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Abstract

For all integers p > q > 0 and k > 0, and all non-elementary torsion-

free hyperbolic groups H, we construct a hyperbolic group G in which

H is a subgroup, such that the distortion function of H in G grows like

expk(np/q). Here, expk denotes the k-fold-iterated exponential function.
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1 Introduction

1.1 Our results

The landscape of subgroups of hyperbolic groups is not well understood. Whether

all one-ended hyperbolic groups have surface subgroups is a celebrated open

question. What functions are Dehn functions of subgroups of hyperbolic groups

is widely open. This article addresses another fundamental issue: What dis-

tortion can subgroups of hyperbolic groups exhibit? Indeed, in his 1998 sur-

vey [Mit98b] Mitra (now known as Mj) asked: “Given any increasing function

f : N → N, does there exist a hyperbolic subgroup H of a hyperbolic group G

such that the distortion of H is of the order of exp(f(n)).”

Let expk denote the k-fold iterated exponential function N → R defined by

exp1(n) = exp(n) and, for k = 2, 3, ..., by expk(n) = exp(expk−1(n)). The

notation ≃ will be explained in Section 1.2. Our main result is:

Theorem A. Given integers p > q > 0 and k > 0, there exists a hyperbolic

group G and free subgroup H ≤ G of distortion DistGH(n) ≃ expk(np/q).

Our G are of infinite height (so do not speak to an old open question of

Swarup)—see Section 7.1. In the case k = 1 they can be made residually finite,

C ′(1/6), CAT(−1), and virtually special—see Section 2.1.

In Section 6.2 we leverage the examples of Theorem A and of [BBD07,

BDR13, Mit98a, Mit98b] so as to make the distorted subgroup be any given

non-elementary torsion-free hyperbolic group:
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Theorem B. Let H be any non-elementary torsion-free hyperbolic group and

let f be any of the following functions:

1. f(n) = expm(np/q), for any integers m ≥ 1 and p ≥ q ≥ 1.

2. f is any one of the Ackermann-function representatives of the successive

levels of the Grzegorczyk hierarchy of primitive recursive functions.

Then there exists a hyperbolic group G with H < G such that DistGH ≃ f .

This paper also contains results we needed to prove Theorem B which may be

of independent interest. Theorem 6.4 assembles results of Bowditch, Dahmani,

and Osin into a combination theorem for the hyperbolicity of amalgams Γ =

A ∗C B. Theorem 6.8 relates the distortion of C in A and of C in B to that

of A in Γ = A ∗C B. Lemma 6.7 states that in every non-elementary torsion-

free hyperbolic group H there is, for any k ≥ 2, a malnormal quasiconvex free

subgroup F of rank k. It builds on the k = 2 case, proved by I. Kapovich in

[Kap99]. Lemma 6.5 states that if a semi-direct product G = Fl ⋊ Fm of finite

rank free groups is hyperbolic, then the Fm-factor is quasiconvex and malnormal

in G.

Background

At first sight, it is surprising that subgroups of hyperbolic groups can display

any distortion given the tree-like geometry of the thin-triangle condition that

defines hyperbolicity. Every Z subgroup of a hyperbolic group is undistorted—

e.g., [BH99, III.Γ Corollary 3.10]. Finitely generated subgroups H of hyperbolic

groups G are undistorted (meaning linear distortion, DistGH(n) ≃ n) if and only

if they are quasi-convex, and in that event they are themselves hyperbolic.

Above linear there is a gap in the spectrum of possible distortion functions:

a consequence of the exponential divergence property of hyperbolic spaces is

that if a finitely generated subgroup of a hyperbolic group is subexponentially

distorted, then it is quasi-convex [Kap01, Proposition 2.6]. Theorem A sweeps

out much of the landscape of possibilities above exponential.

Prior to Theorem A, only sporadic examples of distortion functions for sub-

groups of hyperbolic groups were known. Subgroups of finite-rank free groups

and of hyperbolic surface groups are undistorted [Pit93, Sho91]. Wise [Wis04b]

generalized this result to fundamental groups of non-positively curved, piecewise

Euclidean 2-complexes which enjoy a suitable negative sectional curvature con-

dition. The free factor in any hyperbolic free-by-cyclic group is exponentially

distorted [BF92, BF96, Bri00]. Mitra [Mit98a, Mit98b] constructed, for each in-

teger k ≥ 1, a hyperbolic group with a free subgroup distorted like n 7→ expk(n),

and an example with distortion growing faster than any iterated exponential.
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Barnard, Brady and Dani [BBD07] developed Mitra’s constructions into more

explicit examples that are also CAT(−1). Baker and Riley [BR13] exhibited a

finite-rank free subgroup of a hyperbolic group that is distorted like n 7→ exp2(n)

and is also pathological in that there is no Cannon–Thurston map. Brady, Di-

son, and Riley [BDR13] constructed, for every primitive recursive function, a

hyperbolic ‘hydra’ group with a finite-rank free subgroup whose distortion out-

grows that function. The Rips construction produces examples displaying yet

more extreme distortion. Applied to a finitely presentable group with unsolvable

word problem the construction yields a hyperbolic (C ′(1/6) small-cancellation)

group G with a finitely generated subgroup N such that DistGN is not bounded

from above by a recursive function—see [AO02, §3.4], [Far94, Corollary 8.2],

[Gro93, §3, 3.K ′′
3 ] and [Pit92].

The subgroup N in the Rips construction is not finitely presentable. In fact,

it follows from a theorem of Bieri in [Bie81] that N is finitely presented if and

only if the quotient Q is finite. So the Rips construction cannot be used to

construct examples such as those in Theorem A. Instead, we use a modification

of the Rips construction: starting with a particular finitely presented group Q,

we realize it as the quotient of a group presentation that satisfies C ′(1/6) and

other small-cancellation conditions, and find a free subgroup which is distorted,

but not normal. Several additional nuances in our construction guarantee that

we get the desired distortion estimates. We outline this in Section 1.3.

In contrast to the situation with hyperbolic groups, a broad family of func-

tions are known to be distortion functions of subgroups of CAT(0) groups.

Indeed, Olshanskii and Sapir [OS01, Theorem 2] used a Mihailova-style con-

struction to show that the set of distortion functions of finitely generated sub-

groups of F2 × F2 coincides with the set of Dehn functions of finitely presented

groups. Such functions are known to have wide scope thanks to the S-machines

of [SBR02, Sap18].

In finitely presented groups, even Z-subgroups can exhibit essentially any

distortion: Olshanskii [Ol′97] showed that every computable function N → N,
satisfying some straight-forwardly necessary conditions, is ≃-equivalent to the

distortion function of such as subgroup.

Application to Dehn functions.

What functions can be ≃-equivalent to Dehn functions is understood in detail

thanks to [BB00, BBFS09, Ol′97, SBR02]. However, because the most com-

prehensive results depend on deeply involved constructions, we note that our

examples give some explicit examples as follows.

Corollary C. Our groups G yield explicit examples, for integers p > q > 0

and k > 0, of groups with Dehn functions growing ≃ expk(np/q), namely the
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free product with amalgamation G ∗H G of two copies of G along H, and the

HNN-extension G∗τ of G with stable letter τ that commutes with all elements

of H.

Proof. Theorem 6.20 in Chapter III.Γ of [BH99] gives upper and lower bounds

on the Dehn functions of G ∗H G and G∗τ in terms of the Dehn function of G

(which is ≃ n because G is hyperbolic) and DistGH . Up to ≃, these bounds agree

with each other and with DistGH since DistGH is super-exponential.

Innovations

Constructing H < G that realize the subgroup distortion functions of Theo-

rem A while staying within the universe of hyperbolic groups requires some

delicacy. For example, a standard strategy of achieving f ◦ g distortion by

amalgamating a pair realizing distortion f with one realizing distortion g is not

available due to the gap between linear and exponential distortion in the hyper-

bolic group setting. Instead, we develop new tools and techniques. We seed the

“p/q-distortion” with a single free-group automorphism from which we extract

two growth rates that we play off against each other. We look to Wise’s version

of the Rips construction [Wis03] for small-cancellation (hence hyperbolicity)

and for an HNN-structure (which facilitates analysis), but we limit the defining

relations employed in a way that sacrifices the normality of the subgroup, but

gains crucial control on the “flow of noise” through van Kampen diagrams. We

further this control by using two families of “Rips noise words” instead of one.

And to analyze this flow, we introduce tracks which are branching structures

that generalize corridors. Under appropriate hypotheses tracks display rigidity

which constrains diagrams sufficiently to allow distortion estimates.

We explain these novelties more fully in Section 1.3.

Next steps

Sapir’s S-machines emulate general computing machines in appropriately con-

structed (and always non-hyperbolic) finitely presented groups. One might view

the techniques we introduce here as groundwork for doing the same within ap-

propriately constructed hyperbolic groups.

Another potential application of our examples is to constructing subgroups

of CAT(0) groups or hyperbolic groups exhibiting a range of Dehn functions.

One might, for example, look to embed the doubles of Corollary C in CAT(0)

groups in the manner of [BT21]. However, our distorted subgroups not being

normal is an obstacle to making this work.
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The organization of this article

The remainder of this section contains preliminaries on words, hyperbolicity, dis-

tortion, and the equivalence relation ≃ on functions R≥0 → R≥0 (Section 1.2),

and then an overview of our construction (Section 1.3). Section 2 contains

the definition of our groups G used to prove Theorem A in the case m = 1

and catalogs their small-cancellation conditions (Section 2.1), some immediate

consequences of those conditions (Section 2.2), a review of the definition of a

corridor in a van Kampen diagram and an introdrucution to a more general dual

notion we call tracks, which may branch, unlike corridors (Section 2.3), and then

two HNN-structures for G and a proof that H is free (Section 2.4). Section 3

gives our proof of the lower bound on the distortion of H in G. Section 4 es-

tablishes results on the rigidity of van Kampen diagrams that will facilitate our

proof of the upper bound. We examine how a van Kampen diagram ∆ over

G being reduced limits the patterns of tracks within it (Section 4.1). We give

general results about paths across discs, which we will apply to tracks in ∆

(Section 4.2). We argue that tracks are further constrained in what we call a

distortion diagram, meaning a ∆ exhibiting how a word in the generators of H

equals a shorter word in the generators of G (Section 4.3). We introduce and

analyse (a2, bq)-tracks, which are a device we use to connect growth within ∆

to the presence of certain edges in its boundary (Section 4.4). Section 5 con-

cerns estimates which are made possible by this rigidity and which culminate

in an upper bound on the distortion of H in G (Section 5.1) when combined

with calculations in a free-by-cyclic quotient Q of G where the fraction p/q

ultimately enters (Section 5.2). Section 6 promotes our examples to iterated ex-

ponential functions, and so completes our proof of Theorem A (Section 6.1), and

then explains how we leverage our examples to prove Theorem B (Section 6.2).

Section 7 contains a proof that our examples have infinite height.

1.2 Preliminaries

A word w on a set of letters A is an expression aε11 · · · aεmm where m ≥ 0, ai ∈ A,

and εi = ±1 for all i. It is positive when εi = 1 for all i. Its length |w| is
m. The word metric dS(g, h) on G gives the length of a shortest word on S

that represents g−1h. We use dG or d in place of dS when the generating set is

understood from the context.

A finitely generated group is hyperbolic when its Cayley graph has the prop-

erty that there exists δ > 0 such that all geodesic triangles are δ-thin: that is,

each of its three sides is in the δ-neighbourhood of the other two. The existence

of such a δ does not depend on the finite generating set (but the values of δ for

which the condition holds generally will). See, for example, [BH99, Gro87] for
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further background.

Suppose S and T are finite generating sets for a group G and subgroup H,

respectively. The distortion function DistGH : N → N measures how H sits as

a metric space in G by comparing the restriction of the word metric dS on G

associated to S to the word metric dT on H associated to T :

DistGH(n) := max { dT (e, g) | g ∈ H with dS(e, g) ≤ n } .

Replacing S and T by other finite generating sets will produce a distortion

function that is ≃-equivalent in the following sense. For f, g : R≥0 → R≥0

write f ⪯ g when there exists C > 0 such that f(n) ≤ Cg(Cn + C) + Cn + C

for all n ≥ 0, and f ≃ g when f ⪯ g and g ⪯ f . Apply these relations to

functions N → R≥0 by extending the domains to R≥0 and having the functions

be constant on the intervals [n, n+ 1).

The following two lemmas concern features of the ≃-relation that will be

important for us. The first is routine and we present it without proof.

Lemma 1.1.

1. For α, β ≥ 1, 2n
α ≃ 2n

β

if and only if α = β.

2. For α ≥ 1 and C > 1, Cn+nα ≃ Cnα ≃ 2n
α

.

For our proof of the lower bound in Theorem A, we will exhibit a sequence of

words that represent elements of H, but can only be expressed by long words on

the generators ofH. The force of the following lemma is that, despite the lengths

of our words forming a sparse sequence, we can draw the desired conclusion.

Lemma 1.2. Suppose H is a subgroup of G and both are finitely generated.

Suppose p > q > 0 are integers, C1, C2, C3 > 0 are constants, and w1, w2, . . .

is a sequence of words on the generators of G. Suppose that wn represents an

element of H for all n, and

C1n
q ≤ |wn| ≤ C2n

q but dH(e, wn) ≥ C32
np

.

Then DistGH(n) ⪰ 2n
p/q

.

Proof. Remark 2.1 in [BBFS09] is that to verify g ⪰ f for f, g : N → N,
it suffices to have g(mn) ≥ f(mn) on a sequence (mn) of integers such that

mn → ∞ as n → ∞ and such that there exists C > 0 with mn+1 ≤ Cmn for

all n. If C4 = (q + 1) max
i=0,...,q

(
q

i

)
, then (n+ 1)q ≤ C4n

q for all n. So there is a C

such that the sequence mn = |wn| satisfies this condition. Now

DistGH(|wn|) ≥ dH(e, wn) ≥ C32
np

≥ C32

(
1

C2
|wn|

)p/q

.
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So DistGH(n) ⪰ 2

(
n
C2

)p/q

, and the result then follows from Lemma 1.1(2) (by

taking C = 2(C
−p/q
2 ) and α = p/q).

We will work extensively with van Kampen diagrams. There are many in-

troductory accounts in the literature.

1.3 Motivation for our construction

In this section, we offer some insights into the origins of our construction. The

formal definition of our group-pair H < G, used to prove Theorem A in the case

k = 1, follows in Section 2.1.

Our construction begins with the free-by-cyclic group

Q = ⟨ a1, b0, . . . , bp | a−1
1 bia1 = φ(bi) ∀i ⟩ (1)

where F = F (b0, . . . , bp) is a free group of rank p+1 and φ is the polynomially-

growing automorphism of F mapping bi 7→ bi+1bi for i ̸= p and bp 7→ bp.

The van Kampen diagram D1 over Q pictured top-left in Figure 1 (for the

case n = 5 and p = 3) shows how a−n
1 b0a

n
1 = φn(b0) equals a positive word λ on

b0, b1, . . . , bp which contains ≃ ni letters bi for i = 0, . . . , p (Lemma 5.14). The

contribution of bp dominates, so the length of λ is N = |λ| ≃ np.

Next, we define

G1 = ⟨ Q, x | b−1
j xbj = x2 ∀j ⟩.

As shown in Figure 2, attaching a copy of D1 and a copy of its mirror image to

a diagram for λ−1xλ = x2
N

along its two paths labelled λ gives a van Kampen

diagram ∆1 over G1 for the relation

a−n
1 b−1

0 an1xa
−n
1 b0a

n
1 = x2

N

. (2)

This diagram illustrates that there is a word of length ≃ 2n
p

in H1 = ⟨x⟩, whose
length in G1 is ≃ n. As there is a family of such diagrams indexed by n, this

shows that DistG1

H1
(n) ⪰ 2n

p

.

Next we elaborate on this construction in a way that plays off the ≃ np

letters bp against the ≃ nq letters bq in λ. We introduce a new generator a2
and we modify the relation a−1

1 bq−1a1 = bqbq−1 of G1 to a−1
1 bq−1a1a2 = bqbq−1,

so that for every new bq created by φ within D1, an a2 is created as well.

Furthermore, we add the relations that a2 commutes with bj for all j, allowing

these newly created edges to flow to the boundary as shown in the diagram on

the right in Figure 1. The resulting diagrams D2 can be mapped onto D1 by

suitably collapsing all the a2-edges and the commutator 2-cells in which they

occur. As for the construction of ∆1, assemble D2, its mirror-image, and our
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a1 a1 a1 a1 a1

b3
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b2

b1

b3

b2

b2

b1

b2

b1

b1

b0

b3

b2

b2

b1

b2

b1

b1

b0

b2

b1

b1

b0

b1

b0

b3

b3
b3
b2
b3

b3
b2
b3
b2
b2
b1
b3
b3
b2
b3
b2
b2
b1
b3
b2
b2
b1
b2
b1
b1
b0

b0

a1 a1 a1 a1 a1a2 a2a2 a2a2a2 a2a2a2 a2

a1 a1 a1 a1 a1

b3

b3
b3
b2
b3

b3
b2
b3
b2
b2
b1
b3
b3
b2
b3
b2
b2
b1
b3
b2
b2
b1
b2
b1
b1
b0

Figure 1: Top left: the van Kampen diagram D1 over Q for a−n
1 b0a

n
1 = φn(b0)

when n = 5 and p = 3. Top right: the corresponding diagram D2 over G2

when q = 2. Lower left, middle and right: a-tracks, b-tracks, and (a2, bq)-tracks

through D2.

diagram for λ−1xλ = x2
N

to get a diagram ∆2 that demonstrates that x2
N

equates in a group G2 to a word a−n
1 b−1

0 an1xa
−n
1 b0a

n
1 with ≃ nq letters a±1

2

inserted. This construction suggests that the distortion function of ⟨x⟩ in G2

grows like nq 7→ 2n
p

, and therefore like n 7→ 2n
p/q

.

Now, G2 is not hyperbolic. So next we hyperbolize its presentation using

an approach similar to Wise’s version of the Rips construction [Wis03]. We

add noise to each relation so that the resulting presentation satisfies small-

cancellation conditions including C ′(1/6). This is achieved by replacing x by

three letters t, x1, x2, and introducing a noise word on t, x1, x2 to each relation.

We then add relations to allow the noise to flow to the boundary of the diagram

and then (in the two triangles at the bottom of Figure 3) be moved past the
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x2N

x

an
1

an
1

an
1

an
1

b0 b0

Figure 2: A van Kampen diagram ∆1 over G1 for a−n
1 b−1

0 an1xa
−n
1 b0a

n
1 = x2

N

when n = 5, p = 3, and N = |φn(b0)| = 26.

a±1
1 , a±1

2 and collected together. These additional relations play a similar role

to the commuting relations involving a2 introduced above; they allow noise

to move past a- and b-letters (but only in one direction) at the expense of

introducing additional noise. The resulting group G3 admits diagrams ∆3 which

map onto ∆2 on suitably collapsing the edges labelled by noise letters and

suitably collapsing the 2-cells that allow the noise to flow. We take H3 =

⟨t, x1, x2⟩.
The diagram of Figure 3 shows the n = 5 instance of a family of diagrams

demonstrating how words wn on a1, a2, b0, a1, x1 represent the same elements

of G3 as words χn on t, x1, x2. Because the effect is so pronounced, the figure

cannot do justice to the exponential expansion in the direction of χn.

While this family of diagrams provides the desired 2n
p/q

lower bound on

the distortion of H3 in G3, some issues remain. Firstly, with the presentation

described, we cannot get a matching 2n
p/q

upper bound on distortion. If we

replace the two b0 letters in (2) with bi, where i < q, and then construct diagrams

∆3 as described above, then they will exhibit n 7→ 2n
(p−i)/(q−i)

distortion of H3,

which is greater than 2n
p/q

. Secondly, allowing the noise letters to interact with

both a- and b-letters prevents us from establishing an HNN-structure on the

group (the iterated HNN-structure of Proposition 2.12) which will allow us to

prove that our distorted subgroup H is free.

Both issues are solved by making the role of the noise more nuanced. We
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b0

a1

a1

a2
a1
a2a2a1
a2a2a2a1a2a2
a2
a2

a1

a1

a2
a1
a2a2a1
a2a2a2a1a2a2
a2
a2

x1

χ5

b0

a5
1 a5

1

Figure 3: A schematic of a van Kampen diagram ∆ over G showing that, if we

define ν5 = a1 a1a2 a1a
2
2 a1a

3
2 a1a

4
2, then the word w5 = ν−1

5 b−1
0 a51 x1 a

−5
1 b0 ν5

on the generators of G equals a word χ5 on the noise letters. The diagram’s

(a2, bq)-tracks are shown. Each meets the boundary at a pair a2-edges.

introduce two pairs of noise letters, x1, x2 and y1, y2 (in addition to the noise

letter t). For i > 0, bi interacts with x1 and x2 but not y1 and y2, while a1 and

a2 interact with y1 and y2, and not x1 and x2. Conjugation by b0 converts x1
and x2 to words on y1 and y2. This way we arrive at our group G whose defining

relations are set out in Figure 5. We take H to be the subgroup generated by

t, y1, y2.

Over G there are diagrams ∆ of the form shown in Figure 3 exhibiting

2n
p/q

-distortion. This construction is the heart of our proof in Section 3.1 that

DistGH(n) ⪰ 2n
p/q

.

As for the reverse bound DistGH(n) ⪯ 2n
p/q

, the aforementioned diagrams

yielding larger distortion no longer exist because if we replace b0 with bi where

i > 0 in the construction of ∆, then ∂∆ has a long word in a1, a2, t along with

x1, x2 rather than along with y1, y2. We have long words on letters that are not

all generators for H and we can no longer attach the triangular subdiagrams

that separate the a1, a2 from the the noise letters.

However, to establish the upper bound we must prove that no other “bad”

diagrams exist. To achieve this we study what we call distortion diagrams—

reduced diagrams ∆, subject to natural simplifying assumptions, which exhibit

how a word χ on t, y1, y2 can be represented by a shorter word w on the genera-
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tors of G. We show in Sections 4.1–4.4 that such a ∆ is subject to considerable

rigidity. Our argument shows that ∆ is so constrained that it strongly resembles

the diagrams described above and is thereby subject to estimates that yield the

2n
p/q

upper bound.

Three features of G impose this rigidity.

1. Noise in ∆ must flow towards χ and orthogonally to tracks. This refers

to the propagation of (“noise”) letters t, x1, x2, and y1, and y2 through

∆. Figures 1, 3 and 4 show tracks through the various diagrams we con-

structed above. Introduced in Section 2.3, tracks are generalizations of

corridors. We will be concerned with four types: a-tracks, b-tracks, t-

tracks, and (a2, bq)-tracks.

An a-track is a path in the dual of ∆ that crosses successive edges labelled

by a-letters (meaning a1 and a2). A b-track is the same, but for edges la-

belled by b0, . . . , bp. A t-track crosses t-edges—the use of t is a distinctive

feature of Wise’s version of the Rips construction; it renders the group

an HNN-extension of a free group, with t the stable letter (see Proposi-

tion 2.9). This extra structure, manifested in the geometry of t-tracks,

facilitates analysis of G. We will describe (a2, bq)-tracks in (2) below. As

there are three a-letters or three b-letters in some of the defining relators,

a-tracks and b-tracks can branch.

As noise advances across successive tracks it increases exponentially in

length. A consequence of the small-cancellation condition enjoyed by the

Rips words used in the defining relators is that noise cannot substan-

tially cancel within a diagram—it must instead emerge on the boundary.

Therefore, if we assume that w is of minimal length among all words on

the generators of G that equal χ in G, then almost all this noise must

emerge in χ. If many noise letters emerge in w, then their blow up en

route there would result in it being possible to cut a subdiagram out of ∆

to get a new diagram that demonstrated a shorter word than w equals χ

in G.

This also has helpful consequences for the orientation of tracks—in ways

made precise in Lemma 4.23. In short, they must be oriented towards χ

because otherwise they would act as blockades for the flow of noise.

2. (a2, bq)-tracks. These are paths through van Kampen diagrams that cross

successive a2- and bq-edges. They are the subject of Section 4.4. Examples

are found in Figures 1 and 3. In most defining relators of G there are either

zero or two a2-letters, and ditto for bq-letters. If an (a2, bq)-track enters a

2-cell labelled by such a relator across an a2-edge, then it exists across the

other a2-edge, and ditto for bq-edges. However our presentation for G has

12



Figure 4: Top, middle, lower: a-tracks, b-tracks, and t-tracks through the dia-

gram ∆ of Figure 3. The lower diagram is intended only to convey the nesting

pattern of the t-tracks. The pattern expands too rapidly towards χ to be dis-

played accurately.
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a defining relator (r1,q−1 of Figure 5) with one a2-letter and one bq-letter,

and a defining relator (r2,q of Figure 5) that has two a2-letters and two

bq-letters. On entering the 2-cell of the former type across its a2-edge it

exits across its bq-edge (or vice versa). On entering a 2-cell of the latter

type across an a2-edge (resp. bq-edge), it exits across the bq-edge (resp. a2-

edge) that is oriented the same way. These conventions ensure that every

a2- and bq-edge in a van Kampen diagram over G is crossed by exactly one

(a2, bq)-track, no (a2, bq)-track can cross itself, and no two (a2, bq)-tracks

can cross each other. So (a2, bq)-tracks associate to every bq-edge in a

diagram ∆ a pair of edges labelled by a2 or bq on the boundary.

If the automorphism φ gives ∼np growth within ∆, then it creates ⪰nq

bq-edges within ∆. It turns out it does so in such a way that ⪰nq of these

bq-edges have distinct (a2, bq)-tracks through them. And because those

(a2, bq)-tracks all run to the boundary, the length of w must be ⪰nq.

3. x- versus y-noise, and b0-tracks. It is significant that our generating set for

H consists of the noise letters t, y1, y2 but omits x1 and x2. It is possible

for x-noise to flow across b-tracks but impossible for y-noise. And x-noise

becomes y-noise when (and only when) it crosses b0-tracks (particular

examples of b-tracks). This means that stacks of nested b-tracks must

include at most one b0-track and that b0-track must be the closest to χ.

