MINIMAL FREE RESOLUTIONS OF LINEAR EDGE IDEALS

RI-XIANG CHEN
DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NY 14853

Abstract

We construct minimal free resolutions for all edge ideals which have a linear free resolution.

1. Introduction

Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over a field k. In this paper we consider minimal free resolutions of quadratic monomial ideals in S. By polarization, the study of such resolutions is equivalent to the study of the resolutions of squarefree quadratic monomial ideals, that is, edge ideals. Such an ideal can be easily encoded in a graph as follows: let G be a simple graph with vertices x_{1}, \ldots, x_{n}, then the edge ideal I_{G} of the graph G is the monomial ideal in S generated by $\left\{x_{i} x_{j} \mid\left\{x_{i}, x_{j}\right\}\right.$ is an edge of $\left.G\right\}$. The general goal is to relate the properties of the minimal free resolution of I_{G} and the combinatorial properties of the graph G. In 1990, Fröberg [Fr] proved that I_{G} has a linear free resolution if and only if the complement graph \bar{G} is chordal (see Definition 2.1). Because of this, I_{G} is called a linear edge ideal if \bar{G} is chordal.

Minimal free resolutions were constructed for the following two classes of linear edge ideals. In [CN], Corso and Nagel used cellular resolutions to get the minimal free resolutions of the linear edge ideals I_{G} where G is a Ferrers graph. In [Ho], Horwitz constructed the minimal free resolutions of the linear edge ideals I_{G} provided that G does not contain an ordered subgraph of the form

$$
\text { with } \quad a<b<c<d,
$$

which is called the pattern Γ in [Ho]. However, from Example 3.18 in [Ho], we see that if \bar{G} is complicated, then it may be impossible to satisfy the Γ avoidance condition. In Construction 3.4 and Theorem 3.7 we provide the minimal free resolutions of all linear edge ideals. The construction is different than the one in [Ho] and the following paragraph explains the difference.

In 1990, Eliahou and Kervaire [EK] constructed the minimal free resolutions of Borel ideals. In 1995, Charalambous and Evans [CE] noted that the EliahouKervaire resolution can be obtained by using iterated mapping cones. Then in 2002, Herzog and Takayama [HT] used the iterated mapping cone construction to obtain the minimal free resolutions of monomial ideals which have linear quotients and satisfy some regularity condition. Following this idea, in 2007, Horwitz [Ho] constructed the minimal free resolutions of a class of linear edge ideals. In [HT] and
[Ho], the constructions are based on induction on the number of generators of the monomial ideal and the resolutions are similar to the Eliahou-Kervaire resolution. In this paper we use the mapping cone construction in a new way: (1) we use induction on the number of variables, that is the number of vertices of $G ;(2)$ in each induction step, we use the mapping cone construction twice. Consequently, the minimal free resolution in this paper is very different from the Eliahou-Kervaire resolution and is not a modification of the resolution obtained in [Ho] (See Remark 3.12).

Another thing that plays an important role in our construction is the notion of a perfect elimination order (See Definition 2.1) of a chordal graph. From [Di] and [HHZ], we know that every chordal graph has a perfect elimination order on the set of vertices; conversely, it is easy to see that if a simple graph has a perfect elimination order then it is chordal. Therefore, a simple graph is chordal if and only if it has a perfect elimination order. In general, given a chordal graph, there are many perfect elimination orders. In section 2 we give an algorithm (Algorithm 2.2) to produce a special perfect elimination order on the vertices of a chordal graph. This special perfect elimination order has a nice property (Lemma 3.2) and will be used in the construction of the minimal free resolutions of linear edge ideals.

In section 3 we construct the minimal free resolutions of linear edge ideals and Theorem 3.7 is the main result of this paper.

In section 4 we prove $d^{2}=0$ case by case, where d is the differential defined in Construction 3.4. The proof is not difficult but very long.

Section 5 gives a nice formula (Corollary 5.2) for calculating the Betti numbers of linear edge ideals and the formula works for any perfect elimination order of \bar{G}. Finally, in Corollary 5.4, we use our method to prove another Betti number formula obtained by Roth and Van Tuyl in [RV] (see also [HV]).
Acknowledgments. The author is thankful to Irena Peeva for providing the idea of using induction on the number of vertices and two mapping cones to find minimal free resolutions of all linear edge ideals. The author also thanks the referee for the valuable suggestions.

2. Perfect Elimination Orders

In this section we use H to denote a chordal graph. In the other sections of this paper, we have $H=\bar{G}$.
Definition 2.1. Let H be a simple graph with vertices x_{1}, \ldots, x_{n}. We write $x_{i} x_{j} \in H$ if $\left\{x_{i}, x_{j}\right\}$ is an edge of H. We say that $C=\left(x_{j_{1}} x_{j_{2}} \ldots x_{j_{r}}\right)$ is a cycle of H of length r if $x_{j_{i}} \neq x_{j_{l}}$ for all $1 \leq i<l \leq r$ and $x_{j_{i}} x_{j_{i+1}} \in H$ for all $1 \leq i \leq r\left(\right.$ where $x_{j_{r+1}}=x_{j_{1}}$). A chord in the cycle C is an edge between two non-consecutive vertices in the cycle. We say that H is a chordal graph if every cycle of length >3 in H has a chord. The order x_{1}, \ldots, x_{n} on the vertices of H is called a perfect elimination order if the following condition is satisfied: for any $1 \leq i<j<l \leq n$, if $x_{i} x_{j} \in H$ and $x_{i} x_{l} \in H$, then $x_{j} x_{l} \in H$.

The perfect elimination orders we will use in sections 3 and 4 are given by the following algorithm.

Algorithm 2.2. Let H be a chordal graph with vertices x_{1}, \ldots, x_{n}. Let Σ be a set containing a sequence of sets.
Input: $\Sigma=\left\{\left\{x_{1}, \ldots, x_{n}\right\}\right\}, i=n+1$.

Step 1: Choose and remove a vertex v from the first set in Σ. Set $i:=i-1$ and $v_{i}:=v$. If the first set in Σ is now empty, remove it from Σ. Go to setp 2.
Step 2: If $\Sigma=\emptyset$, stop. If $\Sigma \neq \emptyset$, suppose $\Sigma=\left\{S_{1}, S_{2}, \ldots, S_{r}\right\}$. For any $1 \leq j \leq r$, replace the set S_{j} by two sets T_{j} and T_{j}^{\prime} such that $S_{j}=T_{j} \cup T_{j}^{\prime}, T_{j} \cap T_{j}^{\prime}=\emptyset, v_{i} w \in H$ for any $w \in T_{j}$ and $v_{i} w^{\prime} \notin H$ for any $w^{\prime} \in T_{j}^{\prime}$. Now we set

$$
\Sigma:=\left\{T_{1}, T_{2}, \ldots, T_{r}, T_{1}^{\prime}, T_{2}^{\prime}, \ldots, T_{r}^{\prime}\right\}
$$

Remove all the empty sets from Σ. Go back to step 1 .
Output: v_{1}, \ldots, v_{n}.
Remark 2.3. The above algorithm is a modification of an algorithm of Rose-Tarjan-Lueker. In section 5.2 of [RTL], they set

$$
\Sigma:=\left\{T_{1}, T_{1}^{\prime}, T_{2}, T_{2}^{\prime}, \ldots, T_{r}, T_{r}^{\prime}\right\}
$$

The reason we difine Σ differently in Algorithm 2.2 is illustrated in Example 2.6 and Lemma 3.2.

Before proving Theorem 2.5, we make the following observation.
Lemma 2.4. Let v_{1}, \ldots, v_{n} be an output of Algorithm 2.2. If $v_{i} v_{l} \in H, v_{j} v_{l} \notin H$ and $i<j<l$, then there exists λ with $j<\lambda<l$ such that $v_{i} v_{\lambda} \notin H$ and $v_{j} v_{\lambda} \in H$.

Proof. Since $v_{i} v_{l} \in H, v_{j} v_{l} \notin H$ and $i<j<l$, it follows from the algorithm that after v_{l} is taken from the first set of Σ, v_{i} and v_{j} will be in different sets of Σ and the set containing v_{i} is before the set containing v_{j}. If there does not exist $j<\lambda<l$ such that $v_{i} v_{\lambda} \notin H$ and $v_{j} v_{\lambda} \in H$, then after v_{j+1} is taken from the first set of Σ, the set containing v_{i} is still before the set containing v_{j} and in particular, v_{j} is not in the first set of the new Σ. So after removing v_{j+1} we need to remove a vertex different from v_{j}, which is a contradiction. So there must exist $j<\lambda<l$ such that $v_{i} v_{\lambda} \notin H$ and $v_{j} v_{\lambda} \in H$.

Theorem 2.5. The output of Algorithm 2.2 is a perfect elimination order of the chordal graph H.
Proof. First, we see that v_{1}, \ldots, v_{n} is a reordering of the vertices x_{1}, \ldots, x_{n} of H. To show that v_{1}, \ldots, v_{n} is a perfect elimination order, we need only show that for any $1 \leq i<j<l \leq n$, if $v_{i} v_{j} \in H$ and $v_{i} v_{l} \in H$, then $v_{j} v_{l} \in H$. Assume to the contrary that $v_{j} v_{l} \notin H$.

Since $v_{i} v_{l} \in H, v_{j} v_{l} \notin H$ and $i<j<l$, Lemma 2.4 implies that there exists $j<\lambda_{1}<l$ such that $v_{i} v_{\lambda_{1}} \notin H$ and $v_{j} v_{\lambda_{1}} \in H$. And we choose the largest λ_{1} which satisfies this property. If $v_{\lambda_{1}} v_{l} \in H$, then $\left(v_{i} v_{j} v_{\lambda_{1}} v_{l}\right)$ is a cycle of length 4 with no chord, which contradicts to the assumption that H is chordal. So $v_{\lambda_{1}} v_{l} \notin H$.

Since $v_{i} v_{l} \in H, v_{\lambda_{1}} v_{l} \notin H$ and $i<\lambda_{1}<l$, Lemma 2.4 implies that there exists $\lambda_{1}<\lambda_{2}<l$ such that $v_{i} v_{\lambda_{2}} \notin H$ and $v_{\lambda_{1}} v_{\lambda_{2}} \in H$. And we choose the largest λ_{2} which satisfies this property. Note that by the choice of λ_{1}, we have that $v_{j} v_{\lambda_{2}} \notin H$. If $v_{\lambda_{2}} v_{l} \in H$, then $\left(v_{i} v_{j} v_{\lambda_{1}} v_{\lambda_{2}} v_{l}\right)$ is a cycle of length 5 with no chord, which contradicts to the assumption that H is chordal. So $v_{\lambda_{2}} v_{l} \notin H$.

