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Abstract. For all integers p > q > 0 and k > 0, and all non-elementary torsion-free hyperbolic

groups H, we construct a hyperbolic group G in which H is a subgroup, such that the distortion

function of H in G grows like expk(np/q). Here, expk denotes the k-fold-iterated exponential

function.
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1. Introduction

The landscape of subgroups of hyperbolic groups is poorly understood. Whether all one-ended

hyperbolic groups have surface subgroups is a celebrated open question. What functions are Dehn

functions of subgroups of hyperbolic groups is widely open. This article addresses another funda-

mental issue: What distortion can subgroups of hyperbolic groups exhibit? Indeed, in his 1998

survey [Mit98b] Mitra (now known as Mj) asked: “Given any increasing function f : N → N, does
there exist a hyperbolic subgroup H of a hyperbolic group G such that the distortion of H is of

the order of exp(f(n)).”

Let expk denote the k-fold iterated exponential function N → R defined by exp1(n) = exp(n)

and, for k = 2, 3, ... by expk(n) = exp(expk−1(n)). The notation ≃ will be explained in Section 2.

Our main result is:

Theorem 1.1. Given integers p > q > 0 and k > 0, there exists a hyperbolic group G and free

subgroup H ≤ G of distortion DistGH(n) ≃ expk(np/q).

In Section 3 we outline our construction of these G and H and highlight the new techniques we

introduce. Our G are of infinite height (so do not speak to an old open question of Swarup)—see

Section 17. In the case k = 1 they can be made residually finite, C ′(1/6), CAT(−1), and virtually

special—see Section 4.

In Section 16 we the leverage examples of Theorem 1.1 and of [BBD07, BDR13, Mit98a, Mit98b]

so as to make the distorted subgroup be any given non-elementary torsion-free hyperbolic group:

Theorem 1.2. Let H be any non-elementary torsion-free hyperbolic group and let f be any of the

following functions:

(1) f(n) = expm(np/q), for any integers m ≥ 1 and p ≥ q ≥ 1.

(2) f is any one of the Ackermann-function representatives of the successive levels of the Grze-

gorczyk hierarchy of primitive recursive functions.

Then there exists a hyperbolic group G with H < G such that DistGH ≃ f .

This paper also contains results we needed to prove Theorem 1.2 which may be of independent

interest. Theorem 15.4 assembles results of Bowditch, Dahmani, and Osin into a combination

theorem for the hyperbolicity of amalgams Γ = A ∗C B. Theorem 16.2 relates the distortion of C

in A and of C in B to that of A in Γ = A ∗C B. Building on the k ≥ 2 case, proved by I. Kapovich

in [Kap99], Lemma 16.1 states that in every non-elementary torsion-free hyperbolic group H there

is, for any k ≥ 2, a malnormal quasiconvex free subgroup F of rank k. Lemma 15.5 states that if

a semi-direct product G = Fl ⋊ Fm of finite rank free groups is hyperbolic, then the Fm-factor is

quasiconvex and malnormal in G.

Background. At first sight, it is surprising that subgroups of hyperbolic groups can display

any distortion given the tree-like geometry of the thin-triangle condition that defines hyperbol-

icity. Every Z subgroup of a hyperbolic group is undistorted—e.g., [BH99, III.Γ Corollary 3.10].

Finitely generated subgroups H of hyperbolic groups G are undistorted (meaning linear distortion,

DistGH(n) ≃ n) if and only if they are quasi-convex, and in that event they are themselves hyper-

bolic. Above linear there is a gap in the spectrum of possible distortion functions: a consequence of

the exponential divergence property of hyperbolic spaces is that if a finitely generated subgroup of
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a hyperbolic group is subexponentially distorted, then it is quasi-convex [Kap01, Proposition 2.6].

Theorem 1.1 sweeps out much of the landscape of possibilities above exponential.

Prior to Theorem 1.1, only sporadic examples of distortion functions for subgroups of hyperbolic

groups were known. Subgroups of finite-rank free groups and of hyperbolic surface groups are

undistorted [Pit93, Sho91]. Wise [Wis04b] generalized this result to fundamental groups of non-

positively curved, piecewise Euclidean 2-complexes which enjoy a suitable negative sectional cur-

vature condition. The free factor in any hyperbolic free-by-cyclic group is exponentially distorted

[BF92, BF96, Bri00]. Mitra [Mit98a, Mit98b] constructed, for each integer k ≥ 1, a hyperbolic

group with a free subgroup distorted like n '→ expk(n), and an example with distortion growing

faster than any iterated exponential. Barnard, Brady and Dani [BBD07] developed Mitra’s con-

structions into more explicit examples that are also CAT(−1). Baker and Riley [BR13] exhibited a

finite-rank free subgroup of a hyperbolic group that is distorted like n '→ exp2(n) and is also patho-

logical in that there is no Cannon–Thurston map. Brady, Dison, and Riley [BDR13] constructed,

for every primitive recursive function, a hyperbolic ‘hydra’ group with a finite-rank free subgroup

whose distortion outgrows that function. The Rips construction produces examples displaying yet

more extreme distortion. Applied to a finitely presentable group with unsolvable word problem

the construction yields a hyperbolic (C ′(1/6) small-cancellation) group G with a finitely generated

subgroup N such that DistGN is not bounded from above by a recursive function—see [AO02, §3.4],
[Far94, Corollary 8.2], [Gro93, §3, 3.K ′′

3 ] and [Pit92].

The subgroup N in the Rips construction is not finitely presentable. In fact, it follows from a

theorem of Bieri in [Bie81] that N is finitely presented if and only if the quotient Q is finite. So the

Rips construction cannot be used to construct examples such as those in Theorem 1.1. Instead, we

use a modification of the Rips construction: starting with a particular finitely presented group Q, we

realize it as the quotient of a group presentation that satisfies C ′(1/6) and other small-cancellation

conditions, and find a free subgroup which is distorted, but not normal. Several additional nuances

in our construction guarantee that we get the desired distortion estimates. We outline this in

Section 3.

In contrast to the situation with hyperbolic groups, a broad family of functions are known

to be distortion functions of subgroups of CAT(0) groups. Indeed, Olshanskii and Sapir [OS01,

Theorem 2] used a Mihailova-style construction to show that the set of distortion functions of finitely

generated subgroups of F2×F2 coincides with the set of Dehn functions of finitely presented groups.

Such functions are known to have wide scope thanks to the S-machines of [SBR02, Sap18].

In finitely presented groups, even Z-subgroups can exhibit essentially any distortion: Olshanskii

[Ol′97] showed that every computable function N → N, satisfying some straight-forwardly necessary

conditions, is ≃-equivalent to the distortion function of such as subgroup.

Application to Dehn functions. What functions can be ≃-equivalent to Dehn functions is

understood in detail thanks to [BB00, BBFS09, Ol′97, SBR02]. However, because the most com-

prehensive results depend on deeply involved constructions, we note that our examples give some

explicit examples as follows.

Corollary 1.3. Our groups G yield explicit examples, for integers p > q > 0 and k > 0, of groups

with Dehn functions growing ≃ expk(np/q), namely the free product with amalgamation G ∗H G of

two copies of G along H, and the HNN-extension G∗τ of G with stable letter τ that commutes with

all elements of H.
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Proof. Theorem 6.20 in Chapter III.Γ of [BH99] gives upper and lower bounds on the Dehn functions

of G ∗H G and G∗τ in terms of the Dehn function of G (which is ≃ n because G is hyperbolic)

and DistGH . Up to ≃, these bounds agree with each other and with DistGH since DistGH is super-

exponential. □

Next steps. A potential application of our examples is to constructing subgroups of CAT(0)

groups or hyperbolic groups exhibiting a range of Dehn functions. One might, for example, look

to embed the doubles of Corollary 1.3 in CAT(0) groups in the manner of [BT21]. However, our

distorted subgroups not being normal is an obstacle to making this work.

Sapir’s S-machines emulate general computing machines in appropriately constructed (and al-

ways non-hyperbolic) finitely presented groups. Looking yet further ahead, one might view the

techniques we introduce here as groundwork for doing the same within appropriately constructed

hyperbolic groups.

The organization of this article. Section 2 gives preliminaries on words, hyperbolicity, distor-

tion, and the equivalence relation ≃ on functions R≥0 → R≥0. Section 3 is an overview of our

construction. Section 4 contains the definition of our groups G used to prove Theorem 1.1 in

the case m = 1 and catalogs their small-cancellation conditions. Section 5 gives some immediate

consequences of those small-cancellation conditions. Section 6 reviews the definition of a corridor

in a van Kampen diagram and introduces a more general dual notion we call tracks, which may

branch, unlike corridors. Section 7 gives two HNN-structures for G and establishes that H is free.

Section 8 contains our proof of the lower bound on the distortion of H in G. Sections 9–14 prove

the upper bound. Section 9 concerns how a van Kampen diagram ∆ over G being reduced limits

the patterns of tracks within it. Section 10 gives general results about paths across discs, which

we will apply to tracks in ∆. Section 11 argues that tracks are further constrained in what we call

a distortion diagram, meaning a ∆ exhibiting how a word in the generators of H equals a shorter

word in the generators of G. Section 12 concerns what we call (a2, bq)-tracks, which are a device

we use to connect growth within ∆ to the presence of certain edges in its boundary. Section 13

contains estimates which are made possible by the restrictions proved in 9–11 and which culminate

in an upper bound on the distortion of H in G. Section 14 contains a calculation in a free-by-cyclic

quotient Q of G that is postponed from the prior section and is where the fraction p/q ultimately

enters. Section 15 promotes our examples to iterated exponential functions, and so completes our

proof of Theorem 1.1. Section 16 explains how we leverage our examples to prove Theorem 1.2.

Section 17 contains a proof that our examples have infinite height.

Acknowledgements. We are grateful to Ilya Kapovich and Mahan Mj for suggesting that we

promote Theorem 1.1 to Theorem 1.2, and to Jason Manning for guidance on the associated liter-

ature.

2. Preliminaries

A word w on a set of letters A is an expression aε11 · · · aεmm where m ≥ 0, ai ∈ A, and εi = ±1 for

all i. It is positive when εi = 1 for all i. Its length |w| is m. The word metric dS(g, h) on G gives

the length of a shortest word on S that represents g−1h. We use dG or d in place of dS when the

generating set is understood from the context.
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A finitely generated group is hyperbolic when its Cayley graph has the property that there

exists δ > 0 such that all geodesic triangles are δ-thin: that is, each of its three sides is in the δ-

neighbourhood of the other two. The existence of such a δ does not depend on the finite generating

set (but the values of δ for which the condition holds generally will). See, for example, [BH99, Gro87]

for further background.

Suppose S and T are finite generating sets for a group G and subgroup H, respectively. The

distortion function DistGH : N → N measures how H sits as a metric space in G by comparing the

restriction of the word metric dS on G associated to S to the word metric dT on H associated to T :

DistGH(n) := max { dT (e, g) | g ∈ H with dS(e, g) ≤ n } .

Replacing S and T by other finite generating sets will produce a distortion function that is ≃-

equivalent in the following sense. For f, g : R≥0 → R≥0 write f ≼ g when there exists C > 0 such

that f(n) ≤ Cg(Cn + C) + Cn + C for all n ≥ 0, and f ≃ g when f ≼ g and g ≼ f . Apply

these relations to functions N → R≥0 by extending the domains to R≥0 and having the functions

be constant on the intervals [n, n+ 1).

The following two lemmas concern features of the ≃-relation that will be important for us. The

first is routine and we present it without proof.

Lemma 2.1.

(1) For α,β ≥ 1, 2n
α ≃ 2n

β
if and only if α = β.

(2) For α ≥ 1 and C > 1, Cn+nα ≃ Cnα ≃ 2n
α
.

For our proof of the lower bound in Theorem 1.1, we will exhibit a sequence of words that

represent elements of H, but can only be expressed by long words on the generators of H. The

force of the following lemma is that, despite the lengths of our words forming a sparse sequence,

we can draw the desired conclusion.

Lemma 2.2. Suppose H is a subgroup of G and both are finitely generated. Suppose p > q > 0 are

integers, C1, C2, C3 > 0 are constants, and w1, w2, . . . is a sequence of words on the generators of

G. Suppose that wn represents an element of H for all n, and

C1n
q ≤ |wn| ≤ C2n

q but dH(e, wn) ≥ C32
np
.

Then DistGH(n) ≽ 2n
p/q

.

Proof. Remark 2.1 in [BBFS09] is that to verify g ≽ f for f, g : N → N, it suffices to have

g(mn) ≥ f(mn) on a sequence (mn) of integers such that mn → ∞ as n → ∞ and such that there

exists C > 0 with mn+1 ≤ Cmn for all n. If C4 = (q+1) max
i=0,...,q

!
q

i

"
, then (n+1)q ≤ C4n

q for all n.

So there is a C such that the sequence mn = |wn| satisfies this condition. Now

DistGH(|wn|) ≥ dH(e, wn) ≥ C32
np ≥ C32

!
1
C2

|wn|
"p/q

.

So DistGH(n) ≽ 2

!
n
C2

"p/q

, and the result then follows from Lemma 2.1(2) (by taking C = 2(C
−p/q
2 )

and α = p/q).

□

We will work extensively with van Kampen diagrams. There are many introductory accounts in

the literature.
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3. Motivation for our construction

In this section, we offer some insights into the origins of our construction. The formal definition

of our group-pair H < G, used to prove Theorem 1.1 in the case m = 1, follows in Section 4.

Our construction begins with the free-by-cyclic group

(3.1) Q = 〈 a1, b0, . . . , bp | a−1
1 bia1 = ϕ(bi) ∀i 〉

where ϕ is the polynomially-growing automorphism of the free group F = F (b0, . . . , bp) mapping

bi '→ bi+1bi for i ∕= p and bp '→ bp.

b0

a1 a1 a1 a1 a1

a1 a1 a1 a1 a1

b3

b3

b2

b3

b2

b2

b1

b3

b2

b2

b1

b2

b1

b1

b0

b3

b2

b2

b1

b2

b1

b1

b0

b2

b1

b1

b0

b1

b0

b3

b3
b3
b2
b3
b3
b2
b3
b2
b2
b1
b3
b3
b2
b3
b2
b2
b1
b3
b2
b2
b1
b2
b1
b1
b0

b0

a1 a1 a1 a1 a1a2 a2a2 a2 a2a2 a2a2 a2 a2

a1 a1 a1 a1 a1

b3

b3
b3
b2
b3
b3
b2
b3
b2
b2
b1
b3
b3
b2
b3
b2
b2
b1
b3
b2
b2
b1
b2
b1
b1
b0

Figure 3.1. Top left: the van Kampen diagram D0 over Q for a−n
1 b0a

n
1 = ϕn(b0)

when n = 5 and p = 3. Top right: the corresponding diagram D2 over G2. Lower

left, middle and right: a-tracks, b-tracks, and (a2, bq)-tracks through D2.

The van Kampen diagram D0 over Q pictured top-left in Figure 3.1 (for the case n = 5 and

p = 3) shows how a−n
1 b0a

n
1 = ϕn(b0) equals a positive word λ on b0, b1, . . . , bp which contains ≃ ni

letters bi for i = 0, . . . , p (Lemma 14.1). The contribution of bp dominates, so the length of λ is

N = |λ| ≃ np.

Next, we define

G1 = 〈 Q, x | b−1
j xbj = x2 ∀j 〉.
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x2N

x

an1

an1

an1

an1

b0 b0

Figure 3.2. A van Kampen diagram ∆1 over G1 for a−n
1 b−1

0 an1xa
−n
1 b0a

n
1 = x2

N

when n = 5, p = 3, and N = |ϕn(b0)| = 26.

As shown in Figure 3.2, attaching a copy of D0 and a copy of its mirror image to a diagram for

λ−1xλ = x2
N

along its two paths labelled λ gives a van Kampen diagram ∆1 over G1 for the

relation

(3.2) a−n
1 b−1

0 an1xa
−n
1 b0a

n
1 = x2

N
.

This diagram illustrates that there is a word of length ≃ 2n
p
in H1 = 〈x〉, whose length in G1 is

≃ n. As there is a family of such diagrams indexed by n, this shows that DistG1
H1

(n) ≽ 2n
p
.

Next we elaborate on this construction in a way that plays off the ≃ np letters bp against the ≃ nq

letters bq in λ. We introduce a new generator a2 and we modify the relation a−1
1 bq−1a1 = bqbq−1

of G1 to a−1
1 bq−1a1a2 = bqbq−1, so that for every new bq created by ϕ within D1, an a2 is created

as well. Furthermore, we add the relations that a2 commutes with bj for all j, allowing these

newly created edges to flow to the boundary as shown in the diagram on the right in Figure 3.1.

The resulting diagrams D2 can be mapped onto D1 by suitably collapsing all the a2-edges and the

commutator 2-cells in which they occur. As for the construction of ∆1, assemble D2, its mirror-

image, and our diagram for λ−1xλ = x2
N
to get a diagram ∆2 that demonstrates that x2

N
equates

in a group G2 to a word a−n
1 b−1

0 an1xa
−n
1 b0a

n
1 with ≃ nq letters a±1

2 inserted. This construction

suggests that the distortion function of 〈x〉 in G2 grows like nq '→ 2n
p
, and therefore like n '→ 2n

p/q
.

Now, G2 is not hyperbolic. So next we hyperbolize its presentation using an approach similar

to Wise’s version of the Rips construction [Wis03]. We add noise to each relation so that the

resulting presentation satisfies small-cancellation conditions including C ′(1/6). This is achieved

by replacing x by three letters t, x1, x2, and introducing a noise word on t, x1, x2 to each relation.

We then add relations to allow the noise to flow to the boundary of the diagram and then (in

the two triangles at the bottom of Figure 3.3) be moved past the a±1
1 , a±1

2 and collected together.

These additional relations play a similar role to the commuting relations involving a2 introduced

above; they allow noise to move past a- and b-letters (but only in one direction) at the expense of
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introducing additional noise. The resulting group G3 admits diagrams ∆3 which map onto ∆2 on

suitably collapsing the edges labelled by noise letters and suitably collapsing the 2-cells that allow

the noise to flow. We take H3 = 〈t, x1, x2〉.

b0

a1

a1

a2
a1
a2
a2
a1
a2a2a2a1a2a2
a2
a2

a1

a1

a2
a1
a2
a2
a1
a2a2a2a1a2a2
a2
a2

x1

χ5

b0

a51 a51

Figure 3.3. A schematic of a van Kampen diagram ∆ over G for w5 =

(a1 a1a2 a1a
2
2 a1a

3
2 a1a

4
2)

−1b−1
0 a51 x1 a−5

1 b0(a1 a1a2 a1a
2
2 a1a

3
2 a1a

4
2) on the generators

of G equals a word χ5 on the noise letters. Its (a2, bq)-tracks are shown. Each

meets the boundary at a pair a2-edges.

The diagram of Figure 3.3 shows the n = 5 instance of a family of diagrams demonstrating how

words wn on a1, a2, b0, a1, x1 represent the same elements of G3 as words χn on t, x1, x2. Because the

effect is so pronounced, the figure cannot do justice to the exponential expansion in the direction

of χn.

While this family of diagrams provides the desired 2n
p/q

lower bound on the distortion of H3 in

G3, some issues remain. Firstly, with the presentation described, we cannot get a matching 2n
p/q

upper bound on distortion. If we replace the two b0 letters in (3.2) with bi, where i < q, and then

construct diagrams ∆3 as described above, then they will exhibit n '→ 2n
(p−i)/(q−i)

distortion of

H3, which is greater than 2n
p/q

. Secondly, allowing the noise letters to interact with both a- and

b-letters prevents us from establishing an HNN-structure on the group (the iterated HNN-structure

of Proposition 7.4) which will allow us to prove that our distorted subgroup H is free.

Both issues are solved by making the role of the noise more nuanced. We introduce two pairs of

noise letters, x1, x2 and y1, y2 (in addition to the noise letter t). For i > 0, bi interacts with x1 and

x2 but not y1 and y2, while a1 and a2 interact with y1 and y2, and not x1 and x2. Conjugation by

b0 converts x1 and x2 to words on y1 and y2. This way we arrive at our group G whose defining

relations are set out in Figure 4.1. We take H to be the subgroup generated by t, y1, y2.

Over G there are diagrams ∆ of the form shown in Figure 3.3 exhibiting 2n
p/q

-distortion. This

construction is the heart of our proof in Section 8 that DistGH(n) ≽ 2n
p/q

.
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As for the reverse bound DistGH(n) ≼ 2n
p/q

, the aforementioned diagrams yielding larger distortion

no longer exist because if we replace b0 with bi where i > 0 in the construction of ∆, then ∂∆ has

a long word in a1, a2, t along with x1, x2 rather than along with y1, y2. We have long words on

letters that are not all generators for H and we can no longer attach the triangular subdiagrams

that separate the a1, a2 from the the noise letters.

However, to establish the upper bound we must prove that no other “bad” diagrams exist. To

achieve this we study what we call distortion diagrams—reduced diagrams ∆, subject to natural

simplifying assumptions, which exhibit how a word χ on t, y1, y2 can be represented by a shorter

word w on the generators of G. We show in Sections 9–12 that such a ∆ is subject to considerable

rigidity. Our argument shows that ∆ is so constrained that it strongly resembles the diagrams

described above and is thereby subject to estimates that yield the 2n
p/q

upper bound.

Three features of G impose this rigidity.

(1) Noise in ∆ must flow towards χ and orthogonally to tracks. This refers to the propagation

of (“noise”) letters t, x1, x2, and y1, and y2 through ∆. Figures 3.1, 3.3 and 3.4 show

tracks through the various diagrams we constructed above. Introduced in Section 6, tracks

are generalizations of corridors. We will be concerned with four types: a-tracks, b-tracks,

t-tracks, and (a2, bq)-tracks.

An a-track is a path in the dual of ∆ that crosses successive edges labelled by a-letters

(meaning a1 and a2). A b-track is the same, but for edges labelled by b0, . . . , bp. A t-

track crosses t-edges—the use of t is a distinctive feature of Wise’s version of the Rips

construction; it renders the group an HNN-extension of a free group, with t the stable

letter (see Proposition 7.1). This extra structure, manifested in the geometry of t-tracks,

facilitates analysis of G. We will describe (a2, bq)-tracks in (2) below. As there are three

a-letters or three b-letters in some of the defining relators, a-tracks and b-tracks can branch.

As noise advances across successive tracks it increases exponentially in length. A conse-

quence of the small-cancellation condition enjoyed by the Rips words used in the defining

relators is that noise cannot substantially cancel within a diagram—it must instead emerge

on the boundary. Therefore, if we assume that w is of minimal length among all words on

the generators of G that equal χ in G, then almost all this noise must emerge in χ. If many

noise letters emerge in w, then their blow up en route there would result in it being possible

to cut a subdiagram out of ∆ to get a new diagram that demonstrated a shorter word than

w equals χ in G.

This also has helpful consequences for the orientation of tracks—see Lemma 11.2. In

short, they must be oriented towards χ because otherwise they would act as blockades for

the flow of noise.

(2) (a2, bq)-tracks. The subject of Section 12, these are paths through van Kampen diagrams

that cross successive a2- and bq-edges. Examples are found in Figures 3.1 and 3.3. In most

defining relators of G there are either zero or two a2-letters, and ditto for bq-letters. If an

(a2, bq)-track enters a 2-cell labelled by such a relator across an a2-edge, then it exists across

the other a2-edge, and ditto for bq-edges. However our presentation for G has a defining

relator (r1,q−1 of Figure 4.1) with one a2-letter and one bq-letter, and a defining relator (r2,q
of Figure 4.1) that has two a2-letters and two bq-letters. On entering the 2-cell of the former

type across its a2-edge it exits across its bq-edge (or vice versa). On entering a 2-cell of
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Figure 3.4. Top, middle, lower: a-tracks, b-tracks, and t-tracks through the dia-

gram ∆ of Figure 3.3. The lower diagram is intended only to convey the nesting

pattern of the t-tracks. The pattern expands too rapidly towards χ to be displayed

accurately.

the latter type across an a2-edge (resp. bq-edge), it exits across the bq-edge (resp. a2-edge)

that is oriented the same way. These conventions ensure that every a2- and bq-edge in a

van Kampen diagram over G is crossed by exactly one (a2, bq)-track, no (a2, bq)-track can

cross itself, and no two (a2, bq)-tracks can cross each other. So (a2, bq)-tracks associate to
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every bq-edge in a diagram ∆ a pair of edges labelled by a2 or bq on the boundary. So, if

the automorphism ϕ gives ∼np growth within ∆, then the length of w must be ≽nq.

(3) x- versus y-noise, and b0-tracks. It is significant that our generating set for H consists of

the noise letters t, y1, y2 but omits x1 and x2. It is possible for x-noise to flow across b-tracks

but impossible for y-noise. And x-noise becomes y-noise when (and only when) it crosses

b0-tracks (particular examples of b-tracks). This means that stacks of nested b-tracks must

include at most one b0-track and that b0-track must be the closest to χ.

In Section 13 we use these ideas to reduce the problem of bounding |χ| from above to establishing

an inequality concerning the quotient Q of (3.1) (specifically, we reduce it to Lemma 13.11), and

this is where the “np/q” in our distortion functions is ultimately established, as we explain in

Section 14. Combined with the blow-up that comes from the flow of noise through ∆, it gives our

2n
p/q

upper bound on the distortion of H in G.

We leverage our examples to get iterated exponential distortion functions and complete our proof

of Theorem 1.1 in Section 15. The strategy is to amalgamate G with a chain of hyperbolic free-by-

free groups following Brady and Tran [BT21], and then prove and apply a combination theorem

for the hyperbolicity of amalgams.