In Section 5.1 we use these ideas to reduce the problem of bounding |χ| from
above to establishing an inequality concerning the quotient Q of (1) (specifically,

we reduce it to Lemma 5.11), and this is where the “np/q” in our distortion

functions is ultimately established, as we explain in Section 5.2. Combined with

the blow-up that comes from the flow of noise through ∆, it gives our 2n
p/q

upper bound on the distortion of H in G.

We leverage our examples to get iterated exponential distortion functions

and complete our proof of Theorem A in Section 6.1. The strategy is to amal-

gamate G with a chain of hyperbolic free-by-free groups following Brady and

Tran [BT21], and then prove and apply a combination theorem for the hyper-

bolicity of amalgams.

In Section 6.2 we show that the distorted subgroup H need not be free of

rank 3, but rather can be taken to be any torsion-free non-elementary hyperbolic

group, proving Theorem B. For this we establish the existence (in Lemma 6.7,

after [Kap99]) of undistorted free subgroups of any rank in torsion-free non-

elementary hyperbolic groups, apply the same combination theorem to amalga-

mate these with our examples in a new hyperbolic group, and then we prove

the estimates on the distortion function by means of an appropriate general

theorem (Theorem 6.8) concerning distortion in amalgams.

14
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2 Our groups

2.1 The definition

Here we will define the group G which will prove Theorem A in the case k = 1.

In Section 6.1 we will explain how the case k = 1 leads to the result for other k.

We fix integers p > q > 0. Then G has presentation

P = ⟨ a1, a2, b0, . . . , bp, t, x1, x2, y1, y2 | R ⟩

where R is the set of 5p + 11 defining relators displayed in Figure 5. Our

notation X∗ and Y∗ is intended to indicate indexing that we have chosen to

suppress. Every element of R is a word of the form t−1utv−1 where u and v

are words on generators other than t. Each has two or three Rips subwords,

denoted X∗ or Y∗, from sets X = {X1, X2, . . . , X14p} and Y = {Y1, Y2, . . . , Y30}
of pairwise disjoint subwords of the infinite Rips words x1x

1
2 x1x

2
2 x1x

3
2 · · · and

y1y
1
2 y1y

2
2 y1y

3
2 · · · , respectively, chosen in a manner we will explain momentarily.

We stress that each X∗ and Y∗ occurs once in P and does so as a subword of

one defining relator. So, if an X∗ or Y∗ can be read around a portion of the

boundary circuit of a 2-cell in a van Kampen diagram (see Section 2.3) over

P, then that Rips word uniquely determines the defining relator that 2-cell

corresponds to. This use of t and Rips words is a variation on Wise’s [Wis03]

HNN-version of Rips’ Construction [Rip82]. (Our example G departs in some

respects from Wise’s framework. Wise has two X∗ subwords in each defining

relator, has only two ‘noise’ generators x1 and x2, and has additional defining

relators that ensure that ⟨t, x1, x2⟩ is a normal subgroup.)

Suppose S is a set of words on A ∪ A−1 for some alphabet A. A cyclic

conjugate of a word w is a word s2s1 such that s1 is a prefix of w and s2 a suffix

such that s1s2 = w. Let C(S) be the set of all cyclic conjugates of words in S±1.

Assume that all elements of C(S) are reduced. A piece is a common prefix π of

a pair of distinct words πu and πv in C(S).
We choose the Rips subwords X∗ and Y∗ so that each has length at least 100

and we have:

i. The uniform C ′(1/6)-condition for R. Every piece has length strictly less

than a sixth of the length of the shortest relator in R.
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r1,p r1,q−1

r1,i r1,0

r2,i r2,0

r3,i r3,0

r3,i,j r3,0,j

r4,i,j r4,i

i = 1, . . . , p − 1

i ̸= q − 1

i = 1, . . . , p

i = 1, . . . , p

j = 1, 2

i = 1, 2

j = 1, 2 i = 1, 2

j = 1, 2

i = 1, . . . , p

a1 a1

a1 a1

a1

a1 a1

a2

ai ai

a2

a2 a2

ai ai

a1 a2

t t

xj xj

yj t

bp bp

bq

bi+1

bi

bi b0 b0

b1

b0

bq−1

bq−1

bi

bi

b0 b0bibi

bi bi b0

b0

b0

X∗ t X∗ t X∗ X∗ t X∗ t X∗

X∗ t X∗ t X∗ Y∗ t Y∗ t Y∗

X∗ t X∗ t X∗ Y∗ t Y∗ t Y∗

X∗ t X∗ Y∗ t Y∗

X∗ t X∗ t X∗ Y∗ t Y∗ t Y∗

Y∗ t Y∗ t Y∗ Y∗ t Y∗

Figure 5: Defining relators for our group G

16



ii. The C(3)-condition for the union S of the 3- and 5-element generating

sets of the terminal vertex groups of Table 1. No element of C(S) is a

concatenation of fewer than 3 pieces.

iii. The C ′(1/4) condition for the set of Rips words X ∪ Y. Every piece has

length strictly less than a quarter of the length of each element of C(X ∪Y)

in which it occurs.

iv. The C(5)-condition for U =
{
u, v | t−1utv−1 ∈ R

}
. No element of C(U)

is a concatenation of fewer than 5 pieces.

This can be achieved for instance by adapting the example of [Wis03, Re-

mark 3.2] so that X is the set of words

Xi := x1x
200ip
2 x1x

200ip+1
2 · · ·x1x200ip+200p−1

2

for 1 ≤ i ≤ 14p and Y is the set of words

Yi := y1y
200ip
2 y1y

200ip+1
2 · · · y1y200ip+200p−1

2

for 1 ≤ i ≤ 30. Then R satisfies C ′(1/6) because the longest pieces in R have

the form xα−1
2 x1x

α
2 or yα−1

2 y1y
α
2 (or the inverse thereof) for some α ∈ N. The

longest piece appears either in X14p with α = 200(14p)+200p−2 or in Y30 with

α = 200(30) + 200p − 2. Its length is 2α, which (in either case, since p > 1)

is strictly less than 12, 400p. On the other hand, the shortest defining relator

has length at least 2|X1| (see Figure 5) which is certainly bigger than 80, 000p2,

and this number is already bigger than six times 12, 400p. Conditions ii–iv hold

similarly.

Condition i is used in the next paragraph and will be used to achieve

CAT(−1) in Remark 6.6. Condition ii will be used in Lemma 2.1 towards

establishing HNN-structures for G. Condition iii will restrict cancellation in

Section 3.1, where we prove a lower bound on distortion, and in Sections 2.2

and 4.1, towards showing certain configurations of tracks do not arise in reduced

diagrams. Condition iv achieves residual finiteness as we now explain.

All C ′(1/6) groups satisfy a linear isoperimetric inequality and so are hy-

perbolic [Ger99]. By [Wis04a] they are cubical, and then, by [Ago13], they are

virtually special, and so are residually finite. Their residually finiteness is more

directly apparent via [Wis03, Theorem 2.1], given the C(5)-condition for U .
Our distorted subgroup is

H = ⟨t, y1, y2⟩.
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2.2 Consequences of small-cancellation

Here we give three lemmas that are proximate consequences of the small-cancellation

conditions in Section 2.1.

Part (1) of the first of these lemmas will be used in our proof of Proposi-

tion 2.12. Part (2) will imply Proposition 2.9. We prove it using the C(3)-

condition for U , which is weaker than the C(5)-condition we have for U in

Section 2.1. It is a special case of [Wis01, Theorem 2.11], but we include our

own proof here because the result is central to our argument and the following

short argument is available in our context.

Lemma 2.1. (Cf. [Wis01, Theorem 2.11])

1. Let S be the union of the 3- and 5-element generating sets of the terminal

vertex groups of Table 1 (that is, S is the set of all words appearing in the

final column). Then S freely generates a free subgroup of the free group

F = F (A), where A = {a1, a2, t, x1, x2, y1, y2}.

2. The set

U =
{
u, v | t−1utv−1 ∈ R

}
freely generates a free subgroup in the free group

F = F (a1, a2, b0, . . . , bp, x1, x2, y1, y2).

Proof. Both parts are instances of the same general result, which we will prove

here in the notation of part 1. Suppose w1, . . . , wm ∈ S±1 are such that W =

w1 · · ·wm is a non-empty reduced word on S but W freely reduces to the empty

word when viewed as a word on the generators of F . We will show that the

existence of this W contradicts C(3).

There is a planar tree T whose edges are directed and are labelled by gen-

erators of F so that around the perimeter of T we read W . As each wi is a

reduced word on A, the portion of the perimeter of T along which one reads wi

can only include a leaf of T at its start or end. It follows that if T is a line, then

the shorter of w1 and w−1
m is subword of the other, and so is a piece, contrary

to C(3).

Assume, then, that T is not a line. There must be a pair of leaves v1 and

v2 in T such that the geodesic ρ from v1 to v2 visits exactly one branching (i.e.

valence at least 3) vertex b. So the word u one reads along ρ is wj · · ·wk for

some 1 ≤ j ≤ k ≤ m. In the remainder of our argument, read indices modulo

m. The portion of ρ along which we read wj must pass b else whichever of wj−1

and wj is shorter would be a piece. And, in fact, then wj must be u, else wk or

wk+1 would be a piece. So j = k. But then, as neither w−1
j−1 nor w−1

k+1 can be
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a subword of wj (else they would be pieces), wj must be concatenation of two

pieces: one that it shares with w−1
j−1 and one that it shares with w−1

k+1. Again,

this is contrary to C(3).

In our next lemma, a stronger small-cancellation hypothesis allows the same

conclusion for further subsets of free groups. We will call on it in Lemma 2.14

en route to our proof of Proposition 2.12.

Lemma 2.2. Suppose Z1, Z2, Z3, Z
′
1, Z

′
2, Z

′
3, Zp1, Zp2, Zp3, Zp4, Zp5 are words of

the form Y∗t
−1Y∗tY∗ or Y∗tY∗ and each is a subword of a different defining

relation from Figure 5 (so no Y∗ appears twice). We will refer to these as Z-

words. Then

S1 = {t, x1, x2, Z1, Z2, Z3, Z
′
1, Z

′
2, Z

′
3}

freely generate a free subgroup of F = F (t, x1, x2, y1, y2). The same is true of

S2 = {Z1, Z2, Z3, Z
′
1, Z

′
2, Z

′
3, Zp1, Zp2, Zp3, Zp4, Zp5} .

Proof. Suppose for a contradiction that w is a reduced word on S1 or S2 that

represents the identity in F and includes at least one of the Z-words. Express

each Y∗ as the concatenation P∗S∗ of a prefix and a suffix whose lengths differ

by at most one.

Consider a first P±1
∗ or S±1

∗ that is completely cancelled away on freely

reducing w in F by removing successive inverse pairs of adjacent letters. It

must have cancelled into a neighbouring P±1
∗ or S±1

∗ . But then, because of the

C ′(1/4)-condition on the set of Rips words X ∪ Y, some neighbouring pair of

Z-words are inverses, contrary to w being reduced as a word on S1 or S2.

We will use the following variation on Lemma 2.2 in our proof of Lemma 4.3.

Lemma 2.3. Suppose

v = xϵ0λ0
Xµ1

ξ1
xϵ1λ1

· · ·Xµm

ξm
xϵmλm

is a word on X ∪ {x1, x2} in which m ≥ 1, each Xi ∈ X , each λi ∈ {1, 2},
each µi ∈ {±1}, and each ϵi ∈ {0,±1}. If v freely equals the empty word in

F (x1, x2), then for any sequence Σ of free-reduction moves (successive removals

of x±1
j x∓1

j subwords) that takes v to the empty word, there is some i such that a

subword consisting of at least a quarter of the letters of Xµi

ξi
cancels with subword

consisting of at least a quarter of the letters of X
µi+1

ξi+1
.

Proof. Express each wordXµi

ξi
as the concatenation PiSi of a prefix and a suffix

whose lengths differ by at most one. Let i be the index of a first Pi or Si to be

completely cancelled away in the course of Σ. Assume it is Si. (The argument

for Pi is essentially the same.) Then Si cancels with a prefix of xϵiλi
X

µi+1

ξi+1
. But

then, C ′(1/4) and the fact that the X∗ all have length at least 100 together

imply the result.
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2.3 Van Kampen diagrams, corridors, and tracks

Suppose w is a word on the generators of a group which is given by a presenta-

tion. A van Kampen diagram for w with respect to that presentation is a finite

planar 2-complex in which every edge is directed and labelled by a generator in

such a way that around the perimeter of the diagram (in some direction from

some starting vertex) one reads w and around the perimeter of each 2-cell (in

some direction from some starting vertex) one reads a defining relator. A word

w admits a van Kampen diagram if and only if it represents the identity in the

group. Many introductory texts discuss van Kampen diagrams—e.g., [BH99].

Definition 2.4. (Reduced diagrams) A van Kampen diagram is reduced

when it does not contain a pair of back-to-back cancelling cells—that is, a pair

of cells with a common edge e such that the word read clockwise around the

perimeter of one of these cells starting from e is the same as that read anti-

clockwise around the other starting from e.

Definition 2.5. (Corridors) Suppose z is a generator. Suppose C1, . . . , Cm

is a maximal set of distinct 2-cells in a van Kampen diagram ∆ such that for

all i, around ∂Ci one reads a word uizv
−1
i z−1 and the z in ∂Ci is the z−1 in

∂Ci+1. Then the C1, . . . , Cm concatenate in ∆ to form an z-corridor C, as

shown in Figure 6. A z-edge in ∂∆ that is not part of the boundary of a 2-cell

is a corridor with no 2-cells.

z

z

z
z z

z

z

z

C1

C2

C3
C4 C5

.
.

.

.
.

.

.
.

.

Cm

u1

u2

u3
u4

u5

um

v1

v2
v3

v4 v5

vm

bottom

top

Figure 6: A corridor in a van Kampen diagram.

An assumption commonly made when defining corridors is that every defin-

ing relator containing a z or z−1, contains exactly one z and one z−1. Then

z-corridors cannot cross or self-intersect, and each one either connects a pair of

z-edges on ∂∆ or closes up to form a z-annulus. In our presentation P for G

this assumption is met by the letters a1, b0, and t, but not, for example, by a2,

b1, . . . , or bp: an a2-corridor can terminate at an r1,q−1-cell and a bi-corridor,

for i ̸= 0, can terminate at an r1,i−1-cell.

The words along the top and bottom of C are v1 · · · vm and u1 · · ·um, re-

spectively.
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We will reframe and generalize the definition of a corridor via the dual of a

van Kampen diagram. Let ∆+ be ∆ with one additional 2-cell e∞ “at infinity”

attached along its boundary cycle. So ∆+ is homeomorphic to a 2-sphere. Let

G+ be the 1-skeleton of the 2-complex dual to ∆+. Let G be the graph obtained

from G+ by removing the interior of e∞. So the vertex dual to e∞ is absent

from G and instead G has a vertex in the middle of every edge in ∂e∞ = ∂∆.

While the following definition could be presented in more general terms, we

prefer to specialize to van Kampen diagrams ∆ over our presentation P for G.

Definition 2.6. (Tracks, subtracks, and compound tracks) An a- or b-

edge in a van Kampen diagram ∆ over P is an edge labelled by ai or bi, respec-

tively, for some i. An s-subtrack is a path ρ : [0, k] → G, where k > 0 is an

integer, with the following properties:

1. For each integer i in [0, k − 1], the image ρ([i, i+ 1]) is an edge of G dual

to an s-edge of ∆.

2. All s-edges of ∆ dual to ρ are oriented the same way as one travels along

ρ (i.e., cross ρ all right-to-left or all left-to-right).

3. The map ρ is injective on (0, k).

An s-track is an s-subtrack that is maximal—i.e., it cannot be extended to a

longer path with properties (1)–(3). For s = a1, b0, . . . , bp, t an s-track traverses

the 2-cells of an s-corridor. When s is a or b, it gives a more general notion.

Figures 1, 3 and 4 show examples of tracks. As seen in these figures, a- or b-

tracks could merge. We impose a smoothness condition on these merges, which

we now discuss. a1

a1

bi
bi

bi+1

X∗ t X∗ t X∗

Figure 7: A train-track junction.

Let Ga and Gb be the subgraphs of G made up of all edges dual to a- and

b-edges, respectively. We give Ga and Gb “train-track” structures by rendering

some paths in them smooth and others not. As the defining relators in P each

have zero, two or three b-letters, the valence-1 vertices of Gb are precisely those

in the interior of e∞. The valence-2 vertices are those dual to 2-cells of ∆ that

have (for some i) one bi and one b−1
i in their boundary word. We term the

valence-3 vertices junctions. They are the vertices dual to 2-cells of ∆ that have

(for some i) one bi+1, one bi, and one b−1
i in its boundary word. Paths γ in
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Gb can only fail to be smooth at junctions: per Figure 7 we make γ smooth at a

junction if and only if the orientations of the b-edges it crosses before and after

v agree. So a b-track is a maximal path ρ : [0, k] → Gb that is injective and

smooth on (0, k). We will see below that if ρ closes up, then ρ must in fact be a

smooth map of a circle into G. Corresponding statements apply to Ga.

a∗

a∗

t

t

b∗ b∗

b∗ b∗

a∗

a∗

t

t t

t

Figure 8: How a-tracks, b-tracks, and t-tracks intersect in a 2-cell. In four of

the six cases, the t-track through the cell touches but does not cross the other

tracks.

Figure 8 shows how we consider a-, b-, and t-tracks to intersect when they

traverse the same 2-cell.

A compound track is a concatenation of a-, b-, and t-subtracks (the orien-

tations of which are not required to agree). The corridor or annulus associated

to a (compound) track ρ in a van Kampen diagram ∆ is the subcomplex made

up of all the 2-cells through which ρ passes. There are words along its top and

bottom as for a standard corridor as explained above.

We will see in Section 4.1 that the hypothesis that a van Kampen diagram

∆ over P is reduced significantly restricts the behaviours of its tracks. Then in

Section 4.3 the tracks are yet more sharply restricted in diagrams pertinent to

establishing upper bounds on the distortion ofH in G. Here is a first observation

in that direction.

Lemma 2.7. (No teardrops) An s-track cannot be a teardrop—i.e., if ρ :

[0, k] → G is an s-track with ρ(0) = ρ(k), then ρ induces a smooth map from S1

to G.

Proof. Were the image of ρ a teardrop, the point ρ(0) = ρ(k) would be a

junction. However, as all the s-edges along an s-track are oriented the same

way (in this case, either into or out of the teardrop) this would violate the

orientation condition at the junction; see Figure 7
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Definition 2.8. (Tracks forming loops) A track that closes up is a loop. In

light of Lemma 2.7, a track closes up without introducing a corner, and so loops

are smooth.

2.4 HNN-structures

We will give two HNN-structures for G. The first is an immediate consequence

of Lemma 2.1(2).

Proposition 2.9. G is an HNN-extension:

G = F ∗
t

where F = F (a1, a2, b0, . . . , bp, x1, x2, y1, y2)

and the r = 5p + 11 defining relators displayed in Figure 5 dictate the isomor-

phism between the associated groups, both of which are rank-r free subgroups of

F .

We will call on the following corollary in our proof of Lemma 4.14. It holds

because the elements of U are reduced words with no t-letters.

Corollary 2.10. Non-trivial subwords of elements of U represent non-identity

elements in G.

We will learn later (in Corollary 4.17) that F is undistorted in G, and it will

follow that the same is true of the two vertex subgroups.

Our second HNN-structure for G is:

G =

(
· · ·
((

F (t, x1, x2, y1, y2) ∗
a1,a2

)
∗
bp

)
· · ·
)
∗
b0

in the manner detailed in Proposition 2.12 and Table 1 below.

We use the notation K ∗s1,...,sl to denote an l-fold HNN-extension with

vertex groupK, stable letters s1, . . . , sl and subgroups Ii, Ti < K for i = 1, . . . , l,

such that s−1
i Iisi = Ti. We call Ii and Ti the initial and terminal groups

respectively, and say that the stable letter si conjugates Ii to Ti.

Definition 2.11. Let F be the free group on {t, x1, x2, y1, y2}. Note that this is a
departure from our definition of F in Proposition 2.9. Let G−1 be the group gen-

erated by {t, x1, x2, y1, y2, a1, a2} subject to the two r4,∗- and four r4,∗,∗-defining-

relators of Figure 5. Then, for i = 0, . . . , p, define Gi to be the group generated

by {t, x1, x2, y1, y2, a1, a2, bp−i, . . . , bp} subject to all the relators of Figure 5 in

which only these letters appear. In particular, G = Gp.
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We will establish that G−1 = F ∗a1,a2
and Gi = Gi−1∗bp−i

for i ≥ 0, where

the initial and terminal groups at each stage are as shown in Table 1; the words

listed in the table are subwords of defining relators in R. More precisely:

Proposition 2.12. For G−1, G0, . . . , Gp as per Definition 2.11:

1. G−1 is a double HNN-extension over F with stable letters a1 and a2 con-

jugating the initial group ⟨t, y1, y2⟩ to the first and second terminal groups

listed in Row 1 of Table 1, respectively.

2. For i ≥ 0, the group Gi is an HNN-extension over Gi−1 with stable letter

bp−i conjugating the group Ki < Gi−1 from Table 1 to the group Li < Gi−1

from Table 1.

Recall that, per Section 2.1, we have chosen to suppress the indexing in our

notation for the small cancellation words appearing in our construction. Thus,

the collection X ∪ Y of all the X∗ or Y∗ satisfies C ′(1/4).

Before we prove Proposition 2.12, we observe that it yields:

Corollary 2.13. The subgroup H = ⟨t, y1, y2⟩ of G is a free group of rank 3.

Proof. Since F is free on t, x1, x2, y1, y2, it is clear that ⟨t, y1, y2⟩ is rank-3 free

in F . As vertex groups inject into HNN-extensions, Proposition 2.12 yields:

H ↪→ F ↪→ G−1 ↪→ G0 ↪→ · · · ↪→ Gp = G.

Proof of Proposition 2.12(1). The group ⟨t, y1, y2⟩ < F is free of rank 3.

The two terminal vertex groups in the G−1 row of Table 1 are free of rank 3 by

Lemma 2.1(1). Thus the described HNN-structure follows from the definition

of G−1.

To establish the HNN-structure of Gi for i ≥ 0 (thereby completing the

proof of Proposition 2.12(2)), we must show that the groups Ki and Li listed

in Table 1 are free of rank 5 in Gi−1. As a first step, we show:

Lemma 2.14. The groups K0 and Li for i = 0, . . . , p are rank-5 free subgroups

of G−1.

Proof. We begin with K0. If a1, a2, t, x1, x2 do not generate a free subgroup

of G−1, then there is a non-empty freely reduced word on these letters which

represents the identity in G−1. Let w be a shortest such word and let ∆ be a

reduced van Kampen diagram with boundary label w.

Observe that the group F injects into G−1, as it is the vertex group in the

HNN-structure for G−1, by Proposition 2.12(1). Thus ⟨t, x1, x2⟩ < F < G−1 is

free, and so no non-empty freely reduced word on these letters represents the

identity. Thus we may assume that w has at least one a1- or a2-letter, and so ∆
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Table 1: Iterated HNN structure of G. The words listed are subwords of defining

relators in R. The different instances of X∗ or Y∗ represent different small

cancellation words.

G−1: stable letters a1 and a2, vertex group F

Initial group Terminal groups

⟨t, y1, y2⟩
a1 : ⟨Y∗tY∗, Y∗t−1Y∗tY∗, Y∗t

−1Y∗tY∗⟩,
a2 : ⟨Y∗tY∗, Y∗t−1Y∗tY∗, Y∗t

−1Y∗tY∗⟩

Gi for i ≥ 0: stable letter bp−i, vertex group Gi−1

Initial group Terminal group

K0 = ⟨a1, a2, t, x1, x2⟩

Ki = ⟨a1bp−i+1, a2,

t, x1, x2⟩
i > 0

Li = ⟨a1X∗t
−1X∗tX∗, a2X∗t

−1X∗tX∗,

X∗tX∗, X∗t
−1X∗tX∗, X∗t

−1X∗tX∗⟩
i ̸= p, p−q+1

Lp−q+1 = ⟨a1a2X∗t
−1X∗tX∗,

a2X∗t
−1X∗tX∗, X∗tX∗,

X∗t
−1X∗tX∗, X∗t

−1X∗tX∗⟩

Lp = ⟨a1Y∗t−1Y∗tY∗, a2Y∗t
−1Y∗tY∗,

Y∗tY∗, Y∗t
−1Y∗tY∗, Y∗t

−1Y∗tY∗⟩

has at least one a1- or a2-corridor. Moreover, we can assume ∆ is homeomorphic

to a 2-disc, because otherwise it could be broken into two subdiagrams for two

words which are shorter than w and represent the identity, and cannot both be

freely reduced to the empty word (since w cannot be). In particular, every a1-

and a2-corridor is non-degenerate, by which we mean that it is not a single a1-

or a2-edge that is part of a 1-dimensional portion of ∆.

Let ⟨Z1, Z2, Z3⟩ and ⟨Z ′
1, Z

′
2, Z

′
3⟩ denote the two terminal groups in the con-

struction of G−1 as shown in Table 1. No two a1- or a2-corridors can cross or

branch in ∆, so dual to them there is an oriented tree T which has a vertex

for each complimentary region and an edge for each corridor. Give the edges of

T orientations that match the directions of the a1- or a2-corridors they cross.

Then T necessarily has a sink vertex (a vertex with the property that all its
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incident edges are oriented towards it), and the boundary of the subdiagram

∆0 of ∆ corresponding to this vertex consists of parts of ∂∆ between a1- or

a2-edges at the ends of corridors and the top boundaries of a1- or a2-corridors.

Thus, read around ∂∆0 is a word v on

t, x1, x2, Z1, Z2, Z3, Z
′
1, Z

′
2, Z

′
3.