Since $v_{i} v_{l} \in H, v_{\lambda_{2}} v_{l} \notin H$ and $i<\lambda_{2}<l$, Lemma 2.4 implies that there exists $\lambda_{2}<\lambda_{3}<l$ such that $v_{i} v_{\lambda_{3}} \notin H$ and $v_{\lambda_{2}} v_{\lambda_{3}} \in H$. And we choose the largest λ_{3} which satisfies this property. Note that by the choices of λ_{1} and λ_{2}, we have that $v_{j} v_{\lambda_{3}} \notin H$ and $v_{\lambda_{1}} v_{\lambda_{3}} \notin H$. If $v_{\lambda_{3}} v_{l} \in H$, then $\left(v_{i} v_{j} v_{\lambda_{1}} v_{\lambda_{2}} v_{\lambda_{3}} v_{l}\right)$ is a cycle of
length 6 with no chord, which contradicts to the assumption that H is chordal. So $v_{\lambda_{3}} v_{l} \notin H$.

Proceeding in the same way, we get an infinite sequence of vertices $v_{\lambda_{1}}, v_{\lambda_{2}}$, $v_{\lambda_{3}}, \ldots$ such that $\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots$. This is a contradiction because there are only finitely many vertices. So $v_{j} v_{l} \in H$ and we are done.

The following example illustrates the difference among different perfect elimination orders.

Example 2.6. Let H be the following chordal graph.

Then $x_{7}, x_{6}, x_{5}, x_{1}, x_{4}, x_{2}, x_{3}$ is a perfect elimination order of H, but it can not be produced by Algorithm 2.2 or the algorithm in [RTL]; $x_{7}, x_{5}, x_{6}, x_{4}, x_{3}, x_{2}, x_{1}$ is a perfect elimination order which can be produced by the algorithm in [RTL] ; $x_{7}, x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, x_{1}$ is a perfect elimination order which is produced by Algorithm 2.2.

If we compare these three perfect elimination orders, the third one looks nicer in the sense that there is no unnecessary "jump" in the perfect elimination order. Here, "jump" means going from one branch of the star-shaped graph H to another branch. For example, in the first perfect elimination order, x_{5} is followed by x_{1} instead of x_{4}; in the second perfect elimination order, x_{7} is followed by x_{5} instead of x_{6}. However, in the third perfect elimination order, this kind of "jump" does not happen unless it is necessary, say, x_{6} is followed by x_{5}. This nice property of the perfect elimination orders produced by Algorithm 2.2 is reflected in Lemma 3.2 .

3. Construction of the Resolution

Let G be a simple graph with vertices x_{1}, \ldots, x_{n}. The complement graph \bar{G} of G is the simple graph with the same vertex set whose edges are the non-edges of G. The subgraph of G induced by vertices $x_{i_{1}}, \ldots, x_{i_{r}}$ for some $1 \leq i_{1}<\cdots<i_{r} \leq n$ is the simple graph with the vertices $x_{i_{1}}, \ldots, x_{i_{r}}$ and the edges that connect them in G. We define the preneighborhood of a vertex x_{j} in G to be the set

$$
\operatorname{pnbhd}\left(x_{j}\right)=\left\{x_{i} \mid i<j, x_{i} x_{j} \in G\right\} .
$$

The following two lemmas will be important in section 3 and section 4 .
Lemma 3.1. Let G be a simple graph with vertices x_{1}, \ldots, x_{n} such that \bar{G} is chordal. Let x_{1}, \ldots, x_{n} be in the reverse order of a perfect elimination order of \bar{G}. For any $1 \leq i<j<l \leq n$, if $x_{i} x_{j} \in G$, then $x_{i} x_{l} \in G$ or $x_{j} x_{l} \in G$. In particular, if $\operatorname{pnbhd}\left(x_{i}\right) \nsubseteq \operatorname{pnbhd}\left(x_{j}\right)$ for some $1 \leq i<j \leq n$ then $x_{i} x_{j} \in G$.

Proof. Assume to the contrary that $x_{i} x_{l} \notin G$ and $x_{j} x_{l} \notin G$, then $x_{i} x_{l} \in \bar{G}$ and $x_{j} x_{l} \in \bar{G}$. Since x_{1}, \ldots, x_{n} is in the reverse order of a perfect elimination order of \bar{G}, we have $x_{i} x_{j} \in \bar{G}$, and hence $x_{i} x_{j} \notin G$, which is a contradiction.

Lemma 3.2. Let G be a simple graph with vertices x_{1}, \ldots, x_{n} such that \bar{G} is chordal. Let x_{1}, \ldots, x_{n} be in the reverse order of a perfect elimination order of \bar{G} produced by Algorithm 2.2.
(1) If $x_{i} x_{j} \in \bar{G}$ for some $i<j$, then for any $i<t \leq j$ we have pnbhd $\left(x_{i}\right) \subseteq$ $\operatorname{pnbh} d\left(x_{t}\right)$ in G.
(2) If $\operatorname{pnbhd}\left(x_{i}\right) \nsubseteq \operatorname{pnbh} d\left(x_{t}\right)$ in G for some $i<t$, then $x_{i} x_{j} \in G$ for all $j \geq t$.

Proof. Note that part (1) and part (2) are equivalent, so we only need to prove part (1). Assume to the contrary that there exists $i<t \leq j$ such that $\operatorname{pnbhd}\left(x_{i}\right) \nsubseteq$ $\operatorname{pnbhd}\left(x_{t}\right)$ in G. We choose the minimal t which satisfies this property. Then there exists $l<i$ such that $x_{l} x_{i} \notin \bar{G}, x_{l} x_{t} \in \bar{G}$. Since x_{1}, \ldots, x_{n} is in the reverse order of a perfect elimination order of \bar{G}, we must have that $x_{i} x_{t} \notin \bar{G}$ and in particular $t \neq j$. Now since $x_{i} x_{t} \notin \bar{G}, x_{i} x_{j} \in \bar{G}$ and $i<t<j$, Lemma 2.4 implies that there exists $i<m<t$ such that $x_{m} x_{t} \in \bar{G}, x_{m} x_{j} \notin \bar{G}$. However, $x_{m} x_{t} \in \bar{G}, x_{l} x_{t} \in$ \bar{G} and $l<m<t$ imply that $x_{l} x_{m} \in \bar{G}$, so that $\operatorname{pnbhd}\left(x_{i}\right) \nsubseteq \operatorname{pnbhd}\left(x_{m}\right)$ and $i<m<t<j$, which contradicts to the minimality of t. So for all $i<t \leq j$, $\operatorname{pnbhd}\left(x_{i}\right) \subseteq \operatorname{pnbhd}\left(x_{t}\right)$ in G.

Let G be a simple graph with vertices x_{1}, \ldots, x_{n}. The edge ideal I_{G} of the graph G is the monomial ideal in the polynomial ring $S=k\left[x_{1}, \ldots, x_{n}\right]$ with the minimal generating set $\left\{x_{i} x_{j} \mid x_{i} x_{j} \in G\right\}$. An important result about edge ideals was obtained by Fröberg in [Fr].

Theorem 3.3 (Fröberg). Let I_{G} be the edge ideal of a simple graph G. Then I_{G} has a linear free resolution if and only if \bar{G} is chordal.

By the above theorem, the edge ideal I_{G} of a simple graph G is called a linear edge ideal if \bar{G} is chordal. The goal of this section is to construct the minimal free resolution of S / I_{G} where I_{G} is a linear edge ideal.

Construction 3.4. Let G be a simple graph with vertices x_{1}, \ldots, x_{n} such that \bar{G} is chordal. Let x_{1}, \ldots, x_{n} be in the reverse order of a perfect elimination order of \bar{G} produced by Algorithm 2.2.

If $p \geq 1, q \geq 1,1 \leq i_{1}<\cdots<i_{p}<j_{1}<\cdots<j_{q} \leq n$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq$ $\operatorname{pnbhd}\left(x_{j_{1}}\right)$, then the symbol $\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)$ will be used to denote the generator of the free S-module $S\left(-x_{i_{1}} \cdots x_{i_{p}} x_{j_{1}} \cdots x_{j_{q}}\right)$ in homological degree $p+$ $q-1$ and multidegree $x_{i_{1}} \cdots x_{i_{p}} x_{j_{1}} \cdots x_{j_{q}}$. We set
$\mathcal{B}=\{1\} \cup \bigcup_{p \geq 1, q \geq 1}\left\{\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right): \begin{array}{l}1 \leq i_{1}<\cdots<i_{p}<j_{1}<\cdots<j_{q} \leq n \\ \left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{1}}\right)\end{array}\right\}$.

We define the map d on the set \mathcal{B} by $d(1)=1, d\left(x_{i_{1}} \mid x_{j_{1}}\right)=x_{i_{1}} x_{j_{1}}$, and for $p+q \geq 3$,

$$
\begin{aligned}
& d\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \\
& =\sum_{s=1}^{p}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \\
& +\sum_{t=1}^{q}(-1)^{t+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right) \\
& +\sum_{s=1}^{p}(-1)^{s+1+\beta} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{p} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)
\end{aligned}
$$

where $\beta=\min \left\{t \mid 2 \leq t \leq q,\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\}$.
Note that if $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)$ for all $1 \leq t \leq q$, then β does not exist and there are no β terms in the above formula. Also, if $p+q \geq 3$, then the formula of d may yield symbols which are not in \mathcal{B} and we will regard them as zeros. And Lemma 3.2 implies that for any $1 \leq t \leq \beta-1$ and $\beta \leq t^{\prime} \leq q$, we have $x_{j_{t}} x_{j_{t^{\prime}}} \in G$.
Example 3.5. The following are some examples for the formula of d.
(1). If $p \geq 2$ and $q=1$, then just like the Koszul complex, we have that

$$
d\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}\right)=\sum_{s=1}^{p}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}\right)
$$

(2). If $p \geq 2, q=3,\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \backslash \operatorname{pnbhd}\left(x_{j_{2}}\right)=\left\{x_{i_{1}}\right\}$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq$ $\operatorname{pnbhd}\left(x_{j_{3}}\right)$, then $\beta=2$ and a computation will reveal that

$$
\begin{aligned}
& d\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, x_{j_{2}}, x_{j_{3}}\right) \\
& =x_{i_{1}}\left[\left(x_{i_{2}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, x_{j_{2}}, x_{j_{3}}\right)+\left(x_{i_{2}}, \ldots, x_{i_{p}}, x_{j_{1}} \mid x_{j_{2}}, x_{j_{3}}\right)\right] \\
& +\sum_{s=2}^{p}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{s}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, x_{j_{2}}, x_{j_{3}}\right) \\
& +(-1)^{2+p} x_{j_{2}}\left[\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, x_{j_{3}}\right)+\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}} \mid x_{j_{3}}\right)\right] \\
& +(-1)^{3+p} x_{j_{3}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, x_{j_{2}}\right) .
\end{aligned}
$$

(3). If $p \geq 2, q \geq 4, \beta=3,\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \backslash \operatorname{pnbhd}\left(x_{j_{3}}\right)=\left\{x_{i_{1}}, x_{i_{2}}\right\}$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{4}}\right)$, then a computation will reveal that

$$
\begin{aligned}
d\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)= & \sum_{s=1}^{p}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \\
& +\sum_{t=1}^{q}(-1)^{t+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right) .
\end{aligned}
$$

Lemma 3.6. Let d be the map defined in Construction 3.4. Then $d^{2}=0$.
The proof of the above lemma is very long and is given in section 4. The next theorem is the main result of this paper.

