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ABSTRACT. We construct minimal free resolutions for all edge ideals which
have a linear free resolution.

1. INTRODUCTION

Let S = k[x1,...,x,] be the polynomial ring over a field k. In this paper we con-
sider minimal free resolutions of quadratic monomial ideals in S. By polarization,
the study of such resolutions is equivalent to the study of the resolutions of square-
free quadratic monomial ideals, that is, edge ideals. Such an ideal can be easily
encoded in a graph as follows: let G be a simple graph with vertices z1,...,x,,
then the edge ideal I of the graph G is the monomial ideal in S generated by
{z;x; | {zi,z;} is an edge of G}. The general goal is to relate the properties of
the minimal free resolution of I and the combinatorial properties of the graph G.
In 1990, Froberg [Fr] proved that I has a linear free resolution if and only if the
complement graph G is chordal (see Definition 2.1). Because of this, I is called a
linear edge ideal if G is chordal.

Minimal free resolutions were constructed for the following two classes of linear
edge ideals. In [CN], Corso and Nagel used cellular resolutions to get the mini-
mal free resolutions of the linear edge ideals I where G is a Ferrers graph. In
[Ho|, Horwitz constructed the minimal free resolutions of the linear edge ideals I
provided that G does not contain an ordered subgraph of the form
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d with a<b<ec<d,
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which is called the pattern T' in [Ho]. However, from Example 3.18 in [Ho|, we see
that if G is complicated, then it may be impossible to satisfy the I avoidance condi-
tion. In Construction 3.4 and Theorem 3.7 we provide the minimal free resolutions
of all linear edge ideals. The construction is different than the one in [Ho|] and the
following paragraph explains the difference.

In 1990, Eliahou and Kervaire [EK] constructed the minimal free resolutions
of Borel ideals. In 1995, Charalambous and Evans [CE] noted that the Eliahou-
Kervaire resolution can be obtained by using iterated mapping cones. Then in
2002, Herzog and Takayama [HT] used the iterated mapping cone construction to
obtain the minimal free resolutions of monomial ideals which have linear quotients
and satisfy some regularity condition. Following this idea, in 2007, Horwitz [Ho]
constructed the minimal free resolutions of a class of linear edge ideals. In [HT] and
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[Ho], the constructions are based on induction on the number of generators of the
monomial ideal and the resolutions are similar to the Eliahou-Kervaire resolution.
In this paper we use the mapping cone construction in a new way: (1) we use
induction on the number of variables, that is the number of vertices of G; (2) in
each induction step, we use the mapping cone construction twice. Consequently,
the minimal free resolution in this paper is very different from the Eliahou-Kervaire
resolution and is not a modification of the resolution obtained in [Ho] (See Remark
3.12).

Another thing that plays an important role in our construction is the notion
of a perfect elimination order (See Definition 2.1) of a chordal graph. From [Di]
and [HHZ], we know that every chordal graph has a perfect elimination order on
the set of vertices; conversely, it is easy to see that if a simple graph has a perfect
elimination order then it is chordal. Therefore, a simple graph is chordal if and only
if it has a perfect elimination order. In general, given a chordal graph, there are
many perfect elimination orders. In section 2 we give an algorithm (Algorithm 2.2)
to produce a special perfect elimination order on the vertices of a chordal graph.
This special perfect elimination order has a nice property (Lemma 3.2) and will be
used in the construction of the minimal free resolutions of linear edge ideals.

In section 3 we construct the minimal free resolutions of linear edge ideals and
Theorem 3.7 is the main result of this paper.

In section 4 we prove d? = 0 case by case, where d is the differential defined in
Construction 3.4. The proof is not difficult but very long.

Section 5 gives a nice formula (Corollary 5.2) for calculating the Betti numbers
of linear edge ideals and the formula works for any perfect elimination order of G.
Finally, in Corollary 5.4, we use our method to prove another Betti number formula
obtained by Roth and Van Tuyl in [RV] (see also [HV]).

Acknowledgments. The author is thankful to Irena Peeva for providing the idea
of using induction on the number of vertices and two mapping cones to find minimal
free resolutions of all linear edge ideals. The author also thanks the referee for the
valuable suggestions.

2. PERFECT ELIMINATION ORDERS

In this section we use H to denote a chordal graph. In the other sections of this

paper, we have H = G.

