
Parity

The number 2 is very important in mathematical contests. Many problems can be solved
simply by finding some quantities for which we can determine the parity; i.e., whether they
are even or odd. If this sounds like an exaggeration, consider this problem:

Putnam 1973 A1: Given 9 points in 3-dimensional space with integer coordinates, show
that one can select two of these points so that the segment in between them contains another
point of integer coordinates.

Here is how one may go about discovering a solution: “Hmm! A point in the segment
between two other points. . . What about the mid-point? At least I know how to find its coor-
dinates; if the coordinates of the two given points are (x1, y1, z1) and (x2, y2, z2), the mid-point
is (x1+x2
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). How could I force these coordinates to be integers? Well, x1 +x2 must

be even, so x1 must have the same parity as x2. For the same reason, I need that y1 has the
same parity as y2, and z1 the same parity as z2. Ok, can I guarantee that this will happen
for two of the 9 given points? The total of different parity choices (even/odd for x, even/odd
for y, and even/odd for z) for 3 coordinates is 23 = 8. Ah! there are 9 points, that is one
too many, so two of them must have coordinates of the same parity.”

Solution in final form:
There are 23 = 8 choices for the parity of the 3 (integer) coordinates of a point in space.

Since 9 points are given, two of them, A = (x1, y1, z1) and B = (x2, y2, z2), must have the
same parity on each coordinate according to the pigeon-hole principle. Then the mid-point
of the segment between A and B is (x1+x2
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) and its coordinates are integers.

———————– ◦ ———————–

The first theorem usually proved in a graph theory course has to do with evenness and
oddness of numbers. The proof will illustrate again how to take advantage of parity. The
result may also be useful on its own:

Consider a graph G with no loops. Let r be the number of vertices
with an odd number of edges. Then r is even.

As an example, the graph on the right has 4 odd vertices. 1 with one edge,
2 with three edges, and 1 with 5 edges.

Proof: We count the number s of “edge tips.” Since each edge has two extremes, s is twice
the number of edges, so s is even.

We can also find s by adding the edge tips around each vertex. Of course the vertices with
an even number of edges contribute an even amount to the value of s. Since the vertices with
an odd number of vertices contribute an odd amount to s, there must be an even number of
them so that s is even.

Problems −→



1. Remove the lower-left and upper-right corners of an 8×8 chessboard. Can the result-
ing board be covered with 31 dominoes so that each domino covers 2 adjacent squares?

2. Suppose f(x) is a polynomial with integer coefficients and such that f(1) = 3. Can
it happen that f(3) = 0?

3. For any pythagorean triple (a, b, c) (i.e. numbers satisfying a2 + b2 = c2), prove that
abc is even.

4. Let A = [aij] be the n×n matrix whose entries are aii = 2i+1 and aij = (i+j)2+i−j
(when i 6= j). Prove that A is invertible.

5. (Putnam 2002 A3): Let n ≥ 2 be an integer and Tn the number of non-empty subsets
S of {1, 2, . . . , n} with the property that the average of the elements in S is an integer.
Prove that Tn − n is even.