Theorem 3.7. Let \mathbf{F} be the multigraded complex of free S-modules with basis \mathcal{B} and differential d as defined in Construction 3.4. Then \mathbf{F} is the minimal free resolution of S / I_{G}.

Proof. We prove by induction on the number of vertices of the graph G. If G has one or two vertices then it is clear. Now as in Construction 3.4, let G have vertices x_{1}, \ldots, x_{n} with $n \geq 3$.

If $\operatorname{pnbhd}\left(x_{n}\right)=\bar{\emptyset}$ in G, then $x_{i} x_{n} \in \bar{G}$ for all $1 \leq i \leq n-1$. Since x_{1}, \ldots, x_{n} is in the reverse order of a perfect elimination order of $\overline{\bar{G}}$, it follows that \bar{G} is a complete graph, so that G has no edges. Hence $I_{G}=(0)$ and there is nothing to prove. Next we will assume that $\operatorname{pnbhd}\left(x_{n}\right)=\left\{x_{\lambda_{1}}, \ldots, x_{\lambda_{r}}\right\}$ for some $1 \leq \lambda_{1}<\cdots<\lambda_{r} \leq n-1$.

Let G^{\prime} be the graph obtained from G by deleting the edges $x_{\lambda_{1}} x_{n}, \ldots, x_{\lambda_{r}} x_{n}$. Then I_{G} and $I_{G^{\prime}}$ are both edge ideals in S. Note that $\overline{G^{\prime}}$ is chordal. Indeed, it is easy to see that $x_{n}, x_{1}, x_{2}, \ldots, x_{n-1}$ is in the reverse order of a perfect elimination order of $\overline{G^{\prime}}$ produced by Algorithm 2.2. Setting $J=\left(x_{\lambda_{1}}, \ldots, x_{\lambda_{r}}\right) \subseteq S$, we have $I_{G}=I_{G^{\prime}}+x_{n} J$ and a natural short exat sequence

$$
0 \longrightarrow \frac{I_{G^{\prime}}+x_{n} J}{I_{G^{\prime}}} \longrightarrow \frac{S}{I_{G^{\prime}}} \longrightarrow \frac{S}{I_{G}}=\frac{S}{I_{G^{\prime}}+x_{n} J} \longrightarrow 0
$$

Note that $x_{n} J \cap I_{G^{\prime}}=x_{n} I_{G^{\prime}}$: indeed, by Lemma 3.1 we see that $I_{G^{\prime}} \subseteq J$ and hence $x_{n} I_{G^{\prime}} \subseteq x_{n} J \cap I_{G^{\prime}}$; on the other hand, if $x_{n} m \in I_{G^{\prime}}$ for some monomial $m \in J$, then $m \in I_{G^{\prime}}$, and hence $x_{n} J \cap I_{G^{\prime}} \subseteq x_{n} I_{G^{\prime}}$. Therefore,

$$
\frac{I_{G^{\prime}}+x_{n} J}{I_{G^{\prime}}} \cong \frac{x_{n} J}{x_{n} J \cap I_{G^{\prime}}}=\frac{x_{n} J}{x_{n} I_{G^{\prime}}}
$$

Let $G^{\prime \prime}$ be the subgraph of G induced by the vertices x_{1}, \ldots, x_{n-1}. Then $\overline{G^{\prime \prime}}$ is chordal and x_{1}, \ldots, x_{n-1} is in the reverse order of a perfect elimination order of $\overline{G^{\prime \prime}}$ produced by Algorithm 2.2. Let $S^{\prime}=k\left[x_{1}, \ldots, x_{n-1}\right] \subseteq S$. Then $I_{G^{\prime \prime}}$ is an edge ideal in the polynomial ring S^{\prime} and $I_{G^{\prime \prime}} S=I_{G^{\prime}}$. Set

$$
\mathcal{B}^{\prime}=\{1\} \cup \bigcup_{p \geq 1, q \geq 1}\left\{\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right): \begin{array}{l}
\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \in \mathcal{B} \\
j_{q} \leq n-1
\end{array}\right\}
$$

Suppose that \mathbf{L} is the multigraded complex of free S^{\prime}-modules with basis \mathcal{B}^{\prime} and differential $d_{\mathbf{L}}=d$ as defined in Construction 3.4, then by the induction hypothesis, \mathbf{L} is the minimal free resolution of $S^{\prime} / I_{G^{\prime \prime}}$. Let $\mathbf{F}^{\prime}=\mathbf{L} \bigotimes S$. Since $S=S^{\prime}\left[x_{n}\right]$ is a flat S^{\prime}-module, it follows that \mathbf{F}^{\prime} is the multigraded minimal free resolution of the S-module $S^{\prime} / I_{G^{\prime \prime}} \bigotimes S=S /\left(I_{G^{\prime \prime}} S\right)=S / I_{G^{\prime}}$, and \mathbf{F}^{\prime} has basis \mathcal{B}^{\prime} and differential $d^{\prime}=d_{\mathbf{L}}=d$ as in Construction 3.4. Setting

$$
\begin{aligned}
& \mathcal{A}=\left\{\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right):\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \in \mathcal{B}^{\prime}\right\} \\
& \mathcal{T}=\left\{\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{n}\right): p \geq 1,\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{n}\right)\right\}
\end{aligned}
$$

we have the disjoint union

$$
\mathcal{B}=\mathcal{B}^{\prime} \cup \mathcal{A} \cup \mathcal{T}
$$

Let $\mathbf{E}: \cdots \rightarrow E_{1} \rightarrow E_{0} \rightarrow x_{n} I_{G^{\prime}}$ be the multigraded minimal free resolution of $x_{n} I_{G^{\prime}}$ induced naturally by the minimal free resolution \mathbf{F}^{\prime} of $S / I_{G^{\prime}}$. Then \mathbf{E} has basis \mathcal{A} and the basis element $\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)$ is in homological degree $p+q-2$ in \mathbf{E}. We denote the differential of \mathbf{E} by $d_{\mathbf{E}}$. Note that $d_{\mathbf{E}}\left(x_{i_{1}} \mid\right.$ $\left.x_{j_{1}}, x_{n}\right)=x_{i_{1}} x_{j_{1}} x_{n}$. Let \mathbf{K} be the multigraded complex of free S-modules with basis \mathcal{T} and differential $-\partial=-d$ where d is as in Construction 3.4. Note that the
basis element $\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{n}\right)$ is in homological degree $p-1$ in \mathbf{K}. And it is easy to see that \mathbf{K} is the minimal free resolution of $x_{n} J$.

For any $\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) \in \mathcal{A}$, we have that

$$
\begin{aligned}
d\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) & =\mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) \\
& +\mu_{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) \\
& +\mu_{3}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)
\end{aligned}
$$

where $\mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)$ is the sum of the terms of $d\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid\right.$ $\left.x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)$ that contain basis elements in $\mathcal{A}, \mu_{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)$ is the sum of the terms that contain basis elements in \mathcal{T} and $\mu_{3}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid\right.$ $\left.x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)$ is the sum of the terms that contain basis elements in \mathcal{B}^{\prime}. Note that $\mu_{3}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=(-1)^{q+1+p} x_{n}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)$. And by the definition of d, we can check that if $p+q \geq 3$, then

$$
\mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=d_{\mathbf{E}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)
$$

We claim that $-\mu_{2}: \mathbf{E} \rightarrow \mathbf{K}$ is a multigraded complex map of degree 0 lifting the inclusion $\operatorname{map} \phi: x_{n} I_{G^{\prime}} \rightarrow x_{n} J$. Indeed, $\phi d_{\mathbf{E}}\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right)=x_{i_{1}} x_{j_{1}} x_{n}$, and

$$
\begin{aligned}
(-\partial)\left(-\mu_{2}\right)\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right) & = \begin{cases}\partial\left(x_{j_{1}}\left(x_{i_{1}} \mid x_{n}\right)\right), & \text { if } x_{i_{1}} x_{n} \in G \\
\partial\left(x_{i_{1}}\left(x_{j_{1}} \mid x_{n}\right)\right), & \text { if } x_{i_{1}} x_{n} \notin G\end{cases} \\
& =x_{i_{1}} x_{j_{1}} x_{n} .
\end{aligned}
$$

Hence, $\phi d_{\mathbf{E}}\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right)=(-\partial)\left(-\mu_{2}\right)\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right)$. Then we need to show that for $p+q \geq 3$,

$$
\left(-\mu_{2}\right) d_{\mathbf{E}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=(-\partial)\left(-\mu_{2}\right)\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)
$$

By Lemma 3.6, we have that

$$
\begin{align*}
0 & =d^{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) \tag{1}\\
& =\mu_{1} \mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)+\mu_{2} \mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) \\
& +\mu_{3} \mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)+\partial \mu_{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) \\
& +d \mu_{3}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) .
\end{align*}
$$

In the above formula, collecting the terms which contain basis elements in \mathcal{T}, we get

$$
\mu_{2} \mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)+\partial \mu_{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=0
$$

Since $\mu_{1}=d_{\mathbf{E}}$ for $p+q \geq 3$, it follows that

$$
\left(-\mu_{2}\right) d_{\mathbf{E}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=(-\partial)\left(-\mu_{2}\right)\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)
$$

and the claim is proved.
Let $\mathbf{F}^{\prime \prime}$ be the mapping cone $\mathrm{MC}\left(-\mu_{2}\right)$. Then $\mathbf{F}^{\prime \prime}: \cdots \rightarrow F_{1}^{\prime \prime} \rightarrow F_{0}^{\prime \prime} \rightarrow$ $x_{n} J / x_{n} I_{G^{\prime}}$ is a multigraded free resolution of $x_{n} J / x_{n} I_{G^{\prime}}$. Note that $F_{0}^{\prime \prime}=K_{0}$ and $F_{i}^{\prime \prime}=E_{i-1} \bigoplus K_{i}$ for $i \geq 1$. If we denote the differential of $\mathbf{F}^{\prime \prime}$ by $d^{\prime \prime}$, then $d_{0}^{\prime \prime}\left(x_{i_{1}} \mid x_{n}\right)=-\partial\left(x_{i_{1}} \mid x_{n}\right)=-x_{i_{1}} x_{n}, \quad d_{1}^{\prime \prime}\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right)=-\mu_{2}\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right)$, $d_{1}^{\prime \prime}\left(x_{i_{1}}, x_{i_{2}} \mid x_{n}\right)=-\partial\left(x_{i_{1}}, x_{i_{2}} \mid x_{n}\right)$, that is, $d_{1}^{\prime \prime}=\left(-\mu_{2},-\partial\right)$, and for $i \geq 2$,

$$
d_{i}^{\prime \prime}=\left(\begin{array}{cc}
-d_{\mathbf{E}} & 0 \\
-\mu_{2} & -\partial
\end{array}\right)=\left(\begin{array}{cc}
-\mu_{1} & 0 \\
-\mu_{2} & -\partial
\end{array}\right) .
$$

Since the differential matrices of $\mathbf{F}^{\prime \prime}$ have monomial entries, $\mathbf{F}^{\prime \prime}$ is the minimal free resolution of $x_{n} J / x_{n} I_{G^{\prime}} \cong\left(I_{G^{\prime}}+x_{n} J\right) / I_{G^{\prime}}$.