Definition 2.1. Let H be a simple graph with vertices z1,...,z,. We write
xix; € H if {x;,x;} is an edge of H. We say that C' = (zj,xj,...2;,) is a cycle
of H of length r if x;, # w; forall 1 <7 < < r and z52;,, € H for all
1 < < r(where z;,, = xj,). A chord in the cycle C is an edge between two
non-consecutive vertices in the cycle. We say that H is a chordal graph if every
cycle of length > 3 in H has a chord. The order x1,...,z, on the vertices of H
is called a perfect elimination order if the following condition is satisfied: for any
1<i<j<i<n,ifz;z; € H and x;2; € H, then x;2; € H.

The perfect elimination orders we will use in sections 3 and 4 are given by the

following algorithm.

Algorithm 2.2. Let H be a chordal graph with vertices x1,...,x,. Let ¥ be a set
containing a sequence of sets.
Input: ¥ ={{x1,...,x,}}, i=n+1.



Step 1: Choose and remove a verter v from the first set in %. Seti:=1— 1 and
v; == wv. If the first set in ¥ is now empty, remove it from ¥. Go to setp 2.

Step 2: If ¥ =0, stop. If X # 0, suppose ¥ = {S1,52,...,5.}. Foranyl <j<r,
replace the set S; by two sets Ty and T} such that S; = T;UT;, T;NT; =0, viw € H
for any w € T and viw' ¢ H for any w' € T]. Now we set

S={T,Ts,...,T,, T|,T},..., T'}.

Remowve all the empty sets from X. Go back to step 1.
Output: vy, ..., Up.

Remark 2.3. The above algorithm is a modification of an algorithm of Rose-
Tarjan-Lueker. In section 5.2 of [RTL], they set

Y= {T17T1/7T27T2/7"'7T""T7{}’

The reason we difine % differently in Algorithm 2.2 is illustrated in Example 2.6
and Lemma 3.2.

Before proving Theorem 2.5, we make the following observation.

Lemma 2.4. Let vq,...,v, be an output of Algorithm 2.2. If vyu; € H, vju; ¢ H
and i < j <, then there exists A with j < A < such that vjvy ¢ H and vju\ € H.

Proof. Since v;u; € H, vju; ¢ H and i < j < [, it follows from the algorithm that
after v; is taken from the first set of X, v; and v; will be in different sets of ¥ and
the set containing v; is before the set containing v;. If there does not exist j < A <!
such that v;ux ¢ H and vjvy € H, then after v, is taken from the first set of X,
the set containing v; is still before the set containing v; and in particular, v; is not
in the first set of the new X. So after removing v;1 we need to remove a vertex
different from v;, which is a contradiction. So there must exist j < A <[ such that
vuy ¢ H and vjuy € H. O

Theorem 2.5. The output of Algorithm 2.2 is a perfect elimination order of the
chordal graph H.

Proof. First, we see that vy, ...,v, is a reordering of the vertices x1,...,x, of H.
To show that vq,...,v, is a perfect elimination order, we need only show that for
any 1 <i < j<l<n,ifvv; € H and v;v; € H, then vju; € H. Assume to the
contrary that v,;v; ¢ H.

Since v;u; € H, vju; ¢ H and i < j < [, Lemma 2.4 implies that there exists
j < A1 < lsuch that v;uy, ¢ H and v;vy, € H. And we choose the largest A\; which
satisfies this property. If vy, v; € H, then (v;v;vx,v;) is a cycle of length 4 with no
chord, which contradicts to the assumption that H is chordal. So vy,v; ¢ H.

Since v;u; € H, vy,u; ¢ H and i < Ay < [, Lemma 2.4 implies that there
exists A\; < Ay < [ such that v;uy, ¢ H and vy,vx, € H. And we choose the
largest Ao which satisfies this property. Note that by the choice of A1, we have that
vjux, ¢ H. If vy,v; € H, then (v;u;ua,05,v;) is a cycle of length 5 with no chord,
which contradicts to the assumption that H is chordal. So vy,v; ¢ H.

Since v;u; € H, vy,v; ¢ H and i < A2 < [, Lemma 2.4 implies that there exists
A2 < Az < I such that vy, ¢ H and vy,vy, € H. And we choose the largest
A3 which satisfies this property. Note that by the choices of A\; and Ao, we have
that vjun, ¢ H and vy, vz, ¢ H. If vy,u; € H, then (v;0;vx,0x,05,v;) is a cycle of



length 6 with no chord, which contradicts to the assumption that H is chordal. So

U3Vl ¢ H.

Proceeding in the same way, we get an infinite sequence of vertices vy,,v,,
Vg, ... such that Ay < Ao < A3 < ---. This is a contradiction because there are
only finitely many vertices. So v;v; € H and we are done. O

The following example illustrates the difference among different perfect elimina-
tion orders.