By Lemma 2.2 these elements form a basis for a free subgroup F ′ of F and

therefore of G−1. Now v is non-empty (since every corridor is non-degenerate)

and represents the identity in G−1, and therefore in the free group F ′ (since

F ′ ↪→ G−1). So v is not freely reduced, i.e., it has a subword of the form uu−1 for

some letter or inverse letter u. Since the subwords of v on t, x1, x2 come from w,

which is freely reduced, u is one of the remaining generators of F ′. Then uu−1

must be a subword of the top boundary of a single a1- or a2-corridor (because,

if u and u−1 came from different corridors, w would have a subword a±1
1 a∓1

1 or

a±1
2 a∓1

2 , contradicting the fact that it is freely reduced). This means the corridor

has adjacent cells that are identical and oppositely oriented, contradicting the

fact that ∆ is reduced. Thus K0 is a free subgroup of G−1.

A near identical proof shows that Lp < G−1 is free. Denoting the generators

of Lp by

a1Zp1, a2Zp2, Zp3, Zp4, Zp5,

let w be a shortest non-empty freely reduced word on these generators which

represents the identity in G−1. Let ∆ be a reduced van Kampen diagram over

G−1 with boundary label w. Since ⟨Zp3, Zp4, Zp5⟩ < F < G−1 is free (using

Lemma 2.1(1)), we may assume as before that w has at least one a1Zp1 or

a2Zp2. Hence ∆ has at least one a1- or a2-corridor. Furthermore, we conclude

as before that all a1- or a2-corridors are non-degenerate. Considering a sink

region of the oriented dual tree as above, we see that the boundary label of the

sink region is a word v on

Z1, Z2, Z3, Z
′
1, Z

′
2, Z

′
3, Zp1, Zp2, Zp3, Zp4, Zp5

which represents the identity in G−1. (The first six of these words appear along

top boundaries of a-corridors while the last five appear in parts of v coming

from w.) By Lemma 2.2, these elements form a basis for a free subgroup of

F , and therefore of G−1 (since F ↪→ G−1). Then we argue as in the previous

paragraph to arrive at a contradiction.

Finally, for i ̸= p, Lemma 2.1(1) implies that Li is a rank-5 free subgroup of

K0. Thus Li is a rank-5 free subgroup of G−1 as K0 ↪→ G−1.

In order to prove that Ki is free for i > 0 and complete the proof of Propo-

sition 2.12 we need three technical lemmas.
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Lemma 2.15. In Gi of Definition 2.11, bp, bp−1, . . . , bp−i freely generate a free

subgroup.

Proof. By examining the relators of Gi, we see that there is a quotient homo-

morphism

Gi ↠ Qi = ⟨ bp, bp−1, . . . , bp−i, a1 | a−1
1 bja1 = bj+1bj for j < p; a−1

1 bpa1 = bp ⟩

mapping bj 7→ bj , a1 7→ a1 and killing every other generator. This quotient Qi

is free-by-cyclic: the generator a of the cyclic part acts by conjugation on a free

group generated by bp, . . . , bp−i by an automorphism. Moreover, the restriction

of this homomorphism to the subgroup ⟨bp, . . . , bp−i⟩ < Gi is a surjection onto

the rank-(i+ 1) free subgroup ⟨bp, . . . , bp−i⟩ < Q. The result follows.

The next lemma restricts the possible b-track systems in certain van Kampen

diagrams over Gi.

Lemma 2.16. For i = 0, . . . p − 1, let ∆ be a reduced van Kampen dia-

gram over the group Gi of Definition 2.11 with boundary labelled by a word

on a1, a2, t, x1, x2, bp, bp−1, . . . , bp−i. Then

1. ∆ has no r4,∗,∗- or r4,∗-cells (per Figure 5).

2. ∆ has no a1-annuli.

3. If the word read around ∂∆ contains no letters a±1
1 , then the track system

Gb of ∆ has no junctions. Thus Gb consists of a collection of disjoint

tracks, each dual to a bj-corridor for some j such that 0 < p− i ≤ j ≤ p.

Proof. For (1), we suppose ∆0 is a maximal subdiagram of ∆ that contains

no b-edges and is homeomorphic to a 2-disc. Any r4,∗,∗- or r4,∗-cell must be in

some such ∆0. All its 2-cells must be of type r4,∗,∗ or r4,∗ since every other type

of 2-cell has a b-edge. So, arguing that there are no 2-cells in ∆0 will establish

(1).

There can be no y-edges in ∂∆0 because such a y-edge would have to be

either in ∂∆ (contrary to hypothesis) or in the boundary of a 2-cell of ∆ that is

not of type r4,∗,∗- or r4,∗ (impossible because the only such 2-cells from Figure 5

have b0-edges, and b0 /∈ Gi when i < p). So ∂∆0 is labelled by a word v on

a1, a2, t. Now, v represents the identity in

⟨a1, a2, t, y1, y2 | r4,i,j , r4,i; i, j = 1, 2⟩ = F (a1, a2, y1, y2)∗
t
.

There can be no t-annulus in ∆0 since the word read around the inner boundary

of an innermost t-annulus would be a word on U that freely equals the empty

word, and Lemma 2.1(2) would imply that there must be cancellation of a pair
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of 2-cells, contrary to ∆ being reduced. And if there is a t-corridor in ∆0,

then there is one that is outermost in that the freely reduced form of the word

along its top or bottom follows a path in ∂∆0. But (since ∆0 is reduced and

homeomorphic to a 2-disc) the word along the top or bottom any t-corridor in

∆0 must contain y-letters, so this contradicts there being no y-letters in ∂∆0.

Next we deduce (2). Were there such an a1-annulus, in light of (1), one of

its boundaries would be labelled by a word on bp, bp−1, . . . , bp−i representing

the identity in Gi. It would then follow from Lemma 2.15 that this word would

freely reduce to the empty word. This would imply that the annulus would have

adjacent 2-cells that are identical but with opposite orientation, contrary to ∆

being reduced.

Finally, for (3), suppose the word read around ∂∆ contains no letters a±1
1 .

If the track system Gb had a junction, that junction would be in a 2-cell of ∆

with an a1 on its boundary, and this 2-cell would be part of an a1-corridor or

a1-annulus. However, there are no a1-corridors since the label of ∂∆ has no a1
and there are no a1-annuli by (2).

Lemma 2.17. For i = 0, . . . p− 1, in the group Gi of Definition 2.11, we have

⟨bp, bp−1, . . . , bp−i⟩ ∩ ⟨a2, x1, x2, t⟩ = {1} .

Proof. Suppose for a contradiction that there is a non-trivial element in

⟨bp, bp−1, . . . , bp−i⟩ ∩ ⟨a2, x1, x2, t⟩.

Then there are non-empty freely reduced words u = u(a2, x1, x2, t) and v =

v(bp, bp−1, . . . , bp−i) such that u = v in Gi, and there is a reduced van Kampen

diagram ∆ with boundary label uv−1. Observe that ∆ satisfies the hypotheses

of Lemma 2.16(3) since the word read around ∂∆ has no instances of a±1
1 . Thus

the track system Gb of ∆ consists of a union of disjoint tracks, each dual to a

bj-corridor for some j. Since u has no instances of bj for any j, each of these

tracks has both ends on the part of ∂∆ labelled v. Since these b-tracks cannot

cross each other, there must be at least one that is innermost in that it begins

and ends at consecutive letters in v. This implies that v has a subword b±1
j b∓1

j ,

which contradicts v being freely reduced.

We can now prove the following lemma, which establishes Proposition 2.12(2).

Lemma 2.18. For i = 0, . . . , p,

1. the subgroups Ki, Li ≤ Gi−1 are free of rank 5,

2. the group Gi is an HNN-extension over Gi−1 with stable letter bp−i con-

jugating Ki to Li.
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Proof. We induct on i. In the case i = 0, Lemma 2.14 gives (1), and then

(2) follows by definition of G0. We now prove the induction step. Assume the

result holds up to some value of the index i < p. We will show that (1) and (2)

hold with the index i elevated by 1.

In Lemma 2.14 we showed that Li+1 is a free subgroup of G−1 of rank 5.

By statement (2) of the induction hypothesis, G−1, G0, . . . , Gi are successive

HNN extensions. So G−1 ↪→ G0 ↪→ · · · ↪→ Gi are injective inclusions and Li+1

is a rank-5 free subgroup of Gi as well.

Likewise, K0 is a rank-5 free subgroup of Gi. We will show that Ki+1 =

⟨a1bp−i, a2, t, x1, x2⟩ is also a rank-5 free subgroup of Gi. This will prove (1),

and then (2) will immediately follow.

Let w be a non-empty freely reduced word on the generators of Ki+1 such

that w = 1 in Gi. Assume that w is minimal in the sense that no shorter non-

empty freely reduced word on the generators of Ki+1 represents the identity in

Gi. Let ∆ be a reduced van Kampen diagram for w over Gi. It contains no

2-cells of type r4,∗,∗ or r4,∗ by Lemma 2.16(1).

The word w must include at least one instance of a1bp−i, as otherwise w

would be a non-empty freely reduced word representing the identity in the free

group K0 < Gi, a contradiction. Consequently, ∆ has at least one a1-corridor.

Moreover, every a1-corridor is non-degenerate, as a degenerate corridor would

cut ∂∆ into two loops (both non-trivial as w is non-empty and freely reduced)

and one of these would be labelled by a shorter freely reduced word on the

generators of K0, contradicting the minimality of w. As ∆ has no 2-cells of

type r4,∗,∗ or r4,∗, every a1-corridor is made up of r1,i-cells, where 1 ≤ i ≤ p.

(We exclude r1,0 since i < p.)

Let C be an innermost a1-corridor in ∆, i.e. an a1-corridor whose comple-

ment in ∆ has a component ∆′ without a1-corridors. Then ∂∆
′ is composed of

two paths between the same pair of points: a top or bottom boundary γ of C

with label v (which is non-empty since C is non-degenerate) and a path δ along

∂∆. The labels γ and δ represent the same element of Gi.

There are two cases, depending on the orientation of C. If C points away

from ∆′, then γ is its bottom boundary and v is a non-empty word on bp−i, . . . , bp,

which is freely reduced since ∆ is reduced. In this case δ is labelled by a freely

reduced word u on t, x1, x2, a2, which is non-empty since otherwise w would

have an a−1
1 a1 subword and not be freely reduced. Now u = v in Gi, which

contradicts Lemma 2.17.

On the other hand, if C points towards ∆′, then γ is its top boundary and

v is a word on elements of the form bj+1bjX
−1
∗ t−1X−1

∗ ϵ−1, where bj+1 = 1 if

j = p, and ϵ = a2 if j = q − 1 and 1 otherwise. In this case δ is labelled by a

word of the form bp−iub
−1
p−i, where u is a word on t, x1, x2, a2.
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We consider the track system G′
b of ∆

′. Lemma 2.16(3) applies to ∆′, because

it has no a1-corridors, and we conclude that G′
b is a disjoint union of tracks. Each

of these tracks is dual to a bj-corridor for some j such that 0 < p − j ≤ j ≤ p

and inherits its label.

Suppose there exists a b-track with both ends on γ. Consider an innermost

such track, i.e. one for which the subword of v between its endpoints has no

b-letters, and suppose it is labelled bm for some m. Since each 2-cell of C has

at least one b-letter and at most one bm, this track must begin and end at

neighboring cells of C. Examining the r1,∗-cells of Figure 5 we see that the

only possibility is that these are identical cells with opposite orientation, which

contradicts ∆ being reduced. Thus tracks of G′
b have at most one end on γ.

Since δ is labelled by bp−iub
−1
p−i, where u has no b-letters, there are at most

two tracks ending on δ. Since C is non-degenerate, there is at least one track

starting at γ, which rules out the possibility of a track with both endpoints on

δ. We conclude that G′
b has exactly two tracks, each with one end on δ and one

on γ, and both with label bp−i. It follows that C has exactly two 2-cells, both

of type r1,p, and i = 0 (as every other possible 2-cell has both bj and bj+1 for

some j in its top boundary). Moreover, since tracks preserve orientation, and

the two edges of δ labelled bp are oppositely oriented, it follows that the two

2-cells of C are oppositely oriented. This contradicts ∆ being reduced.

We have arrived at contradictions in all cases. It follows that no such w can

exist, and that Ki+1 is free of rank 5, completing the induction.

3 The lower bound

3.1 The lower bound on distortion

In this section, we will establish the lower bound on distortion of Theorem A

in the case k = 1. In the manner outlined by the figures in this section, we

prove that for all n ∈ N, there is a freely reduced word χn on t±1, y±1
1 , and y±1

2

of length ≃ 2n
p

which represents the same group element as a word wn in the

generators of G of length ≃nq. These length estimates emerge from calculations

tracing through the construction, with small-cancellation arguments ensuring

that χn does not lose too much length through free reduction. As t, y1 and y2
freely generate H (Corollary 2.13), no shorter word than χn on t±1, y±1

1 and

y±1
2 equals wn in G. Via Lemma 1.2, this will establish that DistGH(n) ⪰ 2n

p/q

.

For w a word, |w| denotes the number of letters in w and |w|x the exponent

sum of the x in w. So, if w is a positive word, which is to say it contains no

inverse letters, then |w|x is the number of x in w.
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Recall that killing a2, t, x1, x2, y1, y2 maps G onto the free-by-cyclic group

Q = ⟨ a1, b0, b1, . . . , bp | a−1
1 bja1 = φ(bj) for all j ⟩,

where φ is the automorphism of F (b0, . . . , bp) mapping bj 7→ bj+1bj for j =

0, . . . , p − 1 and bp 7→ bp. The following lemma describes a lift of an equality

a1φ(ub0) = ub0a1 in Q to an equality a1φ(ub0) = ub0a1τ in G.

Lemma 3.1. Given a positive word u = u(b1, . . . , bp), there is a freely reduced

word τ = τ(a2, t
±1, y±1

1 , y±1
2 ) such that

a1φ(ub0) = ub0a1τ in G (3)

|φ(ub0)|bi = |ub0|bi + |ub0|bi−1 for i = 1, . . . , p (4)

|φ(ub0)|b0 = |ub0|b0 = 1 (5)

|τ |a2 = |φ(ub0)|bq − |ub0|bq . (6)

Moreover, τ has a suffix κ that is also a long suffix of one of the Rips words Y∗
used in the presentation P of G—by long we mean that |κ| is at least (3/4)|Y∗|.

Proof. The statements (3)–(6) are easily verified when u is empty. Assum-

ing |u| ≥ 1, express u as biu0 where bi is the first letter of u and u0 is the

remainder of the word. The structure of a van Kampen diagram for (3) is dis-

played in Figure 9. It is constructed inductively, the base step being provided

by the case where u is empty. The top cell in Figure 9 encodes the relation

a1φ(bi) = bia1σ, where σ is a word on a2, t, x1 and x2 that contains no a−1
2 .

The bottom left block comes from applying the induction hypothesis to u0, so

τ0 = τ0(a2, t
±1, y±1

1 , y±1
2 ). The bottom right block encodes the result of moving

ϕ(u0b0) past σ. That σ0, and therefore τ , contains letters a2, t
±1, y±1

1 , y±1
2 but

not x±1
1 , x±1

2 is due to b0 conjugating a2, t
±1, x±1

1 and x±1
2 to words on a2, t

±1,

y±1
1 and y±1

2 . (See the r2,∗-, r3,∗-, and r3,∗,∗-cells of Figure 5.)
a1

a1

a1

b0

bi

u0

τ0 σ0

σ

φ(u0b0)φ(u0b0)

φ(bi)

u φ(ub0)

τ

Relators r1,∗

Induction
By relators r2,∗,

r3,∗, and r3,∗,∗

Figure 9: A diagram for a1φ(ub0) = ub0a1τ in G.
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The equalities (4) and (5) follow from the definition of φ.

We get (6) by induction, as follows. Assume (6) holds for u0. Examin-

ing the r1,∗-defining relators of Figure 5, we see that |σ|a2
= |φ(bi)|bq − |bi|bq

for any i. Moreover, |σ0|a2
= |σ|a2

in the bottom right block of Figure 9

as each r2,∗-, r3,∗-, and r3,∗,∗-defining relator of Figure 5 satisfies this prop-

erty. Combining these observations with the induction hypothesis, we get:

|τ |a2
= |τ0|a2

+ |σ0|a2
= |φ(u0b0)|bq − |u0b0|bq + |σ|a2

= |φ(u0b0)|bq − |u0b0|bq +
|φ(bi)|bq − |bi|bq = |φ(biu0b0)|bq − |biu0b0|bq , which completes the inductive step

(since u = biu0) and proves (6).

When u is empty, Figure 9 is a single r1,0-cell and τ is Y∗t
−1Y∗tY∗, which

satisfies the suffix condition by construction. For u non-empty we may assume

by induction that τ0 is reduced and its final letter is positive (since the Y∗ are

positive words). Now σ is one of the subwords X∗t
−1X∗tX∗ of an r1,∗-defining

relator of Figure 5 (as Y∗t
−1Y∗tY∗ is excluded since bi ̸= b0). Thus σ has positive

first letter and ends with x1 or x2. It follows, via the C ′(1/4)-condition for X∪Y
of Section 2.1, that the successive words we obtain from σ by conjugating by a

bi with i ̸= 0 and then freely reducing have positive first letters and end with

x1 or x2. Finally σ0 is obtained by conjugating by b0 and freely reducing, so it

has a positive first letter and a suffix that is a long suffix of some Y∗t
−1Y∗tY∗

(again by C ′(1/4) for X ∪Y). Therefore there is no cancellation between τ0 and

σ0, and so σ0 gives τ the required long suffix.

For all j ≥ 0, define uj to be the positive word on b1, . . . , bq such that ujb0 =

φj(b0) as words. In particular u0 is the empty word ε, and uj+1b0 = φ(ujb0).

Now let n ≥ 1. For j = 0, . . . , n − 1, let τj+1 be as per Lemma 3.1 so that

a1uj+1b0 = ujb0a1τj+1 in G. Let vn = a1τ1 · · · a1τn.
For our next lemma, we understand the binomial coefficient

(
n

i

)
to be zero

when i > n.

Lemma 3.2. For all n ≥ 1, the word vn is freely reduced and

an1unb0 = b0vn in G (7)

|vn|a1
= n (8)

|unb0|bi =
(
n

i

)
for i = 0, . . . , p (9)

|unb0| =
(
n

0

)
+ · · ·+

(
n

p

)
. (10)

|vn|a2
= |unb0|bq =

(
n

q

)
(11)

Proof. The reason vn is freely reduced is that each τi is freely reduced and

contains no a±1
1 letters by Lemma 3.1. Then (7) holds as per Figure 10 and

(8)–(11) all follow straightforwardly from Lemma 3.1.
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vn
a1τ1 a1τ2 a1τ3 a1τn

an
1

u0
=ε

b0

u1

b0

u2

b0

u3

b0

un−1

b0

un

b0

b0

a1τ1a1 τ2 a1 τ3 a1 τ4

a1 a1 a1 a1

b0
b1
b1
b2
b1
b2
b2
b3
b1
b2
b2
b3
b2
b3
b3
b4

Figure 10: Why an1unb0 = b0vn in G. The diagram on the left is assembled from

n instances of the diagram from Figure 9. That on the right shows it in finer

detail in the case n = 4 and q ≥ 4.

Let v̂n be vn with all t±1, y±1
1 and y±1

2 deleted.

Lemma 3.3. For all n ≥ 1, there is a freely reduced word µn = µn(t
±1, y±1

1 , y±1
2 ),

whose final letter is positive, and such that

vn = v̂nµn in G. (12)

Proof. Use the r4,∗,∗- and r4,∗-defining relators of Figure 5 to shuffle the a1 and

a2 through vn to its start to make a prefix v̂n. In the process, the intervening

letters t±1, y±1
1 , y±1

2 become various (Y∗tY∗)
±1 and (Y∗t

−1Y∗tY∗)
±1.

By Lemma 3.1, τn, and therefore vn, has a suffix κ that is a long suffix of

some Y∗. The Y ±1
∗ that are created in the shuffling process are different from

any that arise in Lemmas 3.1–3.3 (those lemmas do not use the relators r4,∗ or

r4,∗,∗). So, by C
′(1/4) for X ∪ Y (see Section 2.1), cancellation with these Y ±1

∗
cannot erode all of κ. So the final letter of µn is the final letter of κ, and so of

some Y∗, and so is positive.

Lemma 3.4. There exists K1 > 1 with the following property. For all n ≥ 1,

there is a reduced word Zn on t, y1, and y2, whose first letter is positive, such

that

(unb0)
−1 x1 unb0 = Zn in G (13)

K
|unb0|
1 ≤ |Zn|. (14)

Proof. The word Zn is the result of successive conjugations of x1 by the letters

of un (which are b1, . . . , bp) and then by b0. The relators r3,∗ and r3,∗,∗ describe
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the effect: conjugation produces successive words on t and the X∗ (so on t, x1
and x2) until the final conjugation by b0, which results in a word on t and the Y∗
(so on t, y1 and y2). In any one of these words, free reduction between adjacent

X±1
∗ (or adjacent Y ±1

∗ ) can only reduce the word’s length by at most a half on

account of the C ′(1/4) condition on X ∪ Y (see Section 2.1). So, if we take K1

to be half the length of the shortest of the X∗ and Y∗, then each conjugation

increases reduced length by a factor of at least K1. The C ′(1/4)-condition for

X ∪ Y also implies that free reduction cannot erode the first letter of the word

at every stage, and as the initial x1 is positive and so are first letters of each

X∗ and Y∗, it follows that the first letter of Zn is positive.

Lemma 3.5. There exist K2 > 0 and K3 > 1 with the following properties.

For all n ≥ 1, the word

wn = v̂−1
n b−1

0 an1x1a
−n
1 b0v̂n

has length at most K2n
q and equals in G a word χn = χn(t

±1, y±1
1 , y±1

2 ). More-

over, freely reducing χn gives a word of length at least K
(np)
3 .

b0 b0
an
1 an

1

un un

b0 b0

vn vn

v̂n v̂n

µn µn

wn

x1

Zn

χn

Lemma 3.2 Lemma 3.2

Lemma 3.3 Lemma 3.3

Lemma 3.4

Figure 11: A diagram demonstrating that the word wn = v̂−1
n b−1

0 an1x1a
−n
1 b0v̂n

on the generators ofG and word χn = µnZnµ
−1
n on the generators ofH represent

the same element of G.

Proof. We have |v̂n| = |v̂n|a1
+ |v̂n|a2

, which equals |vn|a1
+ |vn|a2

= n+
(
n

q

)
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by (8) and (11). So |wn| = 2
(
n

q

)
+ 2n+ (2n+ 3), which is at most K2n

q for a

suitable constant K2 > 0.

Figure 11 sets out why χn = µnZnµ
−1
n equals wn in G. Consider freely re-

ducing χn by freely reducing µn, Zn, and µ
−1
n , and then performing all available

cancellations where they meet. As the final letter of the freely reduced form of

µn and the first letter of the freely reduced form of Zn are both positive (by

Lemmas 3.3 and 3.4), there is no cancellation between µn and Zn. There may

be cancellation between Zn and µ−1
n (indeed, a priori, all of Zn could cancel

into µ−1
n ). But for every letter of Zn that cancels into µ−1

n , there is a letter of

µn that survives in the freely reduced form of χn. Therefore the length of the

freely reduced form of χn is at least the length of the freely reduced form of Zn.

So the existence of a suitable K3 > 1 follows from (14) and the fact that, by

(10), |unb0| is a least a constant times np.

4 Tracks and diagram rigidity

4.1 Tracks in reduced van Kampen diagrams

As explained in Section 2.3, a van Kampen diagram is reduced when it does not

contain a pair of back-to-back cancelling 2-cells. If a van Kampen diagram is

reduced, then so are its subdiagrams. Here, we will explore the restrictions this

hypothesis leads to on the arrangement of tracks in van Kampen diagrams over

our presentation P for G of Section 2.1.

Definition 4.1. A region in a van Kampen diagram ∆ is a closed subset that is

homeomorphic to a 2-disc. We will consider regions that have boundary circuits

comprised of portions of ∂∆, other paths in the 1-skeleton ∆(1), and subtracks.

Figure 12 shows two examples. Because tracks pass through the interiors of 2-

cells, regions need not be subdiagrams. When we say a 1-cell or 2-cell of ∆ is

in R, we mean that it is a subset of R.

Before we give our first lemma, here is an overview of this section. Every

2-cell in a reduced van Kampen diagram ∆ over P has some x- or y-letters (we

call these “noise” letters) in its boundary word. We find it helpful to think of

this noise to be flowing though the diagram and expanding in that, for the 2-cells

to fit together, the adjacent cells must have more noise (in total), and those in

the next layer further beyond those have yet more noise. This continues until

the noise spills out into the boundary of the diagram.

Tracks in ∆ mediate this flow of noise and provide a structure via which we

can put this intuition on a firm foundation. All x-noise flows across b-tracks in

the direction of their orientations, except that on crossing a b0-track, the noise
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is converted to y-noise. And y-noise flows across a-tracks in the direction of

their orientations. So, when a region has boundary that prevents the escape of

noise, that region cannot occur in a reduced diagram. Lemmas 4.3, 4.4 and 4.6

are results of this nature. As for t-tracks, they have noise on both sides and

reflect the HNN-structure G = F∗t. Lemma 4.2 is a consequence. It exemplifies

the following idea, which reappears in Lemma 4.9 in a more complicated guise.

If a certain feature is present (in this case, a t-loop), then there is an innermost

instance, but an innermost instance must include cancelling 2-cells, contrary to

the hypothesis that the diagram is reduced.

Lemmas 4.13 and 4.14 dig further into the structure of t-corridors and pro-

vide groundwork for Lemmas 4.15 and 4.16, which detail circumstances in which

tracks and corridors show diagrams to flare out towards a portion of their bound-

ary. These results will let us (in Lemma 4.23) simplify diagrams that demon-

strate distortion.

