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1. Introduction

The main result of this paper is –

Theorem 1.1. The subgroup

H = 〈 x, y, [x, a]a, [y, a]a 〉
is exponentially distorted in Z ≀ F2 where Z = 〈a〉 and F2 = F(x, y). The
same is true in Z ≀ (Z ≀ Z) = 〈a〉 ≀ (〈s〉 ≀ 〈t〉) with x = ts and y = t.

Subgroup distortion is foundational and widely studied. It compares a sub-
group’s word metric with the restriction of the word metric of the ambi-
ent group. In some basic cases it is well-behaved. Subgroups of finitely
generated free groups and of fundamental groups of closed hyperbolic sur-
faces are undistorted [Pit93, Sho91]. Subgroups of finitely generated nilpo-
tent groups are all at most polynomially distorted [Osi01]. But subgroup
distortion can be wild even in some seemingly benign groups. There are
subgroups of F2 × F2 and of rank-3 free solvable groups whose distortion
functions cannot be bounded from above by a recursive function [Mih66,
Umi95].

Theorem 1.1 shows that substantial subgroup distortion can arise subtly in
wreath products. It is a next step in a direction of inquiry pursued by Davis
and Olshanskii [Dav11, DO11]. They proved every subgroup of Z ≀ Z is
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distorted like nd for some positive integer d and, for each such d, they ex-
hibited a subgroup realizing that distortion. Davis [Dav11] suggested next
exploring subgroup distortion in Z ≀ Fn and quoted speculation that an an-
swer would be of interest for the study of von Neumann algebras.

The most novel feature of the work here is the idea behind the exponential
lower bound (proved in Section 3). It relies on the observation that F2

and Z ≀ Z admit height functions (homomorphisms onto Z) such that for all
integers n > 0, there are pairs of height-0 elements a distance 2n apart with
the property that any path from one to the other travels up to height n en
route—see Proposition 3.1.

The proof of the exponential upper bound (in Section 4) includes an intrinsic
description of H.

The second theorem of this article makes the point that our distorted sub-
groups of Theorem 1.1 are necessarily delicate. Closely related results can
be found in [BLP15], which we recommend for a more detailed treatment
than the proof we outline in Section 5.

Theorem 1.2. (Cf. Burillo–López-Platón [BLP15]) Suppose K is a finitely
generated group and G = Z ≀ K. So, G = W ⋊ K where W =

!
K Z. Then –

(1) All finitely generated subgroups H of W are undistorted in G.
(2) If H is a finitely generated subgroup of K, then its distortion in G is

the same as its distortion in K (more precisely, DistGH ≃ DistK
H). In

particular, K is undistorted in G (meaning DistGK(n) ≃ n).
(3) Cases (1) and (2) give all possible distortion functions of Z-subgroups

of G. In more detail, if Ĥ ! Z is a subgroup of G such that
DistGĤ(n) " n, then there exists a subgroup H ! Z of G per (1)
or (2) such that DistGH ≃ DistGĤ.

In the case of G = Z ≀ F2 all the subgroups in this list are undistorted in
G, as all finitely generated subgroups of F2 are undistorted. In the case of
G = Z ≀ (Z ≀Z) the list includes polynomially distorted subgroups on account
of [Dav11, DO11].

The results in this paper do not speak to the question of Guba & Sapir
[GS99] as to what functions may be distortion functions of finitely gener-
ated subgroups of Thompson’s group F. While (Z ≀ Z) ≀ Z is a subgroup of
Thompson’s group, Z ≀ (Z ≀ Z) and Z ≀ F2 are not [Ble08, Theorem 1.2].
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2. Preliminaries

For a group G with finite generating set S , write |g|S to denote the length
of a shortest word on S ±1 representing g. The word metric dS on G is
dS (g, h) =

"""g−1h
"""
S
.

Suppose a subgroup H ≤ G is generated by a finite set T ⊆ G. The distor-
tion function DistGH : N→ N for H in G compares the word metric dT on H
to the restriction of dS to H:

DistGH(n) ≔ max
# |g|T | g ∈ H and |g|S ≤ n

$
.

For functions f , g : N → N we write f ≼ g when there exists C > 0 such
that f (n) ≤ Cg(Cn +C) +Cn +C for all n. We write f ≃ g when f ≼ g and
g ≼ f .

Two finite generating sets for a group yield biLipschitz word metrics, with
the constants reflecting the minimal length words required to express the
elements of one generating set as words on the other. So, up to ≃, the
growth rate of a distortion function does not depend on the finite generating
sets.

Let W =
!

