc′ |H ≤ C
(∣∣∣u1ϕ

−p(u0)
∣∣∣
H + p

)
for a ≤ c ≤ c′ ≤ a + e.

Similarly,

(26) |πd · · · πd′ |H ≤ C
(∣∣∣v1ϕ

−p(v0)
∣∣∣
H + p

)
for b ≤ d ≤ d′ ≤ b + e.

We now bound qp. Let a < c ≤ a + e and choose b ≤ d < b + e so that πd = ϕq′p(πc), where
q′ is q or q + 1 according to whether c > b−1−qe or not. Suppose ϕ(πc) , πc and the rank
of πc is j ≤ i. We will establish an upper bound on q′p by combining an upper bound on
|πd |H from (26) with an understanding of how fast πc can grow under iterates of ϕ−1 from
Proposition 4.4.

We claim that we can choose such c so that j = i (that is, so that πc has rank i). First
assume that e = 1. Then (S7) gives πc = ϕ−p(πc+1). In particular, both πc and πc+1 have
the same rank, which must therefore be i, since in a pair of adjacent pieces of a rank–i
decomposition of a word, at least one must have rank i. So we may assume e > 1. Since
we assume ϕ(πc) , πc, its rank satisfies j ≥ 2 by Lemma 4.1. Suppose j < i. Then both
the the neighbours πc+1 and πc−1 of πc must have rank i. But i > j ≥ 2, so ϕ(πc+1) , πc+1
and ϕ(πc−1) , πc−1 by Lemma 4.1 again. The inequality a < c ± 1 ≤ a + e holds for at
least one of c + 1 or c − 1. We replace c with the corresponding number and may therefore
assume j = i.

If (q′p)i−1 < 1
Ci
|πc|F , then C

1
i−1
i q′p < |πc|

1
i−1
F , and so Corollary 4.9 and then (25) imply

C
1

i−1
i q′p < Ki

1
i−1 |πc|H ≤ Ki

1
i−1 C

(∣∣∣u1ϕ
−p(u0)

∣∣∣
H + p

)
.

If, on the other hand, (q′p)i−1 ≥ 1
Ci
|πc|F , then, we may apply Proposition 4.4 to πd =

ϕq′p(πc), giving

|πd |F =
∣∣∣ϕq′p(πc)

∣∣∣
F ≥

(
C

1
i−1
i q′p − |πc|F

1
i−1

)i−1
.
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Rearranging and then combining this with Corollary 4.9 and inequalities (25) and (26)
yields

C
1

i−1
i q′p ≤ Ki

1
i−1 (|πc|H + |πd |H) ≤ Ki

1
i−1 C

(∣∣∣u1ϕ
−p(u0)

∣∣∣
H +

∣∣∣v1ϕ
−p(v0)

∣∣∣
H + 2p

)
.

Increasing the value of C if necessary, we then get

(27) qp ≤ C(|u0|H + |u1|H + |v0|H + |v1|H + p).

So, provided there is some such c with ϕ(πc) , πc, we have the required bound on qp, and
taking Π̂ = Π = S MP gives an X satisfying (X3).

If, on the other hand, πc is fixed by ϕ for all a < c ≤ a + e then we may cut a big chunk out
of Π, since then ϕp(π) = π and M = πpqϕpq(πa · · · πb−1−qe). By Lemma 7.3 we can remove
πpq, and then Π̂ = S MP, where M = M2, gives an X satisfying the proposition.

When e < 0, we get the structure of Π−1 and of Π̂−1 from the above argument, once the
roles of ui and vi have been swapped. As above, S and P will be as in Case Ib. For M, we
need to change the order of M1 and M2, but we have to be careful as taking the inverse of
M1 changes its structure. The easiest way to express this is to say M = M−1

2 M−1
1 , with M1

and M2 obtained as above, but with the ui and vi exchanged.

Case II. Π = π′a.