Example 2.6. Let H be the following chordal graph.

.
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Then z7,xg, 5, T1, T4, T2, x3 is a perfect elimination order of H, but it can not
be produced by Algorithm 2.2 or the algorithm in [RTL]; x7, x5, xs, x4, 3, T2, T1
is a perfect elimination order which can be produced by the algorithm in [RTL] ;
T7,%6, L5, T4, T3, To, 1 is a perfect elimination order which is produced by Algo-
rithm 2.2.

If we compare these three perfect elimination orders, the third one looks nicer
in the sense that there is no unnecessary “jump” in the perfect elimination order.
Here, “jump” means going from one branch of the star-shaped graph H to another
branch. For example, in the first perfect elimination order, x is followed by x
instead of x4; in the second perfect elimination order, x7 is followed by x5 instead
of xg. However, in the third perfect elimination order, this kind of “jump” does not
happen unless it is necessary, say, xg is followed by x5. This nice property of the
perfect elimination orders produced by Algorithm 2.2 is reflected in Lemma 3.2 .

T5® { Mg

3. CONSTRUCTION OF THE RESOLUTION

Let G be a simple graph with vertices z1,...,2,. The complement graph G of G
is the simple graph with the same vertex set whose edges are the non-edges of G.
The subgraph of G induced by vertices x;,,...,x;, for some 1 <iy3 <--- <4, <n
is the simple graph with the vertices z;,,..., ;. and the edges that connect them
in G. We define the preneighborhood of a vertex z; in G to be the set

pnbhd(z;) = {z; | ¢ < j,ziz; € G}.
The following two lemmas will be important in section 3 and section 4.

Lemma 3.1. Let G be a simple graph with vertices xi,...,x, such that G is
chordal. Let x1,...,x, be in the reverse order of a perfect elimination order of
G. Foranyl <i < j<l<mn,ifzx; €G, thenxz; € G or xzjz € G. In
particular, if pnbhd(x;) € pnbhd(z;) for some 1 <i < j <n then z;x; € G.

Proof. Assume to the contrary that z;z; ¢ G and z;x; ¢ G, then z;2; € G and
z;x; € G. Since x4, ...,Ty is in the reverse order of a perfect elimination order of
G, we have z;2; € G, and hence z;x; ¢ G, which is a contradiction. O
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Lemma 3.2. Let G be a simple graph with vertices x1,...,x, such that G is
chordal. Let xq,...,2, be in the reverse order of a perfect elimination order of
G produced by Algorithm 2.2.

(1) If ziz; € G for some i < j, then for any i < t < j we have pnbhd(x;) C
pnbhd(z:) in G.
(2) If pnbhd(x;) € pnbhd(x,) in G for some i < t, then x;x; € G for all j > t.

Proof. Note that part (1) and part (2) are equivalent, so we only need to prove
part (1). Assume to the contrary that there exists i < ¢t < j such that pnbhd(z;) €
pnbhd(z;) in G. We choose the minimal ¢ which satisfies this property. Then there
exists | < i such that z;z; ¢ G, z;z; € G. Since zq,...,x, is in the reverse order
of a perfect elimination order of G, we must have that z;x; ¢ G and in particular
t # j. Now since z;z; ¢ G,z;x; € G and i < t < j, Lemma 2.4 implies that there
exists i < m < t such that z,7; € G,xpx; ¢ G. However, z,x, € G,z134 €
G and | < m < t imply that z;z,, € G, so that pnbhd(z;) € pnbhd(x,,) and
i < m <t < j, which contradicts to the minimality of t. So for all i < t < j,
pnbhd(z;) C pnbhd(x,;) in G. O

Let G be a simple graph with vertices x1,...,z,. The edge ideal Ig of the
graph G is the monomial ideal in the polynomial ring S = k[z1,...,x,] with the
minimal generating set {z;z; | z;x; € G}. An important result about edge ideals
was obtained by Froberg in [Fr].

Theorem 3.3 (Froberg). Let Ig be the edge ideal of a simple graph G. Then I
has a linear free resolution if and only if G is chordal.

By the above theorem, the edge ideal I of a simple graph G is called a linear
edge ideal if G is chordal. The goal of this section is to construct the minimal free
resolution of S/Ig where I is a linear edge ideal.

Construction 3.4. Let G be a simple graph with vertices x,...,x, such that G
is chordal. Let x1,...,x, be in the reverse order of a perfect elimination order of
G produced by Algorithm 2.2.