Lemma 4.2. Reduced van Kampen diagrams ∆ over P contain no t-loops.

Proof. Were there a t-loop in ∆, there would be one with no t-loop in its

interior. The 2-cells it traverses would form an annular corridor. Around its

inner boundary we read a word which, viewed as a word on the generators of

the appropriate vertex group of the HNN-structure G = F∗t of Proposition 2.9,

would freely equal the empty word. So some adjacent pair of those generators

would cancel. As those generators uniquely determine the 2-cells along whose

sides they are read, a pair of 2-cells in the annulus would cancel, contrary to

the diagram being reduced.

Our next lemma sets out circumstances in which x-edges being absent from

the boundary of a region R forces there to be no x-edge anywhere in R. The

lemma further explains that regions that do not contain a y-edge and are

bounded only by a-subtracks, inward-oriented b-subtracks, and t-subtracks take

a highly constrained form, examples of which are shown in Figure 12.

Lemma 4.3. (Trapped x-noise) Suppose R is a region in a reduced van Kam-

pen diagram ∆ over P such that R contains no y-edges and is bordered by a-

subtracks, inward-oriented b-subtracks, t-subtracks, and paths in ∆(1).

1. If there is an x-edge in R, then there is an x-edge in ∂R.

2. If there is no x-edge in ∂R (in particular, if ∂R is made up of only a-

subtracks, inward-oriented b-subtracks, and t-subtracks), then

(a) Each t-subtrack in ∂R crosses only a single edge; indeed, it crosses

between an r4,1-cell and an r4,2-cell as in the example in Figure 12
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(right) and must transition to an outward-oriented a1-subtrack in the

r4,1-cell and to an outward-oriented a2-subtrack in the r4,2-cell.

(b) Each b-subtrack in ∂R only crosses a single edge. It transitions to an

outward-oriented a1-subtrack at one end and to an outward-oriented

a2-subtrack at the other.

(c) There is at least one b- or t-subtrack in ∂R.

(d) The a-subtracks in ∂R are all outward oriented. Together, they cross

at least one a1-edge and at least one a2-edge

b1

b2

a1

a2

b0
a2

a1

bq−1

a2

a1

t

r1,1

r2,1

r1,2

r2,2

r1,0

r2,0

r1,q−1

r2,q−1

r4,1

r4,2

Figure 12: Examples of regions satisfying the conditions of Lemma 4.3(2)

Proof. For (1), first suppose that there is a 2-cell c in R. By Lemma 4.2, there

is no t-loop in ∆, and so the two t-edges in ∂c are part of a t-subtrack that

subdivides R into two regions R1 and R2. If (1) holds true for R1 and R2, then

it holds true for R. Thus, via repeated such subdivisions, we reduce to the case

where R contains no 2-cell. In that event, the subgraph F of ∆(1) formed by

the 1-cells in R is a forest: were it to contain an embedded circle, there would

be a 2-cell within that circle and so in R. (In the examples of Figure 12, F is a

single vertex in the left diagram and it is the single central edge labelled bq−1

in the right diagram.)

Assume there is no x-edge in ∂R. Suppose, for a contradiction, that there

is an x-edge in R, and so in some connected component F0 of F . Let v be the

word one reads around F0. Let v be v with all letters other than x±1
1 and x±1

2

deleted.

By hypothesis, there are no y-edges in R. So v is a word on a1, a2, b0, . . . ,

bp, t, x1, x2. Any x1 or x2 in v is the label of an edge ex of a 2-cell and so is

either part of a Rips subword from X in a defining relation, or is the lone xj
at the top (in the sense of Figure 5) of an r3,i,j-cell c (for some i ∈ {0, . . . , p}).
In the latter event, no part of the b-track through c can be part of ∂R because
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then there would be an outward -oriented b-subtrack, contrary to hypothesis. It

follows that ∂R contains the t-track of c (as c is not in R) and that F0 contains

a portion of ∂c containing ex so that xj is part of a subword X−1
∗ b−1

i xjbiX
−1
∗

of v±1. So, after replacing v with a cyclic conjugate if necessary, v is a word on

the X∗, X
−1
∗ x1X∗, and X

−1
∗ x2X∗.

Now, v freely reduces to the empty word since it is read around the tree

F0. Therefore v also freely reduces to the empty word. Lemma 2.3 applies to

v. Folding up an edge-loop labelled by v to get the tree F0 equates to freely

reducing v. So the lemma tells us that parts of the boundary cycles of some pair

of 2-cells is a common path in F0 labelled by a subword of some X∗ of at least

a quarter-length. These 2-cells are a back-to-back cancelling pair, contrary to

the diagram being reduced. So we have the contradiction we seek.

To prove (2), we assume there are no x-edges in ∂R, and therefore none in

R by (1).

For (2a), suppose τ is a t-subtrack in ∂R. It cannot intersect a t-edge that is

part of a subword Y∗tY∗ or Y∗t
−1Y∗tY∗ in the boundary of a 2-cell, for then an

adjacent y-edge would be in R, contrary to hypothesis. It also cannot intersect

a t-edge that is part of a subword X∗tX∗ or X∗t
−1X∗tX∗ in the boundary of a

2-cell, for then an adjacent x-edge would be in R. The remaining possibility is

that it intersects a t-edge at the top of an r3,i- or r4,i-cell. It cannot intersect the

other t-edge in that cell, so ∂R has to switch from a t-subtrack to, respectively,

a bi- or ai- subtrack within that cell. The former case cannot occur, as it would

lead to an outward oriented b-track. In the latter case, the 2-cell on the other

side of that top t-edge must also be an r4,i-cell. As the diagram is reduced, we

deduce that τ crosses from an r4,1-cell to an r4,2-cell across their common ‘top’

t-edge. Moreover, to avoid any y-edge being in R, ∂R must exit the r4,1-cell

across an a1-edge and exit the r4,2-cell across a2-edge, and these a1- and a2-

edges must have a common end-vertex in R and must both be oriented out of

R.

For (2b), suppose β is a b-subtrack in ∂R. It is impossible that β enters

and then exits a 2-cell: by hypothesis β is inward-oriented and so R would

contain x- or y-edges from the bottom of the 2-cell (in the sense of Figure 5).

So β crosses only a single b-edge, and when doing so it travels from one 2-cell

to another. (It cannot start and end in the same 2-cell, as then two b-edges

in the boundary of one 2-cell would be identified in ∆ and that would imply

that some subword of the boundary word represents 1 in G in such a way

as to contradict the HNN-structure established in Proposition 2.9.) From our

analysis of t-subtracks, we know that β cannot transition in ∂R to a t-subtrack,

and so it must transition to a-subtracks at each end. Indeed, it must transition

to outward-oriented a-subtracks, since the x- or y-edges of a 2-cell in which a
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transition to an inward-oriented a-subtrack occurred would be in R. And β

must connect an a1-subtrack at one end and to an a2-subtrack at the other,

because otherwise the two 2-cells it passes through would be a cancelling pair,

contrary to ∆ being reduced.

For (2c), all that remains is to verify that ∂R is not an a-loop. It cannot be

an inward-oriented a-loop, for then there would be x- or y-letters in R. Consider

an inner-most outward-oriented a-loop α. The orientations on junctions in Ga

force α to be an a1- or a2-loop, and the associated a1- or a2-annulus has inner

boundary labelled by a non-empty word w on b0, . . . , bp, which freely reduces to

the empty word. The 2-cells in the annulus are r1,i-cells (i = 1, . . . , p) in the a1
case and are r2,i-cells (i = 1, . . . , p) in the a2 case. In either case cancellation

of an inverse-pair of letters in w implies cancellation of a pair of 2-cells in ∆,

contrary to the diagram being reduced.

We conclude that ∂R has at least one a1-subtrack and at least one a2-

subtrack, and any a-subtrack transitioning to a b- or t-track is outward oriented.

Were there an inward-oriented a-subtrack, it would have to be an a1-subtrack

α transitioning at either end to an outward oriented a2-subtrack in distinct

r1,q−1-cells c and c
′. Any 2-cell that α passed through between c and c′ would

lead to an x-or y-edge in R, so c and c′ must be adjacent, which would be a

contradiction because they are oppositely oriented. Thus (2d) follows.

Here is the corresponding lemma for y-letters. It forgoes hypotheses exclud-

ing any particular type of edges from R, and it requires the a-subtracks, instead

of b-subtracks, in ∂R to be inward-oriented.

Lemma 4.4. (Trapped y-noise) Suppose R is a region in a reduced van Kam-

pen diagram ∆ over P, bordered by b-subtracks, t-subtracks, inward-oriented

a-subtracks, and paths in ∆(1).

1. If there is a y-edge in R, then there is a y-edge in ∂R.

2. If the b-subtracks in ∂R are inward oriented, then ∂R must include at

least one x-edge or y-edge. In particular, in a reduced diagram there is no

region R such that ∂R is comprised of inward-oriented a-subtracks, inward-

oriented b-subtracks, and t-subtracks. (Figure 13 shows some examples of

regions this precludes.)

Proof. For (1), we follow the same approach as our proof of Lemma 4.3(1). As

there, it suffices to prove the result in the case where there is no 2-cell in R. In

that case, if there is a y-edge in R, then it appears in some connected compo-

nent F0 of the forest of 1-cells in R, and around F0 we read a word v which

freely reduces to the empty word. This v is a word on a1, a2, b0, . . . , bp, x1, x2, t,
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Figure 13: Examples of regions precluded by Lemma 4.4(2)

and the Rips words Y (arising in the Y∗tY∗ or Y∗t
−1Y∗tY∗ per our presentation

P), and the Y −1
∗ a−1

i yjaiY
−1
∗ around r4,i,j-cells—the key point here is that y1

and y2 do not appear on their own in this list and this is because if the yj
of Y −1

∗ a−1
i yjaiY

−1
∗ is in v±1, then the whole of that subword is in v±1 as an

a-subtrack across that r4,i,j-cell would be outwards-oriented, contrary to hy-

pothesis. Let v be v with all letters other than y±1
1 and y±1

2 deleted. Then v

is a word on the Y∗, Y
−1
∗ y1Y∗, and Y

−1
∗ y2Y∗ which freely reduces to the empty

word. Lemma 2.3, translated to y-letters instead of x-letters, applies to v, so as

to imply that a pair of 2-cells cancel, contrary to the diagram being reduced.

For (2), assume, for a contradiction, that there is no x- or y-edge in ∂R.

Then, by (1), there is no y-edge in R. This, together with the hypothesis that

the b-subtracks in ∂R are inward oriented and the assumption that ∂R has no

x-edges, means Lemma 4.3(2) applies, and part (2d) tells us that ∂R has non-

trivial outward-oriented a-tracks, contradicting the hypothesis that a-subtracks

in ∂R are inward-oriented.

Remark 4.5. The analogue of Lemma 4.4(1) for x-edges fails. For an example,

take the van Kampen diagram that demonstrates that b−1
0 b−1

1 tb1b0 equals a word

on y1, y2, and t, which is comprised of one r3,1-cell and a b0-corridor made up

of r3,0,1- and r3,0,2-cells and one r3,0-cell.

Lemma 4.4(2) fails in the absence of the hypothesis that the b-tracks be

inward-orientated. A “button” (Definition 4.8) provides an example.

Lemma 4.4(2) rules out a- and b-loops that are inward oriented. At this

stage we can also rule out outward oriented a-and b-loops in some situations:

Lemma 4.6. Let ∆ be a reduced van Kampen diagram over P.

1. If ∆ has only r4,∗-cells, then ∆ has no a-loops.

2. If ∆ has only r2,∗- and r3,∗-cells, then ∆ has no b-loops

Proof. In both cases there are no r1,∗-cells. Thus the dual graphs Ga and Gb

of ∆ have no junctions, so every a-track is an ai-track and every b-track is a

bj-track, for some i and j.
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To prove (1), suppose for a contradiction that ∆ has an a-loop. Then there

is an innermost one α, which is an ai-loop for i = 1 or 2, such that the region

R enclosed α has no a-subtracks (as there are no junctions). As ∆ has only

r4,∗-cells, this means that the inner boundary of the annulus associated to α is

a closed path in ∆(1) that encloses no 2-cells, so traverses some edge e twice

(in opposite directions). Lemma 4.4(2) implies that α is outward-oriented and

this, together with the fact that α is an ai-track for a fixed i, means that the

possible labels y1, y2, t of e determine unique r4,∗-cells. It follows that there

is an adjacent pair of oppositely oriented identical cells, contradicting the fact

that ∆ is reduced.

The proof of (2) is identical, noting that, for an innermost bj-loop in a ∆ as

in (2), the possible labels x1, x2, t, a2 of the edge e each determine a unique cell

(given the orientation of bj).

We now define two types of diagrams containing bigons of subtracks which

can occur in reduced diagrams over P.

Definition 4.7. (Badge) A badge is a subdiagram consisting of a path with

label tn, where n > 0, with 2n + 2 cells arranged around it as shown in Fig-

ure 14(left) for n = 4. Specifically, it has two ri,j-cells that are connected by an

ai-corridor made up of n r4,i-cells and a bj-corridor made of n r3,j-cells, such

that the ai-corridor and bj-corridor are identified along their boundaries labelled

tn.

Definition 4.8. (Button) A button is a pair of 2-cells, specifically an r1,p−1-

cell and an r1,p-cell, in a van Kampen diagram that are joined along the common

a1bp subwords in their boundary word. Figure 14(center) shows a button. The

mirror image of a button is also a button, so there are two buttons in the diagram

in Figure 14(right).

t t t t

b∗

a∗

bp

bp bp−1

a1
a1 a1

r1,p
r1,p−1

bp−1

bp t
bp bp

bp−1
bp−1 bp−1

a1 a1
bp

r1,p−1 r3,p−1
r1,p−1

r1,p
r3,p r1,p

Figure 14: Left: a badge. Middle: a button. Right: a reduced diagram that

includes two buttons and contains a loop that is an outward-oriented b-track.

Observe that a badge or button is dual to a bigon comprised of an a-subtrack

and an outward oriented b-subtrack. The next lemma shows that such bigons

always give rise to badges or buttons in the absence of y-edges. The second
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part puts a further restriction on certain bigons formed by an a1-track and a

bi-track, which will be used in the proof of Corollary 4.10.

Lemma 4.9. (Bigons, badges, and buttons) Let R be a region in a reduced

van Kampen diagram ∆ over P, such that R does not contain any y-edges, and

∂R is a bigon comprised of an a-subtrack α and an outward oriented b-subtrack

β. Then

1. The minimal subdiagram of ∆ containing R contains either a badge or a

button.

2. If α is an a1-subtrack and β is a bi-subtrack, and R has no a1-subtracks

in its interior, then one of the intersections between α and β occurs in an

r1,i−1-cell.

Proof. If R is as in the statement of the lemma, we first prove that R contains

a minimal region of the same type. Specifically, R contains a region S with

boundary a bigon comprised of an a-track αS and an outward oriented b-track

βS such that the interior of S contains no a- or b-subtracks.

To construct S, first observe that there can be no a-loop in R, as if there were

one, it would enclose a region with no y-edges, contradicting Lemma 4.3(2c).

Since R also has no teardrops (by Lemma 2.7), any a-subtrack α1 in R is a

path with distinct endpoints on ∂R. If α1 has both endpoints on α, then (in

the absence of a-loops and teardrops) we get a smooth path by replacing a

subsegment of α with α1, and this forms a smaller bigon with β. If one or both

endpoints of α1 are on β, then α1 divides R into two regions, one of which has

boundary a bigon comprised of an a-subtrack and a subtrack of β. Passing to

a minimal instance, we obtain a region R′ with boundary a bigon comprised of

an a-track α′ and an outward oriented b-track β′ (a subtrack of β), such that

R′ has no a-subtracks in its interior.

Consider the minimal diagram containing R′, and let D′ be the subdiagram

consisting of 2-cells not dual to α′. Then D′ has only cells of type r3,i or r3,i,j
(as any other cells would introduce a-subtrack in R′). So D′ has no junctions

and, by Lemma 4.6(2), has no b-loops. Suppose there is a b-subtrack β1 ̸= β

in R. Then β1 has both endpoints on α′ (as there are no junctions in D′). If

β1 is oriented into the bigon that it forms with α′, then α′ must be oriented

outward by Lemma 4.4(2). As there are no y-edges in R, Lemma 4.3(2) applies,

and implies that α′ transitions from a1 to a2. This happens at some r1,q−1-cell

dual to α′. However, as α′ is oriented outward, such a cell contributes part of

an a1-subtrack to the interior of R′, a contradiction.

Thus any b-subtrack in R′ has both endpoints on α′, and is oriented out of

the bigon it forms with α′. By passing to an innermost instance, we obtain a
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region S with boundary a bigon comprised of a subtrack αS of α′ and an outward

oriented b-track βS such that the interior of S contains no a- or b-subtracks.

To complete our proof of (1), we show that if R is minimal in that its interior

contains no a- or b-subtracks, then the minimal subdiagram D containing R is

either a badge or a button.

β

α

b∗ b∗

b∗ b∗

a∗ a∗

u

u1 u2

v

f1 f2

Cβ

Cα

Figure 15: A bigon region per Lemma 4.9

Let Cα and Cβ be the corridors dual to α and β respectively—see Figure 15.

They intersect in distinct 2-cells f1 and f2 of type ri,j with i = 1 or 2. (If

f1 = f2, then the orientation on β would force both corners of ∂S to be on

the top half of some ri,j-cell, and a terminal subpath of α would merge with

an initial one to create a teardrop, which contradicts Lemma 2.7.) Further, the

2-cells of D are exactly the 2-cells of Cα ∪ Cβ (because a 2-cell strictly in the

interior of R would result in interior a- or b subtracks).

The inner boundary of Cα∪Cβ has subpaths coming from f1 and f2 (labelled

u1 and u2 respectively), from Cα (labelled u) and from Cβ (labelled v), and these

are oriented as shown in Figure 15. Next, we determine which letters can occur

in these labels examining Figure 5 for cells which could occur in D under the

given constraints.

Firstly, f1 is an r1,∗- or r2,∗- cell, and given that β is outward-oriented, one

sees that the only non-empty word that could arise as u1 is bi for some i (when

f1 is a r1,i−1 cell and α is inward-oriented). However, as this would lead to

b-subtracks inside R, we conclude that u1 is empty. Likewise u2 is empty. Thus

u = v as group elements.

Next, each cell of Cβ apart from f1 and f2 is of type r3,k, r3,k,1 and r3,k,2
(as any others would introduce a-subtracks in the interior of R). Since β is

oriented outward, this means v is a word on x1, x2, t. Furthermore, the part of

β between (and excluding) f1 and f2 has no junctions, and so it is a bk-track for
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some fixed k. As x1, x2, t freely generate a free group in G (as a consequence of

Proposition 2.12), and each of them appears in a unique r3,k- or r3,k,j-cell, ∆

being reduced implies v is freely reduced.

If α is oriented outward, then each cell of Cα apart from f1 and f2 is of

type r4,i (as any other cells would introduce y-edges or b-subtracks to the the

interior of R). So u is a reduced word of the form tn for some n ∈ Z. Now,

since v is reduced, we have that v = u = tn as words. Furthermore n ̸= 0,

for otherwise f1 and f2 would be identified along a pair of adjacent edges in

each with label a−1
i bk and as each such word appears in a unique cell, f1 and

f2 would be oppositely oriented identical cells, contradicting the fact that ∆ is

reduced. Thus R is a badge.

If α is oriented inward, then Cα cannot have any 2-cells apart from f1 and

f2, so u is empty. Then, as v is reduced, it is also empty, and f1 and f2
are distinct cells identified along a corner in each with label aibj . Examining

Figure 5 again, we see that this can only happen if they are a r1,p−1-cell and an

r1,p-cell identified along their corners labelled a1bp, so that R is a button. This

completes the proof of (1).

Now assume R satisfies the additional hypotheses in (2) of this lemma (but is

not necessarily minimal). In particular, the interior R has no a1-subtracks, but

could have a2- or bj-subtracks. We continue with the notation of Figure 15. The

intersection of an a1-track and a bi-track can only occur in an r1,i- or r1,i−1-cell.

Assume for a contradiction that f1 and f2 are both of the former type. Now, if

α is oriented outwards, then u1 and u2 are empty and u is a word on b0, . . . , bp
(here we do not have t, because an r4,1-cell would produce a y-edge in R, a

contradiction). If α is oriented inwards, then u1 = b−1
i+1 and u2 = bi+1 and u is

a word on

bp(X∗t
−1X∗tX∗)

−1, bqbq−1(X∗t
−1X∗tX∗)

−1, and

bi+1bi(X∗t
−1X∗tX∗)

−1 (i ̸= 0, q − 1, p).

Now define u and v to be the images of these words in the quotient Q =

F (b0, . . . , bp) ⋊ Z of G from (1) resulting from killing a2, t, x1, x2, y1, y2. Then

v is empty and u is a word on b1b0, . . . , bpbp−1, bp, which is a free basis for

F (b0, . . . , bp). So b−1
i+1ubi+1 = 1 in Q, and so u = 1. So there is a canceling

pair in u, and this implies that there is a pair of adjacent oppositely oriented

cells, contradicting the hypothesis that the diagram ∆ is reduced. An analogous

analysis rules out α1 being outward-oriented. This proves (2).

The next corollary summarizes the restrictions on loops in reduced diagrams

obtained so far.

Corollary 4.10. (Loops) Suppose ∆ is a reduced diagram.
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1. ∆ has no t-loops and no inward-oriented a- or b-loops.

2. Every a-loop in ∆ encloses a y-edge.

3. ∆ has no bi-loops, and if ∆ has no buttons, then it has no b-loops.

Proof. Lemmas 4.2 and 4.4(2) establish (1).

Were there an a-loop enclosing no y-edges, it would satisfy the hypotheses of

Lemma 4.3(2) but fail the conclusion in part (2c) of that lemma. This proves (2).

For (3), suppose β is a b-loop in ∆, as shown in Figure 16. Then β is oriented

outward by (1). If R is the region enclosed by β, then R contains no y-edges

by Lemma 4.4(1). Consequently, R contains no a-loops by (2) of this corollary.

Because ∆ has no teardrops by Lemma 2.7, any a1-subtrack in R must intersect

β in two distinct points, and divides R into two bigons.

Let ∆0 be the minimal diagram containing R. There are no 2-cells of type

r4,∗,∗ or r4,∗ in ∆0, because any such 2-cell would have to be inside β and would

give rise to a y-edge there. So Lemma 4.6(2) tells us that ∆0 contains at least

one r1,∗-cell. Therefore R contains an a1-subtrack. Let α be an a1-subtrack in

R that forms a bigon with a subtrack β1 of β, and is innermost in that there is

no a1-subtrack in the region R1 enclosed by α and β1.

β1

β
α

∆
∆0

R

R1

Figure 16: Our proof of Corollary 4.10(3), illustrated

Now suppose β is a bi-loop for some fixed i, and so β1 is a bi-subtrack. Then

applying Lemma 4.9(2) to R1, we see that one of the intersections between α

and β1 occurs in an r1,i−1-cell. This is a contradiction, as β, being a bi-track,

cannot pass though an r1,i−1-cell. Thus ∆ has no bi-loops.

Finally suppose that ∆ has no buttons and that β is a b-loop. Then, by

Lemma 4.9(1), the minimal subdiagram containing R1 contains a badge. The

a-subtrack of this badge is dual to at least one r4,i-cell, and this cell is in the

interior of R. This is a contradiction: as already noted, each r4,i-cell has a

y-edge, while R has none. This completes our proof of (3).

Remark 4.11. Figure 14 shows how Corollary 4.10(3) can fail without the

hypothesis absenting buttons. Corollary 4.10(2) cannot be upgraded to rule out
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all a-loops: a reduced diagram with an outward oriented a1-track can be formed

by circling an r3,0-cell (which has y-edges) with an outward oriented a1-annulus

made up of two r1,0-cells, two r4,1-cells, and some r4,1,j-cells.

Our next two lemmas concern the impact of the presence of Rips subwords

in the sides of t-corridors or in generalizations defined in the following manner.

The following expanded definition of a corridor C and the lemma that follows it

are motivated by applications to our proof of Lemma 4.16.

Definition 4.12. (Generalized corridors) Let C be a set of r distinct 2-cells

C1, C2, . . . , Cr in a reduced van Kampen diagram over our presentation P for

G such that there are edges e0, . . . , er with the property that for i = 1, . . . , r− 1,

the edge ei is in both ∂Ci and ∂Ci+1. Suppose the word read clockwise around Ci

is zifiz
−1
i+1gi, where zi labels edge ei. Then the words along the top and bottom

boundaries of C are f1f2 · · · fr and g−1
1 g−1

2 · · · g−1
r respectively.

Lemma 4.13. (Rips words cause the sides of corridors to be near

injective and adjacent corridors to have small overlap.) There exists a

constant K ≥ 1 such that reduced van Kampen diagrams ∆ have the following

properties.

Suppose C is a generalized corridor, µ is the path along one side of C, and
the word read along µ is f := f1f2 · · · fr (all per Definition 4.12). Refer to

f1, . . . , fr as the syllables of f . A Rips subword in a syllable fi of f is an

element of (X ∪Y)±1 appearing as a subword. Suppose that if 1 ≤ i ≤ j ≤ r are

such that fi, . . . , fj do not have Rips subwords, then fi · · · fj is a reduced word

on {a1, a2, b0, . . . , bp}±1.

Suppose µ ⊆ µ is an injective path from the initial vertex of µ to its terminal

vertex. So the word f read along µ can be obtained from f by a sequence Σ

of free reductions (successive cancellations of adjacent inverse-pairs of letters).

Then:

1. (a) At least one letter of every Rips subword in a syllable survives in f .

(b) |f | ≤ K|f |+K.

(c) If a subpath µ0 of µ is a loop and encloses no 2-cells, then the subword

f0 of f read along µ0 has length at most K.