Next we define a map $\mu: \mathbf{F}^{\prime \prime} \rightarrow \mathbf{F}^{\prime}$ such that $\mu: F_{0}^{\prime \prime}=K_{0} \rightarrow F_{0}^{\prime}=S$ is given by $\mu\left(x_{i_{1}} \mid x_{n}\right)=x_{i_{1}} x_{n}$ and for $i \geq 1, \mu: F_{i}^{\prime \prime}=E_{i-1} \bigoplus K_{i} \rightarrow F_{i}^{\prime}$ is given by $\mu=\left(\mu_{3}, 0\right)$. We claim that $-\mu$ is a multigraded complex map of degree 0 lifting the inclusion $\operatorname{map} \psi:\left(I_{G^{\prime}}+x_{n} J\right) / I_{G^{\prime}} \rightarrow S / I_{G^{\prime}}$. Indeed, if $i=0$ then $\psi d_{0}^{\prime \prime}\left(x_{i_{1}} \mid x_{n}\right)=-x_{i_{1}} x_{n}$, $d_{0}^{\prime}(-\mu)\left(x_{i_{1}} \mid x_{n}\right)=-x_{i_{1}} x_{n}$, and hence $\psi d_{0}^{\prime \prime}=d_{0}^{\prime}(-\mu)$. If $i=1$ then

$$
\begin{aligned}
(-\mu) d_{1}^{\prime \prime}\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right) & =(-\mu)\left(-\mu_{2}\right)\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right) \\
& = \begin{cases}\mu\left(x_{j_{1}}\left(x_{i_{1}} \mid x_{n}\right)\right), & \text { if } x_{i_{1}} x_{n} \in G \\
\mu\left(x_{i_{1}}\left(x_{j_{1}} \mid x_{n}\right)\right), & \text { if } x_{i_{1}} x_{n} \notin G\end{cases} \\
& =x_{i_{1}} x_{j_{1}} x_{n}, \\
d_{1}^{\prime}(-\mu)\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right) & =d_{1}^{\prime}\left(x_{n}\left(x_{i_{1}} \mid x_{j_{1}}\right)\right) \\
& =x_{i_{1}} x_{j_{1}} x_{n}, \\
(-\mu) d_{1}^{\prime \prime}\left(x_{i_{1}}, x_{i_{2}} \mid x_{n}\right) & =(-\mu)(-\partial)\left(x_{i_{1}}, x_{i_{2}} \mid x_{n}\right) \\
& =\mu\left(x_{i_{1}}\left(x_{i_{2}} \mid x_{n}\right)-x_{i_{2}}\left(x_{i_{1}} \mid x_{n}\right)\right) \\
& =x_{i_{1} x_{i_{2}} x_{n}-x_{i_{2}} x_{i_{1}} x_{n}=0,} \\
d_{1}^{\prime}(-\mu)\left(x_{i_{1}}, x_{i_{2}} \mid x_{n}\right) & =d_{1}^{\prime}(0)=0,
\end{aligned}
$$

and hence $(-\mu) d_{1}^{\prime \prime}=d_{1}^{\prime}(-\mu)$. If $i \geq 2$ then it is easy to see that for $p \geq 3$,

$$
(-\mu) d_{i}^{\prime \prime}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{n}\right)=d_{i}^{\prime}(-\mu)\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{n}\right)=0
$$

so we need only to prove that for $p+q=i+1 \geq 3$,

$$
(-\mu) d_{i}^{\prime \prime}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=d_{i}^{\prime}(-\mu)\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)
$$

that is,

$$
\mu\left(-\mu_{1}-\mu_{2}\right)\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=d \mu_{3}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)
$$

Since $\mu \mu_{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=0$, it suffices to prove that

$$
-\mu_{3} \mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=d \mu_{3}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) .
$$

However, in formula (1), collecting the terms which contain basis elements in \mathcal{B}^{\prime}, we see that

$$
\mu_{3} \mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)+d \mu_{3}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=0
$$

and the claim is proved. So $\mu: \mathbf{F}^{\prime \prime} \rightarrow \mathbf{F}^{\prime}$ is a complex map lifting $-\psi:\left(I_{G^{\prime}}+\right.$ $\left.x_{n} J\right) / I_{G^{\prime}} \rightarrow S / I_{G^{\prime}}$, and it is eay to see that μ is multigraded of degree 0 .

Let \mathbf{F}^{*} be the mapping cone $\mathrm{MC}(\mu)$. Then $\mathbf{F}^{*}: \cdots \rightarrow F_{1}^{*} \rightarrow F_{0}^{*} \rightarrow \operatorname{coker}(-\psi)$ gives a multigraded free resolution of $\operatorname{coker}(-\psi)=S / I_{G}$. Note that $F_{0}^{*}=S$, $F_{1}^{*}=F_{0}^{\prime \prime} \bigoplus F_{1}^{\prime}=K_{0} \bigoplus F_{1}^{\prime}$ and for $i \geq 2, F_{i}^{*}=F_{i-1}^{\prime \prime} \bigoplus F_{i}^{\prime}=E_{i-2} \bigoplus K_{i-1} \bigoplus F_{i}^{\prime}$. If we denote the differential of \mathbf{F}^{*} by d^{*}, then $d_{0}^{*}(1)=1, d_{1}^{*}=\left(\mu, d_{1}^{\prime}\right)$,

$$
d_{2}^{*}=\left(\begin{array}{cc}
-d_{1}^{\prime \prime} & 0 \\
\mu & d_{2}^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
\mu_{2} & \partial & 0 \\
\mu_{3} & 0 & d
\end{array}\right)
$$

and for $i \geq 3$,

$$
d_{i}^{*}=\left(\begin{array}{cc}
-d_{i-1}^{\prime \prime} & 0 \\
\mu & d_{i}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\mu_{1} & 0 & 0 \\
\mu_{2} & \partial & 0 \\
\mu_{3} & 0 & d
\end{array}\right)
$$

Note that \mathbf{F}^{*} and \mathbf{F} have the same basis and the same differential. So $\mathbf{F}^{*}=\mathbf{F}$, and then \mathbf{F} is a multigraded free resolution of S / I_{G}. Since $d_{i}\left(F_{i}\right) \subseteq\left(x_{1}, \ldots, x_{n}\right) F_{i-1}$ for all $i \geq 1$, the resolution \mathbf{F} is minimal, and we are done.

Example 3.8. Let G be the following graph.

Then \bar{G} is chordal and $x_{1}, x_{2}, x_{3}, x_{4}$ is in the reverse order of a perfect elimination order of \bar{G} produced by Algorithm 2.2. Note that

$$
S=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right], \quad I_{G}=\left(x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{4}\right),
$$

$\operatorname{pnbhd}\left(x_{1}\right)=\emptyset, \operatorname{pnbhd}\left(x_{2}\right)=\left\{x_{1}\right\}, \operatorname{pnbhd}\left(x_{3}\right)=\left\{x_{1}\right\}, \operatorname{pnbhd}\left(x_{4}\right)=\left\{x_{1}, x_{2}\right\}$.
By Construction 3.4, the minimal free resolution of S / I_{G} has basis

$$
\begin{aligned}
& 1 ;\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right),\left(x_{1} \mid x_{2}, x_{3}\right),\left(x_{1} \mid x_{2}, x_{4}\right),\left(x_{1} \mid x_{2}\right) ; \\
& \left(x_{1} \mid x_{3}, x_{4}\right),\left(x_{1} \mid x_{3}\right) ;\left(x_{1}, x_{2} \mid x_{4}\right),\left(x_{1} \mid x_{4}\right),\left(x_{2} \mid x_{4}\right)
\end{aligned}
$$

And we have the map d such that

$$
\begin{aligned}
& d\left(x_{1} \mid x_{2}\right)=x_{1} x_{2}, \quad d\left(x_{1} \mid x_{3}\right)=x_{1} x_{3}, \\
& d\left(x_{1} \mid x_{4}\right)=x_{1} x_{4}, \quad d\left(x_{2} \mid x_{4}\right)=x_{2} x_{4}, \\
& d\left(x_{1} \mid x_{2}, x_{3}\right)=x_{2}\left(x_{1} \mid x_{3}\right)-x_{3}\left(x_{1} \mid x_{2}\right), \\
& d\left(x_{1} \mid x_{2}, x_{4}\right)=x_{2}\left(x_{1} \mid x_{4}\right)-x_{4}\left(x_{1} \mid x_{2}\right), \\
& d\left(x_{1} \mid x_{3}, x_{4}\right)=x_{3}\left(x_{1} \mid x_{4}\right)-x_{4}\left(x_{1} \mid x_{3}\right), \\
& d\left(x_{1}, x_{2} \mid x_{4}\right)=x_{1}\left(x_{2} \mid x_{4}\right)-x_{2}\left(x_{1} \mid x_{4}\right), \\
& d\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right)=x_{2}\left(x_{1} \mid x_{3}, x_{4}\right)-x_{3}\left(x_{1} \mid x_{2}, x_{4}\right)+x_{4}\left(x_{1} \mid x_{2}, x_{3}\right) .
\end{aligned}
$$

Therefore, the minimal free resolution of S / I_{G} is

$$
\begin{aligned}
0 \rightarrow S\left(-x_{1} x_{2} x_{3} x_{4}\right) \xrightarrow{d_{3}} S\left(-x_{1} x_{2} x_{3}\right) \oplus S\left(-x_{1} x_{2} x_{4}\right) \oplus S\left(-x_{1} x_{3} x_{4}\right) \oplus S\left(-x_{1} x_{2} x_{4}\right) \\
\quad \xrightarrow{d_{2}} S\left(-x_{1} x_{2}\right) \oplus S\left(-x_{1} x_{3}\right) \oplus S\left(-x_{1} x_{4}\right) \oplus S\left(-x_{2} x_{4}\right) \xrightarrow{d_{1}} S \rightarrow S / I_{G},
\end{aligned}
$$

where
$d_{3}=\left(\begin{array}{c}x_{4} \\ -x_{3} \\ x_{2} \\ 0\end{array}\right), d_{2}=\left(\begin{array}{cccc}-x_{3} & -x_{4} & 0 & 0 \\ x_{2} & 0 & -x_{4} & 0 \\ 0 & x_{2} & x_{3} & -x_{2} \\ 0 & 0 & 0 & x_{1}\end{array}\right), d_{1}=\left(\begin{array}{llll}x_{1} x_{2} & x_{1} x_{3} & x_{1} x_{4} & x_{2} x_{4}\end{array}\right)$.
Remark 3.9. In the above example, we have that $\operatorname{pnbhd}\left(x_{1}\right) \subseteq \operatorname{pnbhd}\left(x_{2}\right) \subseteq$ $\operatorname{pnbhd}\left(x_{3}\right) \subseteq \operatorname{pnbhd}\left(x_{4}\right)$. But in general, given a linear edge ideal I_{G}, there may not exist a perfect elimination order of \bar{G} such that its reverse order x_{1}, \ldots, x_{n} satisfies $\operatorname{pnbhd}\left(x_{i}\right) \subseteq \operatorname{pnbhd}\left(x_{i+1}\right)$ in G for $i=1, \ldots, n-1$. For example, if \bar{G} is the star-shaped chordal graph in Example 2.6, then we can check that \bar{G} has no perfect elimination order satisfying the above property. However, the following proposition says that if the above property is satisfied then the perfect elimination order of \bar{G} can be produced by Algorithm 2.2.