By (S1), Π is a subword of ϕ−p(πa+e). If e < 0, then by (S2), πa+e is a subword of ϕ−p(u0).
So Π̂ = Π satisfies the conditions of form (X3) of the proposition with S = Π, Ŝ = πa+e,
and M and P both the empty word. If e > 0, then we take Π̂ = Π and it similarly satisfies
the conditions with S and M both the empty word and P = Π, which is a subword of
ϕ−p(πa+e) and P̂ = πa+e is a subword of ϕ−p(v−1

0 ).

On the other hand, assume e = 0. If Π is either a prefix or a suffix of πa then we can
apply Corollary 6.2. If Π is a prefix, we replace it with Π̂ = P = P1P3 · · · Pi, as in
Corollary 6.2. The proof that (20) holds, and of the bound on the k in P1 are the same as
for Case Ia (treating π′a as the empty word and b = a + 1). If Π is instead a suffix, replace
it with Π̂ = S = S i · · · S 3S 1 using Corollary 6.2, and a similar check gives (20) and a
corresponding bound on k′.

What remains is to consider when Π is not a prefix or suffix of πa. Then it has rank
j < i. This is where the form (X4) occurs. As reduced words, write πa = û0 x̂v̂−1

0 and
ϕ−p(πa) = û−1

1 x̂v̂1, where x̂ = π′a = Π. So rank(x̂) < i and ϕ−p(û0 x̂v̂−1
0 ) = û−1

1 x̂v̂1, as
required. Since û0 is a suffix of L and û1 is a prefix of Y−1, and there is no cancellation
between L and Y−1 by the definition of Π, we can deduce from (24) that û0û1 is reduced
and is a subword of ϕ−p(u0). �

Proof of Lemma 7.2. By hypothesis

(28) sp û0 X̂ v̂−1
0 s−p = û−1

1 X̂ v̂1 in H.

By (24), sp u0 s−p Y û1 = u−1
1 Lû1 in H, which together with (28) gives

(29) (sp u0 s−p Y û1) (sp û0 X̂ v̂−1
0 s−p) = (u−1

1 L û1) (û−1
1 X̂ v̂1) in H.

By hypothesis, X has form (X4), and as per Case II of our proof of Proposition 7.1, L =

π1 · · · πa−1û0 and Y = ϕ−p(π1 · · · πa−1)û−1
1 . Comparing these expressions for L and Y we
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get that in H we have L = s−pYû1spû0, the right-hand side of which is a substring of the
left side of (29). So substituting accordingly into the left and cancelling the û1û−1

1 from the
right, we get

(30) sp u0 L X̂ v̂−1
0 s−p = u−1

1 L X̂ v̂1 in H.

In the same manner as we derived (30) from (28) using (24), calculations on the right-hand
ends using the equation Zϕ−p(v−1

0 ) = Rv1 will derive (21) from (30).

The final part of the lemma follows from the discussion in Section 2 or by direct calcula-
tion. �

8. Solving theH-twisted conjugacy problem

Lemma 8.1. There exists a constant K > 0, depending only on m, such that the lengths
in H of the elements U1, U2, U3, V, L, S , P, M2, R, S , û0, û1, v̂0, v̂1, and π that arise in
Proposition 7.1 are all at most KΣ, where

Σ = (|u0|H + |u1|H + |v0|H + |v1|H + p).

Moreover, |M1|H ≤ KΣ2.

Proof. The KΣ upper bounds all follow from applying Proposition 4.5 to the descriptions
of the words and the associated bounds given in Proposition 7.1, noting that

∣∣∣ϕ j(w)
∣∣∣
H ≤

2| j| + |w|H and that the i in the proposition is at most m.

For the bound on the length of M1, observe that

M1 = πϕp(π) · · ·ϕp(q−1)(π)

= π(s−pπsp)(s−2pπs2p) · · · (s−p(q−1)πsp(q−1))

= (πs−p)qsqp.