In Section 16 we show that the distorted subgroup H need not be free of rank 3, but rather

can be taken to be any torsion-free non-elementary hyperbolic group, proving Theorem 1.2. For

this we establish the existence (in Lemma 16.1, after [Kap99]) of undistorted free subgroups of

any rank in torsion-free non-elementary hyperbolic groups, apply the same combination theorem to

amalgamate these with our examples in a new hyperbolic group, and then we prove the estimates

on the distortion function by means of an appropriate general theorem (Theorem 16.2) concerning

distortion in amalgams.

4. The definition of our groups

Here we will define the group G which will prove Theorem 1.1 in the case k = 1. In Section 15

we will explain how the case k = 1 leads to the result for other k.

We fix integers p > q > 0. Then G has presentation

P = 〈 a1, a2, b0, . . . , bp, t, x1, x2, y1, y2 | R 〉

where R is the set of 5p + 11 defining relators displayed in Figure 4.1. Our notation X∗ and Y∗
is intended to indicate indexing that we have chosen to suppress. Every element of R is a word

of the form t−1utv−1 where u and v are words on generators other than t. Each has two or three

Rips subwords, denoted X∗ or Y∗, from sets X = {X1, X2, . . . , X14p} and Y = {Y1, Y2, . . . , Y30}
of pairwise disjoint subwords of the infinite Rips words x1x

1
2 x1x

2
2 x1x

3
2 · · · and y1y

1
2 y1y

2
2 y1y

3
2 · · · ,

respectively, chosen in a manner we will explain momentarily. We stress that each X∗ and Y∗ occurs

once in P and does so as a subword of one defining relator. So, if an X∗ or Y∗ can be read around

a portion of the boundary circuit of a 2-cell in a van Kampen diagram (see Section 6) over P, then

that Rips word uniquely determines the defining relator that 2-cell corresponds to. This use of t

and Rips words is a variation on Wise’s [Wis03] HNN-version of Rips’ Construction [Rip82]. (Our

example G departs in some respects from Wise’s framework. Wise has two X∗ subwords in each

defining relator, has only two ‘noise’ generators x1 and x2, and has additional defining relators that

ensure that 〈t, x1, x2〉 is a normal subgroup.)
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r1,p r1,q−1

r1,i r1,0

r2,i r2,0

r3,i r3,0

r3,i,j r3,0,j

r4,i,j r4,i

i = 1, . . . , p − 1

i ∕= q − 1

i = 1, . . . , p

i = 1, . . . , p

j = 1, 2

i = 1, 2

j = 1, 2 i = 1, 2

i = 1, 2

i = 1, . . . , p

a1 a1

a1 a1

a1

a1 a1

a2

ai ai

a2

a2 a2

ai ai

a1 a2

t t

xj xj

yj t

bp bp

bq

bi+1
bi

bi b0 b0

b1

b0

bq−1
bq−1

bi

bi

b0 b0bibi

bi bi b0

b0

b0

X∗ t X∗ t X∗ X∗ t X∗ t X∗

X∗ t X∗ t X∗ Y∗ t Y∗ t Y∗

X∗ t X∗ t X∗ Y∗ t Y∗ t Y∗

X∗ t X∗ Y∗ t Y∗

X∗ t X∗ t X∗ Y∗ t Y∗ t Y∗

Y∗ t Y∗ t Y∗ Y∗ t Y∗

Figure 4.1. Defining relators for our group G

Suppose S is a set of words on A ∪A−1 for some alphabet A. A cyclic conjugate of a word w is

a word s2s1 such that s1 is a prefix of w and s2 a suffix such that s1s2 = w. Let C(S) be the set of

all cyclic conjugates of words in S±1. Assume that all elements of C(S) are reduced. A piece is a

common prefix π of a pair of distinct words πu and πv in C(S).
We choose the Rips subwords X∗ and Y∗ so that each has length at least 100 and we have:

i. The uniform C ′(1/6)-condition for R. Every piece has length strictly less than a sixth of

the length of the shortest relator in R.
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ii. The C(3)-condition for the union S of the 3- and 5-element generating sets of the terminal

vertex groups of Table 7.1. No element of C(S) is a concatenation of fewer than 3 pieces.

iii. The C ′(1/4) condition for the set of Rips words X ∪Y. Every piece has length strictly less

than a quarter of the length of each element of C(X ∪ Y) in which it occurs.

iv. The C(5)-condition for U =
!
u, v | t−1utv−1 ∈ R

"
. No element of C(U) is a concatenation

of fewer than 5 pieces.

This can be achieved for instance by adapting the example of [Wis03, Remark 3.2] so that X is

the set of words

Xi := x1x
200ip
2 x1x

200ip+1
2 · · ·x1x200ip+200p−1

2

for 1 ≤ i ≤ 14p and Y is the set of words

Yi := y1y
200ip
2 y1y

200ip+1
2 · · · y1y200ip+200p−1

2

for 1 ≤ i ≤ 30. Then R satisfies C ′(1/6) because the longest pieces in R have the form xα−1
2 x1x

α
2

or yα−1
2 y1y

α
2 (or the inverse thereof) for some α ∈ N. The longest piece appears either in X14p with

α = 200(14p) + 200p− 2 or in Y30 with α = 200(30) + 200p− 2. Its length is 2α, which (in either

case, since p > 1) is strictly less than 12, 400p. On the other hand, the shortest defining relator has

length at least 2|X1| (see Figure 4.1) which is certainly bigger than 80, 000p2, and this number is

already bigger than six times 12, 400p. Conditions ii–iv hold similarly.

Condition i is used in the next paragraph and will be used to achieve CAT(−1) in Remark 15.6.

Condition ii will be used in Lemma 5.1 towards establishing HNN-structures forG. Condition iii will

restrict cancellation in Section 8, where we prove a lower bound on distortion, and in Sections 5 and

9, towards showing certain configurations of tracks do not arise in reduced diagrams. Condition iv

achieves residual finiteness as we now explain.

All C ′(1/6) groups satisfy a linear isoperimetric inequality and so are hyperbolic [Ger99]. By

[Wis04a] they are cubical, and then, by [Ago13], they are virtually special, and so are residually

finite. Their residually finiteness is more directly apparent via [Wis03, Theorem 2.1], given the

C(5)-condition for U .
Our distorted subgroup is

H = 〈t, y1, y2〉.

5. Consequences of small-cancellation

Here we give three lemmas that are proximate consequences of the small-cancellation conditions

in Section 4.

Part (1) of the first of these lemmas will be used in our proof of Proposition 7.4. Part (2) will

imply Proposition 7.1. We prove it using the C(3)-condition for U , which is weaker than the C(5)-

condition we have for U in Section 4. It is a special case of [Wis01, Theorem 2.11], but we include

our own proof here because the result is central to our argument and the following short argument

is available in our context.

Lemma 5.1. (Cf. [Wis01, Theorem 2.11])

(1) Let S be the union of the 3- and 5-element generating sets of the terminal vertex groups of

Table 7.1 (that is, S is the set of all words appearing in the final column). Then S freely

generates a free subgroup of the free group F = F (A), where A = {a1, a2, t, x1, x2, y1, y2}.

13



(2) The set

U =
!
u, v | t−1utv−1 ∈ R

"

freely generates a free subgroup in the free group

F = F (a1, a2, b0, . . . , bp, x1, x2, y1, y2).

Proof. Both parts are instances of the same general result, which we will prove here in the notation

of (1). Suppose w1, . . . , wm ∈ S±1 are such that W = w1 · · ·wm is a non-empty reduced word on S

but W freely reduces to the empty word when viewed as a word on the generators of F . We will

show that the existence of this W contradicts C(3).

There is a planar tree T whose edges are directed and are labelled by generators of F so that

around the perimeter of T we read W . As each wi is a reduced word on A, the portion of the

perimeter of T along which one reads wi can only include a leaf of T at its start or end. It follows

that if T is a line, then the shorter of w1 and w−1
m is subword of the other, and so is a piece, contrary

to C(3).

Assume, then, that T is not a line. There must be a pair of leaves v1 and v2 in T such that the

geodesic ρ from v1 to v2 visits exactly one branching (i.e. valence at least 3) vertex b. So the word

u one reads along ρ is wj · · ·wk for some 1 ≤ j ≤ k ≤ m. In the remainder of our argument, read

indices modulo m. The portion of ρ along which we read wj must pass b else whichever of wj−1

and wj is shorter would be a piece. And, in fact, then wj must be u, else wk or wk+1 would be

a piece. So j = k. But then, as neither w−1
j−1 nor w−1

k+1 can be a subword of wj (else they would

be pieces), wj must be concatenation of two pieces: one that it shares with w−1
j−1 and one that it

shares with w−1
k+1. Again, this is contrary to C(3). □

In our next lemma, a stronger small-cancellation hypothesis allows the same conclusion for further

subsets of free groups. We will call on it in Lemma 7.6 en route to our proof of Proposition 7.4.

Lemma 5.2. Suppose Z1, Z2, Z3, Z
′
1, Z

′
2, Z

′
3, Zp1, Zp2, Zp3, Zp4, Zp5 are words of the form Y∗t

−1Y∗tY∗
or Y∗tY∗ and each is a subword of a different defining relation from Figure 4.1 (so no Y∗ appears

twice). We will refer to these as Z-words. Then

S1 =
!
t, x1, x2, Z1, Z2, Z3, Z

′
1, Z

′
2, Z

′
3

"

freely generate a free subgroup of F = F (t, x1, x2, y1, y2). The same is true of

S2 =
!
Z1, Z2, Z3, Z

′
1, Z

′
2, Z

′
3, Zp1, Zp2, Zp3, Zp4, Zp5

"
.

Proof. Suppose for a contradiction that w is a reduced word on S1 or S2 that represents the identity

in F and includes at least one of the Z-words. Express each Y∗ as the concatenation P∗S∗ of a

prefix and a suffix whose lengths differ by at most one.

Consider a first P±1
∗ or S±1

∗ that is completely cancelled away on freely reducing w in F by

removing successive inverse pairs of adjacent letters. It must have cancelled into a neighbouring

P±1
∗ or S±1

∗ . But then, because of the C ′(1/4)-condition on the set of Rips words X ∪ Y, some

neighbouring pair of Z-words are inverses, contrary to w being reduced as a word on S1 or S2. □

We will use the following variation on Lemma 5.2 in our proof of Lemma 9.3.

Lemma 5.3. Suppose

v = xε0λ0
Xµ1

ξ1
xε1λ1

· · ·Xµm

ξm
xεmλm

14



is a word on X ∪ {x1, x2} in which m ≥ 1, each Xi ∈ X , each λi ∈ {1, 2}, each µi ∈ {±1},
and each εi ∈ {0,±1}. If v freely equals the empty word in F (x1, x2), then for any sequence Σ

of free-reduction moves (successive removals of x±1
j x∓1

j subwords) that takes v to the empty word,

there is some i such that a subword consisting of at least a quarter of the letters of Xµi

ξi
cancels with

subword consisting of at least a quarter of the letters of X
µi+1

ξi+1
.

Proof. Express each word Xµi

ξi
as the concatenation PiSi of a prefix and a suffix whose lengths differ

by at most one. Let i be the index of a first Pi or Si to be completely cancelled away in the course

of Σ. Assume it is Si. (The argument for Pi is essentially the same.) Then Si cancels with a prefix

of xεiλi
X

µi+1

ξi+1
. But then, C ′(1/4) and the fact that the X∗ all have length at least 100 together imply

the result. □

6. Van Kampen diagrams, corridors, and tracks

Suppose w is a word on the generators of a group which is given by a presentation. A van Kampen

diagram for w with respect to that presentation is a finite planar 2-complex in which every edge

is directed and labelled by a generator in such a way that around the perimeter of the diagram

(in some direction from some starting vertex) one reads w and around the perimeter of each 2-cell

(in some direction from some starting vertex) one reads a defining relator. A word w admits a

van Kampen diagram if and only if it represents the identity in the group. Many introductory

texts discuss van Kampen diagrams—e.g., [BH99].

Definition 6.1. (Reduced diagrams) A van Kampen diagram is reduced when it does not

contain a pair of back-to-back cancelling cells—that is, a pair of cells with a common edge e such

that the word read clockwise around the perimeter of one of these cells starting from e is the same

as that read anticlockwise around the other starting from e.

Definition 6.2. (Corridors) Suppose z is a generator. Suppose C1, . . . , Cm is a maximal set

of distinct 2-cells in a van Kampen diagram ∆ such that for all i, around ∂Ci one reads a word

uizv
−1
i z−1 and the z in ∂Ci is the z−1 in ∂Ci+1. Then the C1, . . . , Cm concatenate in ∆ to form

an z-corridor C, as shown in Figure 6.1. A z-edge in ∂∆ that is not part of the boundary of a 2-cell

is a corridor with no 2-cells.

z

z

z
z z z

z

z

C1

C2

C3
C4 C5

...

...

...

Cm

u1

u2

u3
u4

u5

um

v1

v2
v3

v4 v5

vm

bottom

top

Figure 6.1. A corridor in a van Kampen diagram.

An assumption commonly made when defining corridors is that every defining relator containing

a z or z−1, contains exactly one z and one z−1. Then z-corridors cannot cross or self-intersect,

and each one either connects a pair of z-edges on ∂∆ or closes up to form a z-annulus. In our

presentation P for G this assumption is met by the letters a1, b0, and t, but not, for example, by
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a2, b1, . . . , or bp: an a2-corridor can terminate at an r1,q−1-cell and a bi-corridor, for i ∕= 0, can

terminate at an r1,i−1-cell.

The words along the top and bottom of C are v1 · · · vm and u1 · · ·um, respectively.

We will reframe and generalize the definition of a corridor via the dual of a van Kampen diagram.

Let ∆+ be ∆ with one additional 2-cell e∞ “at infinity” attached along its boundary cycle. So ∆+

is homeomorphic to a 2-sphere. Let G+ be the 1-skeleton of the 2-complex dual to ∆+. Let G be

the graph obtained from G+ by removing the interior of e∞. So the vertex dual to e∞ is absent

from G and instead G has a vertex in the middle of every edge in ∂e∞ = ∂∆.

While the following definition could be presented in more general terms, we prefer to specialize

to van Kampen diagrams ∆ over our presentation P for G.

Definition 6.3. (Tracks, subtracks, and compound tracks) An a- or b-edge in a van Kampen

diagram ∆ over P is an edge labelled by ai or bi, respectively, for some i. An s-subtrack is a path

ρ : [0, k] → G, where k > 0 is an integer, with the following properties:

(1) For each integer i in [0, k− 1], the image ρ([i, i+1]) is an edge of G dual to an s-edge of ∆.

(2) All s-edges of ∆ dual to ρ are oriented the same way as one travels along ρ (i.e., cross ρ all

right-to-left or all left-to-right).

(3) The map ρ is injective on (0, k).

An s-track is an s-subtrack that is maximal—i.e., it cannot be extended to a longer path with

properties (1)–(3). For s = a1, b0, . . . , bp, t an s-track traverses the 2-cells of an s-corridor. When s

is a or b, it gives a more general notion. Figures 3.1, 3.3 and 3.4 show examples of tracks. As seen

in these figures, a- or b-tracks could merge. We impose a smoothness condition on these merges,

which we now discuss.
a1

a1

bi
bi

bi+1

X∗ t X∗ t X∗

Figure 6.2. A train-track junction.

Let Ga and Gb be the subgraphs of G made up of all edges dual to a- and b-edges, respectively.

We give Ga and Gb “train-track” structures by rendering some paths in them smooth and others

not. As the defining relators in P each have zero, two or three b-letters, the valence-1 vertices of

Gb are precisely those in the interior of e∞. The valence-2 vertices are those dual to 2-cells of ∆

that have (for some i) one bi and one b−1
i in their boundary word. We term the valence-3 vertices

junctions. They are the vertices dual to 2-cells of ∆ that have (for some i) one bi+1, one bi, and

one b−1
i in its boundary word. Paths γ in Gb can only fail to be smooth at junctions: per Figure 6.2

we make γ smooth at a junction if and only if the orientations of the b-edges it crosses before and

after v agree. So a b-track is a maximal path ρ : [0, k] → Gb that is injective and smooth on (0, k).

We will see below that if ρ closes up, then ρ must in fact be a smooth map of a circle into G.
Corresponding statements apply to Ga.

Figure 6.3 shows how we consider a-, b-, and t-tracks to intersect when they traverse the same

2-cell.
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a∗

a∗

t

t

b∗ b∗

b∗ b∗

a∗

a∗

t

t t

t

Figure 6.3. How a-tracks, b-tracks, and t-tracks intersect in a 2-cell. In the first,

second, fourth and sixth cases, the t-track through the cell touches but does not

cross the other tracks.

A compound track is a concatenation of a-, b-, and t-subtracks (the orientations of which are not

required to agree). The corridor or annulus associated to a (compound) track ρ in a van Kampen

diagram ∆ is the subcomplex made up of all the 2-cells through which ρ passes. There are words

along its top and bottom as for a standard corridor as explained above.

We will see in Section 9 that the hypothesis that a van Kampen diagram ∆ over P is reduced

significantly restricts the behaviours of its tracks. Then in Section 11 the tracks are yet more

sharply restricted in diagrams pertinent to establishing upper bounds on the distortion of H in G.

Here is a first observation in that direction.

Lemma 6.4. (No teardrops) An s-track cannot be a teardrop—i.e., if ρ : [0, k] → G is an s-track

with ρ(0) = ρ(k), then ρ induces a smooth map from S1 to G.

Proof. Were the image of ρ a teardrop, the point ρ(0) = ρ(k) would be a junction. However, as

all the s-edges along an s-track are oriented the same way (in this case, either into or out of the

teardrop) this would violate the orientation condition at the junction; see Figure 6.2 □

Definition 6.5. (Tracks forming loops) A track that closes up is a loop. In light of Lemma 6.4,

a track closes up without introducing a corner, and so loops are smooth.

7. HNN-structures for G

We will give two HNN-structures for G. The first is an immediate consequence of Lemma 5.1(2).

Proposition 7.1. G is an HNN-extension:

G = F ∗
t

where F = F (a1, a2, b0, . . . , bp, x1, x2, y1, y2)

and the r = 5p + 11 defining relators displayed in Figure 4.1 dictate the associated isomorphism

between the vertex groups, both of which are rank-r free subgroups of F .

We will call on the following corollary in our proof of Lemma 9.14. It holds because the elements

of U are reduced words with no t-letters.

Corollary 7.2. Non-trivial subwords of elements of U represent non-identity elements in G.
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We will learn later (in Corollary 9.17) that F is undistorted in G, and it will follow that the

same is true of the two vertex subgroups.

Our second HNN-structure for G is:

G =

#
· · ·

#$
F (t, x1, x2, y1, y2) ∗

a1,a2

%
∗
bp

&
· · ·

&

∗
b0

in the manner detailed in Proposition 7.4 and Table 7.1 below.

We use the notation K ∗s1,...,sl to denote an l-fold HNN-extension with vertex group K, stable

letters s1, . . . , sl and subgroups Ii, Ti < K for i = 1, . . . , l, such that s−1
i Iisi = Ti. We call Ii and Ti

the initial and terminal groups respectively, and say that the stable letter si conjugates Ii to Ti.

Definition 7.3. Let F be the free group on {t, x1, x2, y1, y2}. Note that this is a departure from

our definition of F in Proposition 7.1. Let G−1 be the group generated by {t, x1, x2, y1, y2, a1, a2}
subject to the two r4,∗- and four r4,∗,∗-defining-relators of Figure 4.1. Then, for i = 0, . . . , p, define

Gi to be the group generated by {t, x1, x2, y1, y2, a1, a2, bp−i, . . . , bp} subject to all the relators of

Figure 4.1 in which only these letters appear. In particular, G = Gp.

We will establish that G−1 = F ∗a1,a2 and Gi = Gi−1∗bp−i
for i ≥ 0, where the initial and

terminal groups at each stage are as shown in Table 7.1. More precisely:

Proposition 7.4. For G−1, G0, . . . , Gp as per Definition 7.3:

(1) G−1 is a double HNN-extension over F with stable letters a1 and a2 conjugating the ini-

tial group 〈t, y1, y2〉 to the first and second terminal groups listed in Row 1 of Table 7.1,

respectively.

(2) For i ≥ 0, the group Gi is an HNN-extension over Gi−1 with stable letter bp−i conjugating

the group Ki < Gi−1 from Table 7.1 to the group Li < Gi−1 from Table 7.1.

Recall that, per Section 4, we have chosen to suppress the indexing in our notation for the small

cancellation words appearing in our construction. Thus, in Table 7.1, different instances of X∗ or

Y∗ represent different small cancellation words, and the collection X ∪ Y of all such words satisfies

C ′(1/4).

Before we prove Proposition 7.4, we observe that it yields:

Corollary 7.5. The subgroup H = 〈t, y1, y2〉 of G is a free group of rank 3.

Proof. Since F is free on t, x1, x2, y1, y2, it is clear that 〈t, y1, y2〉 is rank-3 free in F . As vertex groups

inject into HNN-extensions, Proposition 7.4 yields: H ↩→ F ↩→ G−1 ↩→ G0 ↩→ · · · ↩→ Gp = G. □

Proof of Proposition 7.4(1). The group 〈t, y1, y2〉 < F is free of rank 3. The two terminal vertex

groups in the G−1 row of Table 7.1 are free of rank 3 by Lemma 5.1(1). Thus the described

HNN-structure follows from the definition of G−1. □

To establish the HNN-structure of Gi for i ≥ 0 (thereby completing the proof of Proposi-

tion 7.4(2)), we must show that the groups Ki and Li listed in Table 7.1 are free of rank 5 in

Gi−1. As a first step, we show:

Lemma 7.6. The groups K0 and Li for i = 0, . . . , p are rank-5 free subgroups of G−1.
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Table 7.1. Iterated HNN structure of G

Group
Stable

letter(s)

Vertex

group
Initial group Terminal group(s)

G−1
a1,

a2
F 〈t, y1, y2〉 〈Y∗tY∗, Y∗t

−1Y∗tY∗, Y∗t
−1Y∗tY∗〉,

〈Y∗tY∗, Y∗t
−1Y∗tY∗, Y∗t

−1Y∗tY∗〉

Gi

i ≥ 0
bp−i Gi−1

K0 = 〈a1, a2, t, x1, x2〉

Ki = 〈a1bp−i+1, a2,

t, x1, x2〉
i > 0

Li = 〈a1X∗t
−1X∗tX∗, a2X∗t

−1X∗tX∗,

X∗tX∗, X∗t
−1X∗tX∗, X∗t

−1X∗tX∗〉
i ∕= p, p−q+1

Lp−q+1 = 〈a1a2X∗t
−1X∗tX∗,

a2X∗t
−1X∗tX∗, X∗tX∗,

X∗t
−1X∗tX∗, X∗t

−1X∗tX∗〉

Lp = 〈a1Y∗t−1Y∗tY∗, a2Y∗t
−1Y∗tY∗,

Y∗tY∗, Y∗t
−1Y∗tY∗, Y∗t

−1Y∗tY∗〉

Proof. We begin with K0. If a1, a2, t, x1, x2 do not generate a free subgroup of G−1, then there is

a non-empty freely reduced word on these letters which represents the identity in G−1. Let w be

the shortest such word and let ∆ be a reduced van Kampen diagram with boundary label w.

Observe that the group F injects into G−1, as it is the vertex group in the HNN-structure for

G−1, by Proposition 7.4(1). Thus 〈t, x1, x2〉 < F < G−1 is free, and so no non-empty freely reduced

word on these letters represents the identity. Thus we may assume that w has at least one a1- or

a2-letter, and so ∆ has at least one a1- or a2-corridor. Moreover, we can assume ∆ is homeomorphic

to a 2-disc, because otherwise it could be broken into two subdiagrams for two words which are

shorter than w and represent the identity, and cannot both be freely reduced to the empty word

(since w cannot be). In particular, every a1- and a2-corridor is non-degenerate, by which we mean

that it is not a single a1- or a2-edge that is part of a 1-dimensional portion of ∆.

Let 〈Z1, Z2, Z3〉 and 〈Z ′
1, Z

′
2, Z

′
3〉 denote the two terminal groups in the construction of G−1 as

shown in Table 7.1. No two a1- or a2-corridors can cross or branch in ∆, so dual to them there is

an oriented tree T which has a vertex for each complimentary region and an edge for each corridor.

Give the edges of T orientations that match the directions of the a1- or a2-corridors they cross.

Then T necessarily has a sink vertex (a vertex with the property that all its incident edges are

oriented towards it), and the boundary of the subdiagram ∆0 of ∆ corresponding to this vertex

consists of parts of ∂∆ between a1- or a2-edges at the ends of corridors and the top boundaries of

a1- or a2-corridors. Thus, read around ∂∆0 is a word v on

t, x1, x2, Z1, Z2, Z3, Z
′
1, Z

′
2, Z

′
3.

By Lemma 5.2 these elements form a basis for a free subgroup F ′ of F and therefore of G−1. Now

v is non-empty (since every corridor is non-degenerate) and represents the identity in G−1, and
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therefore in the free group F ′ (since F ′ ↩→ G−1). So v is not freely reduced, i.e., it has a subword of

the form uu−1 for some letter or inverse letter u. Since the subwords of v on t, x1, x2 come from w,

which is freely reduced, u is one of the remaining generators of F ′. Then uu−1 must be a subword of

the top boundary of a single a1- or a2-corridor (because, if u and u−1 came from different corridors,

w would have a subword a±1
1 a∓1

1 or a±1
2 a∓1

2 , contradicting the fact that it is freely reduced). This

means the corridor has adjacent cells that are identical and oppositely oriented, contradicting the

fact that ∆ is reduced. Thus K0 is a free subgroup of G−1.