Proposition 3.10. Let G be a simple graph with vertices x_{1}, \ldots, x_{n} such that \bar{G} is chordal. Let x_{1}, \ldots, x_{n} be in the reverse order of a perfect elimination order of \bar{G} such that $\operatorname{pnbh} d\left(x_{i}\right) \subseteq \operatorname{pnbhd}\left(x_{i+1}\right)$ in G for $i=1, \ldots, n-1$. Then the perfect elimination order x_{n}, \ldots, x_{1} of \bar{G} can be produced by Algorithm 2.2.

Proof. First we choose $v_{n}=x_{1}$ in Algorithm 2.2. Since $\operatorname{pnbhd}\left(x_{2}\right) \subseteq \operatorname{pnbhd}\left(x_{j}\right)$ in G for any $2<j \leq n$, it follows that if $x_{1} x_{2} \notin \bar{G}$ then $x_{1} x_{j} \notin \bar{G}$ for all $2<$ $j \leq n$, so that in Algorithm 2.2 we can choose $v_{n-1}=x_{2}$. Now suppose that we have chosen $v_{n}=x_{1}, v_{n-1}=x_{2}, \ldots, v_{n-(i-2)}=x_{i-1}$ for some $3 \leq i \leq n$. Since $\operatorname{pnbhd}\left(x_{i}\right) \subseteq \operatorname{pnbhd}\left(x_{j}\right)$ in G for any $i<j \leq n$, it follows that for any $1 \leq l \leq i-1$, if $x_{l} x_{i} \notin \bar{G}$ then $x_{l} x_{j} \notin \bar{G}$ for all $i<j \leq n$, so that in Algorithm 2.2 we can choose $v_{n-(i-1)}=x_{i}$. So by using induction we see that x_{n}, \ldots, x_{1} can be the output of Algorithm 2.2 and we are done.

Remark 3.11. If the conditions in the above proposition are satisfied, then there will be no β terms in the differential formula. However, as we have seen in Remark 3.9 , the conditions in the above proposition can not always be satisfied, especially when \bar{G} is a complicated chordal graph. So in general, the β terms in the differential formula can not be avoided.

Remark 3.12. Let $G=K_{n}$ be the complete graph with n vertices x_{1}, \ldots, x_{n}. Then we have the Eliahou-Kervaire resolution of S / I_{G}. It is easy to see that the basis element $\left(x_{i} x_{j} ; i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{q}\right)$ with $i_{1}<\cdots<i_{p}<i<j_{1}<$ $\cdots<j_{q}<j$ in the Eliahou-Kervaire resolution corresponds naturally to the basis element $\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{i} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{j}\right)$ in Construction 3.4. But the differential maps defined on them are different. For example, if $G=K_{3}$, then $d\left(x_{2} x_{3} ; 1\right)=x_{1}\left(x_{2} x_{3} ; \emptyset\right)-x_{3}\left(x_{1} x_{2} ; \emptyset\right)$, but $d\left(x_{1}, x_{2} \mid x_{3}\right)=x_{1}\left(x_{2} \mid x_{3}\right)-x_{2}\left(x_{1} \mid x_{3}\right)$. So in the case of complete graphs, the resolution defined in Construction 3.4 does not recover the Eliahou-Kervaire resolution. By contrast, the resolution in [Ho] recovers the Eliahou-Kervaire resolution in the case of complete graphs.

4. The Proof of $d^{2}=0$

Before proving Lemma 3.6, we look at the following example.
Example 4.1. Let G be the graph such that \bar{G} is the chordal graph given in Example 2.6. Then $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}$ is in the reverse order of a perfect elimination order of \bar{G} produced by Algorithm 2.2. Note that in G,

$$
\operatorname{pnbhd}\left(x_{5}\right)=\left\{x_{1}, x_{2}, x_{3}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{6}\right)=\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\}
$$

Next we check that $d^{2}\left(x_{1}, x_{2}, x_{3} \mid x_{5}, x_{6}\right)=0$. In fact, by the definition of d, we have that

$$
\begin{aligned}
d\left(x_{1}, x_{2}, x_{3} \mid x_{5}, x_{6}\right)= & x_{1}\left(x_{2}, x_{3} \mid x_{5}, x_{6}\right)-x_{2}\left(x_{1}, x_{3} \mid x_{5}, x_{6}\right) \\
& +x_{3}\left[\left(x_{1}, x_{2} \mid x_{5}, x_{6}\right)+\left(x_{1}, x_{2}, x_{5} \mid x_{6}\right)\right]-x_{6}\left(x_{1}, x_{2}, x_{3} \mid x_{5}\right), \\
d\left(x_{1}\left(x_{2}, x_{3} \mid x_{5}, x_{6}\right)\right)= & x_{1} x_{2}\left(x_{3} \mid x_{5}, x_{6}\right)-x_{1} x_{3}\left[\left(x_{2} \mid x_{5}, x_{6}\right)+\left(x_{2}, x_{5} \mid x_{6}\right)\right] \\
& +x_{1} x_{6}\left(x_{2}, x_{3} \mid x_{5}\right), \\
d\left(-x_{2}\left(x_{1}, x_{3} \mid x_{5}, x_{6}\right)\right)= & -x_{2} x_{1}\left(x_{3} \mid x_{5}, x_{6}\right)+x_{2} x_{3}\left[\left(x_{1} \mid x_{5}, x_{6}\right)+\left(x_{1}, x_{5} \mid x_{6}\right)\right] \\
& -x_{2} x_{6}\left(x_{1}, x_{3} \mid x_{5}\right), \\
d\left(x_{3}\left(x_{1}, x_{2} \mid x_{5}, x_{6}\right)\right)= & x_{3} x_{1}\left(x_{2} \mid x_{5}, x_{6}\right)-x_{3} x_{2}\left(x_{1} \mid x_{5}, x_{6}\right) \\
& -x_{3} x_{5}\left(x_{1}, x_{2} \mid x_{6}\right)+x_{3} x_{6}\left(x_{1}, x_{2} \mid x_{5}\right), \\
d\left(x_{3}\left(x_{1}, x_{2}, x_{5} \mid x_{6}\right)\right)= & x_{3} x_{1}\left(x_{2}, x_{5} \mid x_{6}\right)-x_{3} x_{2}\left(x_{1}, x_{5} \mid x_{6}\right)+x_{3} x_{5}\left(x_{1}, x_{2} \mid x_{6}\right), \\
d\left(-x_{6}\left(x_{1}, x_{2}, x_{3} \mid x_{5}\right)\right)= & -x_{6} x_{1}\left(x_{2}, x_{3} \mid x_{5}\right)+x_{6} x_{2}\left(x_{1}, x_{3} \mid x_{5}\right)-x_{6} x_{3}\left(x_{1}, x_{2} \mid x_{5}\right) .
\end{aligned}
$$

So the sum of the terms in $d^{2}\left(x_{1}, x_{2}, x_{3} \mid x_{5}, x_{6}\right)$ containing $x_{1} x_{2}$ is

$$
x_{1} x_{2}\left(x_{3} \mid x_{5}, x_{6}\right)-x_{2} x_{1}\left(x_{3} \mid x_{5}, x_{6}\right)=0
$$

the sum of the terms in $d^{2}\left(x_{1}, x_{2}, x_{3} \mid x_{5}, x_{6}\right)$ containing $x_{1} x_{3}$ is

$$
-x_{1} x_{3}\left[\left(x_{2} \mid x_{5}, x_{6}\right)+\left(x_{2}, x_{5} \mid x_{6}\right)\right]+x_{3} x_{1}\left(x_{2} \mid x_{5}, x_{6}\right)+x_{3} x_{1}\left(x_{2}, x_{5} \mid x_{6}\right)=0
$$

and similarly, we have

$$
\begin{aligned}
& \qquad \begin{array}{l}
x_{2} x_{3}\left[\left(x_{1} \mid x_{5}, x_{6}\right)+\left(x_{1}, x_{5} \mid x_{6}\right)\right]-x_{3} x_{2}\left(x_{1} \mid x_{5}, x_{6}\right)-x_{3} x_{2}\left(x_{1}, x_{5} \mid x_{6}\right)=0, \\
-x_{3} x_{5}\left(x_{1}, x_{2} \mid x_{6}\right)+x_{3} x_{5}\left(x_{1}, x_{2} \mid x_{6}\right)=0 \\
x_{1} x_{6}\left(x_{2}, x_{3} \mid x_{5}\right)-x_{6} x_{1}\left(x_{2}, x_{3} \mid x_{5}\right)=0 \\
-x_{2} x_{6}\left(x_{1}, x_{3} \mid x_{5}\right)+x_{6} x_{2}\left(x_{1}, x_{3} \mid x_{5}\right)=0 \\
x_{3} x_{6}\left(x_{1}, x_{2} \mid x_{5}\right)-x_{6} x_{3}\left(x_{1}, x_{2} \mid x_{5}\right)=0 .
\end{array} \\
& \text { Therefore, } d^{2}\left(x_{1}, x_{2}, x_{3} \mid x_{5}, x_{6}\right)=0 .
\end{aligned}
$$

Proof of Lemma 3.6. First we have that

$$
\begin{aligned}
& d^{2}\left(x_{i_{1}} \mid x_{j_{1}}\right)=d\left(x_{i_{1}} x_{j_{1}}\right)=x_{i_{1}} x_{j_{1}}=0 \text { in } S / I_{G}, \\
& d^{2}\left(x_{i_{1}}, x_{i_{2}} \mid x_{j_{1}}\right)=d\left(x_{i_{1}}\left(x_{i_{2}} \mid x_{j_{1}}\right)-x_{i_{2}}\left(x_{i_{1}} \mid x_{j_{1}}\right)\right) \\
& =x_{i_{1}} x_{i_{2}} x_{j_{1}}-x_{i_{2}} x_{i_{1}} x_{j_{1}}=0, \\
& d^{2}\left(x_{i_{1}} \mid x_{j_{1}}, x_{j_{2}}\right)= \begin{cases}d\left(x_{j_{1}}\left(x_{i_{1}} \mid x_{j_{2}}\right)-x_{j_{2}}\left(x_{i_{1}} \mid x_{j_{1}}\right)\right), & \text { if } x_{i_{1}} x_{j_{2}} \in G \\
d\left(x_{i_{1}}\left(x_{j_{1}} \mid x_{j_{2}}\right)-x_{j_{2}}\left(x_{i_{1}} \mid x_{j_{1}}\right)\right), & \text { if } x_{i_{1}} x_{j_{2}} \notin G\end{cases} \\
& = \begin{cases}x_{j_{1}} x_{i_{1}} x_{j_{2}}-x_{j_{2}} x_{i_{1}} x_{j_{1}}, & \text { if } x_{i_{1}} x_{j_{2}} \in G \\
x_{i_{1}} x_{j_{1}} x_{j_{2}}-x_{j_{2}} x_{i_{1}} x_{j_{1}}, & \text { if } x_{i_{1}} x_{j_{2}} \notin G\end{cases} \\
& =0 \text {. }
\end{aligned}
$$