Ifp>1,¢g>1,1<i < - <ip<j1 <--<jg<mnand {z5,...,0} C
pnbhd(z;, ), then the symbol (z;,,...,2; |z),...,z;,) will be used to denote the
generator of the free S-module S(—x;, - --x;, 2, ---x;,) in homological degree p +
q — 1 and multidegree x;, - - - x;, xj, - -~ x;, . We set

N 4 o L l<ii <o <ip << <jg<m
B={1}U U {(SC“,...,SC%:L']“...,:L']q). {20r-..2; } C pubhd(zy,)

p>1,q>1

b



We define the map d on the set B by d(1) = 1, d(z;,|z;,) = x4, x;,, and for
p+q=3,

d('riu"'a'rip|xj17"'7qu)
P
= Z(—l)s+1xis(xil,...,f,:,...,xip le?"'7qu)

s=1
q
+Z( 1)t+p1‘jt($il,...,$1‘p le,...,a/:;,...,qu)
t=1
P
+Z( 1)S+1+Bxis(xi17~“)x/i:w~';xipalew-~7xj5,1|xj5,~~';qu)
s=1
+ (- 1)px]5(x11,...,xip,le,...,xjﬂ71|a:jﬁ+1,...,qu),

where f = min{t |2 <t < q,{z;,,..., 25, } £ pnbhd(z;,)}.

Note that if {z;,,...,2;,} C pnbhd(z;,) for all 1 <t < g, then 3 does not exist
and there are no g terms in the above formula. Also, if p+ ¢ > 3, then the formula
of d may yield symbols which are not in B and we will regard them as zeros. And
Lemma 3.2 implies that for any 1 <t < 3—1and § <t' < ¢, we have zj,2;, € G.

Example 3.5. The following are some examples for the formula of d.
(1). If p > 2 and ¢ = 1, then just like the Koszul complex, we have that

p
d(xin s 7xip‘le) - Z(fl)SJrlxis(xila cee afi:a cee 7xip|1'j1)'

s=1
(2). Ifp>2 q=3, {x,...,z5, }\pnbhd(z;,) = {zs, } and {z4,,...,2;,} C
pnbhd(z;,), then § =2 and a computation will reveal that

d(a:il ye ,Q?ip|.’17j1,.’L'j2, mjg)
=Ty [(33127 s ’xip|xj1’xj2’ xjs) + (J?iz, cees Ligy Ty |xj27xj3)}
p
+ (—1)S+1xi3(l‘il,...,fi:,...,$ip|$j1,l‘j2,.%‘j3)
s=2
F (D2 Py, (g, |, w,) + (T @y, 2 [2,)]
+ (*1)3+pxj3 (xim s Ty, ‘le ) zh)'

3). Ifp>2 ¢ >4 0 =3, {ziy,...,z5, }\pobhd(z;,) = {z;,x;,} and
{xiy, ..., 25, } Z pnbhd(z;,), then a computation will reveal that

P
s+1 o~
d(@iy,s oo Ty |Tgy s 2j,) = E Ti (Tiys ooy Ty ooy Tiy [Ty 5, 5,
s=1
q
t+p ) ) 7o .
+ E T, (Tiyy ooy T [Ty Ty, X, )
t=1

Lemma 3.6. Let d be the map defined in Construction 8.4. Then d* = 0.

The proof of the above lemma is very long and is given in section 4. The next
theorem is the main result of this paper.
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Theorem 3.7. Let F be the multigraded complex of free S-modules with basis B and
differential d as defined in Construction 3.4. Then F is the minimal free resolution

Of S/Ig.

Proof. We prove by induction on the number of vertices of the graph G. If G has
one or two vertices then it is clear. Now as in Construction 3.4, let G have vertices
T1,...,T, With n > 3.

If pnbhd(z,,) = 0 in G, then 2;x, € G for all 1 <i < n—1. Since 1, ...,x, is in
the reverse order of a perfect elimination order of G, it follows that G is a complete
graph, so that G has no edges. Hence I; = (0) and there is nothing to prove. Next
we will assume that pnbhd(z,,) = {zx,,..., 2z, } forsomel <\ <--- < A, <n—1.

Let G’ be the graph obtained from G by deleting the edges @z, zn, ..., Tx, ZTn.
Then I; and Ig are both edge ideals in S. Note that G’ is chordal. Indeed, it is
easy to see that x,,x1,x2,...,T,—1 is in the reverse order of a perfect elimination
order of G’ produced by Algorithm 2.2. Setting J = (zx,,...,2x,) C S, we have
Ig = Ig + 2, J and a natural short exat sequence

I +x,J S S S

_— — _— = —
I I Ia Igr +xnJ

Note that x,JNIg = x,1q: indeed, by Lemma 3.1 we see that Ig» C J and hence

tnlg C xnJ N Igr; on the other hand, if x,m € Ig for some monomial m € J,
then m € I/, and hence z,J N Ig C x,1g. Therefore,

00— — 0.