A near identical proof shows that Lp < G−1 is free. Denoting the generators of Lp by

a1Zp1, a2Zp2, Zp3, Zp4, Zp5,

let w be the shortest non-empty freely reduced word on these generators which represents the

identity in G−1. Let ∆ be a reduced van Kampen diagram over G−1 with boundary label w. Since

〈Zp3, Zp4, Zp5〉 < F < G−1 is free (using Lemma 5.1(1)), we may assume as before that w has at

least one a1Zp1 or a2Zp2. Hence ∆ has at least one a1- or a2-corridor. Furthermore, we conclude

as before that all a1- or a2-corridors are non-degenerate. Considering a sink region of the oriented

dual tree as above, we see that the boundary label of the sink region is a word v on

Z1, Z2, Z3, Z
′
1, Z

′
2, Z

′
3, Zp1, Zp2, Zp3, Zp4, Zp5

which represents the identity in G−1. (The first six of these words appear along top boundaries of

a-corridors while the last five appear in parts of v coming from w.) By Lemma 5.2, these elements

form a basis for a free subgroup of F , and therefore of G−1 (since F ↩→ G−1). Then we argue as in

the previous paragraph to arrive at a contradiction.

Finally, for i ∕= p, Lemma 5.1(1) implies that Li is a rank-5 free subgroup of K0. Thus Li is a

rank-5 free subgroup of G−1 as K0 ↩→ G−1. □

In order to prove that Ki is free for i > 0 and complete the proof of Proposition 7.4 we need

three technical lemmas.

Lemma 7.7. In Gi of Definition 7.3, bp, bp−1, . . . , bp−i freely generate a free subgroup.

Proof. By examining the relators of Gi, we see that there is a quotient homomorphism

Gi ↠ Qi = 〈 bp, bp−1, . . . , bp−i, a | a−1
1 bja1 = bj+1bj for j < p; a−1

1 bpa1 = bp 〉

mapping bj '→ bj , a1 '→ a1 and killing every other generator. This quotient Qi is free-by-cyclic: the

generator a of the cyclic part acts by conjugation on a free group generated by bp, . . . , bp−i by an

automorphism. Moreover, the restriction of this homomorphism to the subgroup 〈bp, . . . , bp−i〉 < Gi

is a surjection onto the rank-(i+ 1) free subgroup 〈bp, . . . , bp−i〉 < Q. The result follows. □

The next lemma restricts the possible b-track systems in certain van Kampen diagrams over Gi.

Lemma 7.8. For i = 0, . . . p − 1, let ∆ be a reduced van Kampen diagram over the group Gi of

Definition 7.3 with boundary labelled by a word on a1, a2, t, x1, x2, bp, bp−1, . . . , bp−i. Then

(1) ∆ has no r4,∗,∗- or r4,∗-cells (per Figure 4.1).

(2) ∆ has no a1-annuli.

(3) If the word read around ∂∆ contains no letters a±1
1 , then the track system Gb of ∆ has no

junctions. Thus Gb consists of a collection of disjoint tracks, each dual to a bj-corridor for

some j such that 0 < p− i ≤ j ≤ p.
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Proof. For (1), we suppose ∆0 is a maximal subdiagram of ∆ that contains no b-edges and is

homeomorphic to a 2-disc. Any r4,∗,∗- or r4,∗-cell must be in some such ∆0. All its 2-cells must

be of type r4,∗,∗ or r4,∗ since every other type of 2-cell has a b-edge. So, arguing that there are no

2-cells in ∆0 will establish (1).

There can be no y-edges in ∂∆0 because such a y-edge would have to be either in ∂∆ (contrary

to hypothesis) or in the boundary of a 2-cell of ∆ that is not of type r4,∗,∗- or r4,∗ (impossible

because the only such 2-cells from Figure 4.1 have b0-edges, and b0 /∈ Gi when i < p). So ∂∆0 is

labelled by a word v on a1, a2, t. Now, v represents the identity in

〈a1, a2, t, y1, y2 | r4,i,j , r4,i; i, j = 1, 2〉 = F (a1, a2, y1, y2)∗
t
.

There can be no t-annulus in ∆0 since the word read around the inner boundary of an innermost

t-annulus would be a word on U that freely equals the empty word, and Lemma 5.1(2) would imply

that there must be cancellation of a pair of 2-cells, contrary to ∆ being reduced. And if there is

a t-corridor in ∆0, then there is one that is outermost in that the freely reduced form of the word

along its top or bottom follows a path in ∂∆0. But (since ∆0 is reduced and homeomorphic to

a 2-disc) the word along the top or bottom any t-corridor in ∆0 must contain y-letters, so this

contradicts there being no y-letters in ∂∆0.

Next we deduce (2). Were there such an a1-annulus, in light of (1), one of its boundaries would

be labelled by a word on bp, bp−1, . . . , bp−i representing the identity in Gi. It would then follow

from Lemma 7.7 that this word would freely reduce to the empty word. This would imply that the

annulus would have adjacent 2-cells that are identical but with opposite orientation, contrary to ∆

being reduced.

Finally, for (3), suppose the word read around ∂∆ contains no letters a±1
1 . If the track system

Gb had a junction, that junction would be in a 2-cell of ∆ with an a1 on its boundary, and this

2-cell would be part of an a1-corridor or a1-annulus. However, there are no a1-corridors since the

label of ∂∆ has no a1 and there are no a1-annuli by (2). □

Lemma 7.9. For i = 0, . . . p− 1, in the group Gi of Definition 7.3, we have

〈bp, bp−1, . . . , bp−i〉 ∩ 〈a2, x1, x2, t〉 = {1} .

Proof. Suppose there is a non-trivial element in 〈bp, bp−1, . . . , bp−i〉 ∩ 〈a2, x1, x2, t〉. Then there are

non-empty freely reduced words u = u(a2, x1, x2, t) and v = v(bp, bp−1, . . . , bp−i) such that u = v

in Gi, and there is a reduced van Kampen diagram ∆ with boundary label uv−1. Observe that ∆

satisfies the hypotheses of Lemma 7.8(3) since the word read around ∂∆ has no instances of a±1
1 .

Thus the track system Gb of ∆ consists of a union of disjoint tracks, each dual to a bj-corridor for

some j. Since u has no instances of bj for any j, each of these tracks has both ends on the part

of ∂∆ labelled v. Since these b-tracks cannot cross each other, there must be at least one that is

innermost in that it begins and ends at consecutive letters in v. This implies that v has a subword

b±1
j b∓1

j , which contradicts v being freely reduced. □

We can now prove the following lemma, which establishes Proposition 7.4(2).

Lemma 7.10. For i = 0, . . . , p,

(1) the subgroups Ki, Li ≤ Gi−1 are free of rank 5,

(2) the group Gi is an HNN-extension over Gi−1 with stable letter bp−i conjugating Ki to Li.
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Proof. We induct on i. In the case i = 0, Lemma 7.6 gives (1), and then (2) follows by definition

of G0. We now prove the induction step. Assume the result holds up to some value of the index

i < p. We will show that (1) and (2) hold with the index i elevated by 1.

In Lemma 7.6 we showed that Li+1 is a free subgroup of G−1 of rank 5. By statement (2) of the

induction hypothesis, G−1, G0, . . . , Gi are successive HNN extensions. So G−1 ↩→ G0 ↩→ · · · ↩→ Gi

are injective inclusions and Li+1 is a rank-5 free subgroup of Gi as well.

Likewise, K0 is a rank-5 free subgroup of Gi. We will show that Ki+1 = 〈a1bp−i, a2, t, x1, x2〉 is
also a rank-5 free subgroup of Gi. This will prove (1), and then (2) will immediately follow.

Let w be a non-empty freely reduced word on the generators of Ki+1 such that w = 1 in Gi.

Assume that w is minimal in the sense that no shorter non-empty freely reduced word on the

generators of Ki+1 represents the identity in Gi. Let ∆ be a reduced van Kampen diagram for w

over Gi. It contains no 2-cells of type r4,∗,∗ or r4,∗ by Lemma 7.8(1).

The word w must include at least one instance of a1bp−i, as otherwise w would be a non-

empty freely reduced word representing the identity in the free group K0 < Gi, a contradiction.

Consequently, ∆ has at least one a1-corridor. Moreover, every a1-corridor is non-degenerate, as a

degenerate corridor would cut ∂∆ into two loops (both non-trivial as w is non-empty and freely

reduced) and one of these would be labelled by a shorter freely reduced word on the generators of

K0, contradicting the minimality of w. As ∆ has no 2-cells of type r4,∗,∗ or r4,∗, every a1-corridor

is made up of r1,i-cells, where 1 ≤ i ≤ p. (We exclude r1,0 since i < p.)

Let C be an innermost a1-corridor in ∆, i.e. an a1-corridor whose complement in ∆ has a

component ∆′ without a1-corridors. Then ∂∆′ is composed of two paths between the same pair

of points: a top or bottom boundary γ of C with label v (which is non-empty since C is non-

degenerate) and a path δ along ∂∆. The labels γ and δ represent the same element of Gi.

There are two cases, depending on the orientation of C. If C points away from ∆′, then γ is

its bottom boundary and v is a non-empty word on bp−i, . . . , bp, which is freely reduced since ∆ is

reduced. In this case δ is labelled by a freely reduced word u on t, x1, x2, a2, which is non-empty

since otherwise w would have an a−1
1 a1 subword and not be freely reduced. Now u = v in Gi, which

contradicts Lemma 7.9.

On the other hand, if C points towards ∆′, then γ is its top boundary and v is a word on elements

of the form bj+1bjX
−1
∗ t−1X−1

∗ ε−1, where bj+1 = 1 if j = p, and ε = a2 if j = q− 1 and 1 otherwise.

In this case δ is labelled by a word of the form bp−iub
−1
p−i, where u is a word on t, x1, x2, a2.

We consider the track system G′
b of ∆′. Lemma 7.8(3) applies to ∆′, because it has no a1-

corridors, and we conclude that G′
b is a disjoint union of tracks. Each of these tracks is dual to a

bj-corridor for some j such that 0 < p− j ≤ j ≤ p and inherits its label.

Suppose there exists a b-track with both ends on γ. Consider an innermost such track, i.e. one

for which the subword of v between its endpoints has no b-letters, and suppose it is labelled bm
for some m. Since each 2-cell of C has at least one b-letter and at most one bm, this track must

begin and end at neighboring cells of C. Examining the r1,∗-cells of Figure 4.1 we see that the

only possibility is that these are identical cells with opposite orientation, which contradicts ∆ being

reduced. Thus tracks of G′
b have at most one end on γ.

Since δ is labelled by bp−iub
−1
p−i, where u has no b-letters, there are at most two tracks ending

on δ. Since C is non-degenerate, there is at least one track starting at γ, which rules out the

possibility of a track with both endpoints on δ. We conclude that G′
b has exactly two tracks, each

with one end on δ and one on γ, and both with label bp−i. It follows that C has exactly two 2-cells,
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both of type r1,p, and i = 0 (as every other possible 2-cell has both bj and bj+1 for some j in its

top boundary). Moreover, since tracks preserve orientation, and the two edges of δ labelled bp are

oppositely oriented, it follows that the two 2-cells of C are oppositely oriented. This contradicts ∆

being reduced.

We have arrived at contradictions in all cases. It follows that no such w can exist, and that Ki+1

is free of rank 5, completing the induction. □

8. The lower bound on distortion

In this section, we will establish the lower bound on distortion of Theorem 1.1 in the case k = 1.

In the manner outlined by the figures in this section, we prove that for all n ∈ N, there is a freely

reduced word χn on t±1, y±1
1 , and y±1

2 of length ≃2n
p
which represents the same group element as

a word wn in the generators of G of length ≃nq. These length estimates emerge from calculations

tracing through the construction, with small-cancellation arguments ensuring that χn does not lose

too much length through free reduction. As t, y1 and y2 freely generate H (Corollary 7.5), no

shorter word than χn on t±1, y±1
1 and y±1

2 equals wn in G. Via Lemma 2.2, this will establish that

DistGH(n) ≽ 2n
p/q

.

For w a word, |w| denotes the number of letters in w and |w|x the exponent sum of the x in w.

So, if w is a positive word, which is to say it contains no inverse letters, then |w|x is the number of

x in w.

Recall that killing a2, t, x1, x2, y1, y2 maps G onto the free-by-cyclic group

Q = 〈 a1, b0, b1, . . . , bp | a−1
1 bja1 = ϕ(bj) for all j 〉,

where ϕ is the automorphism of F (b0, . . . , bp) mapping bj '→ bj+1bj for j = 0, . . . , p − 1 and

bp '→ bp. The following lemma describes a lift of an equality a1ϕ(ub0) = ub0a1 in Q to an equality

a1ϕ(ub0) = ub0a1τ in G.

Lemma 8.1. Given a positive word u = u(b1, . . . , bp), there is a freely reduced word τ = τ(a2, t
±1, y±1

1 , y±1
2 )

such that

a1ϕ(ub0) = ub0a1τ in G(8.1)

|ϕ(ub0)|bi = |ub0|bi + |ub0|bi−1
for i = 1, . . . , p(8.2)

|ϕ(ub0)|b0 = |ub0|b0 = 1(8.3)

|τ |a2 = |ϕ(ub0)|bq − |ub0|bq .(8.4)

Moreover, τ has as a suffix κ that is also a long suffix of one of the Rips words Y∗ used in the

presentation P of G—by long we mean that |κ| is at least (3/4)|Y∗|.

Proof. The statements (8.1)–(8.4) are easily verified when u is empty. Assuming |u| ≥ 1, express

u as biu0 where bi is the first letter of u and u0 is the remainder of the word. The structure of a

van Kampen diagram for (8.1) is displayed in Figure 8.1. It is constructed inductively, the base

step being provided by the case where u is empty. The top cell in Figure 8.1 encodes the relation

a1ϕ(bi) = bia1σ, where σ is a word on a2, t, x1 and x2 that contains no a−1
2 . The bottom left block

comes from applying the induction hypothesis to u0, so τ0 = τ0(a2, t
±1, y±1

1 , y±1
2 ). The bottom

right block encodes the result of moving φ(u0b0) past σ. That σ0, and therefore τ , contains letters

23



a1

a1

a1

b0

bi

u0

τ0 σ0

σ

ϕ(u0b0)ϕ(u0b0)

ϕ(bi)

u ϕ(ub0)

τ

Relators r1,∗

Induction
By relators r2,∗,

r3,∗, and r3,∗,∗

Figure 8.1. A diagram for a1ϕ(ub0) = ub0a1τ in G.

a2, t
±1, y±1

1 , y±1
2 but not x±1

1 , x±1
2 is due to b0 conjugating a2, t

±1, x±1
1 and x±1

2 to words on a2, t
±1,

y±1
1 and y±1

2 . (See the r2,∗-, r3,∗-, and r3,∗,∗-cells of Figure 4.1.)

The equalities (8.2) and (8.3) follow from the definition of ϕ.

We get (8.4) by induction, as follows. Assume (8.4) holds for u0. Examining the r1,∗-defining

relators of Figure 4.1, we see that |σ|a2 = |ϕ(bi)|bq − |bi|bq for any i. Moreover, |σ0|a2 = |σ|a2
in the bottom right block of Figure 8.1 as each r2,∗-, r3,∗-, and r3,∗,∗-defining relator of Figure 4.1

satisfies this property. Combining these observations with the induction hypothesis, we get: |τ |a2 =

|τ0|a2+|σ0|a2 = |ϕ(u0b0)|bq−|u0b0|bq+|σ|a2 = |ϕ(u0b0)|bq−|u0b0|bq+|ϕ(bi)|bq−|bi|bq = |ϕ(biu0b0)|bq−
|biu0b0|bq , which completes the inductive step (since u = biu0) and proves (8.4).

When u is empty, Figure 8.1 is a single r1,0-cell and τ is Y∗t
−1Y∗tY∗, which satisfies the suffix

condition by construction. For u non-empty we may assume by induction that τ0 is reduced and

its final letter is positive (since ξ• or µ• have positive final letters). Now σ is one of the subwords

X∗t
−1X∗tX∗ of an r1,∗-defining relator of Figure 4.1 (as Y∗t

−1Y∗tY∗ is excluded since bi ∕= b0). Thus

σ has positive first letter and ends with x1 or x2. It follows, via the C ′(1/4)-condition for X ∪ Y
of Section 4, that the successive words we obtain from σ by conjugating by a bi with i ∕= 0 and

then freely reducing have positive first letters and end with x1 or x2. Finally σ0 is obtained by

conjugating by b0 and freely reducing, so it has a positive first letter and a suffix that is a long

suffix of some Y∗t
−1Y∗tY∗ (again by C ′(1/4) for X ∪Y). Therefore there is no cancellation between

τ0 and σ0, and so σ0 gives τ the required long suffix. □

For all j ≥ 0, define uj to be the positive word on b1, . . . , bq such that ujb0 = ϕj(b0) as words.

In particular u0 is the empty word ε, and uj+1b0 = ϕ(ujb0). Now let n ≥ 1. For j = 0, . . . , n− 1,

let τj+1 be as per Lemma 8.1 so that a1uj+1b0 = ujb0a1τj+1 in G. Let vn = a1τ1 · · · a1τn.

For our next lemma, we understand the binomial coefficient

!
n

i

"
to be zero when i > n.
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Lemma 8.2. For all n ≥ 1, the word vn is freely reduced and

an1unb0 = b0vn in G(8.5)

|vn|a1 = n(8.6)

|unb0|bi =

!
n

i

"
for i = 0, . . . , p(8.7)

|unb0| =

!
n

0

"
+ · · ·+

!
n

p

"
.(8.8)

|vn|a2 = |unb0|bq =

!
n

q

"
(8.9)

Proof. The reason vn is freely reduced is that each τi is freely reduced and contains no a±1
1 letters

by Lemma 8.1. Then (8.5) holds as per Figure 8.2 and (8.6)–(8.9) all follow straightforwardly from

Lemma 8.1. □

vn
a1τ1 a1τ2 a1τ3 a1τn

an1

u0

=ε

b0

u1

b0

u2

b0

u3

b0

un−1

b0

un

b0

b0

a1 τ1a1 τ2 a1 τ3 a1 τ4

a1 a1 a1 a1

b0

b1

b1

b2

b1

b2

b2

b3

b1

b2

b2

b3

b2

b3
b3
b4

Figure 8.2. Why an1unb0 = b0vn in G. The diagram on the left is assembled from

n instances of the diagram from Figure 8.1. That on the right shows it in finer detail

in the case n = 4 and q ≥ 4.

Let v̂n be vn with all t±1, y±1
1 and y±1

2 deleted.

Lemma 8.3. For all n ≥ 1, there is a freely reduced word µn = µn(t
±1, y±1

1 , y±1
2 ), whose final letter

is positive, and such that

vn = v̂nµn in G.(8.10)

Proof. Use the r4,∗,∗- and r4,∗-defining relators of Figure 4.1 to shuffle the a1 and a2 through vn to

its start to make a prefix v̂n. In the process, the intervening letters t±1, y±1
1 , y±1

2 become various

(Y∗tY∗)
±1 and (Y∗t

−1Y∗tY∗)
±1.

By Lemma 8.1, τn, and therefore vn, has a suffix κ that is a long suffix of some Y∗. The Y ±1
∗

that are created in the shuffling process are different from any that arise in Lemmas 8.1–8.3 (those
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lemmas do not use the relators r4,∗ or r4,∗,∗). So, by C ′(1/4) for X ∪Y (see Section 4), cancellation

with these Y ±1
∗ cannot erode all of κ. So the final letter of µn is the final letter of κ, and so of some

Y∗, and so is positive. □
Lemma 8.4. There exists K1 > 1 with the following property. For all n ≥ 1, there is a reduced

word Zn on t, y1, and y2, whose first letter is positive, such that

(unb0)
−1 x1 unb0 = Zn in G(8.11)

K
|unb0|
1 ≤ |Zn|.(8.12)

Proof. The word Zn is the result of successive conjugations of x1 by the letters of un (which are

b1, . . . , bp) and then by b0. The relators r3,∗ and r3,∗,∗ describe the effect: conjugation produces

successive words on t and the X∗ (so on t, x1 and x2) until the final conjugation by b0, which results

in a word on t and the Y∗ (so on t, y1 and y2). In any one of these words, free reduction between

adjacent X±1
∗ (or adjacent Y ±1

∗ ) can only reduce the word’s length by at most a half on account

of the C ′(1/4) condition on X ∪ Y (see Section 4). So, if we take K1 to be half the length of the

shortest of the X∗ and Y∗, then each conjugation increases reduced length by a factor of at least

K1. The C ′(1/4)-condition for X ∪ Y also implies that free reduction cannot erode the first letter

of the word at every stage, and as the initial x1 is positive and so are first letters of each X∗ and

Y∗, it follows that the first letter of Zn is positive. □
Lemma 8.5. There exist K2 > 0 and K3 > 1 with the following properties. For all n ≥ 1, the

word

wn = v̂−1
n b−1

0 an1x1a
−n
1 b0v̂n

has length at most K2n
q and equals in G a word χn = χn(t

±1, y±1
1 , y±1

2 ). Moreover, freely reducing

χn gives a word of length at least K
(np)
3 .

b0 b0
an1 an1

un un

b0 b0

vn vn

v̂n v̂n

µn µn

wn

x1

Zn

χn

Lemma 8.2 Lemma 8.2

Lemma 8.3 Lemma 8.3

Lemma 8.4

Figure 8.3. A diagram demonstrating that the word wn = v̂−1
n b−1

0 an1x1a
−n
1 b0v̂n on

the generators of G and word χn = µnZnµ
−1
n on the generators of H represent the

same element of G.
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Proof. We have |v̂n| = |v̂n|a1 + |v̂n|a2 , which equals |vn|a1 + |vn|a2 = n+

!
n

q

"
by (8.6) and (8.9). So

|wn| = 2

!
n

q

"
+ 2n+ (2n+ 3), which is at most K2n

q for a suitable constant K2 > 0.

Figure 8.3 sets out why χn = µnZnµ
−1
n equals wn in G. Consider freely reducing χn by freely

reducing µn, Zn, and µ−1
n , and then performing all available cancellations where they meet. As the

final letter of the freely reduced form of µn and the first letter of the freely reduced form of Zn are

both positive (by Lemmas 8.3 and 8.4), there is no cancellation between µn and Zn. There may be

cancellation between Zn and µ−1
n (indeed, a priori, all of Zn could cancel into µ−1

n ). But for every

letter of Zn that cancels into µ−1
n , there is a letter of µn that survives in the freely reduced form of

χn. Therefore the length of the freely reduced form of χn is at least the length of the freely reduced

form of Zn. So the existence of a suitable K3 > 1 follows from (8.12) and the fact that, by (8.8),

|unb0| is a least a constant times np. □

9. Tracks in reduced van Kampen diagrams

As explained in Section 6, a van Kampen diagram is reduced when it does not contain a pair of

back-to-back cancelling 2-cells. If a van Kampen diagram is reduced, then so are its subdiagrams.

Here, we will explore the restrictions this hypothesis leads to on the arrangement of tracks in

van Kampen diagrams over our presentation P for G of Section 4.

Definition 9.1. A region in a van Kampen diagram ∆ is a closed subset that is homeomorphic to

a 2-disc. We will consider regions that have boundary circuits comprised of portions of ∂∆, other

paths in the 1-skeleton ∆(1), and subtracks. Figure 9.1 shows two examples. Because tracks pass

through the interiors of 2-cells, regions need not be subdiagrams. When we say a 1-cell or 2-cell of

∆ is in R, we mean that it is a subset of R.

Before we give our first lemma, here is an overview of this section. Every 2-cell in a reduced

van Kampen diagram ∆ over P has some x- or y-letters (we call these “noise” letters) in its

boundary word. We find it helpful to think of this noise to be flowing though the diagram and

expanding in that, for the 2-cells to fit together, the adjacent cells must have more noise (in total),

and those in the next layer further beyond those have yet more noise. This continues until the

noise spills out into the boundary of the diagram.

Tracks in ∆ mediate this flow of noise and provide a structure via which we can put this intuition

on a firm foundation. All x-noise flows across b-tracks in the direction of their orientations, except

that on crossing a b0-track, the noise is converted to y-noise. And y-noise flows across a-tracks in

the direction of their orientations. So, when a region has boundary that prevents the escape of

noise, that region cannot occur in a reduced diagram. Lemmas 9.3, 9.4 and 9.6 are results of this

nature. As for t-tracks, they have noise on both sides and reflect the HNN-structure G = F∗t.
Lemma 9.2 is a consequence. It exemplifies the following idea, which reappears in Lemma 9.9 in

a more complicated guise. If a certain feature is present (in this case, a t-loop), then there is

an innermost instance, but an innermost instance must include cancelling 2-cells, contrary to the

hypothesis that the diagram is reduced.

Lemmas 9.13 and 9.14 dig further into the structure of t-corridors and provide groundwork for

Lemmas 9.15 and 9.16, which detail circumstances in which tracks and corridors show diagrams to
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flare out towards a portion of their boundary. These results will let us (in Lemma 11.2) simplify

diagrams that demonstrate distortion.

Lemma 9.2. Reduced van Kampen diagrams ∆ over P contain no t-loops.

Proof. Were there a t-loop in ∆, there would be one with no t-loop in its interior. The 2-cells

it traverses would form an annular corridor. Around its inner boundary we read a word which,

viewed as a word on the generators of the appropriate vertex group of the HNN-structure G = F∗t
of Proposition 7.1, would freely equal the empty word. So some adjacent pair of those generators

would cancel. As those generators uniquely determine the 2-cells along whose sides they are read,

a pair of 2-cells in the annulus would cancel, contrary to the diagram being reduced. □

Our next lemma sets out circumstances in which x-edges being absent from the boundary of a

region R forces there to be no x-edge anywhere in R. The lemma further explains that regions

that do not contain a y-edge and are bounded only by a-subtracks, inward-oriented b-subtracks,

and t-subtracks take a highly constrained form, examples of which are shown in Figure 9.1.