Next we need only to prove that $d^{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)=0$ for $p+q \geq 4$. Just as in Example 4.1, it suffices to prove that if we write out all the terms of $d^{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)$, then given any $\lambda, \lambda^{\prime} \in\left\{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{q}\right\}$, the sum of the terms containing $x_{\lambda} x_{\lambda^{\prime}}$ is zero, that is all the terms containing $x_{\lambda} x_{\lambda^{\prime}}$ cancel. Hence, a computation will reveal that if β does not exist, that is $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq$ $\operatorname{pnbhd}\left(x_{j_{t}}\right)$ for all $1 \leq t \leq q$, then $d^{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)=0$. So we will assume that $q \geq 2$ and β exists. The proof is case by case and there are five main cases.
[Case A]: $\lambda, \lambda^{\prime} \in\left\{i_{1}, \ldots, i_{p}\right\}$.
[Case A-a]: if $1 \leq s<s^{\prime} \leq p$ such that $x_{i_{s}} x_{j_{\beta}} \in G$ and $x_{i_{s^{\prime}}} x_{j_{\beta}} \in G$, then the sum of the terms containing $x_{i_{s}} x_{i_{s^{\prime}}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{s^{\prime}} x_{i_{s^{\prime}}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{s^{\prime}}}}, \ldots, \widehat{x_{i_{p}}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{s^{\prime}+1} x_{i_{s^{\prime}}}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{i_{i_{s}}}, \ldots, \widehat{x_{i_{s^{\prime}}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)=0
\end{aligned}
$$

[Case A-b]: suppose that there is a term containing $x_{i_{s}} x_{i_{\alpha}}$ for some $1 \leq s, \alpha \leq p$ such that $x_{i_{s}} x_{j_{\beta}} \in G$ and $x_{i_{\alpha}} x_{j_{\beta}} \notin G$. Without the loss of generality, we assume $s<\alpha$.

Subcase (i): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then the sum of the terms containing $x_{i_{s}} x_{i_{\alpha}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{\alpha} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

Subcase (ii): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then we set

$$
\beta^{\prime}=\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\}
$$

Lemma 3.2 implies that for any $\beta \leq t \leq q, x_{j_{1}} x_{j_{t}}, \ldots, x_{j_{\beta-1}} x_{j_{t}} \in G$, so we have

$$
\beta^{\prime}=\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\}
$$

Subsubcase (ii)(a): if one of the following conditions is satisfied:

1) β^{\prime} does not exist,
2) $x_{i_{s}} x_{j_{\beta^{\prime}}} \in G$,
3) $x_{i_{s}} x_{j_{\beta^{\prime}}} \notin G$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{s}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime}}}\right)$,
then the sum of the terms containing $x_{i_{s}} x_{i_{\alpha}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{\alpha} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\alpha+1} x_{i_{\alpha}}\left[(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subsubcase (ii)(b): if $x_{i_{s}} x_{j_{\beta^{\prime}}} \notin G,\left\{x_{i_{1}}, \ldots, \widehat{x_{s}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime}}}\right)$, then the sum of the terms containing $x_{i_{s}} x_{i_{\alpha}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{\alpha} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\alpha+1} x_{i_{\alpha}}\left\{(- 1) ^ { s + 1 } x _ { i _ { s } } \left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)\right.\right. \\
& \left.+(-1)^{\beta^{\prime}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta^{\prime}-1}} \mid x_{j_{\beta^{\prime}}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta}(-1)^{s+1} x_{i_{s}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{i_{p}}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.\left.+(-1)^{\beta^{\prime}-\beta+1}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta^{\prime}-1}} \mid x_{j_{\beta^{\prime}}}, \ldots, x_{j_{q}}\right)\right]\right\}=0 .
\end{aligned}
$$

Note that in the above two subsubcases, if $s=1$ and $\alpha=p=2$ then the terms containing $\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)$ are zeros.
[Case A-c]: suppose that there is a term containing $x_{i_{\alpha}} x_{i_{\alpha^{\prime}}}$ for some $1 \leq \alpha<$ $\alpha^{\prime} \leq p$ such that $x_{i_{\alpha}} x_{j_{\beta}} \notin G$ and $x_{i_{\alpha^{\prime}}} x_{j_{\beta}} \notin G$.

Subcase (i): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then the sum of the terms containing $x_{i_{\alpha}} x_{i_{\alpha^{\prime}}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{\alpha^{\prime}} x_{i_{\alpha^{\prime}}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{\alpha^{\prime}+1} x_{i_{\alpha^{\prime}}}(-1)^{\alpha+1} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

Subcase (ii): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then the sum of the terms containing $x_{i_{\alpha}} x_{i_{\alpha^{\prime}}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{\alpha^{\prime}} x_{i_{\alpha^{\prime}}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\alpha^{\prime}+1} x_{i_{\alpha^{\prime}}}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Note that if $\alpha=1$ and $\alpha^{\prime}=p=2$, then in the above formula, the two terms containing $\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)$ are zeros.
[Case B]: $\lambda \in\left\{i_{1}, \ldots, i_{p}\right\}$ and $\lambda^{\prime}=j_{1}$.
[Case B-a]: suppose that there is a term containing $x_{i_{s}} x_{j_{1}}$ for some $1 \leq s \leq p$ such that $x_{i_{s}} x_{j_{\beta}} \in G$, then it is easy to see that $\beta \neq 2$ and the sum of the terms containing $x_{i_{s}} x_{j_{1}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{1+(p-1)} x_{j_{1}}\left(x_{i_{1}}, \ldots, \widehat{x_{s}}, \ldots, x_{i_{p}} \mid x_{j_{2}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{p+1} x_{j_{1}}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{2}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

[Case B-b]: suppose that there is a term containing $x_{i_{\alpha}} x_{j_{1}}$ for some $1 \leq \alpha \leq p$ such that $x_{i_{\alpha}} x_{j_{\beta}} \notin G$.

Subcase (i): $\beta=2$. If we have $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then it is easy to see that there is no term containing $x_{i_{\alpha}} x_{j_{1}}$, hence we must have $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$ and the sum of the terms containing $x_{i_{\alpha}} x_{j_{1}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}\left[(-1)^{p} x_{j_{1}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid \widehat{x_{j_{1}}}, x_{j_{2}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{p+1} x_{j_{1}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, \widehat{x_{j_{1}}} \mid x_{j_{2}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subcase (ii): if $\beta>2$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then the sum of the terms containing $x_{i_{\alpha}} x_{j_{1}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{p} x_{j_{1}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid \widehat{x_{j_{1}}}, x_{j_{2}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{p+1} x_{j_{1}}(-1)^{\alpha+1} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid \widehat{x_{j_{1}}}, x_{j_{2}}, \ldots, x_{j_{q}}\right)=0
\end{aligned}
$$

Subcase (iii): if $\beta>2$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then the sum of the terms containing $x_{i_{\alpha}} x_{j_{1}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}\left[(-1)^{p} x_{j_{1}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid \widehat{x_{j_{1}}}, x_{j_{2}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{p+1} x_{j_{1}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, \widehat{x_{j_{1}}}, x_{j_{2}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{p+1} x_{j_{1}}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid \widehat{x_{j_{1}}}, x_{j_{2}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta-1}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, \widehat{x_{j_{1}}}, x_{j_{2}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right]=0
\end{aligned}
$$

[Case C]: $\lambda \in\left\{i_{1}, \ldots, i_{p}\right\}$ and $\lambda^{\prime} \in\left\{j_{2}, \ldots, j_{q}\right\}$.
[Case C-a]: if $1 \leq s \leq p, 2 \leq t \leq q$ such that $x_{i_{s}} x_{j_{\beta}} \in G$ and $t \neq \beta$, then the sum of the terms containing $x_{i_{s}} x_{j_{t}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{t+(p-1)} x_{j_{t}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{t+p} x_{j_{t}}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)=0
\end{aligned}
$$

[Case C-b]: suppose that there is a term containing $x_{i_{\alpha}} x_{j_{t}}$ for some $1 \leq \alpha \leq p$, $2 \leq t \leq q$ such that $x_{i_{\alpha}} x_{j_{\beta}} \notin G$ and $t \neq \beta$.

Subcase (i): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then the sum of the terms containing $x_{i_{\alpha}} x_{j_{t}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{t+(p-1)} x_{j_{t}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{t+p} x_{j_{t}}(-1)^{\alpha+1} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

Subcase (ii): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then as in subcase (ii) of [Case A-b], we set

$$
\begin{aligned}
\beta^{\prime} & =\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\} \\
& =\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\} .
\end{aligned}
$$

Subsubcase (ii)(a): if $t<\beta$, then the sum of the terms containing $x_{i_{\alpha}} x_{j_{t}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}\left[(-1)^{t+(p-1)} x_{j_{t}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{t+(p-1)+1} x_{j_{t}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{t+p} x_{j_{t}}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta-1}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subsubcase (ii)(b): if one of the following conditions is satisfied:

1) $t>\beta$ and β^{\prime} does not exist,
2) $t>\beta$ and $t \neq \beta^{\prime}$,
3) $t=\beta^{\prime}=q$,
4) $t=\beta^{\prime}$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime}+1}}\right)$,
then the sum of the terms containing $x_{i_{\alpha}} x_{j_{t}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}\left[(-1)^{t+(p-1)} x_{j_{t}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{t+p-1} x_{j_{t}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{t+p} x_{j_{t}}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Note that in the above two subsubcases, if $\alpha=p=1$ then the terms containing $\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)$ are zeros and β^{\prime} does not exist.