Combining (27) with |π|H ≤ KΣ and adjusting K suitably gives |M1|H ≤ KΣ2. �

Recall that theH-twisted conjugacy problem asks: given reduced words ũ, ṽ on a±1
1 , . . . , a±1

m
and an integer p > 0, do there exist 0 ≤ r < p and words x, u0, v0, u1, v1 ∈ F such that
ũ = u0u1 and ϕ−r(ṽ) = v0v1, as words, and

ϕ−p(u0xv−1
0 ) = u−1

1 xv1 in F?

Lemma 8.2. For all i = 1, . . . ,m, there exists an algorithm that, with input any (p, ũ, ṽ)
for which theH-conjugacy problem has a solution (r, x, u0, v0, u1, v1) with rank(x) = i, will
exhibit some solution (r, X, u0, v0, u1, v1); the running time of this algorithm is bounded
above by a polynomial in p + |ũ|H + |ṽ|H (where the implied constants depend only on the
rank m of F).

Proof. In the following, when we refer to polynomial bounds, we will always mean upper
bounds that are polynomial in p + |ũ|H + |ṽ|H . We induct on i.

Proposition 7.1 tells us that in the case i = 1, there is solution (r, X, u0, v0, u1, v1) in which X
takes the form (X1). We can find one such solution in polynomial time as follows. We list
all the (r, u0, u1, v0, v1) such that 0 ≤ r < p and ũ = u0u1 and ϕ−r(ṽ) = v0v1 as words—there
are polynomially many and the words involved all have polynomially bounded length. For
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each we list all U1, U2, U3 and V as per (X1)—again, polynomially many possibilities—
and we check whether of not ϕ−p(u0Xv−1

0 ) = u−1
1 Xv1 in F for X = U1U2U3V .

Now suppose that there exists a solution in which rank(x) = i > 1 and that the lemma holds
when there exists a solutions in which x has lower rank.

Again list the polynomially many (r, u0, u1, v0, v1) such that 0 ≤ r < p and ũ = u0u1 and
ϕ−r(ṽ) = v0v1 as words. For each, list the polynomially many words X of the form (X2)
or (X3) of Proposition 7.1 and check whether ϕ−p(u0Xv−1

0 ) = u−1
1 Xv1 in F. If this fails to

turn up a solution (r, X, u0, v0, u1, v1), then the proposition tells us that there must be one
in which X has the form (X4). Accordingly, for each of the (r, u0, u1, v0, v1), list all the
polynomially many (L,R, û0, û1, v̂0, v̂1) satisfying the conditions of Proposition 7.1. (These
L,R, û0, û1, v̂0, v̂1 have polynomially bounded length.)

We are considering polynomially many (r, u0, u1, v0, v1), and for each one there are poly-
nomially many (L,R, û0, û1, v̂0, v̂1), so this amounts to polynomially many possibilities in
total. For one of them, there is an x̂ with rank(x̂) < i such that

ϕ−p(û0 x̂v̂−1
0 ) = û−1

1 x̂v̂1 in F

and
ϕ−p(u0Lx̂Rv−1

0 ) = u−1
1 Lx̂Rv1 in F.

By induction we have a polynomial time algorithm which we can run (in polynomial time
overall) on every one of these possibilities, and for one of them it will exhibit some X̂ such
that

ϕ−p(û0X̂v̂−1
0 ) = û−1

1 X̂v̂1 in F.

So Lemma 7.2 gives us that ϕ−p(u0LX̂Rv−1
0 ) = u−1

1 LX̂Rv1 in F, and thereby we get a
solution (r, X, u0, v0, u1, v1) where X = LX̂R. �

Corollary 8.3 (H-twisted conjugacy complexity). There is an algorithm that takes as
input an integer p > 0 and reduced words ũ and ṽ on a±1

1 , . . . , a±1
m and determines whether

or not there exists a solution (r, x, u0, v0, u1, v1) to the H-twisted conjugacy problem. If a
solution exists, it exhibits one. The running time of the algorithm is bounded above be a
polynomial function of p + |ũ|H + |ṽ|H .