I +xpJ ~ Tpnd mpd
I T zpJ N I N xla’
Let G be the subgraph of G induced by the vertices x1,...,2,_;. Then G” is
chordal and x1,...,x,_1 is in the reverse order of a perfect elimination order of G”

produced by Algorithm 2.2. Let S’ = k[z1,...,2,—1] € S. Then Ig~ is an edge
ideal in the polynomial ring S’ and Ig~S = Ig:. Set

B ={1}u (J {(xm...,xip|mj17...,qu)1 (xi“'"’xip|xj1""’qu)EB}.

i, <n-—1
p>1,q>1 Ja =

Suppose that L is the multigraded complex of free S’-modules with basis B’ and
differential dy, = d as defined in Construction 3.4, then by the induction hypothesis,
L is the minimal free resolution of S'/Ig». Let F' = LS. Since S = S'[z,] is a
flat S’-module, it follows that F’ is the multigraded minimal free resolution of the
S-module S"/Ign QS = S/(IgS) = S/Ie, and F’ has basis B’ and differential
d’ = dr, = d as in Construction 3.4. Setting

A=A{(iy, - mi|zj, . xj,x0) (T, T |y, T5,) € B'},
T ={(ws,,...,2i,|vn) :p > 1, {ws,,...,2;,} C pnbhd(z,)},

we have the disjoint union
B=BUAUT.

Let E: -+ — By — Ey — x,Ilg be the multigraded minimal free resolution
of 2,1l induced naturally by the minimal free resolution F' of S/Ig. Then E
has basis A and the basis element (z;,,..., %, | zj,,...,2;,,7,) is in homological
degree p + ¢ — 2 in E. We denote the differential of E by dg. Note that dg(z;, |
Tj,,Tp) = T Tj,Ty. Let K be the multigraded complex of free S-modules with
basis 7 and differential —9 = —d where d is as in Construction 3.4. Note that the



basis element (x;,,...,%; | x,) is in homological degree p — 1 in K. And it is eas
1 ) Vi
to see that K is the minimal free resolution of x,,J.
For any (xi,,...,2;,|2j,,...,7;,,%,) € A, we have that
Ay Ty | Ty @G ) = P (Tiys e iy [T o T, Tn)
=+ /~L2(xi1,' .. ’xip|le7 cee 7quaxn)
+ /1'3(xi17' . axip|xj17 s 7'quaxn)7
where gy (@i, ..., zi,|2j,,...,2j,,2,) is the sum of the terms of d(x;,,...,z;, |
Tj ..., T, T,) that contain basis elements in A, po(zi,. .., %, |25, .., Tj,,Tn)
is the sum of the terms that contain basis elements in 7 and ps(xi,,...,2;, |
Tj,...,Tj,,2,) is the sum of the terms that contain basis elements in B’. Note
_ +1+
that ps(@i,, ..., T, |x5, .., 25, 00) = (1) Poy (2, .. 2, |2y, ..., 25,). And

by the definition of d, we can check that if p + ¢ > 3, then
P (Ziys oo Ty | Ty e Ty, ) = AE(Tiy s -, T, Ty o T, )

We claim that —ps : E — K is a multigraded complex map of degree 0 lifting
the inclusion map ¢ : x,,I¢r — x,J. Indeed, ¢dg(z;, |z, , Tn) = T, €, T, and

. . — 8(xj1 (:C11|$n))7 if Ty Ty, € G
(_a)(_MQ)(xu‘-rjnxn) - { a(xil(le|:L,n))7 if Ti,Tn ¢ G

= X§, Tj, T

Hence, ¢dg(xi, |z, 2n) = (—0)(—p2)(xs, |z, €n). Then we need to show that for
p+aq=3,

(7/~L2)dE($i17 cee 7xip‘le’ cee aqu’xn) = (*8)(*#2)(%1'1, e 7xip‘le7' o aquamn)'

By Lemma 3.6, we have that

(1) 0= dQ(xil,...7xip\scj1,...,qu7mn)
= pn (Tigs ooy T | Ty oo s Ty, Tn) + p2pin (T - oo Ty [Ty, X, Tn)
Fpapr (Tiyy oo Ty Ty @, ) + O (T oo T Ty, X, )
Fdps(Tiy, o Ty [T, T, ).