Suppose µ′ is the path along one side of another generalized corridor C′ and

f ′ := f ′1f
′
2 · · · f ′r′ is the word read along it. Suppose that for all i, some element

of (X ∪ Y)±1 is a subword of f ′i . Suppose C and C′ have no 2-cells in common

and that they start and end on ∂∆ (that is, e0, er, e
′
0, e

′
r′ are in ∂∆). Suppose

that

I := C ∩ C′ = µ ∩ µ′ ̸= ∅.

46



2. Suppose µ0 and µ′
0 are the shortest subpaths of µ and of µ′, respectively,

such that I = µ0 ∩ µ′
0. If µ0 ∪ µ′

0 encloses no 2-cells, then |µ0|, |µ′
0| ≤ K.

Proof. For (1), we can interpret the sequence Σ as folding together adjacent

pairs of edges in a |ff−1|-sided simple polygonal-path in the plane until we

have the planar tree in ∆ whose boundary circuit is µf
−1

. Because every cyclic

conjugate of a defining relator (of Figure 5) is freely reduced, no cancellation of

a pair of letters within a syllable of f occurs in the course of Σ.

Given σ ∈ (X ∪Y)±1, let Pσ and Sσ denote its prefix and suffix, respectively,

such that σ = PσSσ as words, and |Pσ| = ⌊|σ|/2⌋. Suppose of all the Rips

subwords in the syllables of f , some subword σ of fl is the first such that either

Pσ and Sσ is fully cancelled away in the course of Σ. Assume it is Sσ that is first

cancelled away. (The argument if it is Pσ will be essentially the same, and we

omit it.) Then Sσ must cancel with a subword of fm, where m > l is minimal

such that fm has a Rips subword. But that is impossible: the C ′(1/4)-condition

for X ∪ Y and the fact that each of its elements has length at least 100, imply

that some subword of σ−1 of at least a quarter of its length is a subword of fm,

and moreover the 2-cell Cl cancels with Cm in ∆, contrary to ∆ being a reduced

diagram. This proves (1a).

Now suppose that syllables fi, . . . , fj do not contain Rips subwords. Then

(by hypothesis) fi · · · fj is a reduced word on {a1, a2, b0, . . . , bp}±1. So the

number of letters that can cancel away on freely reducing fi−1fi · · · fjfj+1 is

less than four times the length of the longest defining relation for our group.

Together with (1a), this implies (1b) and (1c) for a suitable constant K ≥ 1.

For (2), first we observe that I is a path because, by hypothesis, µ0 ∪ µ′
0

encloses no 2-cells. Let w0 and w′
0 be the words read along µ0 and µ′

0, re-

spectively. Assume, without loss of generality, that µ0 and µ′
0 are oriented in

the same direction—which is to say that w0(w
′
0)

−1 is the word around µ0 ∪ µ′
0.

Then free reduction takes w0 and w′
0 to the word w read along I. (We are not

claiming w is freely reduced—further free reduction may be possible.)

The proof can then be completed in a similar manner to part (1c). In short,

if there is a Rips subword σ in w′
0, then there must be a subword of σ in w0

also and these two words have large overlap in w, so as to imply that there are

cancelling 2-cells in C and C′. So µ′
0 contains no complete Rips subword and,

because each of the syllables of µ′ contains a Rips subword (by hypothesis), µ′
0

has length at most a constant. It then follows that µ0, which also contains no

complete Rips subword, also has length at most a constant: within w0, any fi
that contains no Rips subword can only cancel with the neighbouring fi−1 or

fi+1 if they contain a Rips subword (so at most some constant number of letters

in total can cancel away) and the remaining letters must be in w′, which has

length at most |µ′
0|.
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Lemma 4.14. Suppose µ is the path along one side of a t-corridor C in a

reduced van Kampen diagram ∆. Then the first y-edge e of ∆ traversed by µ is

not traversed a second time by µ.

Proof. Suppose, on the contrary, µ traverses e more than once, then (because

∆ is planar and µ is the side of a corridor) it does so exactly twice—once in

each direction—and the subpath µ of µ starting with the first traverse of e and

ending with the second traverse is a loop. (See Figure 17.)

tt

µ

Cµ

e

Figure 17: The t-corridor of our proof of Lemma 4.14

With a view to applying Lemma 4.13(1) to C, we check its hypotheses. As C
is a t-corridor, our defining relations imply that the label of µ∩C contains a Rips

subword for every cell C of C. There are no t-edges within the region ∆ enclosed

by µ, for if there were, then there would be a t-loop within ∆, contradicting

Lemma 4.2. So µ does not enclose any 2-cells. Thus Lemma 4.13(1a) applies,

and tells us that the label w of µ has no Rips subword from (X ∪ Y)±1 as a

subword.

On the other hand, Corollary 2.10 implies that w cannot be a subword of

the boundary word of a single 2-cell of C. In particular, if Ce is the cell of C
containing the initial point of µ (and the edge e), then µ extends beyond Ce, and

intersects at least one other cell of C. Thus if t±1ut∓1 = v is the boundary label

of Ce, where u labels µ∩Ce, then u has the form u1y∗u2, where y∗u2 is a prefix

of w. Moreover, as e is the first y-edge in µ, it follows that u1 has no y-edges.

Then, examining Figure 5, we see that u2 necessarily contains the entirety of

some Rips subword Y∗ from Y±1 as a subword. (This is true even if the first

letter of w is the lone y±1
j that arises in the r4,i,j-cells.) This contradicts our

earlier conclusion that w has no Rips subwords.

We will use our next lemma in our proof of Lemma 4.23(2). Here is the

intuition. Imagine a diagram consisting of a sequence of side-by-side vertical

corridors as in Figure 18. If there are no y-edges at the bottom of the diagram,

then we can slice horizontally through it and discard the portion above the cut,
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so that the diagram that remains has no y-edges and the length of the cut is at

most a constant times the length of the top.

Lemma 4.15. (y-edges in side-by-side t-corridors) There exists a constant

C > 0 with the following property. Suppose u and v are words that represent

the same element of G and that v contains no y-letters. Suppose ∆ is a reduced

diagram for uv−1. Let ∗0 and ∗1 be the vertices on ∂∆ where both u and v start

and end (respectively). Assume that every t-corridor in ∆ connects a t±1 in u

to a t±1 in v.

Then there is a word v′ read along some injective path through ∆(1) from ∗0
to ∗1 such that |v′| ≤ C|u| and the subdiagram ∆′ (per Figure 18), which is a

van Kampen diagram for v(v′)−1, contains no y-edges.

∗0 ∗1

u

v

v′

∆′

t

t

t

t t

t

t

t

t

t

t

t

τ1
τ2

τ3
τ4

τ5
τ6C1

C2

C3

C4

C5

Figure 18: Lemma 4.15, illustrated

Proof. We denote the t-corridors of ∆ by τ1, . . . , τm, for some m, where τi
connects the ith t±1 in v to the ith t±1 in u. Every t-corridor is of this form,

by hypothesis. Observe that m ≤ |u|.
For all i, let S−

i and S+
i be the paths from v to u along the two sides of τi,

with S−
i emanating from the starting vertex of the t±1 of τi in v and S+

i from its

ending vertex. Assuming there is a y-edge on S±
i , let e±i be the lowest—which

is to say that e±i is the first y-edge that S±
i traverses. If there are y-edges in one

side of a 2-cell in a t-corridor, then there are y-edges in the other side of that

cell. So e−i and e+i (if defined) are in the boundary of the same 2-cell Ci of τi.

Moreover, as Lemma 4.14 guarantees that S±
i does not traverse e±i a second
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time and, because v has no y-edges, e±i is either in u or part of the neighboring

t-corridor. It follows that for all i,

• either both e+i and e−i+1 exist, they agree, and they are not in u,

• or both exist and are in u,

• or only one exists and is in u,

• or neither exists.

Take C to be the maximum length of a defining relator in P. Then there

is an injective path through ∆(1) from ∗0 to ∗1 that follows portions of u and

portions of the boundary circuits of the at most |u| 2-cells Ci, such that the

word v′ along this path satisfies the required conditions. (This path is shown in

blue in Figure 18.)

Our final lemma is illustrated by Figures 19 and 20. (The path ρ is in the

graph dual to ∆(1).) In short, it says, in the notation of Figure 19, that the dia-

gram cannot flare out exponentially towards v. Its application in Lemma 4.23(3)

will be that certain regions can be sliced off a reduced diagram with the result-

ing diagram only longer by at most a constant factor. Thereby we will simplify

diagrams that demonstrate distortion.

Lemma 4.16. (The lengths of compound-tracks between points on

the boundary) There exists a constant C ≥ 1 with the following property.

Suppose a region R in a reduced diagram ∆ is bounded by a portion µ of ∂∆

and a compound track ρ that is a concatenation of a-subtracks, inward-oriented

b-subtracks, and t-subtracks. Let D be the minimal subdiagram of ∆ containing

R. (That is, D is the union of R and the generalized corridor C through which

ρ passes.) So D is a van Kampen diagram for vu−1 for some words v and u

such that v is read around ∂∆ starting and ending with the edges where µ and

ρ meet. Suppose either

1. the a-subtracks in ρ are oriented into R, or

2. D contains no y-edges.

Then |u| and the number of edges |ρ| of ∆ that ρ crosses are both at most C|v|.

Proof. We will establish the claimed bounds by examining the t-tracks through

R. By Lemma 4.2, there are no t-loops in R or indeed anywhere in ∆, because

∆ is reduced. Next we will argue that there is no t-subtrack τ in R which is non-

trivial (i.e., not a single point) and which starts and ends on ρ and otherwise is

in the interior of R. If there were, then a subpath of τ together with a subpath
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R

C

ρ

µ

u

a

b
t

a

b

v

µ8

ρ8

R8

µ4

ρ4

R4

D = R ∪ C

Figure 19: Top: a region R enclosed by a portion µ of ∂∆ and a compound

track ρ comprised of a- and t-subtracks and inward-oriented b-subtracks per

Lemma 4.16. The lower diagrams depict the t-tracks incident with ρ when

(left) the a-subtracks are inward-oriented, and (right) when R and C contain

no y-edges. Note that each Ri could have t-tracks with both endpoints on µi—

these are are not pictured here, but are shown in the detail in Figure 20.

of ρ would bound a region R′ ⊆ R that cannot exist in a reduced diagram: under

hypothesis (1), R′ would be contrary to Lemma 4.4(2), and under hypothesis

(2), Lemma 4.3(2) applies to R′ and its conclusion (2a) tells us there is an r4,1-

cell and an r4,2-cell in D, and therefore a y-edge in D, contrary to assumption.

The tracks τ1, . . . , τm of R which have one endpoint on µ and the other

on ρ divide R into subregions R0, R1, . . . , Rm as illustrated in Figure 19, with

the lower left diagram depicting hypothesis (1) and lower right, hypothesis (2).

Under either hypothesis (1) or (2), the previous paragraph implies that every

t-subtrack entering the interior of Ri has both endpoints on µ. In more detail,

µ and ρ can be expressed as concatenations of subpaths µ0, µ1, . . . , µm and ρ0,

ρ1, . . . , ρm, respectively, so that for each i, the region Ri is bounded by µi, ρi,

τi and τi+1 (with τ0 and τm+1 being trivial paths).

Guided by the locations of the letters tϵi read along the edges where the τi
meet µ, express v as

v = tϵ0v0t
ϵ1v1t

ϵ2v2 · · · tϵmvmtϵm+1

where ϵ1, . . . , ϵm ∈ {±1} and ϵ0, ϵm+1 ∈ {0,±1}, and each vi is a subword of v

51



(which may contain further t±1).

Fix i ∈ {0, . . . ,m}. Let νi denote the concatenation of τi, ρi and τi+1, so

that Ri is bounded by µi and νi. Let C1, . . . , Cr denote the 2-cells traversed

by νi, as shown in Figure 20 (with i = 4 and r = 17). Together they form a

generalized corridor C in the sense of Definition 4.12. Let ∆i be the maximal

subdiagram that is a subset of R, includes the portion of ∂∆ labelled by vi, and

does not intersect τi, ρ or τi+1. Let f = f1 . . . fr be the word along the side

of C that is in Ri. Then ∆i is a van Kampen diagram for fv−1
i . We refer to

f1, . . . , fr as the syllables of f . (It may be that f is not reduced and ∆i is not

homeomorphic to a 2-disc.)

tϵ4 tϵ5
v4

R4

C1

C2

C3

C4

C5

C6 C7 C8 C9
C10

C11
C12

C13

C14

C15

C16

C17f1

f2

.

.

.

fr

.

.

.
τ4 ——– ———— τ5

Figure 20: The region R4 illustrated per our proof of Lemma 4.16.

We will show that there exists a constant L ≥ 1 such that, if |νi| denotes
the number of edges of ∆ crossed by νi, then

|νi| ≤ L|vi|+ L. (15)

We will argue that C satisfies the hypotheses of Lemma 4.13. The label of Cj ,

read clockwise, is of the form αfjβ
−1f̂j , with α, β ∈

{
a±1
1 , a±1

2 , b1, . . . , bp, t
±1
}

being the letters labeling edges dual to which νi enters and leaves Cj , respec-

tively. (The hypothesis that the b-subtracks that are part of ρ are oriented into

R precludes α or β being among b−1
1 , . . . , b−1

p .)

Suppose fj does not have a Rips subword. Inspecting the defining relators

for G (Figure 5), we find that one of α and β is in
{
a−1
1 , a−1

2

}
and the other is

in
{
a−1
1 , a−1

2 , t
}
, and this can only occur when there is an a-subtrack in ρ that

is oriented out of R, contrary to hypothesis (1), which means that hypothesis

(2) must apply. But then the only way one of α and β can be t is if Cj is

an r4,i-cell and α and β label the top and right edges (or vice versa) in the
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sense of Figure 5, which is excluded by (2) because r4,i-cells have y-edges. So

α, β ∈
{
a−1
1 , a−1

2

}
and Cj is an r1,∗- or r2,∗-cell, with ∗ ≠ 0 lest we contradict

(2). If Cj is an r1,∗-cell, then fj ∈ {b1, . . . , bp, bq−1a1}±1
. If Cj is an r2,∗-cell,

then fj ∈ {b1, . . . , bp}±1
.

Next suppose fj+1 also does not contain Rips word. If one of Cj and

Cj+1 is an r1,∗-cell and the other is an r2,∗-cell, then one of them must be

an r1,q−1-cell and they meet along an edge labelled a−1
2 . In this event, there

is no cancellation between fj and fj+1, because fjfj+1 is (b±1
l a−1

1 b−1
q−1)

±1 for

some l. If, on the other hand, Cj and Cj+1 are both r1,∗-cells or both r2,∗-

cells, then there can be no cancellation between fj and fj+1 lest Cj and Cj+1

be a cancelling pair of 2-cells, contrary to ∆ being a reduced diagram. Thus

if consecutive syllables fj , . . . , fl (for j ≤ l) do not contain Rips words, then

fj , · · · , fl ∈ {b1, . . . , bp, bq−1a1}±1
and fj · · · fl is a freely reduced word. So C

satisfies the hypotheses of Lemma 4.13.

Let ∆C be the minimal subdiagram of ∆ containing C and let ∆i be the

maximal subdiagram of ∆i that contains the path labelled vi and does not

intersect the interior of ∆C . Let f be the word such that ∆i is a van Kampen

diagram for fv−1
i . There are no 2-cells in ∆i \ ∆i because there would be a

t-track through such a 2-cell and we know that all t-tracks in ∆i connect a pair

of edges in vi. So f can be obtained from f by freely reducing f (perhaps only

partially: f need not be freely reduced), so as to remove all the letters which

label any 1-dimensional spikes of ∆i that protrude into C. By Lemma 4.13(1b),

there is a constant K ≥ 1 such that

|f | ≤ K|f |+K. (16)

Next, suppose C′ is a t-corridor that joins a pair of t-letters in vi. Then C
and C′ have no 2-cells in common: were there such a 2-cell, the t-track through

C′ would intercept νi (see Figure 8). Moreover, there can be no 2-cell in any

subdiagram of ∆i whose boundary is made up of a path along one side of C and

a path along one side of C′: there would be a t-subtrack through such a 2-cell,

and it would either be part of a t-loop (contrary to Lemma 4.2) or would join

two points on ρi (which we argued at the start of this proof cannot happen).

So Lemma 4.13(2) applies and tells us that the overlap between C and C′ has

length at most the constant K.

Each edge of the f -portion of ∂∆i is either in the vi-portion of ∂∆i or is the

side of such a t-corridor C′. At most |vi|/2 t-corridors join a pair of t-edges in

vi. We conclude that there is a constant K ′ ≥ 1 such that

|f | ≤ K ′|vi|. (17)

The existence of a constant L ≥ 1 such that (15) holds now comes from

combining |νi| ≤ |f |, (16), and (17).
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Finally, using |ρi| ≤ |νi| and summing (15) over all 0 ≤ i ≤ m, we get that

|ρ| ≤
m∑
i=0

|ρi| ≤ L|v|+ L(m+ 1) ≤ 2L|v|.

So |ρ| and |u| are both at most C|v| for a suitable constant C ≥ 1 derived from

L and the maximum length of a defining relation.

While we will only call on the lemma above in its full generality, we note

that in the case when ρ is a t-track, it gives:

Corollary 4.17. The vertex groups of the HNN-structure G = F ∗t are undis-

torted in G.

4.2 Intersection patterns for a pair of paths across a disc

Towards further understanding the intersection patterns of tracks, we consider

here how a pair of transversely oriented paths in a disc may intersect if there

are no “sink-regions.” The results in this section are formulated so as to be

combinatorial, bypassing issues such as paths intersecting each other infinitely

many times. We could, equivalently, have made the paths in this section injec-

tive combinatorial paths in the 1-skeleton of a finite 2-complex homeomorphic

to a 2-disc.

Definition 4.18. (Sinks and sources) Let σ and τ be piecewise-linear paths

in a 2-disc D, each of which is made up of finitely many straight-line segments

and has a transverse orientation. Suppose that σ and τ meet ∂D at exactly four

points—their end points—and that their intersections are transverse. A region

R in D such that ∂R is a union of subpaths of σ and τ is called a sink region if

the orientation on each subpath in ∂R points inward and a source region if the

orientation on each subpath in ∂R points outward. Note that by definition, the

boundary of a sink or source region does not include any part of ∂D.

Lemma 4.19. Let σ and τ be paths in a 2-disc D as per Definition 4.18. If

there is no sink region in D, then, up to a homeomorphism of D, we have

one of the cases displayed in Figure 21. (The cases are arranged into four

families according to the possible relative orientations of σ and τ where they

meet S1 = ∂D. Cases (2) and (3) include the possibility that σ and τ do not

intersect.)

Proof. Consider the planar graph G whose vertices are the points of intersection

of σ and τ and the four end points, and whose edges are the subpaths of σ, τ ,

and ∂D that connect them (call these σ-, τ -, and ∂D-edges, respectively). The
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σ σ

σ σ

τ

τ

τ τ

∗
∗1 ∗2

∗ ∗

(1) (2)

(3) (4)

Figure 21: The intersections patterns of two transversely oriented chords σ and

τ across a disc per Lemma 4.19, if there are no sink regions. There are four

cases depending on the relative positions of the end points of σ and τ and on

their orientations. In (1) σ and τ intersect 2n− 1 times for some n ≥ 1, in (2)

they intersect either 0 times or (2m− 1) + (2n− 1) times for some m,n ≥ 1, in

(3) they intersect 2n times for some n ≥ 0, and in (4) they do not intersect.
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path τ subdivides D into two subdiscs (ditto the path σ). Let T be the planar

graph (in fact, tree) that has

• vertices dual to every face of G (i.e, connected component of D ∖ G) that
the orientation of τ points into, and

• edges dual to all σ-edges.

Figure 22(left) shows an example—there is no loss of generality in taking σ to

be a diameter of the disc.

D

T

σ

τ

∗

στ

Figure 22: Left: our proof of Lemma 4.19, illustrated. Right: orientations per

Corollary 4.20.

Case (1) of Figure 21 concerns when the end points of σ and τ alternate

around ∂D. Cases (2)–(4) subdivide the eventuality where they do not alternate

to three mutually exclusive possibilities for the orientations of σ and τ where

they meet ∂D, namely, oriented towards each other, in the same direction, or

away from each other.

Depending on whether or not σ and τ intersect, there are either four or three

faces in G that have ∂D-edges in their boundaries. Call these boundary faces.

A face f of G either has all the σ-edges in its boundary oriented into or all out

of f , depending on which side of σ the face f is on. The same is true of the

τ -edges in ∂f . In case (1), let f be the unique boundary face that has all σ-

and τ -edges in ∂f oriented into f . In cases (3) and (4), let f be the unique

boundary face that has all τ -edges in ∂f oriented into f . Now, the vertex ∗
dual to f is a vertex of T . In cases (1) and (3), every other vertex of T that is

an even distance (in T ) from ∗ is dual to a face that is a sink region. (In the
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example of Figure 22 there are four such vertices, all a distance 2 from ∗. The

four faces that they are dual to are shown shaded.) In case (4) every vertex of

T that is an odd distance from ∗ is dual to a sink region. As our hypotheses

prohibit sink regions, T is restricted accordingly. Thus σ and τ cannot intersect

in case (4), and in cases, (1) and (3), if σ and τ intersect, they must do so as

shown in Figure 21, where n is the valence of ∗.
In the instance of case (2) if σ and τ do intersect, there are two boundary

faces f1 and f2 into which all σ- and τ -edges in their boundaries are inward-

oriented. Let ∗1 and ∗2 be their dual vertices. It follows that ∗1 and ∗2 are an

even distance apart in T and any there can be no other vertices in T that are

an even distance from either. Thus T is the tree shown in Figure 21(2), with m

and n being the valences of ∗1 and ∗2, and moreover, no other arrangement of

T along σ is possible.

Corollary 4.20. Suppose σ and τ are paths in a 2-disc D as per Definition 4.18,

but we prohibit source regions instead of sink regions. If the order and relative

orientations of σ and τ close to ∂D are as shown in Figure 22 (right), then σ

and τ do not intersect.

Proof. This is case (4) of Lemma 4.19, but with the orientations reversed.

Our final lemma is the observation which says, roughly, that a pair of oriented

paths through a disc that intersect transversely, can be “combined” to obtain a

new transversely oriented such path, so that the original paths both lie to one

side of the new path. This is illustrated in Figure 23, under the simplifying

assumption that the intersections between the paths are transverse. The lemma

allows subpaths as intersections, so it can be applied to (compound) tracks.

Lemma 4.21. Suppose for i = 1, 2, an injective piecewise-linear path σi in a

2-disc D is made up of finitely many straight-line segments, and that σi meets

∂D at exactly 2 points, specifically its endpoints. Suppose σ1 and σ2 have trans-

verse orientations. So, for i = 1, 2, there are subsets D+
i and D−

i of D, each

homeomorphic to a 2-disc, such that D = D+
i ∪ D−

i , and σi traverses the in-

tersection of D+
i and D−

i with σi oriented into D+
i and out of D−

i . Assume σ1
and σ2 intersect in the interior of D. We allow the intersection of σ1 and σ2 to

include (finitely many) straight line segments, provided their orientations agree

on the common segments.

Suppose there is a point p ∈ ∂D that is in D+
1 ∩D+

2 and is not on σ1 or σ2.

Let C+
0 be the maximal connected open subset of D that contains p and does not

intersect σ1 or σ2. Let C+ be the closure of C+
0 and C− be D ∖C+

0 . Then C+

and C− are homeomorphic to 2-discs. Furthermore,

1. C+ contains p,
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2. D−
1 ∪D−

2 ⊆ C−. In particular, σ1 and σ2 are in C−, and

3. an injective piecewise-linear path τ traverses C+ ∩ C−, connecting two

different points on ∂D. It is a concatenation of subpaths of σ1 and σ2, all

oriented into C+, and so has a well-defined orientation (into C+).

p

σ1

σ2

τ C+

Figure 23: Lemma 4.21, illustrated.

4.3 Tracks in distortion diagrams

In Section 4.1 we established constraints on reduced van Kampen diagrams over

our presentation P for G. Here, we will show that diagrams pertinent to the

distortion of H in G are further constrained. The rigidity we will prove here

and in Section 4.4 will allow us to calculate upper bounds on distortion in

Section 5.1.

Definition 4.22. (Distortion diagrams, sides) A distortion diagram ∆ is

a reduced van Kampen diagram for wχ−1 over P, where χ is a word on t, y1, y2
and w is a word on our generating set for G. Where no confusion should result,

we refer to the portions of the boundary circuit ∂∆ that are labelled by w and

by χ simply as w and χ. When an a- or b-track ρ connects two edges in ∂∆

those edges must both be in w, as there are no a- or b-letters in χ. So, as shown

in Figure 24, the track ρ subdivides ∆ into two subsets whose intersection is ρ.

The subset that contains χ is the χ-side of ρ, and the other subset is the w-side.

Lemma 4.23. (a- and b-tracks in distortion diagrams.) There exists

C > 0 satisfying the following. Suppose w0 is a word on the generators of G
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∆

ρ

χ

w

χ-side

w-side

Figure 24: An a- or b-track ρ in a distortion diagram

that equals in G a reduced word χ on t, y1, y2, and suppose ∆0 is a distortion

diagram for w0χ
−1. Assume that ∆0 is homeomorphic to a 2-disc. Then there

is a subdiagram ∆ of ∆0 that is a van Kampen diagram for wχ−1, where w is

a word of length at most C|w0| and the following properties are satisfied.

0. The portions of ∂∆ labelled by w and by χ are both injective paths, so that

∆ is a concatenation of paths and distortion diagrams ∆′
1, . . . ,∆

′
r, each

homeomorphic to a 2-disc and each demonstrating that some subword of

w equals some subword of χ (as shown on the right below).

∆0 ∆

∆′
1

∆′
2

∆′
3

w0

w

χ χ

1. No compound track in ∆ between a pair of edges in w is made up of a-

subtracks oriented towards w, b-subtracks oriented towards w, and t-tracks

(oriented either way). In particular, no t-corridor in ∆ connects two t-

letters in w and every a- or b-track that connects a pair of edges in ∂∆ is

oriented towards χ.