Lemma 9.3. (Trapped x-noise) Suppose R is a region in a reduced van Kampen diagram ∆

over P such that R contains no y-edges and is bordered by a-subtracks, inward-oriented b-subtracks,

t-subtracks, and paths in ∆(1).

(1) If there is an x-edge in R, then there is an x-edge in ∂R.

(2) If there is no x-edge in ∂R (in particular, if ∂R is made up of only a-subtracks, inward-

oriented b-subtracks, and t-subtracks), then

(a) Each t-subtrack in ∂R crosses only a single edge; indeed, it crosses between an r4,1-

cell and an r4,2-cell as in the example in Figure 9.1(right) and must transition to an

outward-oriented a1-subtrack in the r4,1-cell and to an outward-oriented a2-subtrack in

the r4,2-cell.

(b) Each b-subtrack in ∂R only crosses a single edge. It transitions to an outward-oriented

a1-subtrack at one end and to an outward-oriented a2-subtrack at the other.

(c) There is at least one b- or t-subtrack in ∂R.

(d) The a-subtracks in ∂R are all outward oriented. Together, they cross at least one

a1-edge and at least one a2-edge

b1

b2

a1

a2

b0
a2

a1
bq−1

a2

a1
t

r1,1

r2,1

r1,2

r2,2

r1,0

r2,0

r1,q−1

r2,q−1

r4,1

r4,2

Figure 9.1. Examples of regions satisfying the conditions of Lemma 9.3(2)
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Proof. For (1), first suppose that there is a 2-cell c in R. By Lemma 9.2, there is no t-loop in ∆,

and so the two t-edges in ∂c are part of a t-subtrack that subdivides R into two regions R1 and R2.

If (1) holds true for R1 and R2, then it holds true for R. Thus, via repeated such subdivisions, we

reduce to the case where R contains no 2-cell. In that event, the subgraph F of ∆(1) formed by the

1-cells in R is a forest: were it to contain an embedded circle, there would be a 2-cell within that

circle and so in R. (In the examples of Figure 9.1, F is a single vertex in the left diagram and it is

the single central edge labelled bq−1 in the right diagram.)

Assume there is no x-edge in ∂R. Suppose, for a contradiction, that there is an x-edge in R,

and so in some connected component F0 of F . Let v be the word one reads around F0. Let v be v

with all letters other than x±1
1 and x±1

2 deleted.

By hypothesis, there are no y-edges in R. So v is a word on a1, a2, b0, . . . , bp, t, x1, x2. Any x1 or

x2 in v is the label of an edge ex of a 2-cell and so is either part of a Rips subword from X in a

defining relation, or is the lone xj at the top (in the sense of Figure 4.1) of an r3,i,j-cell c (for some

i ∈ {0, . . . , p}). In the latter event, no part of the b-track through c can be part of ∂R because

then there would be an outward -oriented b-subtrack, contrary to hypothesis. It follows that ∂R

contains the t-track of c (as c is not in R) and that F0 contains a portion of ∂c containing ex so

that xj is part of a subword X−1
∗ b−1

i xjbiX
−1
∗ of v±1. So, after replacing v with a cyclic conjugate

if necessary, v is a word on the X∗, X
−1
∗ x1X∗, and X−1

∗ x2X∗.

Now, v freely reduces to the empty word since it is read around the tree F0. Therefore v also

freely reduces to the empty word. Lemma 5.3 applies to v. Folding up an edge-loop labelled by v

to get the tree F0 equates to freely reducing v. So the lemma tells us that parts of the boundary

cycles of some pair of 2-cells is a common path in F0 labelled by a subword of some X∗ of at least

a quarter-length. These 2-cells are a back-to-back cancelling pair, contrary to the diagram being

reduced. So we have the contradiction we seek.

To prove (2), we assume there are no x-edges in ∂R, and therefore none in R by (1).

For (2a), suppose τ is a t-subtrack in ∂R. It cannot intersect a t-edge that is part of a subword

Y∗tY∗ or Y∗t
−1Y∗tY∗ in the boundary of a 2-cell, for then an adjacent y-edge would be in R, contrary

to hypothesis. It also cannot intersect a t-edge that is part of a subword X∗tX∗ or X∗t
−1X∗tX∗ in

the boundary of a 2-cell, for then an adjacent x-edge would be in R. The remaining possibility is

that it intersects a t-edge at the top of an r3,i- or r4,i-cell. It cannot intersect the other t-edge in

that cell, so ∂R has to switch from a t-subtrack to, respectively, a bi- or ai- subtrack within that

cell. The former case cannot occur, as it would lead to an outward oriented b-track. In the latter

case, the 2-cell on the other side of that top t-edge must also be an r4,i-cell. As the diagram is

reduced, we deduce that τ crosses from an r4,1-cell to an r4,2-cell across their common ‘top’ t-edge.

Moreover, to avoid any y-edge being in R, ∂R must exit the r4,1-cell across an a1-edge and exit the

r4,2-cell across a2-edge, and these a1- and a2-edges must have a common end-vertex in R and must

both be oriented out of R.

For (2b), suppose β is a b-subtrack in ∂R. It is impossible that β enters and then exits a 2-cell:

by hypothesis β is inward-oriented and so R would contain x- or y-edges from the bottom of the

2-cell (in the sense of Figure 4.1). So β crosses only a single b-edge, and when doing so it travels

from one 2-cell to another. (It cannot start and end in the same 2-cell, as then two b-edges in the

boundary of one 2-cell would be identified in ∆ and that would imply that some subword of the

boundary word represents 1 in G in such as way as to contradict the HNN-structure established

in Proposition 7.1.) From our analysis of t-subtracks, we know that β cannot transition in ∂R
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to a t-subtrack, and so it must transition to a-subtracks at each end. Indeed, it must transition

to outward-oriented a-subtracks, since the x- or y-edges of a 2-cell in which a transition to an

inward-oriented a-subtrack occurred would be in R. And β must connect an a1-subtrack at one

end and to an a2-subtrack at the other, because otherwise the two 2-cells it passes through would

be a cancelling pair, contrary to ∆ being reduced.

For (2c), all that remains is to verify that ∂R is not an a-loop. It cannot be an inward-oriented

a-loop, for then there would be x- or y-letters in R. Consider an inner-most outward-oriented

a-loop α. The orientations on junctions in Ga force α to be an a1- or a2-loop, and the associated

a1- or a2-annulus has inner boundary labelled by a non-empty word w on b0, . . . , bp, which freely

reduces to the empty word. The 2-cells in the annulus are r1,i-cells (i = 1, . . . , p) in the a1 case and

are r2,i-cells (i = 1, . . . , p) in the a2 case. In either case cancellation of an inverse-pair of letters in

w implies cancellation of a pair of 2-cells in ∆, contrary to the diagram being reduced.

We conclude that ∂R has at least one a1-subtrack and at least one a2-subtrack, and any a-

subtrack transitioning to a b- or t-track is outward oriented. Were there an inward-oriented a-

subtrack, it would have to be an a1-subtrack α transitioning at either end to an outward oriented

a2-subtrack in distinct r1,q−1-cells c and c′. Any 2-cell that α passed through between c and c′

would lead to an x-or y-edge in R, so c and c′ must be adjacent, which would be a contradiction

because they are oppositely oriented. Thus (2d) follows. □

Here is the corresponding lemma for y-letters. It forgoes hypotheses excluding any particular

type of edges from R, and it requires the a-subtracks, instead of b-subtracks, in ∂R to be inward-

oriented.

Lemma 9.4. (Trapped y-noise) Suppose R is a region in a reduced van Kampen diagram ∆ over

P, bordered by b-subtracks, t-subtracks, inward-oriented a-subtracks, and paths in ∆(1).

(1) If there is a y-edge in R, then there is a y-edge in ∂R.

(2) If the b-subtracks in ∂R are inward oriented, then ∂R must include at least one x-edge or

y-edge. In particular, in a reduced diagram there is no region R such that ∂R is comprised

of inward-oriented a-subtracks, inward-oriented b-subtracks, and t-subtracks. (Figure 9.2

shows some examples of regions this precludes.)

a b t a b

tt

b

a

t

b

t

a

t

b

Figure 9.2. Examples of regions precluded by Lemma 9.4(2)

Proof. For (1), we follow the same approach as our proof of Lemma 9.3(1). As there, it suffices to

prove the result in the case where there is no 2-cell in R. In that case, if there is a y-edge in R, then it

appears in some connected component F0 of the forest of 1-cells in R, and around F0 we read a word

v which freely reduces to the empty word. This v is a word on a1, a2, b0, . . . , bp, x1, x2, t, and the

Rips words Y (arising in the Y∗tY∗ or Y∗t
−1Y∗tY∗ per our presentation P), and the Y −1

∗ a−1
i yjaiY

−1
∗

around r4,i,j-cells—the key point here is that y1 and y2 do not appear on their own in this list and

this is because if the yj of Y −1
∗ a−1

i yjaiY
−1
∗ is in v±1, then the whole of that subword is in v±1 as
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an a-subtrack across that r4,i,j-cell would be outwards-oriented, contrary to hypothesis. Let v be v

with all letters other than y±1
1 and y±1

2 deleted. Then v is a word on the Y∗, Y
−1
∗ y1Y∗, and Y −1

∗ y2Y∗
which freely reduces to the empty word. Lemma 5.3, translated to y-letters instead of x-letters,

applies to v, so as to imply that a pair of 2-cells cancel, contrary to the diagram being reduced.

For (2), assume, for a contradiction, that there is no x- or y-edge in ∂R. Then, by (1), there is

no y-edge in R. This, together with the hypothesis that the b-subtracks in ∂R are inward oriented

and the assumption that ∂R has no x-edges, means Lemma 9.3(2) applies, and part (2d) tells us

that ∂R has non-trivial outward-oriented a-tracks, contradicting the hypothesis that a-subtracks

in ∂R are inward-oriented. □

Remark 9.5. The analogue of Lemma 9.4(1) for x-edges fails. For an example, take the van Kam-

pen diagram that demonstrates that b−1
0 b−1

1 tb1b0 equals a word on y1, y2, and t, which is comprised

of one r3,1-cell and a b0-corridor made up of r3,0,1- and r3,0,2-cells and one r3,0-cell.

Lemma 9.4(2) fails without the hypothesis that the b-tracks be inward-orientated. A “button”

(Definition 9.8) provides an example.

Lemma 9.4(2) rules out a- and b-loops that are inward oriented. At this stage we can also rule

out outward oriented a-and b-loops in some situations:

Lemma 9.6. Let ∆ be a reduced van Kampen diagram over P.

(1) If ∆ has only r4,∗-cells, then ∆ has no a-loops.

(2) If ∆ has only r2,∗- and r3,∗-cells, then ∆ has no b-loops

Proof. In both cases there are no r1,∗-cells. Thus the dual graphs Ga and Gb of ∆ have no junctions,

so every a-track is an ai-track and every b-track is a bj-track, for some i and j.

To prove (1), suppose for a contradiction that ∆ has an a-loop. Then there is an innermost one

α, which is an ai-loop for i = 1 or 2, such that the region R enclosed α has no a-subtracks (as

there are no junctions). As ∆ has only r4,∗-cells, this means that the inner boundary of the annulus

associated to α is a closed path in ∆(1) that encloses no 2-cells, so traverses some edge e twice

(in opposite directions). Lemma 9.4(2) implies that α is outward-oriented and this, together with

the fact that α is an ai-track for a fixed i, means that the possible labels y1, y2, t of e determine

unique r4,∗-cells. It follows that there is an adjacent pair of oppositely oriented identical cells,

contradicting the fact that ∆ is reduced.

The proof of (2) is identical, noting that, for an innermost bj-loop in a ∆ as in (2), the possible

labels x1, x2, t, a2 of the edge e each determine a unique cell (given the orientation of bj). □

We now define two types of diagrams containing bigons of subtracks which can occur in reduced

diagrams over P.

Definition 9.7. (Badge) A badge is a subdiagram consisting of a path with label tn, where n > 0,

with 2n+ 2 cells arranged around it as shown in Figure 9.3(left) for n = 4. Specifically, it has two

ri,j-cells that are connected by an ai-corridor made up of n r4,i-cells and a bj-corridor made of n

r3,j-cells, such that the ai-corridor and bj-corridor are identified along their boundaries labelled tn.

Definition 9.8. (Button) A button is a pair of 2-cells, specifically an r1,p−1-cell and an r1,p-cell,

in a van Kampen diagram that are joined along the common a1bp subwords in their boundary word.

Figure 9.3(center) shows a button. The mirror image of a button is also a button, so there are two

buttons in the diagram in Figure 9.3(right).
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r1,q−1
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bp−1
bp−1 bp−1

a1 a1
bp

r1,p−1 r3,p−1 r1,p−1

r1,p r3,p r1,p

Figure 9.3. Left: a badge. Middle: a button. Right: a reduced diagram that

includes two buttons and contains a loop that is an outward-oriented b-track.

Observe that a badge or button is dual to a bigon comprised of an a-subtrack and an outward

oriented b-subtrack. The next lemma shows that such bigons always give rise to badges or buttons

in the absence of y-edges. The second part puts a further restriction on certain bigons formed by

an a1-track and a bi-track, which will be used in the proof of Corollary 9.10.

Lemma 9.9. (Bigons, badges, and buttons) Let R be a region in a reduced van Kampen

diagram ∆ over P, such that R does not contain any y-edges, and ∂R is a bigon comprised of an

a-subtrack α and an outward oriented b-subtrack β. Then

(1) The minimal subdiagram of ∆ containing R contains either a badge or a button.

(2) If α is an a1-subtrack and β is a bi-subtrack, and R has no a1-subtracks in its interior, then

one of the intersections between α and β occurs in an r1,i−1-cell.

Proof. If R is as in the statement of the lemma, we first prove that R contains a minimal region of

the same type. Specifically, R contains a region S with boundary a bigon comprised of an a-track

αS and an outward oriented b-track βS such that the interior of S contains no a- or b-subtracks.

To construct S, first observe that there can be no a-loop in R, as if there were one, it would

enclose a region with no y-edges, contradicting Lemma 9.3(2c). Since R also has no teardrops

(by Lemma 6.4), any a-subtrack α1 in R is a path with distinct endpoints on ∂R. If α1 has both

endpoints on α, then (in the absence of a-loops and teardrops) we get a smooth path by replacing

a subsegment of α with α1, and this forms a smaller bigon with β. If one or both endpoints of

α1 are on β, then α1 divides R into two regions, one of which has boundary a bigon comprised

of an a-subtrack and a subtrack of β. Passing to a minimal instance, we obtain a region R′ with

boundary a bigon comprised of an a-track α′ and an outward oriented b-track β′ (a subtrack of β),

such that R′ has no a-subtracks in its interior.

Consider the minimal diagram containing R′, and let D′ be the subdiagram consisting of 2-cells

not dual to α′. Then D′ has only cells of type r3,i or r3,i,j (as any other cells would introduce

a-subtrack in R′). So D′ has no junctions and, by Lemma 9.6(2), has no b-loops. Suppose there is

a b-subtrack β1 ∕= β in R. Then β1 has both endpoints on α′ (as there are no junctions in D′). If β1
is oriented into the bigon that it forms with α′, then α′ must be oriented outward by Lemma 9.4(2).

As there are no y-edges in R, Lemma 9.3(2) applies, and implies that α′ transitions from a1 to

a2. This happens at some r1,q−1-cell dual to α′. However, as α′ is oriented outward, such a cell

contributes part of an a1-subtrack to the interior of R′, a contradiction.

Thus any b-subtrack in R′ has both endpoints on α′, and is oriented out of the bigon it forms with

α′. By passing to an innermost instance, we obtain a region S with boundary a bigon comprised

of a subtrack αS of α′ and an outward oriented b-track βS such that the interior of S contains no

a- or b-subtracks.
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To complete our proof of (1), we show that if R is minimal in that its interior contains no a- or

b-subtracks, then the minimal subdiagram D containing R is either a badge or a button.

β

α

b∗ b∗

b∗ b∗

a∗ a∗

u

u1 u2

v

f1 f2

Cβ

Cα

Figure 9.4. A bigon region per Lemma 9.9

Let Cα and Cβ be the corridors dual to α and β respectively—see Figure 9.4. They intersect in

distinct 2-cells f1 and f2 of type ri,j with i = 1 or 2. (If f1 = f2, then the orientation on β would

force both corners of ∂S to be on the top half of some ri,j-cell, and a terminal subpath of α would

merge with an initial one to create a teardrop, which contradicts Lemma 6.4.) Further, the 2-cells

of D are exactly the 2-cells of Cα ∪Cβ (because a 2-cell strictly in the interior of R would result in

interior a- or b subtracks).

The inner boundary of Cα ∪ Cβ has subpaths coming from f1 and f2 (labelled u1 and u2 re-

spectively), from Cα (labelled u) and from Cβ (labelled v), and these are oriented as shown in

Figure 9.4. Next, we determine which letters can occur in these labels examining Figure 4.1 for

cells which could occur in D under the given constraints.

Firstly, f1 is an r1,∗- or r2,∗- cell, and given that β is outward-oriented, one sees that the only

non-empty word that could arise as u1 is bi for some i (when f1 is a r1,i−1 cell and α is inward-

oriented). However, as this would lead to b-subtracks inside R, we conclude that u1 is empty.

Likewise u2 is empty. Thus u = v as group elements.

Next, each cell of Cβ apart from f1 and f2 is of type r3,k, r3,k,1 and r3,k,2 (as any others would

introduce a-subtracks in the interior of R). Since β is oriented outward, this means v is a word on

x1, x2, t. Furthermore, the part of β between (and excluding) f1 and f2 has no junctions, and so

it is a bk-track for some fixed k. As x1, x2, t freely generate a free group in G (as a consequence of

Proposition 7.4), and each of them appears in a unique r3,k- or r3,k,j-cell, ∆ being reduced implies

v is freely reduced.

If α is oriented outward, then each cell of Cα apart from f1 and f2 is of type r4,i (as any other

cells would introduce y-edges or b-subtracks to the the interior of R). So u is a reduced word of the

form tn for some n ∈ Z. Now, since v is reduced, we have that v = u = tn as words. Furthermore

n ∕= 0, for otherwise f1 and f2 would be identified along a pair of adjacent edges in each with

label a−1
i bk and as each such word appears in a unique cell, f1 and f2 would be oppositely oriented

identical cells, contradicting the fact that ∆ is reduced. Thus R is a badge.

If α is oriented inward, then Cα cannot have any 2-cells apart from f1 and f2, so u is empty.

Then, as v is reduced, it is also empty, and f1 and f2 are distinct cells identified along a corner in
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each with label aibj . Examining Figure 4.1 again, we see that this can only happen if they are a

r1,p−1-cell and an r1,p-cell identified along their corners labelled a1bp, so that R is a button. This

completes the proof of (1).

Now assume R satisfies the additional hypotheses in (2) of this lemma (but is not necessarily

minimal). In particular, the interior R has no a1-subtracks, but could have a2- or bj-subtracks. We

continue with the notation of Figure 9.4. The intersection of an a1-track and a bi-track can only

occur in an r1,i- or r1,i−1-cell. Assume for a contradiction that f1 and f2 are both of the former

type. Now, if α is oriented outwards, then u1 and u2 are empty and u is a word on b0, . . . , bp (here

we do not have t, because an r4,1-cell would produce a y-edge in R, a contradiction). If α is oriented

inwards, then u1 = b−1
i+1 and u2 = bi+1 and u is a word on

bp(X∗t
−1X∗tX∗)

−1, bqbq−1(X∗t
−1X∗tX∗)

−1, bi+1bi(X∗t
−1X∗tX∗)

−1 (i ∕= 0, q − 1, p).

Now define u and v to be the images of these words in the quotient Q = F (b0, . . . , bp) ⋊ Z
of G from (3.1) resulting from killing a2, t, x1, x2, y1, y2. Then v is empty and u is a word on

b1b0, . . . , bpbp−1, bp, which is a free basis for F (b0, . . . , bp). So b−1
i+1ubi+1 = 1 in Q, and so u = 1. So

there is a canceling pair in u, and this implies that there is a pair of adjacent oppositely oriented

cells, contradicting the hypothesis that the diagram ∆ is reduced. An analogous analysis rules out

α1 being outward-oriented. This proves (2). □

The next corollary summarizes the restrictions on loops in reduced diagrams obtained so far.

Corollary 9.10. (Loops) Suppose ∆ is a reduced diagram.

(1) ∆ has no t-loops and no inward-oriented a- or b-loops.

(2) Every a-loop in ∆ encloses a y-edge.

(3) ∆ has no bi-loops, and if ∆ has no buttons, then it has no b-loops.

Proof. Lemmas 9.2 and 9.4(2) establish (1).

Were there an a-loop enclosing no y-edges, it would satisfy the hypotheses of Lemma 9.3(2) but

fail the conclusion in part (2c) of that lemma. This proves (2).

For (3), suppose β is a b-loop in ∆, as shown in Figure 9.5. Then β is oriented outward by (1).

If R is the region enclosed by β, then R contains no y-edges by Lemma 9.4(1). Consequently,

R contains no a-loops by (2) of this corollary. Because ∆ has no teardrops by Lemma 6.4, any

a1-subtrack in R must intersect β in two distinct points, and divides R into two bigons.

Let ∆0 be the minimal diagram containing R. There are no 2-cells of type r4,∗,∗ or r4,∗ in

∆0, because any such 2-cell would have to be inside β and would give rise to a y-edge there. So

Lemma 9.6(2) tells us that ∆0 contains at least one r1,∗-cell. Therefore R contains an a1-subtrack.

Let α be an a1-subtrack in R that forms a bigon with a subtrack β1 of β, and is innermost in that

there is no a1-subtrack in the region R1 enclosed by α and β1.

Now suppose β is a bi-loop for some fixed i, and so β1 is a bi-subtrack. Then applying Lemma 9.9(2)

to R1, we see that one of the intersections between α and β1 occurs in an r1,i−1-cell. This is a

contradiction, as β, being a bi-track, cannot pass though an r1,i−1-cell. Thus ∆ has no bi-loops.

Finally suppose that ∆ has no buttons and that β is a b-loop. Then, by Lemma 9.9(1), the

minimal subdiagram containing R1 contains a badge. The a-subtrack of this badge is dual to at

least one r4,i-cell, and this cell is in the interior of R. This is a contradiction: as already noted,

each r4,i-cell has a y-edge, while R has none. This completes our proof of (3). □
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Figure 9.5. Our proof of Corollary 9.10(3), illustrated

Remark 9.11. Figure 9.3 shows how Corollary 9.10(3) can fail without the hypothesis absenting

buttons. Corollary 9.10(2) cannot be upgraded to rule out all a-loops: a reduced diagram with

an outward oriented a1-track can be formed by circling an r3,0-cell (which has y-edges) with an

outward oriented a1-annulus made up of two r1,0-cells, two r4,1-cells, and some r4,1,j-cells.

Our next two lemmas concern the impact of the presence of Rips subwords in the sides of t-

corridors or in generalizations defined in the following manner. The following expanded definition of

a corridor C and the lemma that follows it are motivated by applications to our proof of Lemma 9.16.

Definition 9.12. (Generalized corridors) Let C be a set of r distinct 2-cells C1, C2, . . . , Cr in

a reduced van Kampen diagram over our presentation P for G such that there are edges e0, . . . , er
with the property that for i = 1, . . . , r−1, the edge ei is in both ∂Ci and ∂Ci+1. Suppose the word

read clockwise around Ci is zifiz
−1
i+1gi, where zi labels edge ei. Then the words along the top and

bottom boundaries of C are f1f2 · · · fr and g−1
1 g−1

2 · · · g−1
r respectively.

Lemma 9.13. (Rips words cause the sides of corridors to be near injective and adjacent

corridors to have small overlap.) There exists a constant K ≥ 1 such that reduced van Kampen

diagrams ∆ have the following properties.

Suppose C is a generalized corridor, µ is the path along one side of C, and the word read along

µ is f := f1f2 · · · fr (all per Definition 9.12). Refer to f1, . . . , fr as the syllables of f . A Rips

subword in a syllable fi of f is an element of (X ∪ Y)±1 appearing as a subword. Suppose that if

1 ≤ i ≤ j ≤ r are such that fi, . . . , fj do not have Rips subwords, then fi · · · fj is a reduced word

on {a1, a2, b0, . . . , bp}±1.

Suppose µ ⊆ µ is an injective path from the initial vertex of µ to its terminal vertex. So the word

f read along µ can be obtained from f by a sequence Σ of free reductions (successive cancellations

of adjacent inverse-pairs of letters). Then:

(1) (a) At least one letter of every Rips subword in a syllable survives in f .

(b) |f | ≤ K|f |+K.

(c) If a subpath µ0 of µ is a loop and encloses no 2-cells, then the subword f0 of f read

along µ0 has length at most K.

Suppose µ′ is the path along one side of another generalized corridor C′ and f ′ := f ′
1f

′
2 · · · f ′

r′ is

the word read along it. Suppose that for all i, some element of (X ∪Y)±1 is a subword of f ′
i . Suppose

C and C′ have no 2-cells in common and that they start and end on ∂∆ (that is, e0, er, e
′
0, e

′
r′ are

in ∂∆). Suppose that

I := C ∩ C′ = µ ∩ µ′ ∕= ∅.
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(2) Suppose µ0 and µ′
0 are the shortest subpaths of µ and of µ′, respectively, such that I = µ0∩µ′

0.