Proof. Run the algorithms of Lemma 8.2 for i = 1, . . . ,m on input (p, ũ, ṽ). The time that
it takes each to halt is bounded above by a polynomial in p + |ũ|H + |ṽ|H . If there exists a
solution, one of them will exhibit it. �

Lemma 8.1 gives us many of the ingredients for the desired linear upper bound on the
conjugator length of H, but we will need a way around the quadratic bound on |M1|H .
Accordingly, we will manipulate the form of the conjugator in the case (X3) of Proposi-
tion 7.1, which is where M1 appears.

Lemma 8.4. Suppose u = ũsp and v = ṽsp are conjugate elements of H, and there is a solu-
tion (r, x, u0, v0, u1, v1) to theH-twisted conjugacy problem for (p, ũ, ṽ) in which x has form
(X3). Let q be as in Proposition 7.1 (in the form of M1). Then either u0LS spqM2PRv−1

0 sr

or u0LS M−1
2 s−pqPRv−1

0 sr conjugates u to v.

Proof. We are in the setting of Case Ic of our proof of Proposition 7.1. Assume that e > 0.
Let w = u0LS spqM2PRv−1

0 sr. We will show that uw = wv in H.
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We have that u = u0u1sp and v = ϕr(v0v1)sp in H. Also M2 = ϕpq(πa+1 · · · πb−1−qe), which
equals πa+1+qe · · · πb−1 by (S7). Plugging this and the other ingredients into w, we get

w = u0 π1 · · · πa spq πa+1+qe · · · πk v−1
0 sr.

Then, by repeatedly applying (S7) and the identity s−1gs = ϕ(g) for g ∈ F, we get

uw = u0 u1 sp u0 π1 · · · πa spq πa+1+qe · · · πk v−1
0 sr

= u0 u1 ϕ
−p(u0 π1 · · · πa) sp(q+1) πa+1+qe · · · πk v−1

0 sr

= u0 u1 ϕ
−p(u0 π1 · · · πa) ϕ−p(q+1)(πa+1+qe · · · πb−1) sp(q+1) πb · · · πk v−1

0 sr

= u0 u1 ϕ
−p(u0 π1 · · · πa) ϕ−p(πa+1 · · · πb−1−qe) sp(q+1) πb · · · πk v−1

0 sr

= u0 u1 ϕ
−p(u0 π1 · · · πb−1−qe) sp(q+1) πb · · · πk v−1

0 sr

= u0 u1 ϕ
−p(u0 π1 · · · πb−1−qe) ϕ−p(q+1)(πb · · · πa+(q+1)e) sp(q+1) πa+(q+1)e+1 · · · πk v−1

0 sr

= u0 u1 ϕ
−p(u0 π1 · · · πb−1−qe πb−qe · · · πa+e) sp(q+1) πa+(q+1)e+1 · · · πk v−1

0 sr.

By (24), ϕ−p(u0 π1 · · · πa+e) = u−1
1 π1 · · · πa. Hence

(31) uw = u0 π1 · · · πa sp(q+1) πa+(q+1)e+1 · · · πk v−1
0 sr.

Similar calculations give:

wv = u0 π1 · · · πa spq πa+1+qe · · · πk v−1
0 sr ϕr(v0v1) sp

= u0 π1 · · · πa spq πa+1+qe · · · πk v−1
0 v0 v1 sp+r

= u0 π1 · · · πa sp(q+1) ϕp(πa+1+qe · · · πb−1 πb · · · πk v1) sr.

The corresponding fact to (24) concerning R and Z is that Zϕ−p(v−1
0 ) freely reduces to Rv1.