NoNo
a

t b t b
t a b a b=⇒

χ χ χ χ

w w w w

2. There are no y-edges in the w-side of any b-track β that connects two edges

in ∂∆.
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No y-edges

χ

w

3. Suppose a region R is a subset of the w-side of a b-track connecting two

points in w.

(a) ∂R cannot be comprised of a (non-trivial) subpath of the boundary

circuit ∂∆, a-subtracks, inward oriented b-subtracks, and t-subtracks.

(b) If ∂R is comprised of a-subtracks and inward-oriented b-subtracks,

then it satisfies the constraints 2b–2d of Lemma 4.3. In particular,

∂R cannot be a bigon comprised of an a1-subtrack and an inward

oriented b-subtrack.

No Almost no No

χ χ χ

w w w

a
t b t

b

b b b

b a
b

a a

aa

4. ∆ contains no badge and no button (Definitions 4.7 and 4.8).

No No

t t t t

b∗

a∗

b∗

a∗

5. ∆ has no a- or b-loops and no bigons comprised of an a-subtrack and an

outward oriented b-subtrack.

No No No

ab

a

b
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6. More generally, no region of ∆ has boundary made up of consistently

oriented (meaning all inward- or all outward-oriented) a-subtracks and

outward-oriented b-subtracks.

No

χ

w

b
a

a

a

a

bb

b

7. Suppose α is an a1-track and β is a b-track in ∆.

(a) If α has one endpoint on either side of β then α and β intersect

exactly once.

(b) If both endpoints of α are on the χ-side of β, then α and β do not

intersect.

(c) If both endpoints of α are on the w-side of β, then α and β intersect

exactly twice.

=⇒
(b)

=⇒
(a)

=⇒
(c)

=⇒
(b)

8. There can be no b0-track β0 ̸= β in the w-side of a b-track β.

No
b0

b

χ

w
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Proof. We will sever parts of ∆0 to obtain subdiagrams ∆1, then ∆2, and then

∆3, that establish, respectively, (1), then (2), and then (3). Then we will sever

parts of ∆3 to get ∆ such that the portion of ∂∆ labelled by w is an injective

path, and we will argue that ∆ satisfies all of (0)–(3). Then we will verify that

∆ also satisfies (4)–(8).

For (1), define a bad path in ∆0 to be a compound track connecting a

pair of edges in w0 comprised of a-and b-subtracks oriented towards w0, and

t-tracks (oriented either way). Let ∆1 be the maximal subdiagram of ∆0 that

contains χ and intersects no bad path. Let w1 be the word such that ∆1 is a

van Kampen diagram for w1χ
−1. If bad paths σ1 and σ2 intersect, then we may

apply Lemma 4.21 with p a point on χ and σ1 and σ2 oriented towards χ, to

obtain a new path τ which is a concatenation of subpaths of σ1 and σ2 (and

therefore is again a bad path), such that both σ1 and σ2 are contained in the

w0-side of τ . Therefore there is a collection of bad paths τ1, . . . , τm that are

disjoint and are such that ∆1 is the result of removing from ∆0 the subdiagrams

bounded by the corridors of 2-cells through which τi passes and by subwords of

w0. Now Lemma 4.16(1) tells us that there exists a constant C1 > 0 such that

|w1| ≤ C1|w0|.

For (2), we first establish that there exist disjoint b-tracks β1, . . . , βk, each a

path between two points in ∂∆1, such that every b-track between two points in

∂∆1 is on the w1-side of βi for some i. To see this, note that following (1), all

b-tracks between pairs of points in ∂∆1 are oriented towards χ, and if two such

b-tracks σ1 and σ2 intersect, then applying Lemma 4.21 with p a point on χ,

we obtain a path τ connecting a pair of points on ∂∆1, such that both σ1 and

σ2 are on the w1 side of τ , and τ is a concatenation of subtracks of σ1 and σ2,

each oriented into the component of ∆1 \ τ containing χ. Since a concatenation

of consistently oriented b-subtracks is again a b-subtrack, τ is again a b-track.

The existence of β1, . . . , βk as above follows.

Thus, in constructing ∆2 by severing parts of ∆1, it suffices to guarantee

that (2) holds for β = βi for each 1 ≤ i ≤ k. Our argument in this case is

illustrated by Figure 25.

By Lemma 4.4(1), there is no y-edge in any region Ri enclosed by a subpath

of β and a t-subtrack on the w1-side of β (such as regions R1, R2, and R3 in

Figure 25), as ∂Ri has no edges in this case. Define ∆′
β to be the maximal

subdiagram of ∆1 that is contained in the w1-side of β and intersects no t-

subtracks that start and end on β. Then ∆′
β is a van Kampen diagram for

uv−1, where u is a subword of w1 and v is the word along the remainder of

∂∆′
β , as shown in Figure 25.

We will apply Lemma 4.15 to ∆′
β . Let us check the hypotheses. To see that
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there are no y-letters in v, observe that v is comprised of subpaths that run

along the corridor associated to β, on the side that β is oriented away from, and

subpaths that run along the sides of t-corridors. The defining relations of G (see

Figure 5) imply that the first type of subpath cannot have any y-edges, and if

there were a y-edge in a subpath of the second type, then then there would be

one on the other side of the t-corridor also, and so in one of the regions Ri, a

contradiction.

Next, we observe that all t-corridors in ∆′
β connect a t-edge in u to a t-edge

in v. This is because there are no t-loops by Lemma 4.2; were there a t-track

connecting a pair of edges in u, it would be a part (or whole) of a bad path in

∆0, and would have been cut off in the construction of ∆1; and no t-corridor

joins pair of t-edges in v by construction.

Lemma 4.15 now implies that there is a constant C2 > 0 (depending only on

P) and a word v′ labeling a path in ∆
′(1)
β with the same endpoints as u and v

with |v′| ≤ C2|u| such that the subdiagram enclosed by v and v′ has no y-edges.

We now cut ∆′
β along v′, discarding the subdiagram bounded by u and v′. As

β1, . . . , βk are disjoint and non-nested, we do this independently for each β = βi,

resulting in a subdiagram ∆2 of ∆1 for a relation w2χ
−1, where w2 is obtained

from w1 by replacing a disjoint collection of subwords with words whose lengths

are greater by at most a factor of C2. It follows that |w2| ≤ C2|w1|, and by

construction, there are no y-edges on the w2 side of βi for any i. In particular,

(2) holds for ∆2.

Now suppose ∆2 has a bad path σ—i.e., suppose that (1) fails for ∆2. Since

∆1 had none, σ must have at least one end on along a path labelled by one of

the v′, and this path is on the w side of some β which is oriented towards χ. If

σ intersects β at least twice, then, since β is oriented towards χ, a subtrack of β

and a subpath of σ together bound a region R that is precluded by Lemma 4.4

(see Figure 13). If σ crosses β exactly once, then a subpath of β, together with

the part of σ on the χ side of β form a bad path (in the sense of (1)) in ∆2,

which is not possible. Thus any bad path σ in ∆2 lies on the w2 side of β. Such

paths will be removed next, in the construction of ∆3.

For (3a), define a region R to be bad if it is of the form (3a) excludes:

that is, R is a subset of the w2-side of a b-track β connecting two edges in w

and ∂R is comprised of a non-trivial subpath of the boundary circuit ∂∆2 and

a compound track consisting of a-subtracks, inward oriented b-subtracks, and

t-subtracks. We may assume that β is one of the tracks β1, . . . , βk identified

above, which persist in ∆2. Here are two key observations:

i. If two bad regions R1 and R2 have intersecting interiors, they are on the

w2-side of a common b-track, say βi. Then, applying Lemma 4.21 to the
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χ

β

R1 R2 R3

u

v

∆2
w2

∆′
β

Figure 25: Subdiagrams and t-tracks per our proof of Lemma 4.23(2)

compound tracks in ∂R1 and ∂R2, we get a new bad region R3 containing

R1 ∪R2 that is again on the w2-side of βi.

ii. Suppose R is a bad region on the w-side of a b-track β. Then the minimal

subdiagram D of ∆2 containing R contains no y-edges. To see this, note

that no subpath of β can contribute to ∂R, as β is oriented towards χ,

and so no 2-cell through which β passes can be in D. Thus D is a subset

of the w-side of β and has no y-edges by (2).

Define ∆3 to be the maximal subdiagram of ∆2 that includes χ and does not

intersect any bad region. On account of (i), ∆3 is obtained from ∆2 by severing

a finitely many subdiagrams D per Lemma 4.16 by, in the notation of that

lemma, cutting along the paths labelled u1. Moreover, any two of these D have

disjoint interiors and the associated words u0 label paths in ∂∆2 that are non-

overlapping (but can share endpoints). By (ii), hypothesis (2) of Lemma 4.16

holds and we can apply that lemma to each of these D. Let w3 be the word such

that ∆3 is a van Kampen diagram for w3χ
−1. The inequality in Lemma 4.16

then tells us that there exists a constant C3 > 0 such that |w3| ≤ C3|w2|. Finally,
∆3 satisfies conditions (1)–(3): as shown above, the only paths that could fail

(1) were removed in the construction of ∆3; (2) is immediately inherited from

∆2; (3a) is satisfied by construction; and, in light of (2), Lemma 4.3 implies

(3b).

If the portion of ∂∆3 labelled by w3 is not an injective path, then some

subword labels a subdiagram which is only attached to the rest of ∆3 at a single

vertex. We sever all subdiagrams that so arise, so as to produce a van Kampen

diagram ∆ for a word wχ−1, with |w| ≤ |w3|, such that conditions (1)–(3) hold,

and the portion of ∂∆ labelled by w is an injective path. By hypothesis, χ
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is a reduced word on t, y1, y2, which freely generate a free subgroup of G by

Corollary 2.13, so χ also labels an injective path in ∂∆. So ∆ is a concatenation

of paths and distortion diagrams ∆′, . . . ,∆′
r, each homeomorphic to a 2-disc and

each demonstrating that some subword of w equals some subword of χ. This

establishes (0). Further, if we let C = C1C2C3C3, then our inequalities combine

to give |w| ≤ C|w0|, as required.
For the remainder of the proof, we assume, for convenience, that ∆ is home-

omorphic to a 2-disc. The proofs of (4)–(8) in the general case follow easily. (In

cases (a) and (c) of (7) the hypothesis forces α and β to be in the same compo-

nent. In case (b), the result is automatic if they are in different components.)

(4). Suppose there is a badge or button B in ∆. Per Definition 2.6, let Gb be

the graph whose edges are the duals of the b-edges in ∆. Let C be the connected

component of Gb that includes the b-track through B. Let i be minimal such

that C includes the dual of a bi-edge. A b-track that enters a 2-cell across a

bi-edge can exit across another bi-edge unless that 2-cell is an r1,i−1-cell. So the

minimality of i ensures that C contains a bi-track β. By Corollary 4.10(3), β is

not a loop, and so it connects two bi-edges in w, and is oriented towards χ by

(1). So no b-tracks branch off β on its χ-side and, in particular, the b-tracks

through B are on its w-side. (They can have subpaths in common with β.) By

(2), there are no y-edges on the w-side of β. This ensures that B is not a badge,

as if it were, it would have an r4,i-cell contributing a y-edge to the w-side of β.

Any a1-track intersecting the w-side of β intersects β exactly once—it is not

a loop on the w-side of β (by (2) and Corollary 4.10(2)), it is dual to at most

one edge in ∂∆ (by (3a)), and it intersects β at most once, for if it formed a

bigon with β, then Lemma 4.9(2) would apply to an innermost such instance

α, and one of the intersections of α and β would have to occur in an r1,i−1-cell,

contradicting the minimality of i.

Let α be the a1-track through B, which we now know to be a button. Fig-

ure 26 (top-left and top-right) shows the two possible placements of B along α,

once we assume, without loss of generality, that α is oriented towards the left

(in the sense of the figure). Let A and B be the points shown (in either case).

Let α′ be the first a1-track one meets on following β to the right (in the sense

of the figure) from its intersection with α. (If there is no such α′ a simpler

version, which we omit, of the following analysis will apply.) Then Gb can have

no junction in the (closed) region bounded by α (on the left), α′ (on the right),

β (below), and a portion of ∂∆ (above), as this region has no a1-tracks. Thus

there are three possible continuations for the b-track at A through this region:

(i) it continues to α′ or to ∂∆ (as shown lower left in Figure 26); (ii) it returns

to α above the button (as shown lower middle); and (iii) it returns to α below

the button (as shown lower right). In case (iii), the b-track at B must return to
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Figure 26: Cases in our proof of Lemma 4.23(4)

α below the button also (as otherwise there would be a junction). In all cases

(i)–(iii) there is a region R (shown shaded in the figure) with boundary made

up of an inward-oriented b-subtrack, a1-subtracks, and (in case (i)) a portion of

the w-part of ∂∆, contrary to (3) of this lemma.

(5). In light of (4), Lemma 4.9(1) and Corollary 4.10(3) preclude bigons

comprised of an a-subtrack and an outward oriented b-subtrack and b-loops

respectively. Corollary 4.10(1) precludes inward oriented a-loops. Suppose, for

a contradiction, that there exists a non-trivial a-loop α. Then the region R

enclosed by α cannot contain a b-subtrack, as such a subtrack would give rise

to a teardrop, a b-loop, or a bigon comprised of an outward oriented b-subtrack

and an a-subtrack, all of which have been ruled out. It follows that the minimal

subdiagram containing R contains only cells of type r4,∗ (as any other cells with

a-letters would introduce b-subtracks), which contradicts Lemma 4.6(1).

(6). Suppose, for a contradiction, that R is a region of ∆ whose boundary

is comprised of a-subtracks and outward-oriented b-subtracks. We may assume

that no a- or b-track intersects the interior of R, because such a track would

subdivide R into two regions, at least one of which would satisfy the hypotheses

of (6).

By (5), ∂R cannot be an a- or b-loop or a bigon comprised of an a-track and

an outward-oriented b-track. Any two adjacent b-subtracks in the circuit ∂R are

together a single b-subtrack. As the a-subtracks in ∂R are consistently oriented,
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the same is true for a-subtracks. So, ∂R is a concatenation of non-trivial paths

α1, β1, . . . , αm, βm where m ≥ 2 and each αi is a subtrack of some a-track αi,

each βi is a subtrack of some b-track βi and the βi are all oriented out of R.

As β1 is oriented out of R and its continuation β1 is oriented toward χ

(by (1)), R is in the w-side of β1. Now, because β2 is also oriented toward

χ, and because the interior of R has no b-subtracks, β2 must merge with β1
either to the left or right of R, as shown in Figure 27. Then some subtrack of β2
bounds a region R′ either with α2 (per Figure 27, left) or with the concatenation

α3β3 · · ·αmβmα1 (per Figure 27, right). In the latter case, the extension α1 of

α1 cannot enter R (as R contains no a-subtracks) so must meet the part of

β2 in ∂R′ (after possibly passing through some other αi’s for 3 ≤ i ≤ m). In

either case we get a bigon B bounded by an a-subtrack and an outward-oriented

b-subtrack, contrary to (5).

χ χ

R RR′ = B

B

R′

β1

β2

βm

β1

β2

βm

α1

α2

α3

αm

α1

α2

α3

αm

Figure 27: Illustrating our proof of Lemma 4.23(6)

(7). We will use Lemma 4.19 with {τ, σ} = {α, β}. Lemma 4.4(2) tells

us that there is no region in ∆ that is bounded by inward-oriented a-and b-

subtracks, which establishes the no-sink-regions hypothesis of Lemma 4.19.

The case (7a) corresponds to case (1) of Lemma 4.19 with τ = α and σ =

β. By (1) of the present lemma, α and β are oriented towards χ. So (7b)

corresponds to either case (2) or case (3) of Lemma 4.19 with τ = α and σ = β,

and (7c) concerns case (3) with τ = β and σ = α. With just one exception, (5)

of the present lemma (specifically the part concerning bigons) rules out all the

intersection patterns catalogued in Lemma 4.19 apart from those listed in the

conclusion of (7). That one exception occurs in (7c), where we need to further

exclude the possibility that α and β do not cross, which we do by invoking (3)

of this lemma.
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(8). Suppose there is a b0-track β0 in the w-side of a b-track β. If C is a

2-cell dual to β0, then C has a y-edge, so cannot be on the w-side of β by (2).

Thus C is dual to β as well, and is an r∗,0-cell. Then β agrees with β0 on C.

(This is clear if ∗ is 2 or 3. If C has type r4,1, it follows from the fact that β

and β0 are oriented towards χ by (1).) Consequently, β0 = β.

4.4 (a2, bq)-tracks

A key idea leading to the “p/q” in the subgroup distortion function of Theo-

rem A is that the generation of bp letters within distortion diagrams is offset

by generation of letters bq that must “appear” in w either as bq-letters or in

the guise of a2-letters. The reason for this is that bq letters feature in (a2, bq)-

tracks, which are the subject of this section and will be crucial to our proof of

Lemma 5.12.

Definition 4.24. ((a2, bq)-tracks) An (a2, bq)-track in a van Kampen diagram

∆ over our presentation P for G is a maximal path that is a concatenation of

edges dual to consistently oriented a2-edges and bq-edges in ∆, such that an

(a2, bq)-track entering a 2-cell of the form shown rightmost in Figure 28 across

an a2-edge leaves across the consistently oriented bq-edge. The two (a2, bq)-

tracks in the 2-cell shown rightmost in Figure 28 touch, but we do not consider

them to intersect. Examples are shown in Figures 1 and 3.

Lemma 4.25. (a2, bq)-tracks in a van Kampen diagram ∆ have the following

properties:

1. (a2, bq)-tracks inherit orientations from the orientations of their constituent

subtracks.

2. Every a2-edge and bq-edge in ∆ is dual to an edge in exactly one (a2, bq)-

track.

3. An (a2, bq)-track cannot intersect itself or another (a2, bq)-track.

4. The set of a2- and bq-edges in ∂∆ are paired off according to whether there

is an (a2, bq)-track whose first and last edges are dual to them.

5. If ∆ is a distortion diagram as constructed in Lemma 4.23, then an

(a2, bq)-track in ∆ cannot be a loop.

Proof. (1) holds because constituent subtracks are consistently oriented edges

by construction.

With the sole exception of r2,q (shown rightmost in Figure 28), all our defin-

ing relators contain either none of the letters a2, a
−1
2 , bq, and b−1

q , or contain
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a1 a2

a1

bq−1

bq−1

bq
bq

bq

a2

a2

Figure 28: How (a2, bq)-tracks progress through r1,q−1- and r2,q-cells

exactly one of a2 and bq, and exactly one of a−1
2 and b−1

q . So (2)–(4) follow.

For (5), suppose there is a (a2, bq)-loop in a distortion diagram ∆. As the

orientations of its constituent subtracks are consistent, it is either inward- or

outward-oriented. The former is impossible by Lemma 4.4(2) and the latter by

Lemma 4.23(6).

Given ∆ as per Lemma 4.23, its b0-tracks β1, . . . , βm must be arranged con-

secutively around ∂∆ as per Figure 29 (since they cannot nest by Lemma 4.23(8)).

In short, our next lemma states that the intersections of an (a2, bq)-track with

the b0-tracks in ∆ progress in order around the diagram. We will use it in our

proof of Proposition 5.1 at the end of Section 5.1.

Lemma 4.26. Suppose ∆ is a distortion diagram for wχ−1 as per Lemma 4.23.

Let Q0 and Pm+1 be the initial and terminal vertices of the w portion of ∂∆.

For distinct points P and Q on w, write P < Q when one reaches P first when

following w from Q0 to Pm+1. Suppose, as shown in Figure 29, P1 < Q1 <

· · · < Pm < Qm are 2m successive points on the w-portion of ∂∆ and, for

i = 1, . . . ,m, βi is a b0-track from Pi to Qi oriented towards χ. Let R be the

maximal region of ∆ that is bounded by β1, . . . , βm and the intervening subpaths

of ∂∆.

Suppose τ is an (a2, bq)-track in ∆ starting at some P and ending at some

Q in ∂∆, with P < Q. Let Σ be the set of points where τ meets ∂R. The order

in which τ visits the points of Σ as it progresses from P to Q is the same as

the order in which they occur on the boundary circuit ∂R starting from Q0 and

following it around to Pm+1.

Proof. As its constituent a2- and bq-subtracks are, by construction, consistently

oriented, τ is a compound track which is oriented either towards or away from

χ. The latter eventuality is precluded by Lemma 4.23(1).

The lemma will be proved by applying either Lemma 4.19 or Corollary 4.20

to pairs consisting of τ (or a subpath thereof) and βl, for each l.
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χ

w

τ

R

P

Q

β1

βi

βi+1

βj

βj+1

βm

P1

Pi

Pi+1

Pj

Pj+1

Pm

Pm+1Q0

Q1

Qi

Qi+1

Qj

Qj+1

Qm

Figure 29: Illustrating Lemma 4.26

Let i, j ∈ {0, . . . ,m+ 1} be such that Qi−1 < P < Qi and Pj < Q < Pj+1.

By Lemma 4.23(6), for all ℓ, there is no source-region bounded by subtracks of

τ and βℓ. If ℓ < i or ℓ > j, then the orientations of βℓ and τ near ∂∆ are as

shown in Figure 22(right), so βℓ and τ cannot intersect by Corollary 4.20.

Consider traveling along τ from P to Q. If τ intersects βk for some k, then

τ cannot intersect any βℓ with ℓ < k. This is because were there such an ℓ,

there would be a subpath τ̂ of τ that connects a pair of points on βk ∪ {Q}
and intersects βℓ. However, in the disc obtained from ∆ by excising the w-side

of βk, the orientations on τ̂ and βℓ are as shown in Figure 22(right), so this

intersection is contrary to Corollary 4.20.

So τ intersects none of β1, . . . , βi−1, βj+1, . . . , βm and, proceeding from P ,

it intersects βi, βi+1, . . . , βj in order (intersecting each some number of times,

possibly zero). If Pi < P < Qi, then how τ intersects βi is described by case (1)

of Lemma 4.19. The other possibility is that P < Pi, which is handled by case

(3). Case (3) likewise describes how τ intersects βi+1, . . . , βj−1, and case (1)

or (3) how τ intersects βj . These observations combine to prove the result.

5 The upper bound

5.1 Reduction to a free-by-cyclic quotient

Modulo calculations we will postpone to Section 5.2, we will prove here:

Proposition 5.1. For χ, w and ∆ as per Lemma 4.23, there exists a constant
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K > 1, depending only on our presentation P for G, such that

|χ| ≤ K |w|p/q . (18)

As a corollary, we obtain the desired upper bound on distortion:

Corollary 5.2. DistGH(n) ⪯ exp(np/q).

Proof of Corollary 5.2, assuming Proposition 5.1. Suppose n ≥ 0. Let χ

be a reduced word on the generators of H which realizes the distortion function

of H, i.e.:

DistGH(n) = |χ|. (19)

More precisely, χ is a maximal length reduced word on the generators of H that

equals, in G, some word w0 of length at most n. We can assume w0 has no

subwords representing the identity in G.

Let ∆0 be a reduced van Kampen diagram for w0χ
−1. If ∆0 is homeomorphic

to a 2-disc, then Lemma 4.23 and hence Proposition 5.1 apply, yielding w such

that |χ| ≤ K |w|p/q and |w| ≤ C|w0|. This, combined with (19) and |w0| ≤ n

gives the result.

Now suppose that ∆0 is not a 2-disc. Our choice of w0 guarantees that

no two vertices along the part of ∂∆0 labelled w0 are identified. The same

holds for χ, as it is reduced. It follows that w0 and χ are concatenations of

subwords w1, w2, . . . , wr and χ1, χ2, . . . , χr respectively, such that for each i,

either wi = χi and the paths with these labels along ∂∆0 are identified, or there

is a (reduced) subdiagram ∆i of ∆0 homeomorphic to a 2-disc whose boundary

reads wiχ
−1
i . In either case, we have χi ≤ K |wi|p/q , and the bound we require

follows from the superadditivity of the function n 7→ exp(np/q).

Let χ, w, and ∆ be as per Lemma 4.23. To prove Proposition 5.1, we will

decompose ∆ into the subdiagrams we now define.

Definition 5.3. (Decomposing a distortion diagram into b-blocks and

an a-block.) Given a b-track β in ∆, define ∆β to be the minimal subdiagram

of ∆ containing the w-side of β (see Definition 4.22). So ∆β is comprised of all

the 2-cells of ∆ that either have β passing through them or are in the w-side of

β. Say that β is outermost when there is no b-track β′ such that ∆β′ properly

contains ∆β. The ∆β such that β is outermost are the b-blocks of ∆.

Let B1, . . . , Br be the b-blocks of ∆ as per Figure 30 (when r = 3). Define

the a-block A of ∆ to be the maximal subdiagram of ∆ that contains χ and

intersects no b-tracks. So A is obtained from ∆ by severing B1, . . . , Br.

Corollary 5.4. For A and B1, . . . , Br as defined above—
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1. A is a subdiagram of ∆ whose 2-cells are of type r4,∗,∗ and r4,∗ (per Fig-

ure 5).

2. B1, . . . , Br are subdiagrams of ∆ whose 2-cells are of type r1,∗, r2,∗, r3,∗,

and r3,∗,∗.

3. For all i, there exists ji such that the outermost b-track βi of Bi is a bji-

track. It is oriented towards χ and the cells of ∆ that it traverses comprise

a bji-corridor in Bi whose top boundary (the boundary the bji-edges are

oriented towards) follows A∩Bi. If ji = 0, then this is the only b0-corridor

in Bi.

Proof. Lemma 4.23(2) implies that the b-blocks contain no r4,∗- or r4,∗,∗-cells.

Statements (1) and (2) are then consequences of the definitions of the a- and

b-blocks. Lemma 4.23(1) tells us that every b-track is oriented towards χ. Part

(3) then follows, except we also invoke Lemma 4.23(8) for its final claim.

