
Modular Arithmetic Solutions

1. If n ≥ 5, the factorial n! has a factor of 3 and a factor of 5 (at least). Then
5! + . . .+ 100! is divisible by 15 and can be canceled modulo 15. The rest of the sum
is 1! + 2! + 3! + 4! = 1 + 2 + 6 + 24 = 33 ≡ 3 (mod 15).

2. The three consecutive numbers p− 1, p, p + 1 must be congruent to 0,1,2 modulo 3,
although not necessarily in that order. Since p is prime, it must be either p − 1 or
p+ 1 that is congruent to 0 modulo 3. Similarily, p ≡ 1 or 3 (mod 4), so one of p− 1
and p+1 is divisible by 4 and the other is divisible by 2. Then p2−1 = (p−1)(p+1)
has a factor of 3, a factor of 4 and a factor of 2; i.e., p2 − 1 is divisible by 24.

3. Let n = 24m. We show first that if d is a divisor of n − 1 = 24m − 1, then d2 − 1
is divisible by 24. Clearly d is not a multiple of 3 (because n is), so 3 must divide
d2− 1. Also d must be odd, so d− 1 and d+ 1 are consecutive even numbers, so one
must be a multiple of 4, and their product d2 − 1 must be a multiple of 8.

Now 24m− 1 cannot be a square (because squares are congruent to 0 or 1 modulo
4), so its divisors come in pairs: d, (24m− 1)/d. But d+ (24m− 1)/d is divisible by
24 (because d2− 1 and 24m are, but no factor of 24 can divide d). Hence the sum of
all the divisors of n− 1 is divisible by 24.

4. The longest tail is 3 and the smallest square with tail 3 is 382 = 1444.
All squares end in 0, 1, 4, 9, 6, or 5. A square ending in 11, 99, 66, 55 would be

congruent to 2 or 3 modulo 4, but squares are congruent to 0 or 1 modulo 4. So for
length greater than 1 the square must end in 4.

A square ending in 4444 would be congruent to 12 modulo 16, but squares are
congruent to 0, 1, 4 or 9 modulo 16. So the maximum length is 2 or 3.

When n2 ends in 4, then n must end in 2 or 8. This gives two cases:
- n2 = (100a + 10b + 2)2 = 10000a2 + 1000(2ab) + 100(4a + b2) + 10(4b) + 4. So

if this ends in 44, then b = 1 or 6. If b = 1, then 4a + b2 is odd, so the square
cannot end in 444. If b = 6, then the square is 1000k + (4a+ 38)100 + 44. This
will end in 444 if we take a = 4 or 9. Thus the smallest numbers ending in 2
whose square ends in 444 are 462 (square 213444) and 962 (square 925444).

- n2 = (100a + 10b + 8)2 = 1000k + 100(16a2 + b2) + 10(16b + 6) + 4. So if this
ends in 44, then b = 3 or 8. Now, (100a+ 38)2 = 1000k + 100(76a) + 1444 ends
in 444 if a = 0. This must be the smallest solution.

5. Break the set {1, 4, 7, 10, 13, 16, . . . , 100} in the 18 sets

{1}, {52}, {4, 100}, {7, 97}, {10, 94}, . . . , {49, 55}.

By the pigeon-hole principle, one of the sets {4, 100}, {7, 97}, {10, 94}, . . . , {49, 55}
has two elements of T . These form the solution.

6. Suppose n has k+1 digits, and write it in the form n = 10M+6. Then the transformed
number is 6·10k+M . The problem requires that 6·10k+M = 4(10M+6). Simplifying,



the condition becomes
2 · 10k − 8 = 13M,

so 2 · 10k ≡ 8 (mod 13). Then 10k ≡ 4 (mod 13) and 10k+1 ≡ 40 ≡ 1 (mod 13).
The smallest value of k such that 10k+1 ≡ 1 (mod 13) is k = 6, so 13M = 2 · 106−

8 = 199992 and M = 15384. Finally, use M to obtain n = 10 · 15384 + 6 = 153846.

7. Consider consecutive powers of 2 modulo 7: 21 ≡ 2, 22 ≡ 4, 23 ≡ 1, and the residues
repeat after this. Then, 2n − 1 can be congruent to 1, 3 or 0 and is 0 precisely when
n is a multiple of 3. Similarily, 2n + 1 is congruent to 3, 5, or 2 and so it is never a
multiple of 7.

8. Suppose n satisfies the conditions, and call the two products a and b. At most one
element of S = {n, n + 1, n + 2, n + 3, n + 4, n + 5} can be a multiple of 7, but this
would imply that only one of a and b is a multiple of 7. Since the products are equal,
it must be the case that the elements of S are congruent in order to 1,2,3,4,5 and 6
modulo 7.

Consider the product ab. On one hand, ab ≡ 1 · 2 · 3 · 4 · 5 · 6 (mod 7). By Wilson’s
Theorem, ab ≡ 6! ≡ −1 (mod 7). On the other hand, since a ≡ b (mod 7), we have
ab ≡ a2 (mod 7). But the equation a2 ≡ −1 (mod 7) has no solution as can be
checked by hand.

9. We show by induction on k that an+k ≡ 1 (mod an). Obviously true for k = 1.
Suppose it is true for k. Then for some m, an+k = m · an + 1. Hence an+k+1 =
an+k(man + 1− 1) + 1 = an+kman + 1 ≡ 1 (mod an). So the result is true for all k.
Hence any pair of distinct an are relatively prime.

10. We compute a2 = 33 = 27 and b2 = 27. Then a3 = 327 and we want to compute
b3 = 327 mod 100. Note that

32 ≡ 9 (mod 100)
34 = 92 ≡ 81 (mod 100)
38 ≡ 812 = 6561 ≡ 61 (mod 100)

316 ≡ 612 = 3721 ≡ 21 (mod 100)

so that 327 = 316+8+2+1 ≡ 3·9·61·21 = 34587 ≡ 87 (mod 100). A similar computation
shows that a4 = 387 ≡ 87 (mod 100) so b4 = 87. Clearly, the numbers repeat
afterwards; in particular b2004 = 87.