It implies ϕ−p(πb+e · · · πk v−1
0 ) = πb · · · πkv1. Together with one final application of (S7) to

ϕp(πa+1+qe · · · πb−1), this gives

wv = u0 π1 · · · πa sp(q+1) πa+1+(q+1)e · · · πb+e−1 πb+e · · · πk v−1
0 sr,

which equals uw by equation (31).

The proof when e < 0 is similar, giving uw = wv in H for w = u0LS M−1
2 s−pqPRv−1

0 sr. �

9. Completing our proof of Theorem 1

We will establish a linear upper bound on the conjugator length of H. Suppose u, v and w
are words on a±1

1 , . . . , a±1
m , s±1 such that uw = wv. We will show that there is a word W on

a±1
1 , . . . , a±1

m , s±1 such that uW = Wv and `(W) at most a constant times |u|H + |v|H .

Write the normal forms of u, v and w as ũsp, ṽsp and w̃sr, respectively.

Following the discussion of Section 2, if p = 0 then we are in the 0-twisted conjugacy
case, and we find W via Proposition 5.1 (I).

When p , 0, as we can replace u and v by their inverses if necessary, we may assume p > 0.
As discussed in Section 2 we may also replace w with u jw so we can assume 0 ≤ r < p.
By Proposition 4.5, |u′|H ≤ (2m+1) |u|H and |v′|H ≤ (2m+1) |ϕ−r(ṽ)|H ≤ (2m+1)(2r + |v|H)
for any subwords u′ of ũ and v′ of ϕ−r(ṽ). We also have 0 ≤ r < p ≤ |u|H . So it will suffice
to bound the length of W in terms of p and of lengths in H of subwords of ũ and ϕ−r(ṽ).

Our u, v and w form either the I- orH-configuration of Figure 1.
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In the case of the I-configuration, w = u0v−1
0 sr where u0 and v0 are prefixes of ũ and ϕ−r(ṽ).

Then |w|H ≤ |u0|H + |v0|H + r, and so W = w will be a conjugator which, by the discussion
above, satisfies the required length bound.

Now consider the case of the H-configuration. Proposition 7.1 tells us that we have a
conjugator w̃sr, where w̃ = u0Xv−1

0 , with u0 and v0 prefixes of ũ and ϕ−v(ṽ) respectively,
and the form of X following one of (X1)–(X4). It suffices for us to show `(X) is at most a
constant times |u|H + |v|H . Lemma 8.1 would give this bound but for M1 in case (X3) and
x̂ in case (X4).

As remedy, in the event of (X3), we use the conjugator from Lemma 8.4. As L, S , M2,
P, and R are bounded as required, and qp is bounded by (27), the required bound on |w|H
follows.

In the event of case (X4), we iterate this process. By Proposition 7.1 we know that
rank(x̂) < rank(x) and x̂ occurs in a solution to anH-twisted conjugacy problem, namely

(32) ϕ−p(û0 x̂v̂−1
0 ) = û−1

1 x̂v̂1

where û0, û1, v̂0, and v̂1 are words whose lengths in H are at most a constant multiple of
|u|H + |v|H by Proposition 4.5. Lemma 7.2 shows how an X̂ solving this new H-twisted
conjugacy problem leads to an X solving the earlier one, and that if X̂ has length at most
a constant times |u|H + |v|H , then the same will be true of X. We reapply Proposition 7.1,
and again, if we hit case (X1) or (X2) then we can stop. In case (X3), a short conjugator is
found via Lemma 8.4. If we hit case (X4) then we iterate down to a lower rank again.

The maximum number of times we can iterate through case (X4) is m − 1 times. This will
bring us to rank 1 (if the process has not yet terminated) and then case (X1) will apply. So
this process will terminate at an X and so a W of suitably bounded length.

10. The algorithm: completing our proof of Theorem 2

Here, in outline, is our algorithm for the conjugacy and conjugacy search problems for H.