χ

w

bi1

bi1

bi2
bi2

bi3

bi3

W1

W2

W3

α
β

β1

β2

β3

A

B1

B2

B3

w1

w2

w3

v0

v1

v2

v3

Figure 30: The a-block and b-blocks in ∆. The a1-track α and b-track β illustrate

a case in the proof of Lemma 5.6.

Express w as the concatenation of words

w = v0w1v1w2 · · ·wrvr

where, for all i, wi is the word along ∂Bi ∩ ∂∆ as shown in Figure 30 and the

vi are the (possibly empty) intervening subwords. Per Corollary 5.4(3), each wi
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has first letter b−1
ji

and final letter bji . For all i, let Wi be the word along the

other side of Bi, so that Bi is a van Kampen diagram for wiW
−1
i . Let

W = v0W1v1W2 · · ·Wrvr. (20)

So A is a van Kampen diagram for Wχ−1.

In the following lemmas we analyze the structure of a b-block Bi in ∆. When

βi is a b0-track, this will lead (in Lemma 5.13) to an upper bound on the length

of Wi.

Lemma 5.5. Let Bi be a b-block of ∆, and let wi and Wi be as above. Then

every a1-track in Bi runs from an a±1
1 in wi to an a±1

1 in Wi.

Proof. Let α be an a1-track of ∆ intersecting Bi. It cannot be a loop by

Lemma 4.23(5). It must have at least one endpoint in the w-side of βi by

Lemma 4.23(7a). If it has one endpoint on each side of βi, then it intersects βi
exactly once by Lemma 4.23(7b), and so corresponds to a single a1-track of Bi

running from wi to Wi. If it has both endpoints in the w-side of βi, then, by

Lemma 4.23(7c), it intersects βi exactly twice, giving rise to two a1-tracks in Bi

both running from wi to Wi.

Lemma 5.6. Suppose βi is a b0-track. Let C be an a1-corridor of Bi. The

bottom boundary of C is labelled (in the direction from wi to Wi) by a word λb0,

where λ is a positive word on b1, . . . , bp.

Proof. By Lemma 5.5, C has one end in wi and the other in Wi. By Corol-

lary 5.4(2),(3), the cells of C are of type r1,∗ (per Figure 5), and only the cell

where C meets Wi has an edge labelled b0, so that the bottom boundary of C
(in the direction from wi to Wi) is labelled by a word λb0 where λ is a word on

b±1
1 , . . . , b±1

p . We will argue that λ is a positive word. Suppose, for a contradic-

tion, that λ includes a letter b−1
j for some j. Let β be any b-track that has an

edge dual to the edge of ∂C labelled by that b−1
j . Let α be the a1-track dual to

C. By Lemma 4.23(1), β is oriented towards χ, and so β intersects α at least

one more time. So α and β form a bigon. This leads to a contradiction: that

bigon violates (3b) or (5) of Lemma 4.23, depending on whether β is oriented

into or out of the bigon, respectively. (The (3b) case is illustrated in Figure 30.)

We conclude that λ is a positive word on b1, . . . , bp.

Our next lemma is illustrated by Figure 31.

Lemma 5.7. Given Bi, C, and λ as in Lemma 5.6, the side of C labelled by

λb0 divides Bi into two subdiagrams. Of these two subdiagrams, let Λ0 be that

which does not contain C. Its boundary word is µ̃b0ν(λb0)
−1, where ν and µ̃−1
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are, respectively, some prefix of (Wi or W−1
i ) and of (wi or w−1

i ). (Which of

these pairs it is depends on the orientation of C. Figure 31 shows the case where

they are prefixes of Wi and wi.) Let Λ1 be the maximal subdiagram of Λ0 that

contains portions of ∂Λ0 coming from λb0 and Ŵi, but intersects no b-track in

Λ1 that connects a pair of edges in the µ̃ portion of ∂Λ0. (See Figure 5.7.) Let

µ̂ be the word such that µ̂b0ν(λb0)
−1 is the word read around ∂Λ1. Then:

1. The a1-tracks in Λ1 all arise from removing initial subtracks from a1-tracks

in Λ0. In particular, each runs from an a∓1
1 in µ̂ to an a±1

1 in ν, and the

number of a±1
1 -letters in µ̂ is at most the number in µ̃, and therefore at

most |wi|.

2. In µ̂ there are no letters b±1
0 , b−1

1 , . . . , b−1
p and

3. There are at most |µ̃| letters b1, . . . , bp in µ̂.

4. The word read along the bottom boundary (in the direction from µ̂ to ν)

of a corridor dual to an a1-track in Λ1 is a positive word on b0, b1, . . . , bp.

Moreover, it has only one b0, namely its final letter.

ν

µ̃

µ̂

λ
b0

b∗

b∗

b∗

b∗ b∗
b∗

b0

b0

β̂1

β̂2

β̂3

Λ0

Λ1

C

βi

a1

a1

Bi

Figure 31: Illustrating our proof of Lemma 5.7

Proof. There are no letters b±1
0 in µ̃ by construction. If there is a b−1

r in µ̃ for

some 1 ≤ r ≤ p, then it is connected by a b-track to some letter br labeling an
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edge in ∂Λ0—in fact, that br must be in µ̃, because there are no b−1
r letters in λb0

(by Lemma 5.6) or in ν (such are the 2-cells in b0-corridors). By Lemma 4.23(1),

all such b-tracks are oriented towards χ in ∆, and so towards ν in Λ0. So there

are such b-tracks β̂1, . . . , β̂k (in Figure 31 they are shown with k = 3) in Λ0 that

we might call outermost in that

• the w-sides of any two of them are disjoint,

• every such b-track is in the w-side of one of β̂1, . . . , β̂k.

Then Λ1 is obtained from Λ0 by cutting along the top boundaries of the corridors

Cβ̂1
, . . . , Cβ̂k

dual to β̂1, . . . , β̂k.

Then (1) follows from Lemma 5.5 and the observation that, by Lemma 4.23(5),

no a1-track can cross one of the β̂j twice.

For (2) and (3), we examine the b-letters in µ̂. Those that arise as letters

in µ̃ include no b±1
0 , b−1

1 , . . . , b−1
p by construction. Each of the other b±1

l in µ̂

arises on the top boundary of one of the Cβ̂j
at some 2-cell of type r1,l (per

Figure 5) where some other b-track branches off β̂j . There are no b0-edges in Λ1

except in the b0-corridor abutting ν—for otherwise there would be an additional

b0-corridor and therefore a b±1
0 in µ̃ or λ, which is not so. So 1 ≤ l ≤ p − 1.

In fact, the letter cannot be a b−1
l because then there would be a b-track that

initially follows β̂j until branching off into Λ1 and eventually terminates back on

µ̃ (not on λ because λ is a positive word), so as to contradict β̂1, . . . , β̂k being

outermost. This proves (2). Then, for (3), observe that each 2-cell of type r1,∗
in Cβ̂j

has a different a1-track passing through it which, in light of (1), connects

to an a1-edge in µ̃ between the between the endpoints of β̂j .

Finally, Lemma 5.6 implies (4).

We will use the conclusions of Lemma 5.7 to further analyze λ via calcula-

tions in

Q = ⟨a1, b0, . . . , bp | a−1
1 bia1 = φ(bi) ∀i ⟩, φ(bj) =

{
bj+1bj if j < p

bj if j = p,
(21)

which is a free-by-cyclic quotient of G via the map G →→ Q killing a2, t, x1, x2,

y1, and y2.

Our next simplifying step, in Lemma 5.10, will dispense with the positive

a1-letters from µ̂. But first, we need two technical results concerning Q:

Lemma 5.8. Suppose u and v are positive words on b0, . . . , bp. Take φ−1(u)

to denote the reduced word on b0, . . . , bp representing that element of Q. Then

φ−1(u)v is reduced—that is, there is no cancellation between φ−1(u) and v. In

particular, if w is a positive word on b0, . . . , bp which equals φ−1(u)v in Q, then

v is a suffix of w.
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Proof. We downwards induct on the minimal index i such that u includes a

letter bi. If i = p, the result holds because u is a power of bp and φ−1(u) = u.

For the induction step, write u as the concatenation u0u1, where u0 ends in bi,

and u1 contains no bi.

It can be checked that for j = 0, . . . , p,

φ−1(bj) =


b−1
j+1 · · · b

−1
p−3b

−1
p−1bp · · · bj+2bj when p− j is even,

b−1
j+1 · · · b

−1
p−2b

−1
p bp−1 · · · bj+2bj when when p− j is odd,

which is a reduced word on bj , b
±1
j+1, . . . , b

±1
p whose one and only bj is its final

letter.

So φ−1(u0) has one i-letter, its last, and φ−1(u1) has no bi letters. Thus

φ−1(u) = φ−1(u0)φ
−1(u1) as words—there is no cancellation between the two

factors. By the induction hypothesis, there is no cancellation between φ−1(u1)

and v, so the result follows.

Lemma 5.9. If u and φ−1(u) are both positive words on b0, . . . , bp, then

|φ−1(u)| ≤ |u|.

Proof. For 0 ≤ j ≤ p, let nj and mj be the number of bj-letters in u and

φ−1(u), respectively. Then in view of the form of φ−1 given in the proof of

Lemma 5.8, we have

0 ≤ m0 = n0, and so

0 ≤ m1 = n1 − n0 ≤ n1, and so

0 ≤ m2 = n2 − n1 + n0 ≤ n2, and so on,

from which the result follows.

Lemma 5.10. Given λ as in Lemmas 5.6 and 5.7, there exists a word µ on

a−1
1 , b1, . . . , bp (so containing no a1, b

−1
1 , . . . , b−1

p ) such that |µ| ≤ 2|wi|, and an

integer 0 ≤ l ≤ |wi| such that in Q,

µb0a
l
1 = λb0.

Proof. Suppose that λλλ = (λ0, . . . , λl), u = (u0, . . . , ul), and ϵϵϵ = (ϵ1, . . . , ϵl),

where each λj is a positive word on b1, . . . , bp, each uj is a prefix of λj , each

ϵi = ±1, and u0 = λ0. Say that σ−1b0τ = λb0 in Q via (λλλ,u, ϵϵϵ) when

σ = u−1
0 aϵ11 u

−1
1 aϵ21 · · ·u−1

l−1a
ϵl
1 u

−1
l

τ = aϵ11 a
ϵ2
1 · · · aϵl1

λ = λl
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as words, and for all 0 ≤ j ≤ l,

λjb0 = (uja
−ϵj
1 uj−1 · · · a−ϵ2

1 u1a
−ϵ1
1 u0) b0 (aϵ11 a

ϵ2
1 · · · aϵj1 ) (22)

in Q, as illustrated in Figure 32.

τ

σ

u0

u1

u2

u3

u4

u5

b0 b0 b0 b0 b0 b0

λ0

λ1

λ2

λ3

λ4
λ5

aϵ1
1 aϵ2

1 aϵ3
1 aϵ4

1 aϵ5
1

aϵ1
1

aϵ2
1

aϵ3
1

aϵ4
1

aϵ5
1

ũ0

u1

u2

u3

u4

u5

b0b0 b0 b0 b0

λ1

λ2

λ3

λ4
λ5

aϵ2
1 aϵ3

1 aϵ4
1 aϵ5

1

aϵ2
1

aϵ3
1

aϵ4
1

aϵ5
1

b0 b0 b0 b0

u0

u1

u2

φ−1(u3)

u4

u5

λ0

λ1

λ4
λ5

aϵ1
1 aϵ2

1 aϵ5
1

aϵ1
1

aϵ2
1

aϵ5
1

Figure 32: Illustrating our proof of Lemma 5.10 (with l = 5). Left: a diagram

for σ−1b0τ = λb0 in Q via (λλλ,u, ϵϵϵ). Centre: the result of applying move I. Right:

the result of applying move II (with j = 4).

Let λ0, . . . , λl−1 be the positive words on b1, . . . , bp such that λ0b0, . . . , λl−1b0
are the words along the bottom boundaries (read in the direction from µ̂ to ν) of

the a1-corridors in Λ1. Let λl = λ. Per Lemma 5.7, µ̂b0ν = λb0 in G and, given

how the a1-corridors in Λ1 pair off the a±1
1 in ν with the a±1

1 in µ̂, if we define

σ and τ to be µ̂−1 and ν with all letters a2, t, x1, x2, y1, and y2 deleted, then

they have the forms displayed above. Accordingly, they define u and ϵϵϵ so that

σ−1b0τ = λb0 in Q via (λλλ,u, ϵϵϵ). Moreover, l ≤ |wi| and |u| :=
∑l

j=0 |ui| ≤ 2|wi|,
the last inequality coming from summing the bounds from Lemma 5.7 (1) and

(3).

We will simplify (λλλ,u, ϵϵϵ) in two ways:

I. Suppose that ϵ1 = −1. Then (22) in the case j = 1 gives that in Q,

λ1b0 = u1a1u0 b0 a
−1
1 = u1φ

−1(u0b0).

Now, u1 is a prefix of λ1 and so φ−1(u0b0) is a suffix of λ1b0, and so is a pos-

itive word. Therefore Lemma 5.9 applies and tells us that |φ−1(u0b0)| ≤
|u0b0|. Define ũ0 to be the word obtained from φ−1(u0b0) by removing
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its final letter b0. Then |ũ0| ≤ |u0| and λ1 = u1ũ0. Define λ̂λλ to be λλλ

with λ0 discarded, define û to be u with u0 discarded and u1 replaced by

u1ũ0, and define ϵ̂ϵϵ to be ϵϵϵ with ϵ1 discarded. Then σ−1b0τ = λb0 in Q via

(λ̂λλ, û, ϵ̂ϵϵ), the lengths of the three sequences have all decreased by 1. And

because |ũ0| ≤ |u0|, we get |û| ≤ |u|.

II. Suppose ϵj−1 = 1 and ϵj = −1 for some 2 ≤ j ≤ l. Using (22) to relate

λj−2b0 and λjb0, we get

λjb0 = uja1uj−1a
−1
1 λj−2b0 a1a

−1
1 = ujφ

−1(uj−1) λj−2b0

in Q. Now, uj is a prefix of λj and λjb0 is a positive word, so the word

φ−1(uj−1) λj−2b0 is equal in Q to a positive word, and then by Lemma 5.8,

φ−1(uj−1) is a prefix of that positive word. Given that both φ−1(uj−1)

and uj−1 are positive words, Lemma 5.9 tells us that |φ−1(uj−1)| ≤ |uj−1|.
Now define λ̂λλ to be λλλ with λj−1 and λj discarded, define û to be u with

uj−2 and uj−1 discarded and uj replaced with ujφ
−1(uj−1)uj−2, and de-

fine ϵ̂ϵϵ to be ϵϵϵ with ϵj−1 and ϵj discarded. Then σ−1b0τ = λb0 in Q via

(λ̂λλ, û, ϵ̂ϵϵ), the lengths of the three sequences have all decreased by 2, and

|û| ≤ |u|.

Repeat I and II until we have (λλλ,u, ϵϵϵ) via which σ−1b0τ = λb0 in Q with

ϵϵϵ = (1, · · · , 1). Throughout, the bounds l ≤ |wi| and |u| ≤ 2|wi| are maintained.

The resulting µ = σ−1 and τ = al1 have the required properties.

A calculation in Q now bounds the length of λ. We state the result in the

following lemma, deferring the proof to Section 5.2.

Lemma 5.11. There exists C0 > 1 with the following property. Suppose there

are words µ on a−1
1 , b1, . . . , bp (so containing no a1, b

−1
1 , . . . , b−1

p ) and λ on

b1, . . . , bp (so containing only positive letters), and a number l ≥ 1 such that

in Q

µb0a
l
1 = λb0. (23)

Then, if | · |q counts the number of bq in a given word, we have:

|λ| ≤ C0(|µ|+ |λ|q)p/q.

In the situation of Corollary 5.4, this leads to an upper bound on the lengths

of the a1-corridors in Bi for all i such that βi is a b0-corridor.

Lemma 5.12. There exists C1 > 1 such that if C is as in Lemma 5.6 and ξb0
and λb0 are the words read along the top and bottom boundaries (respectively)

of C, then
max{|λ|, |ξ|} ≤ C1|w|p/q.
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Proof. First consider the word λb0 along the bottom boundary of C. Use

Lemma 5.7 and 5.10 to obtain a word µ = µ(b1, . . . , bp, a
−1
1 ) and a number l ≥ 1

such that Lemma 5.11 applies. Then |λ| ≤ C0(|µ| + |λ|q)p/q. By Lemma 5.10,

we have |µ| ≤ 2|wi| ≤ 2|w|.
We estimate |λ|q using (a2, bq)-tracks (see Definition 4.24). The dual of every

edge labelled bq in λ is part of an (a2, bq)-track of ∆ with endpoints on w (by

parts (2) and (5) of Lemma 4.25). Suppose some (a2, bq)-track γ crosses C twice.

Then the edges of λ dual to γ are necessarily labelled by b±1
q , as λ has no a2,

and since γ is oriented (Lemma 4.25(1)) at least one of these must be b−1
q . This

contradicts the fact, established in Lemma 5.6, that λ is a positive word. Thus

any (a2, bq)-track crosses λ at most once. It follows that |λ|q ≤ |w|. Thus

|λ| ≤ C0(|µ|+ |λ|q)p/q ≤ C0(4|w|)p/q ≤ C ′
0|w|p/q, (24)

for a suitable constant C ′
0.

Now if ξb0 is the top boundary of an a1-corridor, then we have a relation

ξb0 = a−1
1 (λb0)a1, where λ is a positive word on b1, . . . , bp. Inspecting the r1,∗-

defining relations (of Figure 5), we see that |ξ| ≤ C ′′
0 |λ| for a suitable constant

C ′′
0 ≥ 1. Combining this with (24), we obtain max{|λ|, |ξ|} ≤ C1|w|p/q for a

suitable constant C1 > 1.

Our next lemma is illustrated by Figure 33. We can now derive:

Lemma 5.13. There exists a constant C2 > 1 such that for all i such that βi
is a b0-track,

|Wi| ≤ C
|w|p/q
2 . (25)

wi

Wi

W ′
i

C

α2

u′
2

µ2 ν2
C1

C2 C3

C4

D0

D1
D2 D3

D4

a1

a1

a1

a1

a1

a1

a1

a1 Bi

b0 b0

Figure 33: Illustrating our proof of Lemma 5.13 (with l = 4)
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Proof. Let C be the (unique) b0-corridor in Bi and letW ′
i be its bottom bound-

ary, so we have the relation b−1
0 W ′

i b0 =Wi. Then there exists a constant K0 ≥ 1

such that

|Wi| ≤ K0|W ′
i |. (26)

Let C1, . . . Cl be the a1-corridors of Bi and let D0, . . . ,Dl be the (closures of the)

components of Bi \ (C ∪ C1 ∪ · · · ∪ Cl). Then, for all j, Dj is a van Kampen

diagram for the relation µ−1
j αjνj = u′j , where αj is a subpath of wi, the paths

µj and νj (which are possibly empty) run along the a1-corridors bounding Dj ,

and u′j is a subpath of W ′
i . We know from Corollary 5.4(2) that the 2-cells in

Dj are of type r1,∗, r2,∗, r3,∗, and r3,∗,∗. And, as Dj has no a1- or b0-corridors,

the relation µ−1
j αjνj = u′j holds in (in the notation of Figure 5)

⟨ a2, t, x1, x2, b1, . . . , bp | {r2,i, r3,i, r3,i,j : 1 ≤ i ≤ p and 1 ≤ j ≤ 2} ⟩,

which is a multiple HNN-extension of F (a2, t, x1, x2) with stable letters b1, . . . , bp.

So, by repeated use of Britton’s Lemma |u′j | ≤ |αj |KM
1 , where K1 ≥ 1 is a con-

stant multiplicative factor bounding the increase in length on eliminating a

pinch, and M = max(|µj |, |νj |). So |u′j | ≤ C1|w|p/q by Lemma 5.12. Then,

because the number of a1-corridors is l, we have

|W ′
i | ≤ l+

l+1∑
i=0

|u′j | ≤ l+

l+1∑
i=0

|αj |KM
1 ≤

(
l +

l+1∑
i=0

|αj |

)
KM

1 ≤ |w|KC1|w|p/q
1 .

This and (26) together establish (25) for a suitable constant C2 > 1.

We can now complete:

Proof of Proposition 5.1. Recall that ∆ is a van Kampen diagram for wχ−1

andA is a subdiagram forWχ−1, whereW is as defined in (20) and all the 2-cells

of A are r4,∗- or r4,∗,∗-cells (per Figure 5). Now, A is a tree-like arrangement

of 2-disc components connected by 1-dimensional portions (trees). As r4,∗-

and r4,∗,∗-cell have no x-edges on their boundaries, any x-edges in A are in

1-dimensional portions. Let Â be the subdiagram of A consisting of the path

χ and all its 2-disc components that share at least one edge with χ. Then Â
is a van Kampen diagram for Ŵχ−1, where Ŵ is a word obtained from W

by deleting some of its letters. Then Ŵ contains no x-letters: its letters are

either along the path χ or are on the boundaries of 2-cells, neither of which

have x-edges.

If βi is not a b0-track, thenWi is a word on a1X∗tX∗, a1X∗tX∗, a1a2X∗tX∗,

X∗t
−1X∗tX∗ and X∗tX∗. And (because ∆ is reduced and thanks to the C ′(1/4)

small-cancellation condition of Section 2.1 for the set X of the X∗), if a subword
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of the freely reduced form ofWi contains no x-letters, then it has length at most

2. It follows that Wi can contribute at most two letters to Ŵ .

Therefore, in the notation of (20), |Ŵ | is at most
∑r

i=0 |vi|, plus twice the

number ofWi such that βi is not b0-track, plus the lengths of the remainingWi.

So, using Lemma 5.13 and that there are at most |w| subwords in Wi in W , for

a suitable constant C3 > 1, we get

|Ŵ | ≤ |w|+ 2|w|+ |w|C |w|p/q
2 ≤ C

|w|p/q
3 . (27)

Next we claim that there exists a constant C4 > 1 such that

|χ| ≤ |Ŵ |C |w|
4 . (28)

Since the 2-cells in Â are all of type r4,∗ or r4,∗,∗ (per Figure 5), Â is a

union of non-intersecting a1- and a2-corridors. Each a1-corridor of Â is part

of an a1-corridor of ∆ whose ends are in w, and Lemma 4.23(7) implies that

no two a1-corridors of Â are part of the same a1-corridor in ∆. On the other

hand, several a2-corridors of Â could be part of the same (a2, bq)-corridor of

∆. However, by Lemma 4.26, if a pair of a2-corridors of A nest (meaning one

is entirely in the W -side of the other), then they cannot be part of the same

(a2, bq)-corridor of ∆. It follows that the same is true of Â: no pair of a2-

corridors of Â have the property that one is entirely in the Ŵ -side of the other.

Distinct (a2, bq)-corridors end on distinct pairs of edges of w.

Thanks to these observations, we can strip away successive portions of Â by

at most |w| moves, each of which either

• removes an a1-corridor, or

• removes all the a2-corridors of Â that are part of the same (a2, bq)-corridor

of ∆.

The result is a sequence of diagrams which demonstrate that each word in a

sequence of words equals χ in G. Moreover, this sequence of words starts with

Ŵ and ends with a word freely equal to χ, and the length of each word is longer

than the last by at most a constant factor. This proves (28) for a suitable

constant C4 > 1.

Finally, (27) and (28) combine to yield

|χ| ≤ |Ŵ |C |w|
4 ≤ C

|w|p/q
3 C

|w|
4 ≤ K |w|p/q

for a suitably chosen constant K > 1.
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5.2 Why p/q?

This section is devoted to a proof of Lemma 5.11, which we used in our proof

of Proposition 5.1. The lemma concerns the group

Q = ⟨a1, b0, . . . , bp | a−1
1 bia1 = φ(bi) ∀i ⟩, φ(bj) =

{
bj+1bj if j < p

bj if j = p.

We begin with two preparatory lemmas. We use the convention that the bino-

mial coefficient
(
n
r

)
equals 0 for all r /∈ {0, . . . , n}.

Lemma 5.14. Consider the relation a−m
1 bia

m
1 = λ in Q, where m ≥ 0, 0 ≤ i ≤

p, and λ is a word in b0, . . . , bp. Then

1. For 0 ≤ j ≤ p− i, there are
(
m
j

)
instances of bi+j in λ. Also, λ has no bk

for k < i.

2. If m > 2p, then |λ| ≤ (p+ 1)
(

m
p−i

)
.

3. If m ≤ 2p, then |λ| ≤ (p+ 1)(2p)p

Proof. For (1), induct on m or refer to [BR09]. For (2), note that if 0 ≤ i ≤ p

and m > 2p, then p− i ≤ p < m/2, and so
(
m
j

)
≤
(

m
p−i

)
for all j ≤ p− i. Then

from (1), we have

|λ| =

p−i∑
j=0

(
m

j

)
≤

p−i∑
j=0

(
m

p− i

)
≤ (p− i+ 1)

(
m

p− i

)
≤ (p+ 1)

(
m

p− i

)
.

For (3), we use the fact that
(
m
j

)
≤ mj for any j ≤ m, and

|λ| =

p−i∑
j=0

(
m

j

)
≤

p−i∑
j=0

mj ≤ (p− i+ 1)mp−i ≤ (p+ 1)(2p)p.

Lemma 5.15. Let K = (2p)p
2

. For all m, k, l ∈ Z such that m > 2p and

1 ≤ k, l ≤ p,

1.
(
m
k

)
≤ K

(
m
l

)k/l
2. If l < k, then

(
m
k

)
≤ K

(
m
l

)(
m
k−l

)
Proof. Let m > 2p. Now, if t satisfies 1 ≤ t ≤ p, then m > 2t, or equivalently

−t > −m/2. Consequently, m − t + 1 > m −m/2 + 1 > m/2, which gives the

“>” in:

mt ≥
(
m

t

)
=

m(m− 1) . . . (m− t+ 1)

t!
>
(m
2

)t 1
t!