K L, the direct sum of a K-indexed family of copies of L. The
(restricted) wreath product G = L ≀K is the semi-direct product W ⋊K with
K acting to shift the indexing. More precisely, given a function f : K → L
that is finitely supported (meaning f (k) = e for all but finitely many k ∈ K)
and given k ∈ K, define f k : K → L by f k(v) = f (vk−1). Then L ≀ K is the
set of such pairs ( f , k) with multiplication

( f , k)( f̂ , k̂) = ( f + f̂ k, kk̂).

A lamplighter description helps us navigate G. Suppose {a1, . . . , am} gen-
erates L and {b1, . . . , bl} generates K. Viewing L and K as subgroups of G,
with L being the e-summand of W, the set S = {a1, . . . , am, b1, . . . , bl} gen-
erates G. Then W is the normal closure of a1, . . . , am in G, or equivalently
the kernel of the map Φ : G→→ K that kills a1, . . . , am. Imagine K as a
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city. At each street corner (that is, each element of K) there is a lamp whose
setting is expressed as an element of L. An ( f , z) ∈ L ≀ K records settings
f (k) ∈ L of the lamps k ∈ K and a location z ∈ K for the lamplighter. A
word w on S ±1 representing ( f , z) describes how at dusk a lamplighter walks
the city streets adjusting the lamps to achieve ( f , z). He starts at e ∈ K with
all lights off (that is, set to e ∈ L) and, reading w from left to right, moves in
K according to the b±1

1 , . . . , b
±1
l until finally arrives at z. En route, he adjusts

the setting of each lamp where he stands according to the a±1
1 , . . . , a

±1
m .

Our conventions are that [x, a] = x−1a−1xa and xa = a−1xa.

3. The exponential lower bound on distortion

Proposition 3.1. Suppose K = 〈x, y | R〉 is a 2-generator group such that
mapping x and y to 1 defines an epimorphism θ : K → Z (a ‘height func-
tion’).

Suppose that for n ≥ 1, there is a set Pn of elements of K such that:

(i) xn−1 ∈ Pn but xny−n $ Pn.
(ii) If p ∈ Pn, then px−1, py−1 ∈ Pn.

(iii) If k ∈ K " Pn and either kx−1 or ky−1 is in Pn, then θ(k) = n.

Let G = Z ≀ K, generated by a, x, y where Z = 〈a〉. Let

H = 〈x, y, σ, τ〉 ≤ G

where σ = [x, a]a and τ = [y, a]a. Then DistGH(n) ≽ 2n.

For motivating examples of K and Pn see Corollary 3.2. We view (ii) as
saying that when moving in the Cayley graph of K, it is not possible to
enter Pn from below, and (iii) as saying that Pn can only be entered from
above by moving from a height-n element outside Pn to a height-(n − 1)
element in Pn. Together, (i) and (ii) imply that Pn contains xi if and only if
i < n.

In terms of the lamplighter description, the idea behind this proposition is
as follows. Suppose the lights at the elements e and xny−n of K are set to
1 and −1, respectively, and all other lights are off (set to 0). How can a
lamplighter turn all the lights off using x, y, σ, and τ? The lamplighter has
four types of move at his disposal: he can navigate the Cayley graph of K
(by using x and y); as σ = [x, a]a = x−1a−1xa2, he can decrement by 1 the
lamp one step away in the x−1-direction at the expense of incrementing the
lamp where he stands by 2; and likewise in the y−1-direction using τ.
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The answer is he sets the lamp at e to 0 at the expense of setting that at x to
2. Then he sets that one to 0 at the expense of setting that at x2 to 4. And so
on, until the lamp at xn is set to 2n. He then sets that to 0 and, proceeding
in the y−1 direction, sets the lamp at xny−1 to 2n−1. Continuing likewise in
the y−1-direction he sets the lamp at xny−(n−1) to 2. Finally, he adjusts that to
zero at the expense of changing the lamp at xny−n), but as that was initially
set to −1, this results in all lights being off, as required.

The above method takes at least 2n moves, but could it have been accom-
plished with fewer? The hypothesis involving Pn, xny−n, and the epimor-
phism K → Z ensures it cannot. Any path from e to xny−n in the Cayley
graph must rise to height n to escape Pn and the settings of the lights must be
incrementally adjusted on the way up so that the number of σ- and τ-moves
grows exponentially with the height.

Here is a proof.

Proof of Proposition 3.1. Fix n ≥ 1. First we will show that a−1xny−na ∈ H.
Define

λn = xσ xσ2 · · · xσ2n−1

µn = yτ yτ2 · · · yτ2n−1
,

which both represent elements of H. In G, the elements a and x−1ax com-
mute, so for all i,

ai xσi = ai x (x−1a−1xa2)i = ai x x−1a−ix a2i = x a2i,

and therefore aλn = xna2n
. Likewise, aµn = yna2n

in G. So a−1xny−na equals
λnµ

−1
n in G and represents an element of H.