Input: Words u and v on a±1
1 , . . . , a±1

m , s±1.

Step 1. Convert u and v to normal forms ũsp and ṽsq respectively. If p , q, then stop and
declare u is not conjugate to v. If p = q < 0, then replace u and v by their inverses and
return to the start.

Time required: polynomial in `(u) + `(v).

Step 2. If p = q = 0, then run the algorithm of Proposition 5.1 (III) solving the 0-twisted
conjugacy problem. If it declares the 0-twisted conjugacy problem has no solution, then
declare u is not conjugate to v. Otherwise it outputs a solution (r, w̃), so stop and declare
w̃sr is a conjugator.

Time required: polynomial in `(ũ) + `(ṽ).

Step 3. We have p = q > 0. Let I be the set of all pairs (w̃, r), where 0 ≤ r < p, and w̃
is a word of the form UV where U is a prefix of ũ and V−1 is a prefix of ϕ−r(ṽ). For each
(w̃, r) in I, check whether ũϕ−p(w̃) = w̃ϕ−r(ṽ) (as per the I-twisted conjugacy problem).
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If a solution (w̃, r) is found, then the algorithms declares that u and v are conjugate and
outputs w̃sr as a conjugator. If no solution is found we continue to the next step.

Time required: the number of entries on the list I is bounded by a polynomial in p + `(ũ) +

`(ṽ) and the obvious solution to the word problem in F runs in linear time, so overall this
step runs in time polynomial in |p| + `(ṽ) + `(ṽ).

Step 4. Run the algorithm of Corollary 8.3 for the H-twisted conjugacy problem. If it
declares there is no solution, stop and declare that u and v are not conjugate. If it exhibits
a solution (r, x, u0, v0, u1, v1), then declares that u and v are conjugate and output u0xv−1

0 sr

as a conjugator.

Time required: polynomial in |p| + |ũ|H + |ṽ|H .

Overall time required: Since |ũ|H ≤ `(ũ) ≤ C`(u)m and |ṽ|H ≤ `(ṽ) ≤ C`(v)m for a suitable
constant C > 0, and |p| ≤ `(u), the total running time of the algorithm is polynomial in
`(u) + `(v).

Remark 10.1. The algorithm described above can be modified as follows to output in poly-
nomial time a conjugator W (if one exists) with `(W) at most a constant times `(u) + `(v).
We describe the required changes. First, when the algorithm of Lemma 8.2 finds a con-
jugator of form (X3) its output includes the subword M1 or M−1

1 . Add an extra step that
replaces this M1 by spq. (Lemma 8.4 confirms that the result remains a conjugator.) This
will produce a word W0 which is a conjugator whose length in H is bounded by a linear
function of |u|H + |v|H ≤ `(u) + `(v). This means that there is a word W on a±1

1 , . . . , a±1
m , s±1

that equals W0 in H and has length `(W) ≤ `(u) + `(v). It remains to argue that we can
further adapt the algorithm to exhibit such a W. The word W0 is assembled from words
derived from subwords of ũ and ṽ as described in Section 9. We used Proposition 4.5 to
bound the lengths (in H) of such subwords in terms of |u|H or |v|H . Our proof of Proposi-
tion 4.5 is constructive. In particular it can be adapted to a polynomial time algorithm that,
for example, takes a subword u′ of ũ, where u = ũsp in normal form, and gives a word on
a±1

1 , . . . , a±1
m , s±1 that equals u′ in H and whose length is at most a constant times |u|H . We

can then assemble W from words obtained in this manner.

11. An alternative approach

In this section we outline an alternative proof of Theorem 2 that is based on the structure
of Hm as an iterated HNN extension. This alternative approach will be developed in detail
in [BRSa] and applied to a wider class of free-by-cyclic groups.