If µ0 ∪ µ′
0 encloses no 2-cells, then |µ0|, |µ′

0| ≤ K.

Proof. For (1), we can interpret the sequence Σ as folding together adjacent pairs of edges in a

|ff−1|-sided simple polygonal-path in the plane until we have the planar tree in ∆ whose boundary

circuit is µf
−1

. Because every cyclic conjugate of a defining relator (of Figure 4.1) is freely reduced,

no cancellation of a pair of letters within a syllable of f occurs in the course of Σ.

Given σ ∈ (X ∪Y)±1, let Pσ and Sσ denote its prefix and suffix, respectively, such that σ = PσSσ

as words, and |Pσ| = ⌊|σ|/2⌋. Suppose of all the Rips subwords in the syllables of f , some subword

σ of fl is the first such that either Pσ and Sσ is fully cancelled away in the course of Σ. Assume

it is Sσ that is first cancelled away. (The argument if it is Pσ will be essentially the same, and we

omit it.) Then Sσ must cancel with a subword of fm, where m > l is minimal such that fm has

a Rips subword. But that is impossible: the C ′(1/4)-condition for X ∪ Y and the fact that each

of its elements has length at least 100, imply that some subword of σ−1 of at least a quarter of its

length is a subword of fm, and moreover the 2-cell Cl cancels with Cm in ∆, contrary to ∆ being

a reduced diagram. This proves (1a).

Now suppose that syllables fi, . . . , fj do not contain Rips subwords. Then (by hypothesis) fi · · · fj
is a reduced word on {a1, a2, b0, . . . , bp}±1. So the number of letters that can cancel away on freely

reducing fi−1fi · · · fjfj+1 is less than four times the length of the longest defining relation for our

group. Together with (1a), this implies (1b) and (1c) for a suitable constant K ≥ 1.

For (2), first we observe that I is a path because, by hypothesis, µ0 ∪ µ′
0 encloses no 2-cells. Let

w0 and w′
0 be the words read along µ0 and µ′

0, respectively. Assume, without loss of generality, that

µ0 and µ′
0 are oriented in the same direction—which is to say that w0(w

′
0)

−1 is the word around

µ0 ∪ µ′
0. Then free reduction takes w0 and w′

0 to the word w read along I. (We are not claiming w

is freely reduced—further free reduction may be possible.)

The proof can then be completed in a similar manner to part (1c). In short, if there is a Rips

subword σ in w′
0, then there must be a subword of σ in w0 also and these two words have large

overlap in w, so as to imply that there are cancelling 2-cells in C and C′. So µ′
0 contains no complete

Rips subword and, because each of the syllables of µ′ contains a Rips subword (by hypothesis),

µ′
0 has length at most a constant. It then follows that µ0, which also contains no complete Rips

subword, also has length at most a constant: within w0, any fi that contains no Rips subword can

only cancel with the neighbouring fi−1 or fi+1 if they contain a Rips subword (so at most some

constant number of letters in total can cancel away) and the remaining letters must be in w′, which

has length at most |µ′
0|. □

Lemma 9.14. Suppose µ is the path along one side of a t-corridor C in a reduced van Kampen

diagram ∆. Then the first y-edge e of ∆ traversed by µ is not traversed a second time by µ.

Proof. Suppose, on the contrary, µ traverses e more than once, then (because ∆ is planar and µ

is the side of a corridor) it does so exactly twice—once in each direction—and the subpath µ of µ

starting with the first traverse of e and ending with the second traverse is a loop. (See Figure 9.6.)

With a view to applying Lemma 9.13(1) to C, we check its hypotheses. As C is a t-corridor,

our defining relations imply that the label of µ ∩ C contains a Rips subword for every cell C of C.
There are no t-edges within the region ∆ enclosed by µ, for if there were, then there would be a
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µ

Cµ

e

Figure 9.6. The t-corridor of our proof of Lemma 9.14

t-loop within ∆, contradicting Lemma 9.2. So µ does not enclose any 2-cells. Thus Lemma 9.13(1a)

applies, and tells us that the label w of µ has no Rips subword from (X ∪ Y)±1 as a subword.

On the other hand, Corollary 7.2 implies that w cannot be a subword of the boundary word of a

single 2-cell of C. In particular, if Ce is the cell of C containing the initial point of µ (and the edge

e), then µ extends beyond Ce, and intersects at least one other cell of C. Thus if t±1ut∓1 = v is

the boundary label of Ce, where u labels µ∩Ce, then u has the form u1y∗u2, where y∗u2 is a prefix

of w. Moreover, as e is the first y-edge in µ, it follows that u1 has no y-edges. Then, examining

Figure 4.1, we see that u2 necessarily contains the entirety of some Rips subword Y∗ from Y±1 as

a subword. (This is true even if the first letter of w is the lone y±1
j that arises in the r4,i,j-cells.)

This contradicts our earlier conclusion that w has no Rips subwords. □

We will use our next lemma in our proof of Lemma 11.2(2). Here is the intuition. Imagine a

diagram consisting of a sequence of side-by-side vertical corridors as in Figure 9.7. If there are no

y-edges at the bottom of the diagram, then we can slice horizontally through it and discard the

portion above the cut, so that the diagram that remains has no y-edges and the length of the cut

is at most a constant times the length of the top.

Lemma 9.15. (y-edges in side-by-side t-corridors) There exists a constant C > 0 with the

following property. Suppose u and v are words that represent the same element of G and that v

contains no y-letters. Suppose ∆ is a reduced diagram for uv−1. Let ∗0 and ∗1 be the vertices on

∂∆ where both u and v start and end (respectively). Assume that every t-corridor in ∆ connects a

t±1 in u to a t±1 in v.

Then there is a word v′ read along some injective path through ∆(1) from ∗0 to ∗1 such that

|v′| ≤ C|u| and the subdiagram ∆′ (per Figure 9.7), which is a van Kampen diagram for v(v′)−1,

contains no y-edges.

Proof. We denote the t-corridors of ∆ by τ1, . . . , τm, for some m, where τi connects the ith t±1 in

v to the ith t±1 in u. Every t-corridor is of this form, by hypothesis. Observe that m ≤ |u|.
For all i, let S−

i and S+
i be the paths from v to u along the two sides of τi, with S−

i emanating

from the starting vertex of the t±1 of τi in v and S+
i from its ending vertex. Assuming there is a

y-edge on S±1
i , let e±1

i be the lowest—which is to say that e±1
i is the first y-edge that S±1

i traverses.

If there are y-edges in one side of a 2-cell in a t-corridor, then there are y-edges in the other side

of that cell. So e−i and e+i (if defined) are in the boundary of the same 2-cell Ci of τi. Moreover,
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Figure 9.7. Lemma 9.15, illustrated

as Lemma 9.14 guarantees that S±1
i does not traverse e±1

i a second time and, because v has no

y-edges, e±1
i is either in u or part of the neighboring t-corridor. It follows that for all i,

• either both e+i and e−i+1 exist, they agree, and they are not in u,

• or both exist and are in u,

• or only one exits and is in u,

• or neither exists.

Take C to b the maximum length of a defining relator in P. Then there is an injective path

through ∆(1) from ∗0 to ∗1 that follows portions of u and portions of the boundary circuits of the

at most |u| 2-cells Ci, such that the word v′ along this path satisfies the required conditions. (This

path is shown in blue in Figure 9.7.) □

Our final lemma is illustrated by Figures 9.8 and 9.9. (The path ρ is in the graph dual to

∆(1).) In short, it says, in the notation of Figure 9.8, that the diagram cannot flare out towards v.

Its application in Lemma 11.2(3) will be that certain regions can be sliced off a reduced diagram

without much increasing the length of that diagram’s boundary. Thereby we will simplify diagrams

that demonstrate distortion.

Lemma 9.16. (The lengths of compound-tracks between points on the boundary) There

exists a constant C ≥ 1 with the following property. Suppose a region R in a reduced diagram ∆

is bounded by a portion µ of ∂∆ and a compound track ρ that is a concatenation of a-subtracks,

inward-oriented b-subtracks, and t-subtracks. Let D be the minimal subdiagram of ∆ containing R.

(That is, D is the union of R and the generalized corridor C through which ρ passes.) So D is a

van Kampen diagram for vu−1 for some words v and u such that v is read around ∂∆ starting and

ending with the edges where µ and ρ meet. Suppose either

(1) the a-subtracks in ρ are oriented into R, or

(2) D contains no y-edges.

Then |u| and the number of edges |ρ| of ∆ that ρ crosses are both at most C|v|.
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D = R ∪ C

Figure 9.8. Top: a region R enclosed by a portion µ of ∂∆ and a compound track

ρ comprised of a- and t-subtracks and inward-oriented b-subtracks per Lemma 9.16.

The lower diagrams depict the t-tracks incident with ρ when (left) the a-subtracks

are inward-oriented, and (right) when R and C contain no y-edges. Note that each

Ri could have t-tracks with both endpoints on µi—these are are not pictured here,

but are shown in the detail in Figure 9.9.

Proof. We will establish the claimed bounds by examining the t-tracks through R. By Lemma 9.2,

there are no t-loops in R or indeed anywhere in ∆, because ∆ is reduced. Next we will argue

that there is no t-subtrack τ in R which is non-trivial (i.e., not a single point) and which starts

and ends on ρ and otherwise is in the interior of R. If there were, then a subpath of τ together

with a subpath of ρ would bound a region R′ ⊆ R that cannot exist in a reduced diagram: under

hypothesis (1), R′ would be contrary to Lemma 9.4(2), and under hypothesis (2), Lemma 9.3(2)

applies to R′ and its conclusion (2a) tells us there is an r4,1-cell and an r4,2-cell in D, and therefore

a y-edge in D, contrary to assumption.

The tracks τ1, . . . , τm of R which have one endpoint on µ and the other on ρ divide R into subre-

gions R0, R1, . . . , Rm as illustrated in Figure 9.8, with the lower left diagram depicting hypothesis

(1) and lower right, hypothesis (2). Under either hypothesis (1) or (2), the previous paragraph

implies that every t-subtrack entering the interior of Ri has both endpoints on µ. In more detail, µ

and ρ can be expressed as concatenations of subpaths µ0, µ1, . . . , µm and ρ0, ρ1, . . . , ρm, respec-

tively, so that for each i, the region Ri is bounded by µi, ρi, τi and τi+1 (with τ0 and τm+1 being

trivial paths).

Guided by the locations of the letters tεi read along the edges where the τi meet µ, express v as

v = tε0v0t
ε1v1t

ε2v2 · · · tεmvmtεm+1

where each εi = ±1 and each vi is a subword of v (which may contain further t±1).
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Fix i ∈ {0, . . . ,m}. Let νi denote the concatenation of τi, ρi and τi+1, so that Ri is bounded by

µi and νi. Let C1, . . . , Cr denote the 2-cells traversed by νi, as shown in Figure 9.9 (with i = 4 and

r = 17). Together they form a generalized corridor C in the sense of Definition 9.12. Let ∆i be the

maximal subdiagram that is a subset of R, includes the portion of ∂∆ labelled by vi, and does not

intersect τi, ρ or τi+1. Let f = f1 . . . fr be the word along the side of C that is in Ri. Then ∆i is

a van Kampen diagram for fv−1
i . We refer to f1, . . . , fr as the syllables of f . (It may be that f is

not reduced and ∆i is not homeomorphic to a 2-disc.)

tε4 tε5
v4

R4

C1

C2

C3

C4

C5

C6 C7 C8 C9
C10

C11
C12

C13

C14

C15

C16

C17f1

f2

.

.

.

fr

.

.

.τ4 ——– ———— τ5

Figure 9.9. The region R4 illustrated per our proof of Lemma 9.16.

We will show that there exists a constant L ≥ 1 such that, if |νi| denotes the number of edges of

∆ crossed by νi, then

(9.1) |νi| ≤ L|vi|+ L.

We will argue that C satisfies the hypotheses of Lemma 9.13. The label of Cj , read clockwise, is

of the form αfjβ
−1f̂j , with α,β ∈

!
a±1
1 , a±1

2 , b1, . . . , bp, t
±1

"
being the letters labeling edges dual

to which νi enters and leaves Cj , respectively. (The hypothesis that the b-subtracks that are part

of ρ are oriented into R precludes α or β being among b−1
1 , . . . , b−1

p .)

Suppose fj does not have a Rips subword. Inspecting the defining relators for G (Figure 4.1),

we find that one of α and β is in
!
a−1
1 , a−1

2

"
and the other is in

!
a−1
1 , a−1

2 , t
"
, and this can only

occur when there is an a-subtrack in ρ that is oriented out of R, contrary to hypothesis (1), which

means that hypothesis (2) must apply. But then the only way one of α and β can be t is if Cj is

an r4,i-cell and α and β label the top and right edges (or vice versa) in the sense of Figure 4.1,

which is excluded by (2) because r4,i-cells have y-edges. So α,β ∈
!
a−1
1 , a−1

2

"
and Cj is an r1,∗- or

r2,∗-cell, with ∗ ∕= 0 lest we contradict (2). If Cj is an r1,∗-cell, then fj ∈ {b1, . . . , bp, bq−1a1}±1. If

Cj is an r2,∗-cell, then fj ∈ {b1, . . . , bp}±1.

Next suppose fj+1 also does not contain Rips word. If one of Cj and Cj+1 is an r1,∗-cell and the

other is an r2,∗-cell, then one of them must be an r1,q−1-cell and they meet along an edge labelled

a−1
2 . In this event, there is no cancellation between fj and fj+1, because fjfj+1 is (b±1

l a−1
1 b−1

q−1)
±1

for some l. If, on the other hand, Cj and Cj+1 are both r1,∗-cells or both r2,∗-cells, then there can

be no cancellation between fj and fj+1 lest Cj and Cj+1 be a cancelling pair of 2-cells, contrary to

∆ being a reduced diagram. Thus if consecutive syllables fj , . . . , fl (for j ≤ l) do not contain Rips
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words, then fj , · · · , fl ∈ {b1, . . . , bp, bq−1a1}±1 and fj · · · fl is a freely reduced word. So C satisfies

the hypotheses of Lemma 9.13.

Let ∆C be the minimal subdiagram of ∆ containing C and let ∆i be the maximal subdiagram

of ∆i that contains the path labelled vi and does not intersect the interior of ∆C . Let f be the

word such that ∆i is a van Kampen diagram for fv−1
i . There are no 2-cells in ∆i \ ∆i because

there would be a t-track through such a 2-cell and we know that all t-tracks in ∆i connect a pair

of edges in vi. So f can be obtained from f by freely reducing f (perhaps only partially: f need

not be freely reduced), so as to remove all the letters which label any 1-dimensional spikes of ∆i

that protrude into C. By Lemma 9.13(1b), there is a constant K ≥ 1 such that

(9.2) |f | ≤ K|f |+K.

Next, suppose C′ is a t-corridor that joins a pair of t-letters in vi. Then C and C′ have no 2-cells

in common: were there such a 2-cell, the t-track through C′ would intercept νi (see Figure 6.3).

Moreover, there can be no 2-cell in any subdiagram of ∆i whose boundary is made up of a path

along one side of C and a path along one side of C′: there would be a t-subtrack through such a

2-cell, and it would either be part of a t-loop (contrary to Lemma 9.2) or would join two points on

ρi (which we argued at the start of this proof cannot happen). So Lemma 9.13(2) applies and tells

us that the overlap between C and C′ has length at most the constant K.

Each edge of the f -portion of ∂∆i is either in the vi-portion of ∂∆i or is the side of such a

t-corridor C′. At most |vi|/2 t-corridors join a pair of t-edges in vi. We conclude that there is a

constant K ′ ≥ 1 such that

(9.3) |f | ≤ K ′|vi|.

The existence of a constant L ≥ 1 such that (9.1) holds now comes from combining |νi| ≤ |f |,
(9.2), and (9.3).

Finally, using |ρi| ≤ |νi| and summing (9.1) over all 0 ≤ i ≤ m, we get that

|ρ| ≤
m'

i=0

|ρi| ≤ L|v|+ L(m+ 1) ≤ 2L|v|.

So |ρ| and |u| are both at most C|v| for a suitable constant C ≥ 1 derived from L and the maximum

length of a defining relation. □

While we will only call on the lemma above in its full generality, we note that in the case when

ρ is a t-track, it gives:

Corollary 9.17. The vertex groups of the HNN-structure G = F ∗t are undistorted in G.

10. Intersection patterns for a pair of paths across a disc

Towards further understanding the intersection patterns of tracks, we consider here how a pair of

transversely oriented paths in a disc may intersect if there are no “sink-regions.” The results in this

section are formulated so as to be combinatorial, bypassing issues such as paths intersecting each

other infinitely many times. We could, equivalently, have made the paths in this section injective

combinatorial paths in the 1-skeleton of a finite 2-complex homeomorphic to a 2-disc.
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Definition 10.1. (Sinks and sources) Let σ and τ be piecewise-linear paths in a 2-discD, each of

which is made up of finitely many straight-line segments and has a transverse orientation. Suppose

that σ and τ meet ∂D at exactly four points—their end points—and that their intersections are

transverse. A region R in D such that ∂R is a union of subpaths of σ and τ is called a sink region if

the orientation on each subpath in ∂R points inward and a source region if the orientation on each

subpath in ∂R points outward. Note that by definition, the boundary of a sink or source region

does not include any part of ∂D.

Lemma 10.2. Let σ and τ be paths in a 2-disc D as per Definition 10.1. If there is no sink region

in D, then, up to a homeomorphism of D, we have one of the cases displayed in Figure 10.1. (The

cases are arranged into four families according to the possible relative orientations of σ and τ where

they meet S1 = ∂D. Cases (2) and (3) include the possibility that σ and τ do not intersect.)

σ σ

σ σ

τ

τ

τ τ

∗
∗1 ∗2

∗ ∗

(1) (2)

(3) (4)

Figure 10.1. The intersections patterns of two transversely oriented chords σ and

τ across a disc per Lemma 10.2, if there are no sink regions. There are four cases

depending on the relative positions of the end points of σ and τ and on their orien-

tations. In (1) σ and τ intersect 2n− 1 times for some n ≥ 1, in (2) they intersect

either 0 times or (2m− 1) + (2n− 1) times for some m,n ≥ 1, in (3) they intersect

2n times for some n ≥ 0, and in (4) they do not intersect.

Proof. Consider the planar graph G whose vertices are the points of intersection of σ and τ and the

four end points, and whose edges are the subpaths of σ, τ , and ∂D that connect them (call these

σ-, τ -, and ∂D-edges, respectively). The path τ subdivides D into two subdiscs (ditto the path σ).

Let T be the planar graph (in fact, tree) that has
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• vertices dual to every face of G (i.e, connected component of D"G) that the orientation of

τ points into, and

• edges dual to all σ-edges.

Figure 10.2(left) shows an example—there is no loss of generality in taking σ to be a diameter of

the disc.

D

T

σ

τ

∗

στ

Figure 10.2. Left: our proof of Lemma 10.2, illustrated. Right: orientations per Corollary 10.3.

Case (1) of Figure 10.1 concerns when the end points of σ and τ alternate around ∂D. Cases (2)–

(4) subdivide the eventuality where they do not alternate to three mutually exclusive possibilities

for the orientations of σ and τ where they meet ∂D, namely, oriented towards each other, in the

same direction, or away from each other.

Depending on whether or not σ and τ intersect, there are either four or three faces in G that

have ∂D-edges in their boundaries. Call these boundary faces. A face f of G either has all the

σ-edges in its boundary oriented into or all out of f , depending on which side of σ the face f is

on. The same is true of the τ -edges in ∂f . In case (1), let f be the unique boundary face that

has all σ- and τ -edges in ∂f oriented into f . In cases (3) and (4), let f be the unique boundary

face that has all τ -edges in ∂f oriented into f . Now, the vertex ∗ dual to f is a vertex of T . In

cases (1) and (3), every other vertex of T that is an even distance (in T ) from ∗ is dual to a face

that is a sink region. (In the example of Figure 10.2 there are four such vertices, all a distance 2

from ∗. The four faces that they are dual to are shown shaded.) In case (4) every vertex of T that

is an odd distance from ∗ is dual to a sink region. As our hypotheses prohibit sink regions, T is

restricted accordingly. Thus σ and τ cannot intersect in case (4), and in cases, (1) and (3), if σ

and τ intersect, they must do so as shown in Figure 10.1, where n is the valence of ∗.
In the instance of case (2) if σ and τ do intersect, there are two boundary faces f1 and f2 into

which all σ- and τ -edges in their boundaries are inward-oriented. Let ∗1 and ∗2 be their dual

vertices. It follows that ∗1 and ∗2 are an even distance apart in T and any there can be no other

vertices in T that are an even distance from either. Thus T is the tree shown in Figure 10.1(2),

with m and n being the valences of ∗1 and ∗2, and moreover, no other arrangement of T along σ

is possible. □
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Corollary 10.3. Suppose σ and τ are paths in a 2-disc D as per Definition 10.1, but we prohibit

source regions instead of sink regions. If the order and relative orientations of σ and τ close to ∂D

are as shown in Figure 10.2 (right), then σ and τ do not intersect.

Proof. This is case (4) of Lemma 10.2, but with the orientations reversed. □

Our final lemma is the observation which says, roughly, that a pair of oriented paths through a

disc that intersect transversely, can be “combined” to obtain a new transversely oriented such path,

so that the original paths both lie to one side of the new path. This is illustrated in Figure 10.3,

under the simplifying assumption that the intersections between the paths are transverse. The

lemma allows subpaths as intersections, so it can be applied to (compound) tracks.

Lemma 10.4. Suppose for i = 1, 2, an injective piecewise-linear path σi in a 2-disc D is made

up of finitely many straight-line segments, and that σi meets ∂D at exactly 2 points, specifically

its endpoints. Suppose σ1 and σ2 have transverse orientations. So, for i = 1, 2, there are subsets

D+
i and D−

i of D, each homeomorphic to a 2-disc, such that D = D+
i ∪D−

i , and σi traverses the

intersection of D+
i and D−

i with σi oriented into D+
i and out of D−

i . Assume σ1 and σ2 intersect

in the interior of D. We allow the intersection of σ1 and σ2 to include (finitely many) straight line

segments, provided their orientations agree on the common segments.

Suppose there is a point p ∈ ∂D that is in D+
1 ∩ D+

2 and is not on σ1 or σ2. Let C+
0 be the

maximal connected open subset of D that contains p and does not intersect σ1 or σ2. Let C+ be the

closure of C+
0 and C− be D " C+

0 . Then C+ and C− are homeomorphic to 2-discs. Furthermore,

(1) C+ contains p,

(2) D−
1 ∪D−

2 ⊆ C−. In particular, σ1 and σ2 are in C−, and

(3) an injective piecewise-linear path τ traverses C+ ∩ C−, connecting two different points on

∂D. It is a concatenation of subpaths of σ1 and σ2, all oriented into C+, and so has a

well-defined orientation (into C+).

p

σ1

σ2

τ C+

Figure 10.3. Lemma 10.4, illustrated.
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11. Tracks in distortion diagrams

In Section 9 we established constraints on reduced van Kampen diagrams over our presentation

P for G. Here, we will show that diagrams pertinent to the distortion of H in G are further

constrained. The rigidity we will prove here and in Section 12 will allow us to calculate upper

bounds on distortion in Section 13.

Definition 11.1. (Distortion diagrams, sides) A distortion diagram ∆ is a reduced van Kam-

pen diagram for wχ−1 over P, where χ is a word on t, y1, y2 and w is a word on our generating set

for G. Where no confusion should result, we refer to the portions of the boundary circuit ∂∆ that

are labelled by w and by χ simply as w and χ. When an a- or b-track ρ connects two edges in ∂∆

those edges must both be in w, as there are no a- or b-letters in χ. So, as shown in Figure 11.1,

the track ρ subdivides ∆ into two subsets whose intersection is ρ. The subset that contains χ is

the χ-side of ρ, and the other subset is the w-side.

∆

ρ

χ

w

χ-side

w-side

Figure 11.1. An a- or b-track ρ in a distortion diagram

Lemma 11.2. (a- and b-tracks in distortion diagrams.) There exists C > 0 satisfying the

following. Suppose w0 is a word on the generators of G that equals in G a reduced word χ on

t, y1, y2, and suppose ∆0 is a distortion diagram for w0χ
−1. Assume that ∆0 is homeomorphic to

a 2-disc. Then there is a subdiagram ∆ of ∆0 that is a van Kampen diagram for wχ−1, where w

is a word of length at most C|w0| and the following properties are satisfied.

(0) The portions of ∂∆ labelled by w and by χ are both injective paths, so that ∆ is a concate-

nation of paths and distortion diagrams ∆′
1, . . . ,∆

′
r, each homeomorphic to a 2-disc and

each demonstrating that some subword of w equals some subword of χ (as shown on the

right below).

∆0 ∆

∆′
1

∆′
2

∆′
3

w0

w

χ χ

(1) No compound track in ∆ between a pair of edges in w is made up of a-subtracks oriented

towards w, b-subtracks oriented towards w, and t-tracks (oriented either way). In particular,

no t-corridor in ∆ connects two t-letters in w and every a- or b-track that connects a pair

of edges in ∂∆ is oriented towards χ.
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NoNo
a

t b t b
t a b a b=⇒

χ χ χ χ

w w w w

(2) There are no y-edges in the w-side of any b-track β that connects two edges in ∂∆.

No y-edges

χ

w

(3) Suppose a region R is a subset of the w-side of a b-track connecting two points in w.

(a) ∂R cannot be comprised of a (non-trivial) subpath of the boundary circuit ∂∆, a-

subtracks, inward oriented b-subtracks, and t-subtracks.