In the above formula, collecting the terms which contain basis elements in 7, we
get

popia (Tiyy ooy @i |2y T Tn) A O (T s oo T | T4y - ooy Ty, ) = 0.

Since p1 = dg for p + g > 3, it follows that

(_u2)dE(gSi17 s 71'7;;;"1:]'1) s ,l’jq71'n) = (—8)(—[1,2)(5011, s 7xip‘1:jl7 s ,.’Iqu,gfn),
and the claim is proved.
Let F” be the mapping cone MC(—uz2). Then F’ : --- — F/ — F/ —

Tnd/xnlg is a multigraded free resolution of z,J/z,Ie. Note that Fjj = K
and F! = E; 1 @K, for i > 1. If we denote the differential of F” by d”,
then d()/(xllu.n) = —0(x11|xn) = ~Ti;Tn, dlll(xilllevxn) = _MQ(xh'le?xn)?
dY (x4, @iy |2n) = —0(x4y, Tip|xn), that is, df = (—p2, —0), and for i > 2,

d' = —dg 0 _ [ 0
' —p2  —0 —p2 —0)°

Since the differential matrices of F” have monomial entries, F” is the minimal free
resolution of x,J/xnle = (Igr + xnJ) /1.
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Next we define a map p: F” — F’ such that pu: Fy = Ky — F} = S is given by
(@, |en) =z @y and for ¢ > 1, p: F!' = E;_1 @ K,; — F/ is given by p = (u3,0).
We claim that —p is a multigraded complex map of degree 0 lifting the inclusion
map ¢ : (Igr + 2nJ)/Ie — S/Ig. Indeed, if i = 0 then ¢dj (zi, |2n) = —24, Tn,
dy(—p) (x4, |Tn) = —xiy @y, and hence ¥dj = dy(—p). If i = 1 then

<_,U/)dlll(xi1 |$j1 ) xn) = (_M)(_M2>($i1 |xj1 ) $n>
_ { :LL(:Ejl (ziy|2n)), lf Ty Ty € G
/u’(x'il (le |£L’n))7 if Liy Tn ¢ G
= Ty Ljy, T,y
dll(fﬂ)(xil |:L'j1 ’ 1’n> - d/l (xn(‘rll |$j1))
= Ty Lj, T,
(7}1,)61’1/(561'1 y Lig |l‘n) = (7M)(78)(xi1 y Lig |l‘n)
= /‘l’(wil (x'iQ |£L’n) — Tiy (xld ‘.’En))
= T4, LiyTn — TiyTiy Tn = 0,
dy (—=p) (@i, @iy |[2a) = di(0) =0,
and hence (—p)dy = dj(—wp). If i > 2 then it is easy to see that for p > 3,
(_M)dgl(xiu cee 7xip|xn) = d;(_:u’) (xi17 s Ty, ‘xn) =0,
so we need only to prove that for p+g=1i+1> 3,

(7N)d/i,(xi17 cee 7xi,,‘xj17' o aquaxn) = d;(iu)(aj'Ll’ s 7:17ip‘le’ s aquaxn)v
that is,
:u(_:ul - :U‘Q)(m’ilv' e ’mip|le7 s 71'jqa1:n) = d/J“3(‘Ti17' ) zip|'rj1’ s 7Ijq7zn)'
Since ppua(Tiy s - - @i, T4, ..., 25, 2n) = 0, it suffices to prove that
_/’[’?nul(xilw = axip|xj17 s 7quaxn) = d/”'?)(xilv' . ;xip|xj1a s 7quaxn)'

However, in formula (1), collecting the terms which contain basis elements in B,
we see that

papa (Tiyy ooy iy [y T Tn) A dps (T, @ Ty T, ) =0,
and the claim is proved. So p : F/ — F’ is a complex map lifting —¢ : (Igr +
Znd)/Igr — S/Ig/, and it is eay to see that p is multigraded of degree 0.

Let F* be the mapping cone MC(y). Then F* : .- — Ff* — Fj — coker(—1)
gives a multigraded free resolution of coker(—v¢) = S/Ig. Note that Fj = S,
Fr=F/@F =Ky@Ff andfori>2 Ff=F' @PF =E_PK,_1PF,.
If we denote the differential of F* by d*, then di(1) =1, df = (i, d}),

d*_—d’l’O_,ugaO
2T\ &) \ps 0 d)°

0 0
. _q 0 K1
di:< ,fl d<>: pe 00

’ ps 0 d

Note that F* and F have the same basis and the same differential. So F* = F, and
then F is a multigraded free resolution of S/Ig. Since d;(F;) C (z1,...,2n)Fi—1
for all 4 > 1, the resolution F is minimal, and we are done. O

and for ¢ > 3,
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Example 3.8. Let G be the following graph.