We regard H = Hm as an (m−1)-fold iterated HNN extension of H1 = 〈s, a1〉 � Z
2 where at

the j-th stage the base group is H j := 〈s, a1, . . . , a j〉, the stable letter is a j+1, the associated
(cyclic) subgroups are 〈s〉 and 〈sa−1

j 〉, and the relation a−1
j+1sa j+1 = sa−1

j holds. This point
of view enables one to argue by induction on m and appeal to the technology of corridors to
analyse van Kampen diagrams and their annular analogues over the natural presentations
of these groups. But in keeping with the viewpoint of this article, we shall suppress the
use of diagrams here and concentrate on the algebraic translation of the insights that they
provide.
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There is a classical approach to the conjugacy problem in HNN extensions based on
Collins’ Lemma [Col69]—see [LS07], page 185, for example. This simplifies in the case
where the associated subgroups are cyclic, as we shall now explain.

Let G = (G0, t | t−1αt = β) be an HNN extension where A = 〈α〉 and B = 〈β〉 are infinite
cyclic. We fix a generating set S for G0 that includes α and β. A word U in the alphabet
S ±1 is in cyclically reduced HNN form if U2 does not contain a pinch—i.e., a subword
t−1ct with c ∈ A or tdt−1 with d ∈ B.

For simplicity, we assume that distinct powers of β are not conjugate in G and that no power
of α is conjugate to a power of β in G0. A straightforward analysis of annular diagrams
yields the following version of Collins’ Lemma in this simplified setting.

Lemma 11.1 (Collins’ Lemma). Assume that U and V are words in cyclically reduced
HNN form. If U is conjugate to V in G, then either

i U and V contain no occurrences of t±1 and either they are conjugate in G0 or else
one is conjugate into A and the other is conjugate into B; or else

ii both U and V contain an occurrence of t±1 and there are cyclic permutations U′

of U and V ′ of V and an integer q such that α−qU′αq = V ′ in G.

11.1. The algorithm for Theorem 2. We regard Hm as an HNN extension of Hm−1 as
described in the second paragraph. In the language used above, G = Hm while G0 =

Hm−1, A = 〈s〉, B = 〈β〉 and t = ak, where β is a generator we have added with β = sa−1
m−1

in Hm.

Proceeding by induction, we may assume that we have a polynomial time algorithm to
decide conjugacy in Hm−1. Given two words u, v in the generators of Hm (with β included)
we rewrite them into cyclically HNN reduced words U,V . This is achieved by first trans-
forming u and v to reduced HNN form by removing pinches and then examining cyclic
permutations of u and v, removing any additional pinches that appear. The second step
may need to be repeated several times, but the word is shortened each time. Both steps can
be done in polynomial time without increasing the length of the words.

We are now able to apply Collins’ Lemma. If there are no occurrences of a±1
m in U′ and

V ′, then we are in case (i) and we apply the algorithm for Hm−1. Otherwise we are in case
(ii) and we are left to determine if there is an integer p such that s−qU′sq = V ′. (Recall that
A = 〈α〉 = 〈s〉.)

In polynomial time, we can rewrite U′ and V ′ into normal form Ũ′sr and Ṽ ′sr′ , where the
lengths of Ũ′ and Ṽ ′ are bounded polynomially by |U | and |V |. If r , r′, then we stop and
declare that U is not conjugate to V . If r = r′, then we are reduced to deciding if there
is a positive integer p such that φp(Ũ′) = Ṽ ′ or φp(Ṽ ′) = Ũ′. The range of possible p
is bounded by a linear function of |U | + |V |, by considerations of growth, as in Section 4.
And for each specific p, we can evaluate φp(U) naively (letter by letter) and freely reduce
to see if it is equal to V . As ϕ has polynomial growth, these evaluations can be done in
polynomial time.

This algorithm, as we have described it, does not provide the linear upper bound on conju-
gator length that is required for Theorem 1. The main argument in [BRSa] overcomes this
limitation with an alternative endgame that makes greater use of the structure of Hm as an
iterated HNN extension.
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