
Modular Arithmetic

The expression a ≡ b (mod n), pronounced “a is congruent to b modulo n,” means that
a− b is a multiple of n. For instance, (−43)− 37 = −80 so that −43 ≡ 37 (mod 4). Given
a, there is only one value b between 0 and n−1 so that a ≡ b (mod n). We call b the residue
of a modulo n and write b = (a mod n).
Quick facts:

- A number and its negative are usually not congruent: 2 6≡ (−2) (mod 9), since
2− (−2) = 4 is not a multiple of 9. This is the source of many mistakes.

- Suppose a ≡ b and c ≡ d (mod n). Then

a+ c ≡ b+ d (mod n) and a · c ≡ b · d (mod n)

- Dividing is not so simple:

6 ≡ 36 (mod 10), but dividing by 2 would give 3 ≡ 18 (mod 10) which is not true!

The problem above is that 2 divides 10 (think about it). We can do two things:
– Divide by a number k relatively prime to n: 6 ≡ 36 (mod 10) so dividing by 3

gives 2 ≡ 12 (mod 10).
– Divide all three numbers by a number k which is a divisor of n: 6 ≡ 36 (mod 10)

so dividing by 2 gives 3 ≡ 18 (mod 5).
- You can also reduce n alone: 7 ≡ 13 (mod 6) =⇒ 7 ≡ 13 (mod 3). But this does

not work in the opposite direction: 13 ≡ 16 (mod 3), but 13 6≡ 16 (mod 6).
- To compute exponents we use Euler’s Theorem:

If a is relatively prime to n, then aϕ(n) ≡ 1 (mod n).

(Here, ϕ(a) is the number of integers between 1 and n, relatively prime to n.)
- A useful result concerning factorials is Wilson’s Theorem:

The number p is a prime if and only if (p− 1)! ≡ −1 (mod p).

Examples: (a) If p = 6, Wilson’s Theorem fails:

(6− 1)! = 120 ≡ 0 (mod 6).

But if p = 7,

(7− 1)! = 720 = 102 · 7 + 6 ≡ 6 ≡ (−1) (mod 7).

(b) To compute the residue 44444444 mod 18, we notice 4444 ≡ 16 (mod 18).

44444444 ≡ 164444 ≡ (−2)4444 ≡ 42222 (mod 18)

We cannot use Euler’s Theorem because 4 and 18 are not relatively prime,
but we can break the above into two congruences (note that ϕ(9) = 6):

42222 ≡ 0 (mod 2) , 42222 ≡ 4370·6+2 ≡ 1 · 42 ≡ 7 (mod 9)

so the residue modulo 18 we seek is even and congruent to 7 modulo 9:

44444444 ≡ 16 (mod 18).



Inverses: The other use of Euler’s Theorem is to compute inverses modulo n. For instance,
if we need to find a value b such that 3 ·b ≡ 1 (mod 29), we recall that 3ϕ(29) ≡ 1
(mod 29) and ϕ(29) = 28, to get 3 · 327 ≡ 1 (mod 29) so b = 327 does the trick.
There are two serious difficulties.

- Not all numbers a have an inverse modulo n. Since we rely on Euler’s
Theorem, it is necessary that a and n are relatively prime: 2 · b ≡ 1
(mod 4) is impossible.

- The number 327 is too big!! The fastest way to reduce such an exponent
is to express it in binary, 327 ≡ 316+8+2+1, and then compute the residues
of consecutive squares:

32 ≡ 9 (mod 29)
34 = 92 = 81 ≡ −6 (mod 29)
38 ≡ (−6)2 = 36 ≡ 7 (mod 29)

316 ≡ 72 = 49 ≡ 20 (mod 29)

Then we simply compute

327 = 316 · 38 · 32 · 31 ≡ 20 · 7 · 9 · 3 = 3780 ≡ 10 (mod 29)

and sure enough, 3 · 10 ≡ 1 (mod 29), so b = 10 is a (small and man-
ageable) inverse of 3 modulo 29.

The inverse of a modulo n is usually written
(

1
a

)
n
, but remember that this

actually represents an integer.

Chinese Remainder Theorem:

Let n1, . . . , nr be pairwise relatively prime positive integers. Then there is a solution
to the system of equations

x ≡ b1 (mod n1)
...

...
x ≡ br (mod nr)

Here is an example of how to construct the solution. Find an integer x such that

x ≡ 3 (mod 5)
x ≡ 7 (mod 8)
x ≡ 2 (mod 11).

A solution will be

x = 3 · (8 · 11) · ( 1
8·11

)
5

+ 7 · (5 · 11) · ( 1
5·11

)
8

+ 2 · (8 · 5) · ( 1
8·5
)

11

To confirm this, check the residue of x modulo 5 (to test the first equation). The first term
is congruent to 3 because 8 · 11 cancels with its inverse. The other two terms are 0 becase
they contain the factor 5. Then x ≡ 3 (mod 5) and the other two equations are satisfied
similarily.

Now we just need to compute all the inverses to obtain the value of x.(
1

8·11

)
5
≡ (8 · 11)3 = 883 ≡ 33 = 27 ≡ 2 (mod 5)(

1
5·11

)
8
≡ (5 · 11)3 = 553 = (−1)3 = 7 (mod 8)(

1
8·5
)

11
≡ (8 · 5)9 = 409 ≡ 79 = 494 · 7 ≡ 54 · 7 = 252 · 7 ≡ 32 · 7 = 63 ≡ 8 (mod 11)

Then x = (3 · 8 · 11 · 2) + (7 · 5 · 11 · 7) + (2 · 8 · 5 · 8) = 3863. The smallest solution is the
residue of 3863 modulo 5 · 8 · 11 = 440; that is, 343. Try it!



1. Compute the residue obtained when dividing 1! + 2! + . . .+ 100! by 15.

2. Let p ≥ 5 be a prime. Show that p2 − 1 is divisible by 24.

3. Suppose that n is an integer divisible by 24. Show that the sum of all the positive
divisors of n− 1 (including 1 and n− 1) is also divisible by 24.

4. A perfect square has tail n if its last n digits in base 10 are the same and non-zero.
What is the longest possible tail? What is the smallest square with this tail?

5. Let T be a set of 20 numbers selected from {1, 4, 7, 10, 13, 16, . . . , 100}. Show that
we can find two distinct elements of T whose sum is 104.

6. Find the smallest natural number n which ends in 6 when written in base 10, and
such that if the final 6 is moved to the front of the number, the result is 4n.

7. (a) Find all natural numbers n for which 7 divides 2n − 1.
(b) Prove that there is no natural number n for which 7 divides 2n + 1.

8. Find all positive integers n such that the set {n, n+ 1, n+ 2, n+ 3, n+ 4, n+ 5} can
be partitioned into two subsets so that the product of the numbers in each subset is
equal.

9. The sequence an is defined by a1 = 2, an+1 = a2
n − an + 1. Show that any pair of

values in the sequence are relatively prime.

10. Let an be the sequence defined by a1 = 3, an+1 = 3an . Let bn be the remainder when
an is divided by 100. What is b2004?