The length of λnµ
−1
n as a word on x, y,σ, τ is 2n + 2n+1 − 2. Next we will

argue that the length of any word w on x, y,σ, τ that represents a−1xny−na in
G is at least 2n − 1. The length of a−1xny−na as a word on a, x, y is 2n + 2.
So we will then have that DistGH(2n + 2) ≥ 2n − 1 and the result will follow.

Express a−1xny−na in the form ( f , xny−n) where f is −1 at e, is 1 at xny−n,
and is 0 elsewhere.

Given a finitely supported function f : K → Z and an integer i < n, define

pi( f ) =
%

g∈Pn
θ(g)=i

f (g).

So the sequence

Pn( f ) =
&
. . . , p−1( f ), p0( f ), p1( f ), . . . , pn−2( f ), pn−1( f )

'
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is all zeroes apart from p0( f ) = −1, since e is Pn and xny−n is not.

Now consider the effect on Pn( f ) of changing f via the action of σ or τ
when the lamplighter is located at some k ∈ K. Let i = θ(k). If k ∈ Pn, then
(by hypothesis) kx−1 and ky−1 are in Pn and so pi−1( f ) is lowered by 1 and
pi( f ) is increased by 2. And if k $ Pn, then kx−1 and ky−1 can only be in Pn

if i = n (again, by hypothesis) and if so, pn−1( f ) (only) decreases by 1. The
actions of σ−1 and τ−1 are the same, instead of lowering lamp settings by 1
they increase then by 1, and instead of increasing by 2 they decrease by 2.

We can read off w−1 a sequence of applications of σ±1 and τ±1 (and lamp-
lighter movements around K) that convert a−1xny−na to e and so convert
Pn( f ) to the sequence of all zeroes. This process must display a doubling
effect that gives us the claimed lower bound 2n − 1. The net effect of the (at
least 1) moves that change p0( f ) must be to convert it from −1 to 0, and so
in the process they convert p1( f ) from 0 to −2. There must therefore be (at
least 2) moves that increment p1( f ) at the expense of converting p2( f ) from
0 to −4, and so on. □

(In fact, when K is F2 or Z ≀ Z as per the following corollary, the rolls of
x and y are interchangeable and the above proof shows λnµ

−1
n is a geodesic

word.)

Corollary 3.2. The subgroups of Z ≀ (Z ≀ Z) and Z ≀ F2 of Theorem 1.1 are
both at least exponentially distorted.

Proof. For K = F2 = F(x, y), because the Cayley graph is a tree, the propo-
sition applies with Pn the set of reduced words whose prefixes π all satisfy
θ(π) < n.

For K = Z ≀ Z = 〈s, t | [s, sti] = 1 ∀i〉 with respect to the generating set
x = ts and y = t, mapping x, y /→ 1 defines a homomorphism θ : K → Z.

In the lamplighter model for Z ≀ Z, the integer θ(k) is the position of the
lamplighter. Take Pn to be the set of all k ∈ Z ≀ Z such that θ(k) < n and the
lamp settings is supported on {...., n−2, n−1}. Then kx−1 and ky−1 are in Pn

for all k ∈ Pn since x−1 decrements the light at the lamplighter’s location and
then moves one step in the negative direction, and y−1 only moves one step
in the negative direction. The elements xi for 0 ≤ i ≤ n − 1 are in Pn since
they have the lights at positions 1, 2, . . . , i set to 1 and locate the lamplighter
at position i, but xny−n = (ts)nt−n has the lights at positions 1, 2, . . . , n set to
1 (and at all others positions set to 0), so is not in Pn. And if k ∈ K and
either kx−1 or ky−1 is in Pn, then θ(k) = n. □
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The same proof works for Z ≀ (C ≀ Z) for any finite cyclic group C % {1}.
It may be illuminating to see an example where Proposition 3.1 does not
apply. The hypotheses on Pn imply that any path from e to xny−n in the
Cayley graph of K must climb to height n en route. If K = Z2 = 〈x, y |
[x, y]〉, then this is not so, because xny−n can be expressed as (xy−1)n. Indeed,
in Z ≀ Z2 we find that a−1xny−na =

&
a−1xy−1a

'n
= ((xσ)(yτ)−1)n, a word of

length 4n on the generators of H.

4. The exponential upper bound on distortion

Let G = Z ≀ K where K is F2 or Z ≀ Z as per Theorem 1.1. Let θ : K → Z be
the epimorphism mapping x and y to 1.

Lemma 4.1. The subgroup H of G of Theorem 1.1 is the set of all g =
( f , k) ∈ G such that

(1)
%

i∈Z
2−i

%

v∈K, θ(v)=i

f (v) = 0.

Proof. The four generators x, y, σ = [x, a]a and τ = [y, a]a of H satisfy
(1). And any g = ( f , k) ∈ G satisfying (1) can be expressed as a word u on
x±1, y±1, σ±1, τ±1 since it can can be transformed to the identity element as
follows.