Subsubcase (ii)(c): if $t=\beta^{\prime}$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime}+1}}\right)$, then the sum of the terms containing $x_{i_{\alpha}} x_{j_{t}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}\left\{(- 1) ^ { t + (p - 1) } x _ { j _ { t } } \left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right.\right. \\
& \left.+(-1)^{t}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{t-1}} \mid x_{j_{t+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta}(-1)^{t+p-1} x_{j_{t}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.\left.(-1)^{t-\beta+1}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{t-1}} \mid x_{j_{t+1}}, \ldots, x_{j_{q}}\right)\right]\right\} \\
& +(-1)^{t+p} x_{j_{t}}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

[Case C-c]: suppose that there is a term containing $x_{i_{s}} x_{j_{\beta}}$ for some $1 \leq s \leq p$ such that $x_{i_{s}} x_{j_{\beta}} \in G$. We set

$$
\beta^{\prime \prime}=\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\} .
$$

Lemma 3.2 implies that for any $\beta \leq t \leq q, x_{j_{1}} x_{j_{t}}, \ldots, x_{j_{\beta-1}} x_{j_{t}} \in G$, so we have

$$
\beta^{\prime \prime}=\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\} .
$$

Subcase (i): if $\beta=q$ or $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$, then the sum of the terms containing $x_{i_{s}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{\beta+(p-1)} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

Subcase (ii): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$ and $x_{i_{s}} x_{j_{\beta+1}} \notin G$, then $\beta^{\prime \prime}=\beta+1$ and the sum of the terms containing $x_{i_{s}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{\beta+(p-1)} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{s+1} x_{i_{s}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subcase (iii): if one of the following conditions is satisfied:

1) $\beta<q$ and $\beta^{\prime \prime}$ does not exist,
2) $\beta^{\prime \prime}>\beta+1$ and $x_{i_{s}} x_{j_{\beta^{\prime \prime}}} \in G$,
3) $\beta^{\prime \prime}>\beta+1, x_{i_{s}} x_{j_{\beta^{\prime \prime}}} \notin G$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime \prime}}}\right)$
then the sum of the terms containing $x_{i_{s}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{\beta+(p-1)} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{s}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left[(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{s}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subcase (iv): if $\beta^{\prime \prime}>\beta+1, x_{i_{s}} x_{j_{\beta^{\prime \prime}}} \notin G,\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime \prime}}}\right)$, then the sum of the terms containing $x_{i_{s}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{\beta+(p-1)} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left\{(- 1) ^ { s + 1 } x _ { i _ { s } } \left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right.\right. \\
& \left.+(-1)^{\beta^{\prime \prime}-1}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{\beta^{\prime \prime}-1}} \mid x_{j_{\beta^{\prime \prime}}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta}(-1)^{s+1} x_{i_{s}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.\left.+(-1)^{\beta^{\prime \prime}-\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{\beta^{\prime \prime}-1}} \mid x_{j_{\beta^{\prime \prime}}}, \ldots, x_{j_{q}}\right)\right]\right\}=0 .
\end{aligned}
$$

[Case C-d]: suppose that there is a term containing $x_{i_{\alpha}} x_{j_{\beta}}$ for some $1 \leq \alpha \leq p$ such that $x_{i_{\alpha}} x_{j_{\beta}} \notin G$. As in [Case C-c], we set

$$
\begin{aligned}
\beta^{\prime \prime} & =\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\} \\
& =\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\} .
\end{aligned}
$$

Subcase (i): if $\beta=q$ or $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$, then the sum of the terms containing $x_{i_{\alpha}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{\beta+(p-1)} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{\alpha+1} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

Subcase (ii): if $\left\{x_{i_{1}}, \ldots, \widehat{i_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then we have the following three subsubcases.

Subsubcase (ii)(a): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$ and $x_{i_{\alpha}} x_{j_{\beta+1}} \notin G$, then $\beta^{\prime \prime}=\beta+1$ and the sum of the terms containing $x_{i_{\alpha}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}\left[(-1)^{\beta+(p-1)} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{\beta+p-1} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subsubcase (ii)(b): if $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$ and one of the following conditions is satisfied:

1) $\beta^{\prime \prime}$ does not exist,
2) $x_{i_{\alpha}} x_{j_{\beta^{\prime \prime}}} \in G$,
3) $x_{i_{\alpha}} x_{j_{\beta^{\prime \prime}}} \notin G$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime \prime}}}\right)$,
then the sum of the terms containing $x_{i_{\alpha}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}\left[(-1)^{\beta+(p-1)} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{\beta+p-1} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left[(-1)^{\alpha+1} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{\alpha+1} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right]=0
\end{aligned}
$$

Subsubcase (ii)(c): if $\beta^{\prime \prime} \geq \beta+2, x_{i_{\alpha}} x_{j_{\beta^{\prime \prime}}} \notin G$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq$ $\operatorname{pnbhd}\left(x_{j_{\beta^{\prime \prime}}}\right)$, then the sum of the terms containing $x_{i_{\alpha}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}\left[(-1)^{\beta+(p-1)} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{\beta+p-1} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left\{(- 1) ^ { \alpha + 1 } x _ { i _ { \alpha } } \left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{\beta}}, \ldots, x_{j_{q}}\right)\right.\right. \\
& \left.+(-1)^{\beta^{\prime \prime}-1}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{\beta^{\prime \prime}-1}} \mid x_{j_{\beta^{\prime \prime}}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.\left.+(-1)^{\beta^{\prime \prime}-\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{\beta^{\prime \prime}-1}} \mid x_{j_{\beta^{\prime \prime}}}, \ldots, x_{j_{q}}\right)\right]\right\}=0 .
\end{aligned}
$$

Subcase (iii): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then just as in subcase (ii), we have the following three subsubcases.

Subsubcase (iii)(a): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$ and $x_{i_{\alpha}} x_{j_{\beta+1}} \notin G$, then $\beta^{\prime \prime}=\beta+1$ and the sum of the terms containing $x_{i_{\alpha}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{\beta+(p-1)} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subsubcase (iii)(b): if $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$ and one of the following conditions is satisfied:

1) $\beta^{\prime \prime}$ does not exist,
2) $x_{i_{\alpha}} x_{j_{\beta^{\prime \prime}}} \in G$,
3) $x_{i_{\alpha}} x_{j_{\beta^{\prime \prime}}} \notin G$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime \prime}}}\right)$,
then the sum of the terms containing $x_{i_{\alpha}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{\beta+(p-1)} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left[(-1)^{\alpha+1} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{\alpha+1} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right]=0
\end{aligned}
$$

Subsubcase (iii)(c): if $\beta^{\prime \prime} \geq \beta+2, x_{i_{\alpha}} x_{j_{\beta^{\prime \prime}}} \notin G$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq$ $\operatorname{pnbhd}\left(x_{j_{\beta^{\prime \prime}}}\right)$, then the sum of the terms containing $x_{i_{\alpha}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{\beta+(p-1)} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left\{(- 1) ^ { \alpha + 1 } x _ { i _ { \alpha } } \left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right.\right. \\
& \left.+(-1)^{\beta^{\prime \prime}-1}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{\beta^{\prime \prime}-1}} \mid x_{j_{\beta^{\prime \prime}}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.\left.+(-1)^{\beta^{\prime \prime}-\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{\beta^{\prime \prime}-1}} \mid x_{j_{\beta^{\prime \prime}}}, \ldots, x_{j_{q}}\right)\right]\right\}=0 .
\end{aligned}
$$

[Case D]: $\lambda=j_{1}$ and $\lambda^{\prime} \in\left\{j_{2}, \ldots, j_{q}\right\}$.
[Case D-a]: suppose that there is a term containing $x_{j_{1}} x_{j_{t}}$ for some $2 \leq t \leq q$ such that $t \neq \beta$, then $\beta \neq 2$ and if $t=2$ then $\beta \neq 3$. Hence, the sum of the terms containing $x_{j_{1}} x_{j_{t}}$ is

$$
\begin{aligned}
& (-1)^{1+p} x_{j_{1}}(-1)^{(t-1)+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid \widehat{x_{j_{1}}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{t+p} x_{j_{t}}(-1)^{1+p} x_{j_{1}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid \widehat{x_{j_{1}}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

[Case D-b]: suppose that there is a term containing $x_{j_{1}} x_{j_{\beta}}$.

Subcase (i): $\beta=2$. Assume that $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{3}}\right)$, then there is no term containing $x_{j_{1}} x_{j_{\beta}}$, hence we must have $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{3}}\right)$ and the sum of the terms containing $x_{j_{1}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{\beta+p} x_{j_{\beta}}\left[(-1)^{1+p} x_{j_{1}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid \widehat{x_{j_{1}}}, x_{j_{3}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{p+2} x_{j_{1}}\left(x_{i_{1}}, \ldots, x_{i_{p}}, \widehat{x_{j_{1}}} \mid x_{j_{3}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subcase (ii): if $\beta>2$ such that $\beta=q$ or $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$, then the sum of the terms containing $x_{j_{1}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{1+p} x_{j_{1}}(-1)^{(\beta-1)+p} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{2}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{1+p} x_{j_{1}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{2}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

Subcase (iii): if $\beta>2$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$, then the sum of the terms containing $x_{j_{1}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{1+p} x_{j_{1}}(-1)^{(\beta-1)+p} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{2}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta-1}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{2}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left[(-1)^{1+p} x_{j_{1}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{2}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{p+2} x_{j_{1}}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{2}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

[Case E]: $\lambda, \lambda^{\prime} \in\left\{j_{2}, \ldots, j_{q}\right\}$.
[Case E-a]: if $2 \leq t<t^{\prime} \leq q$ such that $t \neq \beta$ and $t^{\prime} \neq \beta$, then the sum of the terms containing $x_{j_{t}} x_{j_{t^{\prime}}}$ is

$$
\begin{aligned}
& (-1)^{t+p} x_{j_{t}}(-1)^{\left(t^{\prime}-1\right)+p} x_{j_{t^{\prime}}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{t^{\prime}}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{t^{\prime}+p} x_{j_{t^{\prime}}}(-1)^{t+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{t^{\prime}}}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

[Case E-b]: suppose that there is a term containing $x_{j_{t}} x_{j_{\beta}}$ for some $2 \leq t \leq q$ with $t \neq \beta$. As in [Case C-c], we set

$$
\begin{aligned}
\beta^{\prime \prime} & =\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\} \\
& =\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\} .
\end{aligned}
$$

Subcase (i): if one of the following conditions is satisfied:

1) $\beta=q$,
2) $\beta=q-1$ and $t=q$,
3) $\beta^{\prime \prime}=\beta+1$ and $t \neq \beta^{\prime \prime}$,
4) $\beta^{\prime \prime}=\beta+1, t=\beta^{\prime \prime}$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta+2}}\right)$,
5) $\beta^{\prime \prime}=\beta+2$ and $t=\beta+1$,
then the sum of the terms containing $x_{j_{t}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{t+p} x_{j_{t}}(-1)^{(\beta-1)+p} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{t+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right) \\
& =0, \text { for } t<\beta ; \\
& (-1)^{t+p} x_{j_{t}}(-1)^{\beta+p} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{(t-1)+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{\beta}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right) \\
& =0, \text { for } t>\beta .
\end{aligned}
$$

Subcase (ii): if $\beta^{\prime \prime}=\beta+1, t=\beta^{\prime \prime}$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta+2}}\right)$, then the sum of the terms containing $x_{j_{t}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{t+p} x_{j_{t}}(-1)^{\beta+p} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+2}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{(t-1)+p} x_{j_{t}}\left[\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+2}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subcase (iii): if one of the following conditions is satisfied:

1) $\beta=q-1, t<\beta$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{q}}\right)$,
2) $\beta \leq q-2$ and $\beta^{\prime \prime}$ does not exist,
3) $\beta^{\prime \prime}>\beta+1, t \neq \beta^{\prime \prime}$ such that $t \neq \beta+1$ or $\beta^{\prime \prime} \neq \beta+2$,
4) $\beta^{\prime \prime}>\beta+1$ and $t=\beta^{\prime \prime}=q$,
5) $\beta^{\prime \prime}>\beta+1, t=\beta^{\prime \prime}$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime \prime}+1}}\right)$,
then the sum of the terms containing $x_{j_{t}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{t+p} x_{j_{t}}(-1)^{(\beta-1)+p} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta-1}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{\beta}}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left[(-1)^{t+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{t+p+1} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{\beta}}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& =0, \text { for } t<\beta \text {; } \\
& (-1)^{t+p} x_{j_{t}}(-1)^{\beta+p} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{q}}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left[(-1)^{t-1)+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{\beta}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{t-1+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right] \\
& \text { for } t>
\end{aligned}
$$

Subcase (iv): if $\beta^{\prime \prime}>\beta+1, t=\beta^{\prime \prime}$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime \prime}+1}}\right)$, then the sum of the terms containing $x_{j_{t}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{t+p} x_{j_{t}}(-1)^{\beta+p} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left\{(- 1) ^ { (t - 1) + p } x _ { j _ { t } } \left[\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right.\right. \\
& \left.+(-1)^{t-1}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{t-1}} \mid x_{j_{t+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta}(-1)^{t-1+p} x_{j_{t}}\left[\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.\left.(-1)^{t-\beta}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{t-1}} \mid x_{j_{t+1}}, \ldots, x_{j_{q}}\right)\right]\right\}=0 .
\end{aligned}
$$

Since the above five main cases have included all the possible terms, it follows that $d^{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)=0$ and we are done.