(b) If ∂R is comprised of a-subtracks and inward-oriented b-subtracks, then it satisfies the

constraints 2b–2d of Lemma 9.3. In particular, ∂R cannot be a bigon comprised of an

a1-subtrack and an inward oriented b-subtrack.

No Almost no No

χ χ χ

w w w

a
t b t

b

b b b

b a
b

a a

aa

(4) ∆ contains no badge and no button (Definitions 9.7 and 9.8).

No No

t t t t

b∗

a∗

b∗

a∗

(5) ∆ has no a- or b-loops and no bigons comprised of an a-subtrack and an outward oriented

b-subtrack.

No No No

ab

a

b

(6) More generally, no region of ∆ has boundary made up of consistently oriented (meaning

all inward- or all outward-oriented) a-subtracks and outward-oriented b-subtracks.
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No

χ

w

b
a

a

a

a

bb

b

(7) Suppose α is an a1-track and β is a b-track in ∆.

(a) If α has one endpoint on either side of β then α and β intersect exactly once.

(b) If both endpoints of α are on the χ-side of β, then α and β do not intersect.

(c) If both endpoints of α are on the w-side of β, then α and β intersect exactly twice.

=⇒
(b)

=⇒
(a)

=⇒
(c)

=⇒
(b)

(8) There can be no b0-track β0 ∕= β in the w-side of a b-track β.

No
b0

b

χ

w

Proof. We will sever parts of ∆0 to obtain subdiagrams ∆1, then ∆2, and then ∆3, that establish,

respectively, (1), then (2), and then (3). Then we will sever parts of ∆3 to get ∆ such that the

portion of ∂∆ labelled by w is an injective path, and we will argue that ∆ satisfies all of (0)–(3).

Then we will verify that ∆ also satisfies (4)–(8).

For (1), define a bad path in ∆0 to be a compound track connecting a pair of edges in w0

comprised of a-and b-subtracks oriented towards w0, and t-tracks (oriented either way). Let ∆1 be

the maximal subdiagram of ∆0 that contains χ and intersects no bad path. Let w1 be the word such

that ∆1 is a van Kampen diagram for w1χ
−1. If bad paths σ1 and σ2 intersect, then we may apply

Lemma 10.4 with p a point on χ and σ1 and σ2 oriented towards χ, to obtain a new path τ which

is a concatenation of subpaths of σ1 and σ2 (and therefore is again a bad path), such that both σ1
and σ2 are contained in the w0-side of τ . Therefore there is a collection of bad paths τ1, . . . , τm
that are disjoint and are such that ∆1 is the result of removing from ∆0 the subdiagrams bounded

by the corridors of 2-cells through which τi passes and by subwords of w0. Now Lemma 9.16(1)

tells us that there exists a constant C1 > 0 such that |w1| ≤ C1|w0|.

For (2), we first establish that there exist disjoint b-tracks β1, . . . ,βk, each a path between two

points in ∂∆1, such that every b-track between two points in ∂∆1 is on the w1-side of βi for some i.

To see this, note that following (1), all b-tracks between pairs of points in ∂∆1 are oriented towards
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χ, and if two such b-tracks σ1 and σ2 intersect, then applying Lemma 10.4 with p a point on χ, we

obtain a path τ connecting a pair of points on ∂∆1, such that both σ1 and σ2 are on the w1 side of

τ , and τ is a concatenation of subtracks of σ1 and σ2, each oriented into the component of ∆1 \ τ
containing χ. Since a concatenation of consistently oriented b-subtracks is again a b-subtrack, τ is

again a b-track. The existence of β1, . . . ,βk as above follows.

Thus, in constructing ∆2 by severing parts of ∆1, it suffices to guarantee that (2) holds for

β = βi for each 1 ≤ i ≤ k. Our argument in this case is illustrated by Figure 11.2.

By Lemma 9.4(1), there is no y-edge in any region Ri enclosed by a subpath of β and a t-subtrack

on the w1-side of β (such as regions R1, R2, and R3 in Figure 11.2), as ∂Ri has no edges in this

case. Define ∆′
β to be the maximal subdiagram of ∆1 that is contained in the w1-side of β and

intersects no t-subtracks that start and end on β. Then ∆′
β is a van Kampen diagram for uv−1,

where u is a subword of w1 and v is the word along the remainder of ∂∆′
β , as shown in Figure 11.2.

We will apply Lemma 9.15 to ∆′
β . Let us check the hypotheses. To see that there are no y-letters

in v, observe that v is comprised of subpaths that run along the corridor associated to β, on the

side that β is oriented away from, and subpaths that run along the sides of t-corridors. The defining

relations of G (see Figure 4.1) imply that the first type of subpath cannot have any y-edges, and

if there were a y-edge in a subpath of the second type, then then there would be one on the other

side of the t-corridor also, and so in one of the regions Ri, a contradiction.

Next, we observe that all t-corridors in ∆′
β connect a t-edge in u to a t-edge in v. This is because

there are no t-loops by Lemma 9.2; were there a t-track connecting a pair of edges in u, it would

be a part (or whole) of a bad path in ∆0, and would have been cut off in the construction of ∆1;

and no t-corridor joins pair of t-edges in v by construction.

Lemma 9.15 now implies that there is a constant C2 > 0 (depending only on P) and a word

v′ labeling a path in ∆
′(1)
β with the same endpoints as u and v with |v′| ≤ C2|u| such that the

subdiagram enclosed by v and v′ has no y-edges. We now cut∆′
β along v′, discarding the subdiagram

bounded by u and v′. As β1, . . . ,βk are disjoint and non-nested, we do this independently for each

β = βi, resulting in a subdiagram ∆2 of ∆1 for a relation w2χ
−1, where w2 is obtained from w1 by

replacing a disjoint collection of subwords with words whose lengths are greater by at most a factor

of C2. It follows that |w2| ≤ C2|w1|, and by construction, there are no y-edges on the w2 side of βi
for any i. In particular, (2) holds for ∆2.

Now suppose ∆2 has a bad path σ—i.e., suppose that (1) fails for ∆2. Since ∆1 had none, σ

must have at least one end on along a path labelled by one of the v′, and this path is on the w side

of some β which is oriented towards χ. If σ intersects β at least twice, then, since β is oriented

towards χ, a subtrack of β and a subpath of σ together bound a region R that is precluded by

Lemma 9.4 (see Figure 9.2). If σ crosses β exactly once, then a subpath of β, together with the

part of σ on the χ side of β form a bad path (in the sense of (1)) in ∆2, which is not possible. Thus

any bad path σ in ∆2 lies on the w2 side of β. Such paths will be removed next, in the construction

of ∆3.

For (3a), define a region R to be bad if it is of the form (3a) excludes: that is, R is a subset of

the w2-side of a b-track β connecting two edges in w and ∂R is comprised of a non-trivial subpath

of the boundary circuit ∂∆2 and a compound track consisting of a-subtracks, inward oriented b-

subtracks, and t-subtracks. We may assume that β is one of the tracks β1, . . . ,βk identified above,

which persist in ∆2. Here are two key observations:
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χ

β

R1 R2 R3

u

v

∆2w2

∆′
β

Figure 11.2. Subdiagrams and t-tracks per our proof of Lemma 11.2(2)

i. If two bad regions R1 and R2 have intersecting interiors, they are on the w2-side of a

common b-track, say βi. Then, applying Lemma 10.4 to the compound tracks in ∂R1 and

∂R2, we get a new bad region R3 containing R1 ∪R2 that is again on the w2-side of βi.

ii. Suppose R is a bad region on the w-side of a b-track β. Then the minimal subdiagram D of

∆2 containing R contains no y-edges. To see this, note that no subpath of β can contribute

to ∂R, as β is oriented towards χ, and so no 2-cell through which β passes can be in D.

Thus D is a subset of the w-side of β and has no y-edges by (2).

Define ∆3 to be the maximal subdiagram of ∆2 that includes χ and does not intersect any bad

region. On account of (i), ∆3 is obtained from ∆2 by severing a finitely many subdiagrams D per

Lemma 9.16 by, in the notation of that lemma, cutting along the paths labelled u1. Moreover,

any two of these D have disjoint interiors and the associated words u0 label paths in ∂∆2 that are

non-overlapping (but can share endpoints). By (ii), hypothesis (2) of Lemma 9.16 holds and we can

apply that lemma to each of these D. Let w3 be the word such that ∆3 is a van Kampen diagram

for w3χ
−1. The inequality in Lemma 9.16 then tells us that there exists a constant C3 > 0 such

that |w3| ≤ C3|w2|. Finally, ∆3 satisfies conditions (1)–(3): as shown above, the only paths that

could fail (1) were removed in the construction of ∆3; (2) is immediately inherited from ∆2; (3a)

is satisfied by construction; and, in light of (2), Lemma 9.3 implies (3b).

If the portion of ∂∆3 labelled by w3 is not an injective path, then some subword labels a

subdiagram which is only attached to the rest of ∆3 at a single vertex. We sever all subdiagrams

that so arise, so as to produce a van Kampen diagram∆ for a word wχ−1, with |w| ≤ |w3|, such that

conditions (1)–(3) hold, and the portion of ∂∆ labelled by w is an injective path. By hypothesis,

χ is a reduced word on t, y1, y2, which freely generate a free subgroup of G by Corollary 7.5, so

χ also labels an injective path in ∂∆. So ∆ is a concatenation of paths and distortion diagrams

∆′, . . . ,∆′
r, each homeomorphic to a 2-disc and each demonstrating that some subword of w equals

some subword of χ. This establishes (0). Further, if we let C = C1C2C3C3, then our inequalities

combine to give |w| ≤ C|w0|, as required.
For the remainder of the proof, we assume, for convenience, that ∆ is homeomorphic to a 2-disc.

The proofs of (4)–(8) in the general case follow easily. (In cases (a) and (c) of (7) the hypothesis

forces α and β to be in the same component. In case (b), the result is automatic if they are in

different components.)
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(4). Suppose there is a badge or button B in ∆. Per Definition 6.3, let Gb be the graph whose

edges are the duals of the b-edges in ∆. Let C be the connected component of Gb that includes the

b-track through B. Let i be minimal such that C includes the dual of a bi-edge. A b-track that

enters a 2-cell across a bi-edge can exit across another bi-edge unless that 2-cell is an r1,i−1-cell. So

the minimality of i ensures that C contains a bi-track β. By Corollary 9.10(3), β is not a loop, and

so it connects two bi-edges in w, and is oriented towards χ by (1). So no b-tracks branch off β on

its χ-side and, in particular, the b-tracks through B are on its w-side. (They can have subpaths in

common with β.) By (2), there are no y-edges on the w-side of β. This ensures that B is not a

badge, as if it were, it would have an r4,i-cell contributing a y-edge to the w-side of β.

Any a1-track intersecting the w-side of β intersects β exactly once—it is not a loop on the w-side

of β (by (2) and Corollary 9.10(2)), it is dual to at most one edge in ∂∆ (by (3a)), and it intersects

β at most once, for if it formed a bigon with β, then Lemma 9.9(2) would apply to an innermost

such instance α, and one of the intersections of α and β would have to occur in an r1,i−1-cell,

contradicting the minimality of i.

χ χ

χ χ χ

α α

α α α

α′ α′

α′

α′ α′
R

R

R

β β

β β β

A

B
B

A

Figure 11.3. Cases in our proof of Lemma 11.2(4)

Let α be the a1-track through B, which we now know to be a button. Figure 11.3 (top-left

and top-right) shows the two possible placements of B along α, once we assume, without loss of

generality, that α is oriented towards the left (in the sense of the figure). Let A and B be the

points shown (in either case). Let α′ be the first a1-track one meets on following β to the right

(in the sense of the figure) from its intersection with α. (If there is no such α′ a simpler version,

which we omit, of the following analysis will apply.) Then Gb can have no junction in the (closed)

region bounded by α (on the left), α′ (on the right), β (below), and a portion of ∂∆ (above), as this

region has no a1-tracks. Thus there are three possible continuations for the b-track at A through

this region: (i) it continues to α′ or to ∂∆ (as shown lower left in Figure 11.3); (ii) it returns to
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α above the button (as shown lower middle); and (iii) it returns to α below the button (as shown

lower right). In case (iii), it must return to α below the button also (as otherwise there would be

a junction). In all cases (i)–(iii) there is a region R (shown shaded in the figure) with boundary

made up of an inward-oriented b-subtrack, a1-subtracks, and (in case (i)) a portion of the w-part

of ∂∆, contrary to (3) of this lemma.

(5). In light of (4), Lemma 9.9(1) and Corollary 9.10(3) preclude bigons comprised of an a-

subtrack and an outward oriented b-subtrack and b-loops respectively. Corollary 9.10(1) precludes

inward oriented a-loops. Suppose, for a contradiction, that there exists a non-trivial a-loop α.

Then the region R enclosed by α cannot contain a b-subtrack, as such a subtrack would give rise to

a teardrop, a b-loop, or a bigon comprised of an outward oriented b-subtrack and an a-subtrack, all

of which have been ruled out. It follows that the minimal subdiagram containing R contains only

cells of type r4,∗ (as any other cells with a-letters would introduce b-subtracks), which contradicts

Lemma 9.6(1).

(6). Suppose, for a contradiction, that R is a region of ∆ whose boundary is comprised of a-

subtracks and outward-oriented b-subtracks. We may assume that no a- or b-track intersects the

interior of R, because such a track would subdivide R into two regions, at least one of which would

satisfy the hypotheses of (6).

By (5), ∂R cannot be an a- or b-loop or a bigon comprised of an a-track and an outward-

oriented b-track. Any two adjacent b-subtracks in the circuit ∂R are together a single b-subtrack.

As the a-subtracks in ∂R are consistently oriented, the same is true for a-subtracks. So, ∂R is a

concatenation of non-trivial paths α1, β1, . . . , αm, βm where m ≥ 2 and each αi is a subtrack of

some a-track αi, each βi is a subtrack of some b-track βi and the βi are all oriented out of R.

As β1 is oriented out of R and its continuation β1 is oriented toward χ (by (1)), R is in the w-side

of β1. Now, because β2 is also oriented toward χ, and because the interior of R has no b-subtracks,

β2 must merge with β1 either to the left or right of R, as shown in Figure 11.4. Then some

subtrack of β2 bounds a region R′ either with α2 (per Figure 11.4, left) or with the concatenation

α3β3 · · ·αmβmα1 (per Figure 11.4, right). In the latter case, the extension α1 of α1 cannot enter R

(as R contains no a-subtracks) so must meet the part of β2 in ∂R′ (after possibly passing through

some other αi’s for 3 ≤ i ≤ m). In either case we get a bigon B bounded by an a-subtrack and an

outward-oriented b-subtrack, contrary to (5).

χ χ

R RR′ = B

B

R′

β1

β2

βm

β1

β2

βm

α1

α2

α3

αm

α1

α2

α3

αm

Figure 11.4. Illustrating our proof of Lemma 11.2(6)

51



(7). We will use Lemma 10.2 with {τ,σ} = {α,β}. Lemma 9.4(2) tells us that there is no region

in ∆ that is bounded by inward-oriented a-and b-subtracks, which establishes the no-sink-regions

hypothesis of Lemma 10.2.

The case (7a) corresponds to case (1) of Lemma 10.2 with τ = α and σ = β. By (1) of the

present lemma, α and β are oriented towards χ. So (7b) corresponds to either case (2) or case (3)

of Lemma 10.2 with τ = α and σ = β, and (7c) concerns case (3) with τ = β and σ = α. With just

one exception, (5) of the present lemma (specifically the part concerning bigons) rules out all the

intersection patterns catalogued in Lemma 10.2 apart from those listed in the conclusion of (7).

That one exception occurs in (7c), where we need to further exclude the possibility that α and β

do not cross, which we do by invoking (3) of this lemma.

(8). Suppose there is a b0-track β0 in the w-side of a b-track β. If C is a 2-cell dual to β0, then

C has a y-edge, so cannot be on the w-side of β by (2). Thus C is dual to β as well, and is an

r∗,0-cell. Then β agrees with β0 on C. (This is clear if ∗ is 2 or 3. If C has type r4,1, it follows

from the fact that β and β0 are oriented towards χ by (1).) Consequently, β0 = β. □

12. (a2, bq)-tracks

A key idea leading to the “p/q” in the subgroup distortion function of Theorem 1.1 is that the

generation of bp letters within distortion diagrams is offset by generation of letters bq that must

“appear” in w either as bq-letters or in the guise of a2-letters. The reason for this is that bq letters

feature in (a2, bq)-tracks, which are the subject of this section and will be crucial to our proof of

Lemma 13.12.

Definition 12.1. ((a2, bq)-tracks) An (a2, bq)-track in a van Kampen diagram ∆ over our pre-

sentation P for G is a maximal path that is a concatenation of edges dual to consistently oriented

a2-edges and bq-edges in ∆, such that an (a2, bq)-track entering a 2-cell of the form shown rightmost

in Figure 12.1 across an a2-edge leaves across the consistently oriented bq-edge. The two (a2, bq)-

tracks in the 2-cell shown rightmost in Figure 12.1 touch, but we do not consider them to intersect.

Examples are shown in Figures 3.1 and 3.3.

Lemma 12.2. (a2, bq)-tracks in a van Kampen diagram ∆ have the following properties:

(1) (a2, bq)-tracks inherit orientations from the orientations of their constituent subtracks.

(2) Every a2-edge and bq-edge in ∆ is dual to an edge in exactly one (a2, bq)-track.

(3) An (a2, bq)-track cannot intersect itself or another (a2, bq)-track.

(4) The set of a2- and bq-edges in ∂∆ are paired off according to whether there is an (a2, bq)-

track whose first and last edges are dual to them.

(5) If ∆ is a distortion diagram as constructed in Lemma 11.2, then an (a2, bq)-track in ∆

cannot be a loop.

Proof. (1) holds because constituent subtracks are consistently oriented edges by construction.

With the sole exception of r2,q (shown rightmost in Figure 12.1), all our defining relators contain

either none of the letters a2, a
−1
2 , bq, and b−1

q , or contain exactly one of a2 and bq, and exactly

one of a−1
2 and b−1

q . So (2)–(4) follow. For (5), suppose there is a (a2, bq)-loop in a distortion

diagram ∆. As the orientations of its constituent subtracks are consistent, it is either inward- or

outward-oriented. The former is impossible by Lemma 9.4(2) and the latter by Lemma 11.2(6). □
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a1 a2

a1

bq−1

bq−1

bq
bq

bq

a2

a2

Figure 12.1. How (a2, bq)-tracks progress through r1,q−1- and r2,q-cells

Given ∆ as per Lemma 11.2, its b0-tracks β1, . . . ,βm must be arranged consecutively around ∂∆

as per Figure 12.2 (since they cannot nest by Lemma 11.2(8)). In short, our next lemma states that

the intersections of an (a2, bq)-track with the b0-tracks in ∆ progress in order around the diagram.

We will use it in our proof of Proposition 13.1 at the end of Section 13.

Lemma 12.3. Suppose ∆ is a distortion diagram for wχ−1 as per Lemma 11.2. Let Q0 and Pm+1

be the initial and terminal vertices of the w portion of ∂∆. For distinct points P and Q on w,

write P < Q when one reaches P first when following w from Q0 to Pm+1. Suppose, as shown in

Figure 12.2, P1 < Q1 < · · · < Pm < Qm are 2m successive points on the w-portion of ∂∆ and, for

i = 1, . . . ,m, βi is a b0-track from Pi to Qi oriented towards χ. Let R be the maximal region of ∆

that is bounded by β1, . . . , βm and the intervening subpaths of ∂∆.

Suppose τ is an (a2, bq)-track in ∆ starting at some P and ending at some Q in ∂∆, with

P < Q. Let Σ be the set of points where τ meets ∂R. The order in which τ visits the points of Σ

as it progresses from P to Q is the same as the order in which they occur on the boundary circuit

∂R starting from Q0 and following it around to Pm+1.

χ

w

τ

R

P

Q

β1

βi

βi+1

βj

βj+1

βm

P1

Pi

Pi+1

Pj

Pj+1

Pm

Pm+1Q0

Q1

Qi

Qi+1

Qj

Qj+1

Qm

Figure 12.2. Illustrating Lemma 12.3

Proof. As its constituent a2- and bq-subtracks are, by construction, consistently oriented, τ is

a compound track which is oriented either towards or away from χ. The latter eventuality is

precluded by Lemma 11.2(1).

The lemma will be proved by applying either Lemma 10.2 or Corollary 10.3 to pairs consisting

of τ (or a subpath thereof) and βl, for each l.
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Let i, j ∈ {0, . . . ,m+ 1} be such that Qi−1 < P < Qi and Pj < Q < Pj+1. By Lemma 11.2(6),

for all ℓ, there is no source-region bounded by subtracks of τ and βℓ. If ℓ < i or ℓ > j, then the

orientations of βℓ and τ near ∂∆ are as shown in Figure 10.2(right), so βℓ and τ cannot intersect

by Corollary 10.3.

Consider traveling along τ from P to Q. If τ intersects βk for some k, then τ cannot intersect

any βℓ with ℓ < k. This is because were there such an ℓ, there would be a subpath τ̂ of τ that

connects a pair of points on βk ∪ {Q} and intersects βℓ. However, in the disc obtained from ∆ by

excising the w-side of βk, the orientations on τ̂ and βℓ are as shown in Figure 10.2(right), so this

intersection is contrary to Corollary 10.3.

So τ intersects none of β1, . . . , βi−1, βj+1, . . . , βm and, proceeding from P , it intersects

βi,βi+1, . . . ,βj in order (intersecting each some number of times, possibly zero). If Pi < P < Qi,

then how τ intersects βi is described by case (1) of Lemma 10.2. The other possibility is that

P < Pi, which is handled by case (3). Case (3) likewise describes how τ intersects βi+1, . . . , βj−1,

and case (1) or (3) how τ intersects βj . These observations combine to prove the result. □

13. The upper bound on distortion

Modulo calculations we will postpone to Section 14, we will prove here:

Proposition 13.1. For χ, w and ∆ as per Lemma 11.2, there exists a constant K > 1, depending

only on our presentation P for G, such that

(13.1) |χ| ≤ K |w|p/q .

As a corollary, we obtain the desired upper bound on distortion:

Corollary 13.2. DistGH(n) ≼ exp(np/q).

Proof of Corollary 13.2, assuming Proposition 13.1. Suppose n ≥ 0. Let χ be a reduced word on

the generators of H which realizes the distortion function of H, i.e.:

(13.2) DistGH(n) = |χ|.

More precisely, χ is a maximal length reduced word on the generators of H that equals, in G, some

word w0 of length at most n. We can assume w0 has no subwords representing the identity in G.

Let ∆0 be a reduced van Kampen diagram for w0χ
−1. If ∆0 is homeomorphic to a 2-disc, then

Lemma 11.2 and hence Proposition 13.1 apply, yielding w such that |χ| ≤ K |w|p/q and |w| ≤ C|w0|.
This, combined with (13.2) and |w0| ≤ n gives the result.

Now suppose that ∆0 is not a 2-disc. Our choice of w0 guarantees that no two vertices along

the part of ∂∆0 labelled w0 are identified. The same holds for χ, as it is reduced. It follows that

w0 and χ are concatenations of subwords w1, w2, . . . , wr and χ1,χ2, . . . ,χr respectively, such that

for each i, either wi = χi and the paths with these labels along ∂∆0 are identified, or there is a

(reduced) subdiagram ∆i of ∆0 homeomorphic to a 2-disc whose boundary reads wiχ
−1
i . In either

case, we have χi ≤ K |wi|p/q , and the bound we require follows from the superadditivity of the

function n '→ exp(np/q). □

Let χ, w, and ∆ be as per Lemma 11.2. To prove Proposition 13.1, we will decompose ∆ into

the subdiagrams we now define.
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Definition 13.3. (Decomposing a distortion diagram into b-blocks and an a-block.) Given

a b-track β in ∆, define ∆β to be the minimal subdiagram of ∆ containing the w-side of β (see

Definition 11.1). So ∆β is comprised of all the 2-cells of ∆ that either have β passing through

them or are in the w-side of β. Say that β is outermost when there is no b-track β′ such that ∆β′

properly contains ∆β . The ∆β such that β is outermost are the b-blocks of ∆.

Let B1, . . . , Br be the b-blocks of ∆ as per Figure 13.1 (when r = 3). Define the a-block A of ∆

to be the maximal subdiagram of ∆ that contains χ and intersects no b-tracks. So A is obtained

from ∆ by severing B1, . . . , Br.

Corollary 13.4. For A and B1, . . . , Br as defined above—

(1) A is a subdiagram of ∆ whose 2-cells are of type r4,∗,∗ and r4,∗ (per Figure 4.1).

(2) B1, . . . , Br are subdiagrams of ∆ whose 2-cells are of type r1,∗, r2,∗, r3,∗, and r3,∗,∗.

(3) For all i, there exists ji such that the outermost b-track βi of Bi is a bji-track. It is oriented

towards χ and the cells of ∆ that it traverses comprise a bij -corridor in Bi whose top

boundary (the boundary the bji-edges are oriented towards) follows A ∩ Bi. If ji = 0, then

this is the only b0-corridor in Bi.

Proof. Lemma 11.2(2) implies that the b-blocks contain no r4,∗- or r4,∗,∗-cells. Statements (1) and

(2) are then consequences of the definitions of the a- and b-blocks. Lemma 11.2(1) tells us that

every b-track is oriented towards χ. Part (3) then follows, except we also invoke Lemma 11.2(8)

for its final claim. □

χ

w

bi1

bi1

bi2
bi2

bi3

bi3

W1

W2

W3

α
β

β1

β2

β3

A

B1

B2

B3

w1

w2

w3

v0

v1
v2

v3

Figure 13.1. The a-block and b-blocks in∆. The a1-track α and b-track β illustrate

a case in the proof of Lemma 13.6.