≥ mt

2pp!
≥ mt

(2p)p
. (29)
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Now,
(
m
k

)
≤ mk, (29), and k < p, respectively, imply the first, second, and

third of the following inequalities:(
m

k

)l

≤ mkl ≤ (2p)pk
(
m

l

)k

≤ (2p)p
2

(
m

l

)k

.

Then (1) follows since (2p)p
2/l ≤ (2p)p

2

= K.

For (2), now apply (29) to t = l and t = k − l, and note that 2p ≤ p2 (since

1 ≤ l < k ≤ p implies that p ≥ 2):(
m

k

)
≤ mk = mlmk−l ≤ (2p)p

(
m

l

)
(2p)p

(
m

k − l

)
= (2p)2p

(
m

l

)(
m

k − l

)
≤ K

(
m

l

)(
m

k − l

)
.

For a word π, we write |π|b and |π|q to denote the number of b-letters and

the number of bq-letters (respectively) in π.

Suppose µ is a word on a−1
1 , b1, . . . , bp (no a1, b

−1
1 , . . . , b−1

p letters), λ is a

positive word on b1, . . . , bp, and l ≥ 1 is an integer such that in Q

µb0a
l
1 = λb0. (30)

Lemma 5.11 asserts that

|λ| ≤ C0(|µ|+ |λ|q)p/q (31)

for a suitable constant C0 > 1.

Here is the idea behind this. When we shuffle the a±1
1 letters through µb0a

l
1,

in order to collect them together and cancel them away and obtain λb0, the

effect is to apply φ to the intervening b-letters. Lemma 5.14(1) indicates how

the number of b-letters then grows: as a function of l, the number of bi-letters in

λ is at most a polynomial of degree i. Whether this rate of growth is achieved

depends on µ. What (31) states is how the total number of b-letters produced

is contingent on the length of µ and the number of bq-letters produced.

Proof of Lemma 5.11. Let C0 = (p+ 1)(2p)2p
2

. We induct on |µ|b.
Base case. In the base case, |µ|b = 0, and so µ = a−l

1 and (30) is a−l
1 b0a

l
1 =

λb0. Then |λ|q =
(
l
q

)
by Lemma 5.14(1), and so

|µ|+ |λ|q ≥
(
l

q

)
. (32)
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If l > 2p, then Lemmas 5.14(2) and 5.15(1) apply so as to give the first and

second (respectively) of the following inequalities; the definition of C0 and (32)

give the third:

|λ| ≤ (p+ 1)

(
l

p

)
≤ (p+ 1)(2p)p

2

(
l

q

)p/q

≤ C0(|µ|+ |λ|q)p/q.

If, on the other hand, l ≤ 2p, then, by Lemma 5.14(3), we have that

|λ| ≤ (p+ 1)(2p)p ≤ C0 ≤ C0(|µ|+ |λ|q)p/q,

with the final inequality true because l ≥ 1. This completes our proof of the

base case.

Inductive step. Suppose we have µ̂b0a
l
1 = λ̂b0 as per (30) with |µ̂|b = k + 1.

We will show that |λ̂|q ≤ Cq
0 n̂

p, where

n̂ = |µ̂|+ |λ̂|q. (33)

Suppose bi is the first b-letter in µ̂. Then µ̂ = a−m
1 biβ for some integer m

such that 0 ≤ m ≤ l, and word β that contains l − m instances of a−1
1 and

satisfies |β|b = k. The exponent sums of the a1-letters in a
−m
1 bia

m
1 and a−m

1 βal1
are both 0, so there exist positive words γ and λ, respectively, on b1, . . . , bp
representing them in Q. Then in Q,

λ̂b0 = µ̂b0a
l
1 = (a−m

1 bia
m
1 )(a−m

1 βb0a
l
1) = γλb0.

Thus |λ̂| = |λ|+ |γ|. We will bound |λ̂|q by combining bounds on |λ| and |γ|.
Setting µ = a−m

1 β, we have µb0a
l
1 = λb0 in Q, where µ satisfies the hy-

potheses of the present lemma and |µ|b = k. By the induction hypothesis,

|λ| ≤ C0n
p/q, where n = |µ|+ |λ|q.

Before bounding |γ| we make some observations about n and n̂. Firstly,

the presence of b0 in the relation a−m
1 βb0a

l
1 = λ, together with Lemma 5.14(1)

implies that |λ|q ≥
(
m
q

)
, and so

n ≥
(
m

q

)
. (34)

Note that |µ̂| = |β|+ 1 +m = |µ|+ 1, leading to:

n̂ = |µ̂|+ |λ̂|q = |µ|+ 1 + |λ|q + |γ|q = n+ 1 + |γ|q. (35)
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Then, since |λ̂| = |λ|+ |γ|, we have

|λ̂|q ≤ (|λ|+ |γ|)q =

q∑
j=0

(
q

j

)
|λ|q−j |γ|j

≤
q∑

j=0

(
q

j

)(
C0n

p/q
)q−j

|γ|j (by the induction hypothesis)

≤
q∑

j=0

(
q

j

)
Cq−j

0 np−
pj
q |γ|j . (36)

Similarly to the base case, we treat the cases m ≤ 2p and m > 2p separately.

When m > 2p, our estimate depends on whether i ≥ q, in which case no new bq
letters are created in γ, or i < q, in which case new bq letters are created in γ.

Thus, we have three cases as follows.

Case 1: m ≤ 2p. In this case, |γ| ≤ C0 by Lemma 5.14(3). Moreover, since

p > q, we have np−
pj
q ≤ np−j and

(
q
j

)
≤
(
p
j

)
for each j. Continuing from (36),

we get

|λ̂|q ≤
q∑

j=0

(
q

j

)
Cq−j

0 np−jCj
0 ≤ Cq

0

q∑
j=0

(
p

j

)
np−j ≤ Cq

0(n+ 1)p

Finally, since n̂ ≥ n+ 1 by (35), we obtain |λ̂|q ≤ Cq
0 n̂

p, as desired.

Case 2: m > 2p and q ≤ i ≤ p. We have that for K = (2p)p
2

:

|γ| ≤ (p+ 1)

(
m

p− i

)
by Lemma 5.14(2)

≤ (p+ 1)

(
m

p− q

)
as p− i ≤ p− q ≤ p and m > 2p

≤ (p+ 1)K

(
m

q

) p−q
q

by Lemma 5.15(1), as m > 2p and q, p− q ≤ p

≤ C0n
p
q−1 by (34).

Then, continuing from (36), and using that n̂ ≥ n + 1 by (35) and that(
q
j

)
≤
(
p
j

)
for each j, we get

|λ̂|q ≤
q∑

j=0

(
q

j

)
Cq−j

0 np−
pj
q (C0n

p
q−1)j ≤ Cq

0

q∑
j=0

(
p

j

)
np−j ≤ Cq

0(n+1)p ≤ Cq
0 n̂

p.
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Case 3: m > 2p and 1 ≤ i < q. In this case, |γ|q =
(

m
q−i

)
by Lemma 5.14(1)

and

|γ| ≤ (p+ 1)

(
m

p− i

)
by Lemma 5.14(2)

≤ (p+ 1)K

(
m

p− q

)(
m

q − i

)
by Lemma 5.15(2), where K = (2p)p

2

≤ (p+ 1)K2

(
m

q

) p−q
q
(

m

q − i

)
by Lemma 5.15(1), as m > 2p and

1 ≤ q, p− q ≤ p

≤ C0n
p−q
q |γ|q by (34),K = (2p)p

2

, and |γ|q =

(
m

q − i

)
.

Then, continuing from (36), we have

|λ̂|q ≤
q∑

j=0

(
q

j

)
Cq−j

0 np−
pj
q

(
C0n

p−q
q |γ|q

)j
≤ Cq

0

q∑
j=0

(
p

j

)
np−j |γ|jq

≤ Cq
0 (n+ |γ|q)p

≤ Cq
0 n̂

p,

where the last inequality follows from (35).

This concludes the proof of inductive step, as |λ̂| ≤ C0n̂
p/q in all three

cases.

6 Leveraging our groups

6.1 Iterated exponential functions

Recall that expk denotes the k-fold iterated exponential-function. More pre-

cisely, exp1(x) = exp(x) and expi(x) = exp(expi−1(x)) for integers i > 1.

Here we will leverage our examples H ≤ G from Section 2.1 to construct free

subgroups of hyperbolic groups whose distortion functions are ≃-equivalent to

n 7→ expk(np/q), where p > q ≥ 1 and k > 1 are integers, proving Theorem A.

We will take iterated amalgamated products of G with certain hyperbolic free-

by-free groups constructed by Brady and Tran [BT21]. We begin by reviewing

the parts of their construction we need. We write Fm to denote the free group

on m generators.
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Theorem 6.1. [BT21, Theorem 5.2] Given m ≥ 1, there exists l > m and a

group Fl ⋊ Fm that is CAT(0) and hyperbolic.

Definition 6.2. Let G1 be a finitely generated group and let Fm1
< G1 be a free

subgroup of rank m1. Take m1 < m2 < · · · so that Fmi+1
⋊ Fmi

is the group of

Theorem 6.1 (with mi+1 = l and mi = m). For i > 1, define Gi by

Gi = (Fmi
⋊ Fmi−1

) ∗Fmi−1
Gi−1.

Proposition 6.3. [BT21, Proposition 4.4] In the notation of Definition 6.2,

if DistG1

Fm1
≃ f for some non-decreasing superadditive function f , then for all

integers k ≥ 1,

DistGk

Fmk
(n) ≃ expk−1(f(n)).

To complete the proof of Theorem A, we will take G1 and Fm1
to be our

groups G and H ∼= F3, respectively, from Section 2.1. We will then use the

following two results to conclude that Gk is hyperbolic when k > 1.

Theorem 6.4. (Hyperbolicity of amalgams) If a finitely generated group

C is a subgroup of two hyperbolic groups A and B, and C is quasi-convex and

malnormal in A, then

Γ = A ∗C B

is hyperbolic. (We make no assumption on how C sits in B.)

Proof. Since C is finitely generated and is quasi-convex and malnormal in the

hyperbolic group A, [Bow12, Theorem 7.11] tells us that A is hyperbolic relative

to C. We then get that Γ is hyperbolic relative to B by [Dah03, Theorem 0.1(2)].

A group that is hyperbolic relative to a hyperbolic subgroup is itself hyperbolic

by [Osi06, Corollary 2.41]. So Γ is hyperbolic.

Lemma 6.5. If A and B are finitely generated free groups and G = A ⋊ B is

a hyperbolic group, then B is quasiconvex and malnormal in G.

Proof. For quasiconvexity, observe that B is a retract of G, so it is in fact

convex in G (with respect to standard generating sets).

To see that B is malnormal, recall that the group G can be identified with

the Cartesian product A × B endowed with the multiplication (a, b)(c, d) =

(aφb(c), bd), where φb(x) = bxb−1 for all x ∈ A. Note that for all (c, d) ∈ G we

have (c, d)−1 = (φd−1(c−1), d−1). We identify B with {1} ×B.

Now if B is not malnormal, then there exists some (c, d) ∈ G \ B such that

(c, d)−1B(c, d)∩B is non-trivial. Thus, there exists b ∈ B with b ̸= 1, such that

(c, d)−1(1, b)(c, d) = (φd−1(c−1), d−1)(φb(c), bd)

= (φd−1(c−1)φd−1(φb(c)), d
−1bd) ∈ B.
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In particular, we must have 1 = φd−1(c−1)φd−1(φb(c)) = φd−1(c−1φb(c)),

and since φd−1 is an automorphism, we have c−1φb(c) = 1, or equivalently

c−1bcb−1 = 1. Observe that c ̸= 1 as (c, d) ∈ G \ B. So b and c are commut-

ing elements of infinite order (since A and B are free and inject into G) in a

hyperbolic group, a contradiction. We conclude that B is malnormal.

Proof of Theorem A. Given p > q ≥ 1, let G and H be the groups we

constructed in Section 2.1 and proved in Sections 3.1–5.2 to have DistGH(n) ≃
exp(np/q). Define G1 = G and m1 = 3, so that Fm1

= F3
∼= H. Define the

groups Gk for k > 1 as in Definition 6.2. Then, since G1 is hyperbolic, and

Fmi+1 ⋊ Fmi is hyperbolic for each i, we inductively conclude that each Gi is

hyperbolic, using Theorem 6.4 and Lemma 6.5. Finally, since exp(np/q) is a

non-decreasing superadditive function, Proposition 6.3 implies

DistGk

Fmk
(n) ≃ expk(np/q),

as desired.

Remark 6.6. (CAT(0) and CAT(−1) structures for the groups Gk) For

all p > q ≥ 1, our group G of Section 2.1 satisfies a uniform C ′(1/6) condition,

so can be given a CAT(0) structure by [Wis04a] or even a CAT(−1) structure

by [Bro, Gro01, Mar17]. The Fl ⋊ Fm groups constructed by Brady–Tran have

a piecewise Euclidean CAT(0) structure and furthermore, Fm is ultra-convex

in Fl ⋊ Fm—a property they use to show that if the Gromov link condition

holds in the complex associated to a group Γ, then it continues to hold for an

amalgamated product of the form (Fl ⋊ Fm) ∗Fm
Γ. See [BT21, Lemma 5.10]

for the precise statement. Moreover, the strategy used in [Bro, Gro01] to ob-

tain CAT(−1) structures by changing each Euclidean polygon to a hyperbolic

one by slightly shrinking each angle can be applied to the Brady–Tran groups

to obtain CAT(−1) groups for the form Fl ⋊ Fm. Thus, we expect that by

choosing CAT(0) or CAT(−1) structures on the building blocks and using the

ultra-convexity as in [BT21], the groups Gk in Definition 6.2 can be shown to

be CAT(0) or CAT(−1) for all k.

6.2 Distortion of hyperbolic subgroups of hyperbolic groups

Here we use ideas originating in I. Kapovich’s [Kap99] to prove Theorem B,

which, in particular, extends our main result (Theorem A) in that it allows the

distorted subgroup H to be any non-elementary torsion-free hyperbolic group

rather than F3.

For each of the functions f listed in Theorem B, there are constructions in

the literature consisting of a hyperbolic group K and a finite-rank free group
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F ≤ K such that DistKF ≃ f : see [Mit98a, BBD07] for (1) when p = q, this

article for (1) when p > q, and [BDR13] for (2). We will prove the theorem by

amalgamating H with K along a subgroup of H that is isomorphic to F and is

supplied by the following lemma.

Lemma 6.7. Suppose H is a non-elementary torsion-free hyperbolic group. For

all k ≥ 2, H contains a malnormal quasiconvex free subgroup F of rank k.

Proof. Kapovich showed that such an H has a malnormal quasiconvex rank-2

free subgroup F (x, y) [Kap99, Theorem C]. There are malnormal rank-3 free

subgroups in F (x, y)—for example

⟨x10, y10, (xy)10⟩

is malnormal by the criterion of [KM02, Theorem 10.9], which can be interpreted

as being that there is no reduced word which read from two different vertices

in the Stallings graph of the subgroup makes a loop. Likewise, for all k ≥ 2, for

sufficiently large n, the subgroup〈
xn, yn, (xy)n, (x2y2)n, . . . , (xk−2yk−2)n

〉
of F (x, y) is malnormal and rank-k. The result then follows from the following

three facts. If A ≤ B ≤ C are groups such that A is malnormal in B and

B is malnormal in C, then A is malnormal in C. Quasiconvexity is similarly

transitive. Finitely generated subgroups of F2 are quasiconvex.

Now, given H and f as in Theorem B, let F ≤ K be as above so that K

is hyperbolic, F is finite-rank free, and DistKF ≃ f . By Lemma 6.7, H has a

quasiconvex malnormal subgroup which is isomorphic to F . We will also refer

this subgroup of H as F , so that we can define

G = H ∗F K. (37)

The last ingredient we require for Theorem B is:

Theorem 6.8. Let Γ = A∗CB, where A,B, and C are finitely generated groups

and let f be a superadditive function such that n ≤ f(n) for all n.

1. If DistAC ⪯ f and DistBC ⪯ f , then DistΓA ⪯ f and DistΓB ⪯ f .

2. If DistAC(n) ≃ n and DistBC ≃ f , then DistΓA ≃ f .

Proof of Theorem B assuming Theorem 6.8. Given H and f as in the

theorem, let G be the group defined in (37). Since F is malnormal and qua-

siconvex in H, Theorem 6.4 tells us that G is hyperbolic. Now DistKF ≃ f by
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construction, and note that every function f listed in the statement of Theo-

rem B is superadditive and superlinear. Since F is quasiconvex in H and H

is hyperbolic, we have DistHF (n) ≃ n ⪯ f(n), and Theorem 6.8(2) implies that

DistGH ≃ f .

Proof of Theorem 6.8. We begin with some setup. For X = A,B,C, let SX

be a generating set for X, and let KX be a K(X, 1) with 1-skeleton a rose on

|SX | petals. We assume that SC ⊂ SA and SC ⊂ SB . Then Γ is generated by

SΓ = SA ∪SB . Let K be the standard graph of spaces with fundamental group

Γ, i.e.,

K = (KA ⊔ (KC × [0, 1]) ⊔KB)/ ∼

where ∼ identifies KC ×{0} and KC ×{1} with the images of the maps induced

by the inclusion of C in A and B respectively. For convenience, we subdivide

the cell structure so that K
(1)
C × {1/2} ⊂ K(1).

Let c be the unique vertex of KC , and let p = {c}×{1/2} ∈ KC× [0, 1] ⊂ K.

We identify Γ with π1(K, p). More precisely, identify SC with the set of petals

of K
(1)
C × {1/2} and SA \ SC with the collection of loops δαδ̄, where δ and δ̄

are the interval {c} × [0, 1/2] ⊂ KC × [0, 1] oriented towards and away from

KA respectively, and α is a petal of K
(1)
A representing an element of SA \ SC .

Identify SB \ SC with the analogous set of loops, replacing {c} × [0, 1/2] with

{c} × [1/2, 1]. Let SΓ be the set of the loops defined in this paragraph. Each

element of SΓ is contained in K(1).

The associated Bass–Serre tree is obtained by collapsing each lift of KA or

KB in K̃ to a vertex (called the A- and B- vertices, respectively) and each lift of

KC × [0, 1] to an edge. We subdivide each edge by adding a midpoint, obtained

by collapsing a lift of KC × {1/2}; we call each such midpoint a C-vertex. Let

T denote this subdivided tree, and let ψ : K̃ → T denote the collapsing map.

Given an A- or B- vertex v of T , define sv to be the star of v in T . Since T is

subdivided, every vertex of sv besides v is a C-vertex.

If γ ∈ SΓ corresponds to g ∈ SΓ, then each lift γ̃ of γ in K̃(1) is considered to

be labelled by g. By construction, the image of ψ◦ γ̃ is a C-vertex if g ∈ SC , and

otherwise it is contained in a star sv for an A- or B-vertex v. More generally, if

w is any word over SΓ, then for each lift p̃ of p, there is a path ξw starting at p̃

with label w in K̃(1). (We abuse notation by suppressing p̃.)

Now if, in addition, w = 1 in Γ, then ξw is a loop based at some (any) p̃

and ψ ◦ ξw is a loop based at ψ(p̃) in T . The image of ψ ◦ ξw is a subtree of T ,

which we denote τw. We measure the complexity of w by n(w), which counts

the number of A- or B-vertex stars intersecting τw:

n(w) = #{v | v is an A- or B-vertex and sv ∩ τw ̸= ∅}.

Note that n(w) is finite since τw is compact, and n(w) ≥ 1 as ψ(p̃) ∈ τw.
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We are now ready to prove (1). In this proof, a geodesic word in X or over

SX will mean a word of minimal length over SX representing an element of X,

where X = A,B, or Γ. Let u be a geodesic word in either A or B and let w be

a geodesic word in Γ with u−1w = 1 in Γ. We wish to show that |u| ≤ f(|w|).
The proof is by induction on n(u−1w).

If n(u−1w) = 1, then τu−1w is contained in some sv, where v is an A- or

B-vertex, depending on whether u is in A or B. We assume without loss of

generality that v is an A-vertex. By construction, sv = ψ(Y ), where Y ⊂ K̃

consists of some lift of KA, and all the lifts of KC × [0, 1/2] intersecting it. Now

ξu−1w is contained Y (1) and it follows that its label u−1w is a word over SA.

Thus u and w are both geodesics over SA representing the same element of A,

so |u| = |w|. This proves the base step of the induction.

For the induction step, assume that |u′| ≤ f(|w′|) whenever u′−1w′ = 1

with u′ a geodesic in A or B and w′ a geodesic in Γ and n(u′−1w′) < n(u−1w).

Again, assume without loss of generality that u is a geodesic in A. Write ξu−1w

as a concatenation ξu−1ξw. Then ψ(ξu−1) ⊂ sa for some A-vertex a (since u is

a geodesic over SA). Now, by considering ψ−1(τu−1w \ s◦a), where s◦a denotes

the interior of sa, we obtain a concatenation ξw = ξx0
ξy1
ξx1

· · · ξyk
ξxk

(so w =

x0y1x1 · · · ykxk, as words), such that for each i, we have that ψ(ξxi
) ⊂ sa (so xi

is a word over SA) and that ψ ◦ ξyi
is a loop in τu−1w \ s◦a based at a C-vertex

pi of sa.

By construction, each ξyi has its endpoints in some lift of KC × {1/2}, and
so yi represents an element of C, and therefore of B. Let zi be a geodesic word

over SB with zi = yi in Γ, and let ξzi be the path in K̃ with the same endpoints

as ξyi . Then ψ(ξzi) ⊂ sbi where bi is the unique B-vertex adjacent to pi. Now

consider ξz−1
i yi

= ξziξyi and note that ψ(ξyi) intersects sbi , since the endpoints

of ξyi
map to pi. It follows that τz−1

i yi
intersects the same number of A- and

B-vertex stars as ψ(ξyi), and, by construction, this number is less than n(u−1w)

(since τu−1w intersects the additional vertex star sa). So n(z−1
i yi) < n(u−1w).

Since yi is a geodesic (being a subword of a geodesic) over SΓ, we may apply

the induction hypothesis to conclude that |zi| ≤ f(|yi|). Moreover, in Γ we have

u = w = x0z1x1 · · · zkxk (as elements). So the facts that u is a geodesic and

that n ≤ f(n) combined with the superadditivity of f yield:

|u| ≤
k∑

i=0

|xi|+
k∑

i=1

|zi| ≤
k∑

i=0

|xi|+
k∑

i=1

f(|yi|)

≤ f

(
k∑

i=0

|xi|+
k∑

i=1

|yi|

)
= f(|w|).

This completes the induction step and proves (1). The bound DistΓA(n) ⪯ f(n)
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of (2) immediately follows.

For the reverse bound in (2), by the definition of DistBC , there exist for

each n ≥ 1, geodesic words un and wn over SC and SB , respectively, with

un = wn in Γ, such that |wn| ≤ n and |un| = DistBC(n). Since un is an

element of C, it is also an element of A. Let vn be a geodesic word over SA

representing un. Since C is undistorted in A, there exists a constant K ≥ 1

such that |un| ≤ K|vn|. Then, for each n, we have found a geodesic word vn
in A which represents the same element as the word wn over SΓ of length at

most n, and |vn| ≥ 1
K |un| = 1

KDistBC(n). It follows that DistΓA(n) ⪰ DistBC(n).

Combined with the hypothesis DistBC(n) ≃ f(n), this gives DistΓA(n) ⪰ f(n),

which completes our proof of (2).

7 Height

7.1 Why our examples have infinite height

An infinite subgroup H of a group G has infinite height when, for all n, there

exist g1, . . . , gn ∈ G such that
⋂n

i=1 gi
−1Hgi is infinite and Hgi ̸= Hgj for

all i ̸= j. Otherwise it has finite height. New constructions of non-quasiconvex

subgroups of hyperbolic groups are natural test cases for this longstanding ques-

tion attributed to Swarup in [Mit98b]: if a finitely presented subgroup H of a

hyperbolic group G has finite height, is H necessarily quasiconvex in G?

So we note here that our examples do not speak to Swarup’s question:

Proposition 7.1. If H is the non-quasiconvex subgroup of the hyperbolic group

G we construct to prove Theorem A or, more generally, to prove Theorem B in

case (1) with p > q, then H has infinite height.

Proof. Consider Γ = F (t, x1, x2, y1, y2)∗a1,a2
with the HNN-structure from

Proposition 2.12, the defining relators being those specified by the r4,∗-cells of

Figure 5.

We first show that F = F (t, y1, y2) has infinite height in Γ. It is evident

from the defining relators for Γ that a−1
1 Fa1 ⊂ F . So, for i = 0, 1, . . ., we

define gi = ai1, and conclude that g−1
i+1Fgi+1 ⊂ g−1

i Fgi. Then, for all n ≥ 0, we

have
⋂n

i=1 g
−1
i Fgi = g−1

n Fgn, which is a non-trivial subgroup of the free group

F and so is infinite. And Fgi ̸= Fgj for all i ̸= j because, by virtue of the

HNN-structure of Γ, we find that ak1 ∈ F only when k = 0. So F has infinite

height in Γ.

For the G of Section 2.1 constructed to prove Theorem A when k = 1, we

have H = F (t, y1, y2) = F < Γ < G as a consequence of the HNN structure

discussed in Section 2.4. When k > 1, the same is true because of the graph
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of groups structure of Definition 6.2. Since H has infinite height in Γ, it has

infinite height in G also.

For the groups G we constructed to prove Theorem B(1) when p > q, we have

G = H ∗F K, where K is one of the groups we constructed to prove Theorem A.

So F < H and F < Γ < K. Moreover, the amalgamated product structure

implies that ak1 ∈ H only when k = 0, so, using the same group elements gi as

before, Hgi ̸= Hgj when i ̸= j. And, for all n ≥ 0,

g−1
n Fgn =

n⋂
i=1

g−1
i Fgi ⊂

n⋂
i=1

g−1
i Hgi.

As g−1
n Fgn is infinite, we conclude that H has infinite height.
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