5. Betti Numbers

In Section 3, to construct the differential maps of the minimal free resolution of S / I_{G}, we need to assume that x_{n}, \ldots, x_{1} is a perfect elimination order of \bar{G} produced by Algorithm 2.2. However, to get a nice formula for Betti numbers (Corollary 5.2), we only need to know a basis for the minimal free resolution. Therefore, we have the following theorem which does not require that the perfect elimination order x_{n}, \ldots, x_{1} of \bar{G} is produced by Algorithm 2.2.
Theorem 5.1. Let G be a simple graph with vertices x_{1}, \ldots, x_{n} such that \bar{G} is chordal and x_{1}, \ldots, x_{n} is in the reverse order of a perfect elimination order of \bar{G}. Then in the polynomial ring $S=k\left[x_{1}, \ldots, x_{n}\right]$ we have the linear edge ideal I_{G} of the graph G. Let the symbol $\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)$ be as defined in Construction 3.4. And we set
$\mathcal{B}=\{1\} \cup \bigcup_{p \geq 1, q \geq 1}\left\{\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right): \begin{array}{l}1 \leq i_{1}<\cdots<i_{p}<j_{1}<\cdots<j_{q} \leq n \\ \left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{1}}\right)\end{array}\right\}$.
Then there exists a multigraded minimal free resolution \mathbf{F} of S / I_{G} such that \mathbf{F} has basis \mathcal{B}.

We will not prove Theorem 5.1 because the proof is very similar to the proof of Theorem 3.7. The only difference is that in the proof of Theorem 3.7 we know the complex maps $-\mu_{2}: \mathbf{E} \rightarrow \mathbf{K}$ and $\mu: \mathbf{F}^{\prime \prime} \rightarrow \mathbf{F}^{\prime}$ explicitly, while in the proof of Theorem 5.1 we only know their existence. However, we can still use the mapping cones to show the existence of the multigraded minimal free resolution with the desired basis \mathcal{B}.

Now Theorem 5.1 imply immediately the following corollary about Betti numbers and the projective dimension of S / I_{G}.
Corollary 5.2. Let I_{G} be a linear edge ideal as defined in Theorem 5.1. For $2 \leq i \leq n$, we set $\lambda_{i}=\left|\operatorname{pnbh} d\left(x_{i}\right)\right|$. Then for $i \geq 1$, the Betti numbers of S / I_{G} are

$$
b_{i, j}\left(S / I_{G}\right)= \begin{cases}\sum_{l=2}^{n}\left(\sum_{p=1}^{\lambda_{l}}\binom{\lambda_{l}}{p}\binom{n-l}{i-p}\right), & \text { if } j=i+1 \\ 0, & \text { if } j \neq i+1\end{cases}
$$

and the projective dimension of S / I_{G} is

$$
\operatorname{projdim}\left(S / I_{G}\right)=n-\min \left\{i-\lambda_{i}: 2 \leq i \leq n \text { and } \lambda_{i} \neq 0\right\} \leq n-1
$$

Proof. The formula for Betti numbers follows from counting the number of basis elements of homological degree i and degree $i+1$ in \mathcal{B}. The projective dimension formula also follows easily by looking at the basis elements in \mathcal{B}. Since $\lambda_{i} \leq i-1$ for $2 \leq i \leq n$, it follows that projdim $\left(S / I_{G}\right) \leq n-1$.

Example 5.3. Let G be the graph such that \bar{G} is the chordal graph given in Example 2.6. Then $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}$ is in the reverse order of a perfect elimination order of \bar{G} and we have that

$$
\lambda_{2}=0, \lambda_{3}=1, \lambda_{4}=2, \lambda_{5}=3, \lambda_{6}=4, \lambda_{7}=5
$$

Therefore, by Corollary 5.2, we have projdim $\left(S / I_{G}\right)=5$ and a computation will reveal that the Betti numbers of S / I_{G} are

$$
\mathrm{b}_{1,2}=15, \mathrm{~b}_{2,3}=40, \mathrm{~b}_{3,4}=45, \mathrm{~b}_{4,5}=24, \mathrm{~b}_{5,6}=5
$$

In [RV] and [HV], the following formula for the Betti numbers is proved by using Hochster's formula. Now we prove the formula by using Theorem 5.1.

Corollary 5.4. Let I_{G} be the linear edge ideal of a graph G with vertices x_{1}, \ldots, x_{n}. For any nonempty subset σ of $\left\{x_{1}, \ldots, x_{n}\right\}$, let \bar{G}_{σ} be the subgraph of \bar{G} induced by σ and let $\#\left(\bar{G}_{\sigma}\right)$ be the number of connected components of \bar{G}_{σ}. Then for $i \geq 1$, we have

$$
b_{i, j}\left(S / I_{G}\right)= \begin{cases}\sum_{\sigma \subseteq\left\{x_{1}, \ldots, x_{n}\right\},|\sigma|=i+1}\left(\#\left(\bar{G}_{\sigma}\right)-1\right), & \text { if } j=i+1 \\ 0, & \text { if } j \neq i+1\end{cases}
$$

Proof. Without the loss of generality, we can assume that x_{n}, \ldots, x_{1} is a perfect elimination order of the chordal graph \bar{G}. Let \mathcal{B} be as defined in Theorem 5.1. We say that the vertex x_{s} is smaller than the vertex x_{t} if $s<t$. For any $i \geq 1$, let $\sigma=\left\{x_{\alpha_{1}}, \ldots, x_{\alpha_{i+1}}\right\}$ be a subset of $\left\{x_{1}, \ldots, x_{n}\right\}$ for some $1 \leq \alpha_{1}<\cdots<\alpha_{i+1} \leq n$. We claim that $\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{p-1}} \mid x_{\alpha_{p}}, \ldots, x_{\alpha_{i+1}}\right) \in \mathcal{B}$ if and only if $p \neq 1$ and $x_{\alpha_{p}}$ is the smallest vertex in the connected component of \bar{G}_{σ} containing $x_{\alpha_{p}}$. Indeed, if $p \geq 2$ and $x_{\alpha_{p}}$ is the smallest vertex in the connected component of \bar{G}_{σ} containing $x_{\alpha_{p}}$,
then $x_{\alpha_{s}} x_{\alpha_{p}} \in G$ for all $1 \leq s \leq p-1$, so that $\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{p-1}} \mid x_{\alpha_{p}}, \ldots, x_{\alpha_{i+1}}\right) \in \mathcal{B}$. On the other hand, assume that $p \geq 2$ and there exists $1 \leq s \leq p-1$ such that $x_{\alpha_{s}}$ and $x_{\alpha_{p}}$ are in the same connected component of \bar{G}_{σ}. Set $\sigma^{\prime}=\left\{x_{\alpha_{1}}, \ldots, x_{\alpha_{p}}\right\} \subseteq \sigma$. Since $x_{\alpha_{i+1}}, \ldots, x_{\alpha_{1}}$ is a perfect elimination order of \bar{G}_{σ}, it is easy to see that $x_{\alpha_{s}}$ and $x_{\alpha_{p}}$ are still in the same connected component of $\bar{G}_{\sigma^{\prime}}$. Therefore, there exists $1 \leq s^{\prime} \leq p-1$ such that $x_{\alpha_{s^{\prime}}} x_{\alpha_{p}} \in \bar{G}_{\sigma^{\prime}}$, and hence $x_{\alpha_{s^{\prime}}} x_{\alpha_{p}} \notin G$, which implies $\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{p-1}} \mid x_{\alpha_{p}}, \ldots, x_{\alpha_{i+1}}\right) \notin \mathcal{B}$. So the claim is proved. It follows that there are $\#\left(\bar{G}_{\sigma}\right)-1$ basis elements in \mathcal{B} with multidegree $x_{\alpha_{1}} \cdots x_{\alpha_{i+1}}$ and we are done.

References

[CE] H. Charalambous, G. Evans: Resolutions obtained by iterated mapping cones, J. Algebra 176, (1995), no. 3, 750-754.
[CN] A. Corso, U. Nagel: Monomial and toric ideals associated to Ferrers graphs, Trans. Amer. Math. Soc. 361 (2009), no. 3, 1371-1395.
[Di] G. A. Dirac: On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71-76.
[EK] S. Eliahou, M. Kervaire: Minimal resolutions of some monomial ideals, J. Algebra 129, (1990), 1-25.
[Fr] R. Fröberg: On Stanley-Reisner rings, Topics in Algebra, Banach Center Publ., 26, part 2, (1990), 57-70.
[HV] H. T. Hà, A. Van Tuyl: Resolutions of square-free monomial ideals via facet ideals: a survey. Algebra, geometry and their interactions, 91-117, Contemp. Math. 448, Amer. Math. Soc., Providence, RI, (2007).
[Ho] N. Horwitz: Linear resolutions of quadratic monomial ideals, J. Algebra 318 (2007), no. 2, 981-1001.
[HHZ] J. Herzog, T. Hibi, X. Zheng: Dirac's theorem on chordal graphs and Alexander duality, European J. Combin. 25 (2004), no. 7, 949-960.
[HT] J. Herzog, Y. Takayama: Resolutions by mapping cones. The Roos Festschrift volume, 2. Homology Homotopy Appl. 4 (2002), 277-294.
[RTL] D.J. Rose, R.E. Tarjan, G.S. Lueker: Algorithmic aspects of vertex elimination on graphs, SIAM Journal on Computing, Vol. 5, No. 2. (1976), 266-283.
[RV] M. Roth, A. Van Tuyl: On the linear strand of an edge ideal, Comm. Algebra 35 (2007), no. 3, 821-832.