Express w as the concatenation of words

w = v0w1v1w2 · · ·wrvr

where, for all i, wi is the word along ∂Bi ∩ ∂∆ as shown in Figure 13.1 and the vi are the (possibly

empty) intervening subwords. Per Corollary 13.4(3), each wi has first letter b−1
ji

, final letter bji ,
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and the intervening subword is a word on b±1
1 , . . . , b±1

p . For all i, let Wi be the word along the other

side of Bi, so that Bi is a van Kampen diagram for wiW
−1
i . Let

(13.3) W = v0W1v1W2 · · ·Wrvr.

So A is a van Kampen diagram for Wχ−1.

In the following lemmas we analyze the structure of a b-block Bi in ∆. When βi is a b0-track,

this will lead (in Lemma 13.13) to an upper bound on the length of Wi.

Lemma 13.5. Let Bi be a b-block of ∆, and let wi and Wi be as above. Then every a1-track in Bi

runs from an a±1
1 in wi to an a±1

1 in Wi.

Proof. Let α be an a1-track of ∆ intersecting Bi. It cannot be a loop by Lemma 11.2(5). It must

have at least one endpoint in the w-side of βi by Lemma 11.2(7a). If it has one endpoint on each side

of βi, then it intersects βi exactly once by Lemma 11.2(7b), and so corresponds to a single a1-track

of Bi running from wi to Wi. If it has both endpoints in the w-side of βi, then, by Lemma 11.2(7c),

it intersects βi exactly twice, giving rise to two a1-tracks in Bi both running from wi to Wi. □

Lemma 13.6. Suppose βi is a b0-track. Let C be an a1-corridor of Bi. The bottom boundary of C
is labelled (in the direction from wi to Wi) by a word λb0, where λ is a positive word on b1, . . . , bp.

Proof. By Lemma 13.5, C has one end in wi and the other in Wi. By Corollary 13.4(2),(3), the cells

of C are of type r1,∗ (per Figure 4.1), and only the cell where C meets Wi has an edge labelled b0,

so that the bottom boundary of C (in the direction from wi to Wi) is labelled by a word λb0 where

λ is a word on b±1
1 , . . . , b±1

p . We will argue that λ is a positive word. Suppose, for a contradiction,

that λ includes a letter b−1
j for some j. Let β be any b-track that has an edge dual to the edge

of ∂C labelled by that b−1
j . Let α be the a1-track dual to C. By Lemma 11.2(1), β is oriented

towards χ, and so β intersects α at least one more time. So α and β form a bigon. This leads to a

contradiction: that bigon violates (3b) or (5) of Lemma 11.2, depending on whether β is oriented

into or out of the bigon, respectively. (The (3b) case is illustrated in Figure 13.1.) We conclude

that λ is a positive word on b1, . . . , bp. □

Our next lemma is illustrated by Figure 13.2.

Lemma 13.7. Given Bi, C, and λ as in Lemma 13.6, the side of C labelled by λb0 divides Bi into

two subdiagrams. Of these two subdiagrams, let Λ0 be that which does not contain C. Its boundary

word is µ̃b0ν(λb0)
−1, where ν and µ̃−1 are, respectively, some prefix of (Wi or W−1

i ) and of (wi or

w−1
i ). (Which of these pairs it is depends on the orientation of C. Figure 13.2 shows the case where

they are prefixes of Wi and wi.) Let Λ1 be the maximal subdiagram of Λ0 that contains portions

of ∂Λ0 coming from λb0 and Ŵi, but intersects no b-track in Λ1 that connects a pair of edges in

the µ̃ portion of ∂Λ0. (See Figure 13.7.) Let µ̂ be the word such that µ̂b0ν(λb0)
−1 is the word read

around ∂Λ1. Then:

(1) The a1-tracks in Λ1 all arise from removing initial subtracks from a1-tracks in Λ0. In

particular, each runs from an a∓1
1 in µ̂ to an a±1

1 in ν, and the number of a±1
1 -letters in µ̂

is at most the number in µ̃, and therefore at most |wi|.
(2) In µ̂ there are no letters b±1

0 , b−1
1 , . . . , b−1

p and

(3) There are at most |µ̃| letters b1, . . . , bp in µ̂.
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(4) The word read along the bottom boundary (in the direction from µ̂ to ν) of a corridor dual to

an a1-track in Λ1 is a positive word on b0, b1, . . . , bp. Moreover, it has only one b0, namely

its final letter.

ν

µ̃

µ̂

λ
b0

b∗

b∗

b∗

b∗ b∗
b∗

b0

b0

β̂1

β̂2

β̂3

Λ0

Λ1

C

βi

a1

a1

Bi

Figure 13.2. Illustrating our proof of Lemma 13.7

Proof. There are no letters b±1
0 in µ̃ by construction. If there is a b−1

r in µ̃ for some 1 ≤ r ≤ p,

then it is connected by a b-track to some letter br labeling an edge in ∂Λ0—in fact, that br must

be in µ̃, because there are no b−1
r letters in λb0 (by Lemma 13.6) or in ν (such are the 2-cells in

b0-corridors). By Lemma 11.2(1), all such b-tracks are oriented towards χ in ∆, and so towards ν

in Λ0. So there are such b-tracks β̂1, . . . , β̂k (in Figure 13.2 they are shown with k = 3) in Λ0 that

we might call outermost in that

• the w-sides of any two of them are disjoint,

• every such b-track is in the w-side of one of β̂1, . . . , β̂k.

Then Λ1 is obtained from Λ0 by cutting along the top boundaries of the corridors Cβ̂1
, . . . , Cβ̂k

dual

to β̂1, . . . , β̂k.

So (1) then follows from Lemma 13.5 and the observation that, by Lemma 11.2(5), no a1-track

can cross one of the β̂j twice.

For (2) and (3), we examine the b-letters in µ̂. Those that arise as letters in µ̃ include no

b±1
0 , b−1

1 , . . . , b−1
p by construction. Each of the other b±1

l in µ̂ arises on the top boundary of one

of the Cβ̂j
at some 2-cell of type r1,l (per Figure 4.1) where some other b-track branches off β̂j .

There are no b0-edges in Λ1 except in the b0-corridor abutting ν—for otherwise there would be an

additional b0-corridor and therefore a b±1
0 in µ̃ or λ, which is not so. So 1 ≤ l ≤ p− 1. In fact, the

letter cannot be a b−1
l because then there would be a b-track that initially follows β̂j until branching

off into Λ1 and eventually terminates back on µ̃ (not on λ because λ is a positive word), so as to

contradict β̂1, . . . , β̂k being outermost. This proves (2). Then, for (3), observe that each 2-cell of
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type r1,∗ in Cβ̂j
has a different a1-track passing through it which, in light of (1), connects to an

a1-edge in µ̃ between the between the endpoints of β̂j .

Finally, Lemma 13.6 implies (4). □

We will use the conclusions of Lemma 13.7 to further analyze λ via calculations in

(13.4) Q = 〈a1, b0, . . . , bp | a−1
1 bia1 = ϕ(bi) ∀i 〉 with ϕ(bj) =

(
bj+1bj for j < p

bj for j = p,

which is a free-by-cyclic quotient of G via the map G →→ Q killing a2, t, x1, x2, y1, and y2.

Our next simplifying step, in Lemma 13.10, will dispense with the positive a1-letters from µ̂.

But first, we need two technical results concerning Q:

Lemma 13.8. Suppose u and v are positive words on b0, . . . , bp. Take ϕ−1(u) to denote the reduced

word on b0, . . . , bp representing that element of Q. Then ϕ−1(u)v is reduced—that is, there is no

cancellation between ϕ−1(u) and v. In particular, if w is a positive word on b0, . . . , bp which equals

ϕ−1(u)v in Q, then v is a suffix of w.

Proof. We downwards induct on the minimal index i such that u includes a letter bi. If i = p, the

result holds because u is a power of bp and ϕ−1(u) = u. For the induction step, write u as the

concatenation u0u1, where u0 ends in bi, and u1 contains no bi.

It can be checked that for j = 0, . . . , p,

ϕ−1(bj) =

)
**+

**,

b−1
j+1 · · · b

−1
p−3b

−1
p−1bp · · · bj+2bj when p− j is even,

b−1
j+1 · · · b

−1
p−2b

−1
p bp−1 · · · bj+2bj when when p− j is odd,

which is a reduced word on bj , b
±1
j+1, . . . , b

±1
p whose one and only bj is its final letter.

So ϕ−1(u0) has one i-letter, its last, and ϕ−1(u1) has no bi letters. Thus ϕ
−1(u) = ϕ−1(u0)ϕ

−1(u1)

as words—there is no cancellation between the two factors. By the induction hypothesis, there is

no cancellation between ϕ−1(u1) and v, so the result follows. □

Lemma 13.9. If u and ϕ−1(u) are both positive words on b0, . . . , bp, then |ϕ−1(u)| ≤ |u|.

Proof. For 0 ≤ j ≤ p, let nj and mj be the number of bj-letters in u and ϕ−1(u), respectively.

Then in view of the form of ϕ−1 given in the proof of Lemma 13.8, we have

0 ≤ m0 = n0, and so

0 ≤ m1 = n1 − n0 ≤ n1, and so

0 ≤ m2 = n2 − n1 + n0 ≤ n2, and so on,

from which the result follows. □

Lemma 13.10. Given λ as in Lemmas 13.6 and 13.7, there exists a word µ on a−1
1 , b1, . . . , bp (so

containing no a1, b
−1
1 , . . . , b−1

p ) such that |µ| ≤ 2|wi|, and an integer 0 ≤ l ≤ |wi| such that in Q,

µb0a
l
1 = λb0.
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Proof. Suppose that λλλ = (λ0, . . . ,λl), u = (u0, . . . , ul), and εεε = (ε1, . . . , εl), where each λj is

a positive word on b1, . . . , bp, each uj is a prefix of λj , each εi = ±1, and u0 = λ0. Say that

σ−1b0τ = λb0 in Q via (λλλ,u, εεε) when

σ = u−1
0 aε11 u−1

1 aε21 · · ·u−1
l−1a

εl
1 u

−1
l

τ = aε11 aε21 · · · aεl1
λ = λl

as words, and for all 0 ≤ j ≤ l,

(13.5) λjb0 = (uja
−εj
1 uj−1 · · · a−ε2

1 u1a
−ε1
1 u0) b0 (aε11 aε21 · · · aεj1 )

in Q, as illustrated in Figure 13.3.

τ

σ

u0

u1

u2

u3

u4

u5

b0 b0 b0 b0 b0 b0

λ0

λ1

λ2

λ3

λ4

λ5

aε11 aε21 aε31 aε41 aε51

aε11

aε21

aε31

aε41

aε51

ũ0

u1

u2

u3

u4

u5

b0b0 b0 b0 b0

λ1

λ2

λ3

λ4
λ5

aε21 aε31 aε41 aε51

aε21

aε31

aε41

aε51

b0 b0 b0 b0

u0

u1

u2

ϕ−1(u3)

u4

u5

λ0

λ1

λ4
λ5

aε11 aε21 aε51

aε11

aε21

aε51

Figure 13.3. Illustrating our proof of Lemma 13.10 (with l = 5). Left: a diagram

for σ−1b0τ = λb0 in Q via (λλλ,u, εεε). Centre: the result of applying move I. Right:

the result of applying move II (with j = 4).

Let λ0, . . . ,λl−1 be the positive words on b1, . . . , bp such that λ0b0, . . . ,λl−1b0 are the words along

the bottom boundaries (read in the direction from µ̂ to ν) of the a1-corridors in Λ1. Let λl = λ.

Per Lemma 13.7, µ̂b0ν = λb0 in G and, given how the a1-corridors in Λ1 pair off the a±1
1 in ν with

the a±1
1 in µ̂, if we define σ and τ to be µ̂−1 and ν with all letters a2, t, x1, x2, y1, and y2 deleted,

then they have the forms displayed above. Accordingly, they define u and εεε so that σ−1b0τ = λb0
in Q via (λλλ,u, εεε). Moreover, l ≤ |wi| and |u| :=

-l
j=0 |ui| ≤ 2|wi|, the last inequality coming from

summing the bounds from Lemma 13.7 (1) and (3).

We will simplify (λλλ,u, εεε) in two ways:

I. Suppose that ε1 = −1. Then (13.5) in the case j = 1 gives that in Q,

λ1b0 = u1a1u0 b0 a−1
1 = u1ϕ

−1(u0b0).

Now, u1 is a prefix of λ1 and so ϕ−1(u0b0) is a suffix of λ1b0, and so is a positive word.

Therefore Lemma 13.9 applies and tells us that |ϕ−1(u0b0)| ≤ |u0b0|. Define ũ0 to be
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the word obtained from ϕ−1(u0b0) by removing its final letter b0. Then |ũ0| ≤ |u0| and
λ1 = u1ũ0. Define λ̂λλ to be λλλ with λ0 discarded, define û to be u with u0 discarded and

u1 replaced by u1ũ0, and define ε̂εε to be εεε with ε1 discarded. Then σ−1b0τ = λb0 in Q via

(λ̂λλ, û, ε̂εε), the lengths of the three sequences have all decreased by 1. And because |ũ0| ≤ |u0|,
we get |û| ≤ |u|.

II. Suppose εj−1 = 1 and εj = −1 for some 2 ≤ j ≤ l. Using (13.5) to relate λj−2b0 and λjb0,

we get

λjb0 = uja1uj−1a
−1
1 λj−2b0 a1a

−1
1 = ujϕ

−1(uj−1) λj−2b0

in Q. Now, uj is a prefix of λj and λjb0 is a positive word, so ϕ−1(uj−1) λj−2b0 is equal

in Q to a positive word, and then by Lemma 13.8, ϕ−1(uj−1) is a prefix of that positive

word. Given that both ϕ−1(uj−1) and uj−1 are positive words, Lemma 13.9 tells us that

|ϕ−1(uj−1)| ≤ |uj−1|. Now define λ̂λλ to be λλλ with λj−1 and λj discarded, define û to be u

with uj−2 and uj−1 discarded and uj replaced with ujϕ
−1(uj−1)uj−2, and define ε̂εε to be εεε

with εj−1 and εj discarded. Then σ−1b0τ = λb0 in Q via (λ̂λλ, û, ε̂εε), the lengths of the three

sequences have all decreased by 2, and |û| ≤ |u|.
Repeat I and II until we have (λλλ,u, εεε) via which σ−1b0τ = λb0 in Q with εεε = (1, · · · , 1). Through-

out, the bounds l ≤ |wi| and |u| ≤ 2|wi| are maintained. The resulting µ = σ−1 and τ = al1 have

the required properties. □

A calculation in Q now bounds the length of λ. We state the result in the following lemma,

deferring the proof to Section 14.

Lemma 13.11. There exists C0 > 1 with the following property. Suppose there are words µ on

a−1
1 , b1, . . . , bp (so containing no a1, b

−1
1 , . . . , b−1

p ) and λ on b1, . . . , bp (so containing only positive

letters), and a number l ≥ 1 such that in Q

(13.6) µb0a
l
1 = λb0.

Then, if | · |q counts the number of bq in a given word, we have:

|λ| ≤ C0(|µ|+ |λ|q)p/q.

In the situation of Corollary 13.4, this leads to an upper bound on the lengths of the a1-corridors

in Bi for all i such that βi is a b0-corridor.

Lemma 13.12. There exists C1 > 1 such that if C is as in Lemma 13.6 and ξb0 and λb0 are the

words read along the top and bottom boundaries (respectively) of C, then

max{|λ|, |ξ|} ≤ C1|w|p/q.

Proof. First consider the word λb0 along the bottom boundary of C. Use Lemma 13.7 and 13.10

to obtain a word µ = µ(b1, . . . , bp, a
−1
1 ) and a number l ≥ 1 such that Lemma 13.11 applies. Then

|λ| ≤ C0(|µ|+ |λ|q)p/q. By Lemma 13.10, we have |µ| ≤ 2|wi| ≤ 2|w|.
We estimate |λ|q using (a2, bq)-tracks (see Definition 12.1). The dual of every edge labelled bq in λ

is part of an (a2, bq)-track of ∆ with endpoints on w (by parts (2) and (5) of Lemma 12.2). Suppose

some (a2, bq)-track γ crosses C twice. Then the edges of λ dual to γ are necessarily labelled by b±1
q ,

as λ has no a2, and since γ is oriented (Lemma 12.2(1)) at least one of these must be b−1
q . This
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contradicts the fact, established in Lemma 13.6, that λ is a positive word. Thus any (a2, bq)-track

crosses λ at most once. It follows that |λ|q ≤ |w|. Thus

(13.7) |λ| ≤ C0(|µ|+ |λ|q)p/q ≤ C0(4|w|)p/q ≤ C ′
0|w|p/q,

for a suitable constant C ′
0.

Now if ξb0 is the top boundary of an a1-corridor, then we have a relation ξb0 = a−1
1 (λb0)a1,

where λ is a positive word on b1, . . . , bp. Inspecting the r1,∗-defining relations (of Figure 4.1),

we see that |ξ| ≤ C ′′
0 |λ| for a suitable constant C ′′

0 ≥ 1. Combining this with (13.7), we obtain

max{|λ|, |ξ|} ≤ C1|w|p/q for a suitable constant C1 > 1. □

Our next lemma is illustrated by Figure 13.4. We can now derive:

Lemma 13.13. There exists a constant C2 > 1 such that for all i such that βi is a b0-track,

(13.8) |Wi| ≤ C
|w|p/q
2 .

wi

Wi

W ′
i

C

α2

u′
2

µ2 ν2C1

C2 C3

C4

D0

D1
D2 D3

D4

a1

a1

a1

a1

a1

a1

a1

a1 Bi

b0 b0

Figure 13.4. Illustrating our proof of Lemma 13.13 (with l = 4)

Proof. Let C be the (unique) b0-corridor in Bi and let W ′
i be its bottom boundary, so we have the

relation b−1
0 W ′

i b0 = Wi. Then there exists a constant K0 ≥ 1 such that

(13.9) |Wi| ≤ K0|W ′
i |.

Let C1, . . . Cl be the a1-corridors of Bi and let D0, . . . ,Dl be the (closures of the) components of

Bi \ (C ∪C1 ∪ · · ·∪ Cl). Then, for all j, Dj is a van Kampen diagram for the relation µ−1
j αjνj = u′j ,

where αj is a subpath of wi, the paths µj and νj (which are possibly empty) run along the a1-

corridors bounding Dj , and u′j is a subpath of W ′
i . As Dj has no a1- or b0-corridors, this relation

holds in (in the notation of Figure 4.1)

〈 a2, t, x1, x2, b1, . . . , bp | {r2,i, r3,j}1≤i,j≤p , r4,2,1, r4,2,2, r4,2 〉,

which is a multiple HNN-extension of F (a2, t, x1, x2) with stable letters b1, . . . , bp. It follows that

|u′j | ≤ |αj |KM
1 , where K1 ≥ 1 is a constant, and M = max(|µj |, |νj |), which is at most C1|w|p/q by
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Lemma 13.12. Then, because the number of a1-corridors is l, we have

|W ′
i | ≤ l +

l+1'

i=0

|u′j | ≤ l +

l+1'

i=0

|αj |KM
1 ≤

#
l +

l+1'

i=0

|αj |
&
KM

1 ≤ |w|KC1|w|p/q
1 .

This and (13.9) together establish (13.8) for a suitable constant C2 > 1. □

We can now complete:

Proof of Proposition 13.1. Recall that ∆ is a van Kampen diagram for wχ−1 and A is a subdiagram

for Wχ−1, where W is as defined in (13.3) and all the 2-cells of A are r4,∗- or r4,∗,∗-cells (per

Figure 4.1). Now, A is a tree-like arrangement of 2-disc components connected by 1-dimensional

portions (trees). As r4,∗- and r4,∗,∗-cell have no x-edges on their boundaries, any x-edges in A are

in 1-dimensional portions. Let .A be the subdiagram of A consisting of the path χ and all its 2-disc

components that share at least one edge with χ. Then .A is a van Kampen diagram for /Wχ−1,

where /W is a word obtained from W by deleting some of its letters. Then /W contains no x-letters:

its letters are either along the path χ or are on the boundaries of 2-cells, neither of which have

x-edges.

If βi is not a b0-track, then Wi is a word on a1X∗tX∗, a1X∗tX∗, a1a2X∗tX∗, X∗t
−1X∗tX∗ and

X∗tX∗. And (because ∆ is reduced and thanks to the C ′(1/4) small-cancellation condition of

Section 4 for the set X of the X∗), if a subword of the freely reduced form of Wi contains no

x-letters, then it has length at most 2. It follows that Wi can contribute at most two letters to /W .

Therefore, in the notation of (13.3), |/W | is at most
-r

i=0 |vi|, plus twice the number of Wi such

that βi is not b0-track, plus the lengths of the remaining Wi. So, using Lemma 13.13 and that there

are at most |w| subwords in Wi in W , for a suitable constant C3 > 1, we get

(13.10) |/W | ≤ |w|+ 2|w|+ |w|C |w|p/q
2 ≤ C

|w|p/q
3 .

Next we claim that there exists a constant C4 > 1 such that

(13.11) |χ| ≤ |/W |C |w|
4 .

Since the 2-cells in .A are all of type r4,∗ or r4,∗,∗ (per Figure 4.1), .A is a union of non-intersecting

a1- and a2-corridors. Each a1-corridor of .A is part of an a1-corridor of ∆ whose ends are in w, and

Lemma 11.2(7) implies that no two a1-corridors of .A are part of the same a1-corridor in ∆. On

the other hand, several a2-corridors of .A could be part of the same (a2, bq)-corridor of ∆. However,

by Lemma 12.3, if a pair of a2-corridors of A nest (meaning one is entirely in the W -side of the

other), then they cannot be part of the same (a2, bq)-corridor of ∆. It follows that the same is true

of .A: no pair of a2-corridors of .A have the property that one is entirely in the /W -side of the other.

Distinct (a2, bq)-corridors end on distinct pairs of edges of w.

Thanks to these observations, we can strip away successive portions of .A by at most |w| moves,

each of which either

• removes an a1-corridor, or

• removes all the a2-corridors of .A that are part of the same (a2, bq)-corridor of ∆.

The result is a sequence of diagrams which demonstrate that each word in a sequence of words

equals χ in G. Moreover, this sequence of words starts with /W and ends with a word freely equal

to χ, and the length of each word is longer than the last by at most a constant factor. This proves

(13.11) for a suitable constant C4 > 1.
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Finally, (13.10) and (13.11) combine to yield

|χ| ≤ |/W |C |w|
4 ≤ C

|w|p/q
3 C

|w|
4 ≤ K |w|p/q

for a suitably chosen constant K > 1. □

14. Why p/q?

This section is devoted to a proof of Lemma 13.11, which we used in our proof of Proposition 13.1.

The lemma concerns the group

Q = 〈a1, b0, . . . , bp | a−1
1 bia1 = ϕ(bi) ∀i 〉 with ϕ(bj) =

(
bj+1bj for j < p

bj for j = p.

We begin with two preparatory lemmas. We use the convention that the binomial coefficient
0
n
r

1

equals 0 for all r /∈ {0, . . . , n}.

Lemma 14.1. Consider the relation a−m
1 bia

m
1 = λ in Q, where m ≥ 0, 0 ≤ i ≤ p, and λ is a word

in b0, . . . , bp. Then

(1) For 0 ≤ j ≤ p− i, there are
0
m
j

1
instances of bi+j in λ. Also, λ has no bk for k < i.

(2) If m > 2p, then |λ| ≤ (p+ 1)
0

m
p−i

1
.

(3) If m ≤ 2p, then |λ| ≤ (p+ 1)(2p)p

Proof. For (1), induct on m or refer to [BR09]. For (2), note that if 0 ≤ i ≤ p and m > 2p, then

p− i ≤ p < m/2, and so
0
m
j

1
≤

0
m
p−i

1
for all j ≤ p− i. Then from (1), we have

|λ| =

p−i'

j=0

$
m

j

%
≤

p−i'

j=0

$
m

p− i

%
≤ (p− i+ 1)

$
m

p− i

%
≤ (p+ 1)

$
m

p− i

%
.

For (3), we use the fact that
0
m
j

1
≤ mj for any j ≤ m, and

|λ| =

p−i'

j=0

$
m

j

%
≤

p−i'

j=0

mj ≤ (p− i+ 1)mp−i ≤ (p+ 1)(2p)p.

□

Lemma 14.2. Let K = (2p)p
2
. For all m, k, l ∈ Z such that m > 2p and 1 ≤ k, l ≤ p,

(1)
0
m
k

1
≤ K

0
m
l

1k/l

(2) If l < k, then
0
m
k

1
≤ K

0
m
l

10
m
k−l

1

Proof. Let m > 2p. Now, if t satisfies 1 ≤ t ≤ p, then m > 2t, or equivalently −t > −m/2.

Consequently, m− t+ 1 > m−m/2 + 1 > m/2, which gives the “>” in:

(14.1) mt ≥
$
m

t

%
=

m(m− 1) . . . (m− t+ 1)

t!
>

2m
2

3t 1

t!
≥ mt

2pp!
≥ mt

(2p)p
.

Now,
0
m
k

1
≤ mk, (14.1), and k < p, respectively, imply the first, second, and third of the following

inequalities: $
m

k

%l

≤ mkl ≤ (2p)pk
$
m

l

%k

≤ (2p)p
2

$
m

l

%k

.