el3

/ \
T2 .7\.‘%4

Then G is chordal and 1, z2, 73, 24 is in the reverse order of a perfect elimination
order of G produced by Algorithm 2.2. Note that

S = kl[z1, 20, 23,24], Ig = (x129,2123,T124, T2Ty),
pnbhd(z;) = 0, pnbhd(zs) = {x1}, pnbhd(z3) = {z1}, pnbhd(z4) = {x1,z2}.
By Construction 3.4, the minimal free resolution of S/Is has basis
L (21]w2, w3, 24), (21|22, 23), (21|72, 24), (21]22);
(1|73, 24), (w1]23); (21, T2 |24), (21]24), (2] 74).
And we have the map d such that
d(z1|z2) = 122,  d(21|T3) = T123,
d(z1|z4) = 124,  d(T2|T4) = T2T4,
d(x1|xe, x3) = xa(21|23) — 3(21|22),
d(x1|xe, x4) = xa(z1|2g) — 24(T1|22),
( x4) = w3(21]2s) — w4(31]23),
( ) = x1(22|24) — T2(21]74),

d(z1|xe, x5, x4) = xo(x1|23, 24) — T3(X1|T2, Ta) + Ta(X1 |22, 23).

d

d(z1,x2|xy4

I1|333, 4

Therefore, the minimal free resolution of S/I¢ is
0— S(—$1$2$3$4) i S(—$1$2$3) D S(—$1$2$4) &) S(—$1$3$4) D S(—$1$2$4)

2y S(—z120) @ S(—m123) B S(—2124) B S(—2024) 25 S — /I,

where
Ty —xr3 —I4 0 0
—I3 T2 0 —T4 0
ds = do = di = (T122 T1T3 X1T4 T2Xa) .
3 2y | 1% 0 o 2 _x2,1(12 123 124 24)
0 0 0 0 T

Remark 3.9. In the above example, we have that pnbhd(z;) C pnbhd(xs) C
pnbhd(z3) C pnbhd(z4). But in general, given a linear edge ideal I, there may
not exist a perfect elimination order of G such that its reverse order z1,...,z,
satisfies pnbhd(x;) C pnbhd(x;;1) in G for i = 1,...,n — 1. For example, if G
is the star-shaped chordal graph in Example 2.6, then we can check that G has
no perfect elimination order satisfying the above property. However, the following
proposition says that if the above property is satisfied then the perfect elimination
order of G can be produced by Algorithm 2.2.

Proposition 3.10. Let G be a simple graph with vertices 1, ...,x, such that G
is chordal. Let x1,...,x, be in the reverse order of a perfect elimination order of
G such that pnbhd(z;) C pnbhd(x;y1) in G fori=1,...,n— 1. Then the perfect
elimination order x,...,x1 of G can be produced by Algorithm 2.2.
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Proof. First we choose v, = 1 in Algorithm 2.2. Since pnbhd(zs) C pnbhd(z;)
in G for any 2 < j < n, it follows that if z129 ¢ G then z1z; ¢ G for all 2 <
j < n, so that in Algorithm 2.2 we can choose v,_; = x3. Now suppose that we
have chosen v, = 71,051 = Z2,...,Vp_(i—2) = T;—1 for some 3 < i < n. Since
pnbhd(z;) € pnbhd(z;) in G for any i < j < n, it follows that for any 1 <1 <i—1,
if 77; ¢ G then zy2; ¢ G for all i < j < n, so that in Algorithm 2.2 we can choose
Un—(i—1) = Z;- S0 by using induction we see that x,,...,x1 can be the output of
Algorithm 2.2 and we are done. ([l

Remark 3.11. If the conditions in the above proposition are satisfied, then there
will be no 3 terms in the differential formula. However, as we have seen in Remark
3.9, the conditions in the above proposition can not always be satisfied, especially
when G is a complicated chordal graph. So in general, the 3 terms in the differential
formula can not be avoided.

Remark 3.12. Let G = K,, be the complete graph with n vertices x1,...,x,.
Then we have the Eliahou-Kervaire resolution of S/Ig. It is easy to see that
the basis element (x;xj;01,...,%,01,-..,0q) With &1 < -+ < i) < @ < j1 <

- < jg < j in the Eliahou-Kervaire resolution corresponds naturally to the
basis element (z;,...,2;,,%;|xj,,...,z;,,2;) in Construction 3.4. But the dif-
ferential maps defined on them are different. For example, if G = K3, then
d(zews; 1) = w1 (v223;0) — z3(T122;0), but d(z1,T2|T3) = T1(T2|T3) — T2(T1|3).
So in the case of complete graphs, the resolution defined in Construction 3.4 does
not recover the Eliahou-Kervaire resolution. By contrast, the resolution in [Ho]
recovers the Eliahou-Kervaire resolution in the case of complete graphs.