Let n = dG(e, g), the length of the shortest word on a±1, x±1, y±1 representing
g. The cardinality of supp f is at most n. Every h ∈ supp f can be joined to
e in the Cayley graph of K (with respect to x and y) by a path of length at
most n. The lamp setting f (h) at h has absolute value at most n. By moving
along this path (using x±1 and y±1) and successively adjusting lamps along
it (using σ±1 and τ±1), the lamplighter can reset the lamp at h to 0 at the
expense of changing the lamp at e by at most 2n while, in the process,
the lamp settings always satisfy (1). Once all the other lights have been
extinguished the light at e is also at 0 on account of (1). □

The above argument is quantified in such a way that a couple of further ob-
servations suffice to complete the exponential upper bound proof for Theo-
rem 1.1. The absolute values of the settings of the lamps along the at most n
paths will grow to at most n+ n2n in the course of the transformation of the
lamp settings. The number of x±1 and y±1 (the movement) is at most n2. So
u has length at most a constant times 2n, establishing the exponential upper
bound on DistGH.



8 T. R. RILEY IN MEMORIAM PETER M. NEUMANN 1940–2020

5. Elementary subgroups of Z ≀ K

Here we prove Theorem 1.2. We have G = Z ≀ K, where K is a finitely
generated group. So G = W ⋊ K, where W =

!
K Z.

We begin by proving (1). Suppose H is a finitely generated subgroup of W.
Then H is a subgroup of the product of finitely many of the summands in
W =

!
K Z and there exists C ≥ 1 such that for all g = ( f , e) ∈ H, both

dG(e, g) and dH(e, g) (word metrics with respect to the generating sets for G
or for H, respectively) are between 1

C maxi∈K | f (i)| and C maxi∈K | f (i)|. So
H is undistorted in G.

Case (2) is straight-forward on account of the map G→→ K killing W.

For (3), suppose Ĥ = 〈t〉 is an infinite cyclic subgroup of G. Then t = ( f , k)
for some f ∈ W and some k ∈ K.

If k has finite order r, then tr = ( f ′, e) for some f ′ ∈ W, and H = 〈tr〉 is a
subgroup of W per Case (1) such that DistGH ≃ DistGĤ.

Suppose, on the other hand, k has infinite order. Roughly speaking, we will
show that for all j, either t j illuminates lights close to most of e, k, . . . , k j

and Ĥ is therefore undistorted in G, or it only illuminates lights close to e
and k j, and Ĥ is therefore distorted in G similarly to 〈(0, k)〉.

Let F : K → Z be the map
(

i∈Z f ki
. In terms of the lamplighter model,

F tells us the settings of the lights after the lamplighter acts per f at ki for
every i ∈ Z. As k has infinite order, F is well-defined—for any h ∈ K,
f ki

(h) = 0 for all but finitely many i—but it may be that F is not finitely
supported and so does not represent and element of W. Indeed, as F is
invariant under the action of k, either F = 0 (the zero-map) or F has infinite
support.

For j ≥ 1, let f j =
( j−1

i=0 f ki
, so that t j = ( f j, k j).

Let L > 0 be sufficiently large that supp f ⊂ NL(e)—that is, the radius-L
neighbourhood of e in the Cayley graph of K contains the support of f .
Then suppF ⊆ NL(Ĥ) and supp f j ⊆ NL({k0, k1, . . . , k j}) for all j ≥ 1.

As k has infinite order, for all R > 0, there exists i such that ki, ki+1, . . . are
a distance greater than R from e in the Cayley graph of K. It follows that
there exists C > 0 such that for all j > 0, the functions F and f j agree
on N := NL({kC, kC+1, . . . , k j−C}). So, as F is k-invariant, f j follows the
same repeating pattern as F alongN—more precisely, the restrictions of f j

to NL(kC), to NL(kC+1), . . . , and to NL(k j−C) all agree after translations by
successive powers of k. And therefore, if suppF % ∅, there exists λ, µ > 0



EXPONENTIALLY DISTORTED SUBGROUPS IN WREATH PRODUCTS 9

such that for all j > 0 we have dG(e, t j) ≥ λ j − µ, because to achieve the
element t j ∈ G, the lamplighter must visit every one of these neighbour-
hoods. So Ĥ is undistorted in G and satisfies (3) of the theorem. And if,
on the other hand, suppF = ∅, then there exists ν > 0 such that for all j
and all g ∈ K " Nν({e, k j}), we have f j(g) = e. So dG(e, t j) ≤ dG(e, u j) + C
where u = (0, k). So DistGH ≃ DistGĤ where H := 〈u〉, which is a subgroup
per Case (2).
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