Then (1) follows since (2p)p
2/l ≤ (2p)p

2
= K.
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For (2), now apply (14.1) to t = l and t = k − l, and note that 2p ≤ p2 (since 1 ≤ l < k ≤ p

implies that p ≥ 2):
$
m

k

%
≤ mk = mlmk−l ≤ (2p)p

$
m

l

%
(2p)p

$
m

k − l

%
= (2p)2p

$
m

l

%$
m

k − l

%
≤ K

$
m

l

%$
m

k − l

%
.

□

For a word π, we write |π|b and |π|q to denote the number of b-letters and the number of bq-letters

(respectively) in π.

Suppose µ is a word on a−1
1 , b1, . . . , bp (no a1, b

−1
1 , . . . , b−1

p letters), λ is a positive word on

b1, . . . , bp, and l ≥ 1 is an integer such that in Q

(14.2) µb0a
l
1 = λb0.

Lemma 13.11 asserts that

(14.3) |λ| ≤ C0(|µ|+ |λ|q)p/q

for a suitable constant C0 > 1.

Here is the idea behind this. When we shuffle the a±1
1 letters through µb0a

l
1, in order to collect

them together and cancel them away and obtain λb0, the effect is to apply ϕ to the intervening

b-letters. Lemma 14.1(1) indicates how the number of b-letters then grows: as a function of l, the

number of bi-letters in λ is at most a polynomial of degree i. Whether this rate of growth is achieved

depends on µ. What (14.3) states is how the total number of b-letters produced is contingent on

the length of µ and the number of bq-letters produced.

Proof of Lemma 13.11. Let C0 = (p+ 1)(2p)2p
2
. We induct on |µ|b.

Base case. In the base case, |µ|b = 0, and so µ = a−l
1 and (14.2) is a−l

1 b0a
l
1 = λb0. Then |λ|q =

0
l
q

1

by Lemma 14.1(1), and so

(14.4) |µ|+ |λ|q ≥
$
l

q

%
.

If l > 2p, then Lemmas 14.1(2) and 14.2(1) apply so as to give the first and second (respectively)

of the following inequalities; the definition of C0 and (14.4) give the third:

|λ| ≤ (p+ 1)

$
l

p

%
≤ (p+ 1)(2p)p

2

$
l

q

%p/q

≤ C0(|µ|+ |λ|q)p/q.

If, on the other hand, l ≤ 2p, then, by Lemma 14.1(3), we have that

|λ| ≤ (p+ 1)(2p)p ≤ C0 ≤ C0(|µ|+ |λ|q)p/q,

with the final inequality true because l ≥ 1. This completes our proof of the base case.

Inductive step. Suppose we have µ̂b0a
l
1 = λ̂b0 as per (14.2) with |µ̂|b = k+ 1. We will show that

|λ̂|q ≤ Cq
0 n̂

p, where

(14.5) n̂ = |µ̂|+ |λ̂|q.

Suppose bi is the first b-letter in µ̂. Then µ̂ = a−m
1 biβ for some integer m such that 0 ≤ m ≤ l,

and word β that contains l −m instances of a−1
1 and satisfies |β|b = k. The exponent sums of the
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a1-letters in a−m
1 bia

m
1 and a−m

1 βal1 are both 0, so there exist positive words γ and λ, respectively,

on b1, . . . , bp representing them in Q. Then in Q,

λ̂b0 = µ̂b0a
l
1 = (a−m

1 bia
m
1 )(a−m

1 βb0a
l
1) = γλb0.

Thus |λ̂| = |λ|+ |γ|. We will bound |λ̂|q by combining bounds on |λ| and |γ|.
Setting µ = a−m

1 β, we have µb0a
l
1 = λb0 in Q, where µ satisfies the hypotheses of the present

lemma and |µ|b = k. By the induction hypothesis, |λ| ≤ C0n
p/q, where n = |µ|+ |λ|q.

Before bounding |γ| we make some observations about n and n̂. Firstly, the presence of b0 in the

relation a−m
1 βb0a

l
1 = λ, together with Lemma 14.1(1) implies that |λ|q ≥

0
m
q

1
, and so

(14.6) n ≥
$
m

q

%
.

Note that |µ̂| = |β|+ 1 +m = |µ|+ 1, leading to:

(14.7) n̂ = |µ̂|+ |λ̂|q = |µ|+ 1 + |λ|q + |γ|q = n+ 1 + |γ|q.

Then, since |λ̂| = |λ|+ |γ|, we have

|λ̂|q ≤ (|λ|+ |γ|)q =

q'

j=0

$
q

j

%
|λ|q−j |γ|j

≤
q'

j=0

$
q

j

%2
C0n

p/q
3q−j

|γ|j (by the induction hypothesis)

≤
q'

j=0

$
q

j

%
Cq−j
0 n

p− pj
q |γ|j .(14.8)

Similarly to the base case, we treat the cases m ≤ 2p and m > 2p separately. When m > 2p,

our estimate depends on whether i ≥ q, in which case no new bq letters are created in γ, or i < q,

in which case new bq letters are created in γ. Thus, we have three cases as follows.

Case 1: m ≤ 2p. In this case, |γ| ≤ C0 by Lemma 14.1(3). Moreover, since p > q, we have

n
p− pj

q ≤ np−j and
0
q
j

1
≤

0
p
j

1
for each j. Continuing from (14.8), we get

|λ̂|q ≤
q'

j=0

$
q

j

%
Cq−j
0 np−jCj

0 ≤ Cq
0

q'

j=0

$
p

j

%
np−j ≤ Cq

0(n+ 1)p

Finally, since n̂ ≥ n+ 1 by (14.7), we obtain |λ̂|q ≤ Cq
0 n̂

p, as desired.

Case 2: m > 2p and q ≤ i ≤ p. We have that for K = (2p)p
2
:

|γ| ≤ (p+ 1)

$
m

p− i

%
by Lemma 14.1(2)

≤ (p+ 1)

$
m

p− q

%
as p− i ≤ p− q ≤ p and m > 2p

≤ (p+ 1)K

$
m

q

% p−q
q

by Lemma 14.2(1), as m > 2p and q, p− q ≤ p

≤ C0n
p
q
−1

by (14.6).
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Then, continuing from (14.8), and using that n̂ ≥ n+ 1 by (14.7) and that
0
q
j

1
≤

0
p
j

1
for each j,

we get

|λ̂|q ≤
q'

j=0

$
q

j

%
Cq−j
0 n

p− pj
q (C0n

p
q
−1

)j ≤ Cq
0

q'

j=0

$
p

j

%
np−j ≤ Cq

0(n+ 1)p ≤ Cq
0 n̂

p.

Case 3: m > 2p and 1 ≤ i < q. In this case, |γ|q =
0

m
q−i

1
by Lemma 14.1(1) and

|γ| ≤ (p+ 1)

$
m

p− i

%
by Lemma 14.1(2)

≤ (p+ 1)K

$
m

p− q

%$
m

q − i

%
by Lemma 14.2(2), where K = (2p)p

2

≤ (p+ 1)K2

$
m

q

% p−q
q
$

m

q − i

%
by Lemma 14.2(1), as m > 2p and 1 ≤ q, p− q ≤ p

≤ C0n
p−q
q |γ|q by (14.6),K = (2p)p

2
, and |γ|q =

$
m

q − i

%
.

Then, continuing from (14.8), we have

|λ̂|q ≤
q'

j=0

$
q

j

%
Cq−j
0 n

p− pj
q

2
C0n

p−q
q |γ|q

3j

≤ Cq
0

q'

j=0

$
p

j

%
np−j |γ|jq

≤ Cq
0 (n+ |γ|q)p

≤ Cq
0 n̂

p,

where the last inequality follows from (14.7).

This concludes the proof of inductive step, as |λ̂| ≤ C0n̂
p/q in all three cases. □

15. Iterated exponential functions

Recall that expk denotes the k-fold iterated exponential-function—that is, exp1(x) = exp(x)

and expi(x) = exp(expi−1(x)) for integers i > 1. Here we will leverage our examples H ≤ G

from Section 4 to construct free subgroups of hyperbolic groups whose distortion functions are ≃-

equivalent to n '→ expk(np/q), where p > q ≥ 1 and k > 1 are integers, proving Theorem 1.1. We will

take iterated amalgamated products of G with certain hyperbolic free-by-free groups constructed

by Brady and Tran [BT21]. We begin by reviewing the parts of their construction we need. We

write Fm to denote the free group on m generators.

Theorem 15.1. [BT21, Theorem 5.2] Given m ≥ 1, there exists l > m and a group Fl ⋊ Fm that

is CAT(0) and hyperbolic.

Definition 15.2. Let G1 be a finitely generated group and let Fm1 < G1 be a free subgroup of

rank m1. Take m1 < m2 < · · · so that Fmi+1 ⋊ Fmi is the group of Theorem 15.1 (with mi+1 = l

and mi = m). For i > 1, define Gi by

Gi = (Fmi ⋊ Fmi−1) ∗Fmi−1
Gi−1.
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Proposition 15.3. [BT21, Proposition 4.4] In the notation of Definition 15.2, if DistG1
Fm1

≃ f for

some non-decreasing superadditive function f , then for all integers k ≥ 1,

DistGk
Fmk

(n) ≃ expk−1(f(n)).

To complete the proof of Theorem 1.1, we will take G1 and Fm1 to be our groups G and H ∼= F3,

respectively, from Section 4. We will then use the following two results to conclude that Gk is

hyperbolic when k > 1.

Theorem 15.4. (Hyperbolicity of amalgams) If a finitely generated group C is a subgroup of

two hyperbolic groups A and B, and C is quasi-convex and malnormal in A, then

Γ = A ∗C B

is hyperbolic. (We make no assumption on how C sits in B.)

Proof. Since C is finitely generated and is quasi-convex and malnormal in the hyperbolic group A,

[Bow12, Theorem 7.11] tells us that A is hyperbolic relative to C. We then get that Γ is hyperbolic

relative to B by [Dah03, Theorem 0.1(2)]. A group that is hyperbolic relative to a hyperbolic

subgroup is itself hyperbolic by [Osi06, Corollary 2.41]. So Γ is hyperbolic. □

Lemma 15.5. If A and B are finitely generated free groups and G = A⋊B is a hyperbolic group,

then B is quasiconvex and malnormal in G.

Proof. For quasiconvexity, observe that B is a retract of G, so it is in fact convex in G (with respect

to standard generating sets).

To see that B is malnormal, recall that the group G can be identified with the Cartesian product

A×B endowed with the multiplication (a, b)(c, d) = (aϕb(c), bd), where ϕb(x) = bxb−1 for all x ∈ A.

Note that (c, d)−1 = (ϕd−1(c−1), d−1) for all (c, d) ∈ G. We identify B with {1}×B.

Now if B is not malnormal, then there exists some (c, d) ∈ G \ B such that (c, d)−1B(c, d) ∩ B

is non-trivial. Thus, there exists b ∈ B with b ∕= 1, such that

(c, d)−1(1, b)(c, d) = (ϕd−1(c−1), d−1)(ϕb(c), bd) = (ϕd−1(c−1)ϕd−1(ϕb(c)), d
−1bd) ∈ B.

In particular, we must have 1 = ϕd−1(c−1)ϕd−1(ϕb(c)) = ϕd−1(c−1ϕb(c)), and since ϕd−1 is

an automorphism, we have c−1ϕb(c) = 1, or equivalently c−1bcb−1 = 1. Observe that c ∕= 1 as

(c, d) ∈ G \ B. So b and c are commuting elements of infinite order (since A and B are free and

inject into G) in a hyperbolic group, a contradiction. We conclude that B is malnormal. □

Proof of Theorem 1.1. Given p > q ≥ 1, let G and H be the groups we constructed in Section 4

and proved in Sections 8–14 to have DistGH(n) ≃ exp(np/q). Define G1 = G and m1 = 3, so that

Fm1 = F3
∼= H. Define the groups Gk for k > 1 as in Definition 15.2. Then, since G1 is hyperbolic,

and Fmi+1 ⋊Fmi is hyperbolic for each i, we inductively conclude that each Gi is hyperbolic, using

Theorem 15.4 and Lemma 15.5. Finally, since exp(np/q) is a non-decreasing superadditive function,

Proposition 15.3 implies

DistGk
Fmk

(n) ≃ expk(np/q),

as desired. □
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Remark 15.6. (CAT(0) and CAT(−1) structures for the groups Gk) For all p > q ≥ 1, our

group G of Section 4 satisfies a uniform C ′(1/6) condition, so can be given a CAT(0) structure

by [Wis04a] or even a CAT(−1) structure by [Bro, Gro01, Mar17]. The Fl⋊Fm groups constructed

by Brady–Tran have a piecewise Euclidean CAT(0) structure and furthermore, Fm is ultra-convex

in Fl ⋊ Fm—a property they use to show that if the Gromov link condition holds in the complex

associated to a group Γ, then it continues to hold for an amalgamated product of the form (Fl ⋊
Fm) ∗Fm Γ. See [BT21, Lemma 5.10] for the precise statement. Moreover, the strategy used

in [Bro, Gro01] to obtain CAT(−1) structures by changing each Euclidean polygon to a hyperbolic

one by slightly shrinking each angle can be applied to the Brady–Tran groups to obtain CAT(−1)

groups for the form Fl ⋊ Fm. Thus, we expect that by choosing CAT(0) or CAT(−1) structures

on the building blocks and using the ultra-convexity as in [BT21], the groups Gk in Definition 15.2

can be shown to be CAT(0) or CAT(−1) for all k.

16. Distortion of hyperbolic subgroups of hyperbolic groups

Here we use ideas originating in I. Kapovich’s [Kap99] to prove Theorem 1.2, which, in particular,

extends our main result (Theorem 1.1) in that it allows the distorted subgroup H to be any non-

elementary torsion-free hyperbolic group rather than F3.

For each of the functions f listed in Theorem 1.2, there are constructions in the literature

consisting of a hyperbolic group K and a finite-rank free group F ≤ K such that DistKF ≃ f :

see [Mit98a, BBD07] for (1) when p = q, this article for (1) when p > q, and [BDR13] for (2). We

will prove the theorem by amalgamating H with K along a subgroup of H that is isomorphic to F

and is supplied by the following lemma.

Lemma 16.1. Suppose H is a non-elementary torsion-free hyperbolic group. For all k ≥ 2, H

contains a malnormal quasiconvex free subgroup F of rank k.

Proof. Kapovich showed that such an H has a malnormal quasiconvex rank-2 free subgroup F (x, y)

[Kap99, Theorem C]. There are malnormal rank-3 free subgroups in F (x, y)—for example

〈x10, y10, (xy)10〉

is malnormal by the criterion of [KM02, Theorem 10.9], which can be interpreted as being that there

is no reduced word which read from two different vertices in the Stallings graph of the subgroup

makes a loop. Likewise, for all k ≥ 2, for sufficiently large n, the subgroup
4
xn, yn, (xy)n, (x2y2)n, . . . , (xk−2yk−2)n

5

of F (x, y) is malnormal and rank-k. The result then follows from the following three facts. If

A ≤ B ≤ C are groups such that A is malnormal in B and B is malnormal in C, then A is

malnormal in C. Quasiconvexity is similarly transitive. Finitely generated subgroups of F2 are

quasiconvex. □

Now, given H and f as in Theorem 1.2, let F ≤ K be as above so that K is hyperbolic, F is

finite-rank free, and DistKF ≃ f . By Lemma 16.1, H has a quasiconvex malnormal subgroup which

is isomorphic to F . We will also refer this subgroup of H as F , so that we can define

(16.1) G = H ∗F K.

The last ingredient we require for Theorem 1.2 is:
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Theorem 16.2. Let Γ = A ∗C B, where A,B, and C are finitely generated groups and let f be a

superadditive function such that n ≤ f(n) for all n.

(1) If DistAC ≼ f and DistBC ≼ f , then DistΓA ≼ f and DistΓB ≼ f .

(2) If DistAC(n) ≃ n and DistBC ≃ f , then DistΓA ≃ f .

Proof of Theorem 1.2 assuming Theorem 16.2. Given H and f as in the theorem, let G be the

group defined in (16.1). Since F is malnormal and quasiconvex in H, Theorem 15.4 tells us that

G is hyperbolic. Now DistKF ≃ f by construction, and note that every function f listed in the

statement of Theorem 1.2 is superadditive and superlinear. Since F is quasiconvex in H and H is

hyperbolic, we have DistHF (n) ≃ n ≼ f(n), and Theorem 16.2(2) implies that DistGH ≃ f . □

Proof of Theorem 16.2. We begin with some setup. For X = A,B,C, let SX be a generating set

for X, and let KX be a K(X, 1) with 1-skeleton a rose on |SX | petals. We assume that SC ⊂ SA

and SC ⊂ SB. Then Γ is generated by SΓ = SA ∪ SB. Let K be the standard graph of spaces with

fundamental group Γ, i.e.,

K = (KA ⊔ (KC × [0, 1]) ⊔KB)/ ∼

where ∼ identifies KC ×{0} and KC ×{1} with the images of the maps induced by the inclusion of

C in A and B respectively. For convenience, we subdivide the cell structure so that K
(1)
C ×{1/2} ⊂

K(1).

Let c be the unique vertex of KC , and let p = {c} × {1/2} ∈ KC × [0, 1] ⊂ K. We identify

Γ with π1(K, p). More precisely, identify SC with the set of petals of K
(1)
C × {1/2} and SA \ SC

with the collection of loops δαδ̄, where δ and δ̄ are the interval {c}× [0, 1/2] ⊂ KC × [0, 1] oriented

towards and away from KA respectively, and α is a petal of K
(1)
A representing an element of SA\SC .

Identify SB \SC with the analogous set of loops, replacing {c}× [0, 1/2] with {c}× [1/2, 1]. Let SΓ

be the set of the loops defined in this paragraph. Each element of SΓ is contained in K(1).

The associated Bass–Serre tree is obtained by collapsing each lift of KA or KB in 6K to a vertex

(called the A- and B- vertices, respectively) and each lift of KC × [0, 1] to an edge. We subdivide

each edge by adding a midpoint, obtained by collapsing a lift of KC × {1/2}; we call each such

midpoint a C-vertex. Let T denote this subdivided tree, and let ψ : 6K → T denote the collapsing

map. Given an A- or B- vertex v of T , define sv to be the star of v in T . Since T is subdivided,

every vertex of sv besides v is a C-vertex.

If γ ∈ SΓ corresponds to g ∈ SΓ, then each lift γ̃ of γ in 6K(1) is considered to be labelled by g.

By construction, the image of ψ ◦ γ̃ is a C-vertex if g ∈ SC , and otherwise it is contained in a star

sv for an A- or B-vertex v. More generally, if w is any word over SΓ, then for each lift p̃ of p, there

is a path ξw starting at p̃ with label w in 6K(1). (We abuse notation by suppressing p̃.)

Now if, in addition, w = 1 in Γ, then ξw is a loop based at some (any) p̃ and ψ ◦ ξw is a loop

based at ψ(p̃) in T . The image of ψ ◦ ξw is a subtree of T , which we denote τw. We measure the

complexity of w by n(w), which counts the number of A- or B-vertex stars intersecting τw:

n(w) = #{v | v is an A- or B-vertex and sv ∩ τw ∕= ∅}.

Note that n(w) is finite since τw is compact, and n(w) ≥ 1 as ψ(p̃) ∈ τw.

We are now ready to prove (1). In this proof, a geodesic word in X or over SX will mean a

word of minimal length over SX representing an element of X, where X = A,B, or Γ. Let u be a
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geodesic word in either A or B and let w be a geodesic word in Γ with u−1w = 1 in Γ. We wish to

show that |u| ≤ f(|w|). The proof is by induction on n(u−1w).

If n(u−1w) = 1, then τu−1w is contained in some sv, where v is an A- or B-vertex, depending

on whether u is in A or B. We assume without loss of generality that v is an A-vertex. By

construction, sv = ψ(Y ), where Y ⊂ 6K consists of some lift of KA, and all the lifts of KC × [0, 1/2]

intersecting it. Now ξu−1w is contained Y (1) and it follows that its label u−1w is a word over SA.

Thus u and w are both geodesics over SA representing the same element of A, so |u| = |w|. This

proves the base step of the induction.

For the induction step, assume that |u′| ≤ f(|w′|) whenever u′−1w′ = 1 with u′ a geodesic in A

or B and w′ a geodesic in Γ and n(u′−1w′) < n(u−1w). Again, assume without loss of generality

that u is a geodesic in A. Write ξu−1w as a concatenation ξu−1ξw. Then ψ(ξu−1) ⊂ sa for some

A-vertex a (since u is a geodesic over SA). Now, by considering ψ−1(τu−1w \ s◦a), where s◦a denotes

the interior of sa, we obtain a concatenation ξw = ξx0ξy1ξx1 · · · ξykξxk
(so w = x0y1x1 · · · ykxk, as

words), such that for each i, we have that ψ(ξxi) ⊂ sa (so xi is a word over SA) and that ψ ◦ ξyi is
a loop in τu−1w \ s◦a based at a C-vertex pi of sa.

By construction, each ξyi has its endpoints in some lift of KC × {1/2}, and so yi represents an

element of C, and therefore of B. Let zi be a geodesic word over SB with zi = yi in Γ, and let

ξzi be the path in 6K with the same endpoints as ξyi . Then ψ(ξzi) ⊂ sbi where bi is the unique

B-vertex adjacent to pi. Now consider ξz−1
i yi

= ξziξyi and note that ψ(ξyi) intersects sbi , since the

endpoints of ξyi map to pi. It follows that τz−1
i yi

intersects the same number of A- and B-vertex

stars as ψ(ξyi), and, by construction, this number is less than n(u−1w) (since τu−1w intersects the

additional vertex star sa). So n(z−1
i yi) < n(u−1w). Since yi is a geodesic (being a subword of a

geodesic) over SΓ, we may apply the induction hypothesis to conclude that |zi| ≤ f(|yi|). Moreover,

in Γ we have u = w = x0z1x1 · · · zkxk (as elements). So the facts that u is a geodesic and that

n ≤ f(n) combined with the superadditivity of f yield:

|u| ≤
k'

i=0

|xi|+
k'

i=1

|zi| ≤
k'

i=0

|xi|+
k'

i=1

f(|yi|) ≤ f

#
k'

i=0

|xi|+
k'

i=1

|yi|
&

= f(|w|).

This completes the induction step and proves (1). The bound DistΓA(n) ≼ f(n) of (2) immediately

follows.

For the reverse bound in (2), by the definition of DistBC , there exist for each n ≥ 1, geodesic

words un and wn over SC and SB, respectively, with un = wn in Γ, such that |wn| ≤ n and

|un| = DistBC(n). Since un is an element of C, it is also an element of A. Let vn be a geodesic word

over SA representing un. Since C is undistorted in A, there exists a constant K ≥ 1 such that

|un| ≤ K|vn|. Then, for each n, we have found a geodesic word vn in A which represents the same

element as the word wn over SΓ of length at most n, and |vn| ≥ 1
K |un| = 1

KDistBC(n). It follows that

DistΓA(n) ≽ DistBC(n). Combined with the hypothesis DistBC(n) ≃ f(n), this gives DistΓA(n) ≽ f(n),

which completes our proof of (2). □

17. Height

An infinite subgroup H of a group G has infinite height when, for all n, there exist g1, . . . , gn ∈ G

such that
7n

i=1 gi
−1Hgi is infinite and Hgi ∕= Hgj for all i ∕= j. Otherwise it has finite height. New
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constructions of non-quasiconvex subgroups of hyperbolic groups are natural test cases for this

longstanding question attributed to Swarup in [Mit98b]: if a finitely presented subgroup H of a

hyperbolic group G has finite height, is H necessarily quasiconvex in G?

Therefore we note here that our examples do not speak to Swarup’s question. This is because:

Proposition 17.1. If H is the non-quasiconvex subgroup of the hyperbolic group G we construct

to prove Theorem 1.1 or, more generally, to prove Theorem 1.2 in case (1) with p > q, then H has

infinite height.

Proof. Consider Γ = F (t, x1, x2, y1, y2)∗a1,a2 with the HNN-structure from Proposition 7.4, the

defining relators being those specified by the r4,∗-cells of Figure 4.1.

We first show that F = F (t, y1, y2) has infinite height in Γ. It is evident from the defining

relators for Γ that a−1
1 Fa1 ⊂ F . So, for i = 0, 1, . . ., we define gi = ai1, and conclude that

g−1
i+1Fgi+1 ⊂ g−1

i Fgi. Then, for all n ≥ 0, we have
7n

i=1 g
−1
i Fgi = g−1

n Fgn, which is a non-trivial

subgroup of the free group F and so is infinite. And Fgi ∕= Fgj for all i ∕= j because, by virtue of

the HNN-structure of Γ, we find that ak1 ∈ F only when k = 0. So F has infinite height in Γ.

For the G of Section 4 constructed to prove Theorem 1.1 when k = 1, we have H = F (t, y1, y2) =

F < Γ < G as a consequence of the HNN structure discussed in Section 7. When k > 1, the same

is true because of the graph of groups structure from Definition 15.2. Since H has infinite height

in Γ it has infinite height in G as well.

For the groups G we constructed to prove Theorem 1.2(1) when p > q, we have G = H ∗F K,

where K is one of the groups we constructed to prove Theorem 1.1. So F < H and F < Γ < K.

Moreover, the amalgamated product structure implies that ak1 ∈ H only when k = 0, so, using the

same group elements gi as before, Hgi ∕= Hgj when i ∕= j. And, for all n ≥ 0,

g−1
n Fgn =

n8

i=1

g−1
i Fgi ⊂

n8

i=1

g−1
i Hgi.

As g−1
n Fgn is infinite, we conclude that H has infinite height. □
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