4. THE PROOF OF d? =0
Before proving Lemma 3.6, we look at the following example.

Example 4.1. Let G be the graph such that G is the chordal graph given in Exam-
ple 2.6. Then w1, z2, ¥3, 4, T5, Ts, T7 is in the reverse order of a perfect elimination
order of G produced by Algorithm 2.2. Note that in G,

pnbhd(zs) = {x1, 2,3} € pnbhd(z¢) = {1, z2, 24, 5}
Next we check that d?(z1, ¥, ¥3]75,76) = 0. In fact, by the definition of d, we have
that
d(x1,x9, x3|x5, T6) =21 (22, T3|T5, 6) — T2(21, T3|T5, T6)
+ x3[(x1, x2|xs, 26) + (21, T2, T5|T6)] — T6 (21, T2, T3|T5),
d(x1(xe, x3|Ts5, 26)) =x122(T3|T5, T6) — T123[(T2]25, T6) + (X2, T5|2T6)]
+ z126(x2, T3|T5),
d(—xo(z1, 23|75, 26)) = — X221 (T3|T5, T6) + T2w3[(21 |25, T6) + (21, T5|T6)]
— zoxg(21, T3|T5),
d(x3(x1, xa|zs, 26)) =w321 (22|25, T6) — T3T2 (21|25, T6)
— z325(21, T2|T6) + T326(71, T2|T5),
d(x3(x1, T2, T5|T6)) =1371 (T2, T5|T6) — T3T2(T1, T5|T6) + T375(71, T2|T6),

d(—fﬂﬁ(fﬂl,$27$3|$5)) = - $6$1($2,$3|$5) + SE69€2($1, 353\%5) - $6$3(5U1,$2|905)'
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So the sum of the terms in d?(xy, xo, x3|T5, 76) containing xxy is
r129(w3|25, 6) — T221 (23|25, 26) = 0;
the sum of the terms in d? (21,29, 23|25, T6) containing xqx3 is
—mw3|(wa|zs, x6) + (T2, T5|76)| + w371 (22| T5, T6) + T371 (T2, 5| T6) = 05
and similarly, we have
xoxz|(x1|xs, x6) + (21, 25|26)] — 2322(21 |25, T6) — X322 (21, 5|T6) = O,
—2375(71, T2|T6) + T375(71, T2|T6) = 0,
r126(22, 3|75) — w671 (T2, T3|T5) = 0,
—2276 (71, 23|T5) + Tew2 (71, T3|T5) = 0,
x326(21, T2|Ts) — xex3(21, T2|T5) = 0.

Therefore, d?(x1,z2, 23|75, 26) = 0.
Proof of Lemma 3.6. First we have that
dg(xh‘x]d) = d(xilxjd) = Tqy Lj, = 0 in S/IG7

d2(1‘i1 )y Lig “rjl) = d(‘r’il (x’iz |zj1) — Liy ('T’il "1:]'1))

= Liy LigLjy — LipgLig Ljy = 0,

d2($‘ |$ Iy ) _ d(le (xil‘sz) - xj2(xi1|xj1))v 1f Ti1Tjy € G
R d(xll (le ‘sz) — Ly (mi1|$j1))v if Liy Ly ¢ G
— { Lj1 iy Ljy — LjaLig Ly if Ti Ty, € G
xillexh — szxillea if Z'ilfﬂjQ ¢ G
=0.

Next we need only to prove that d?(xz;,,... Ty | Ty, ., x,) = 0 for p+q > 4.
Just as in Example 4.1, it suffices to prove that if we write out all the terms of
d*(z;,, - .. y T2, ..., x5, ), then given any A\, N € {i1,...,ip,j1,...,Jq}, the sum
of the terms containing x x ) is zero, that is all the terms containing xyx )/ cancel.
Hence, a computation will reveal that if 3 does not exist, that is {z;,,...,z;,} C
pnbhd(z;,) for all 1 < ¢ < g, then d*(z;,,..., %, |@j,,...,2;,) = 0. So we will
assume that ¢ > 2 and [ exists. The proof is case by case and there are five main
cases.

[Case A]: A\, X € {i1,....0p}

[Case A-a]: if 1 < s < s < psuch that 2;,2;, € G and z; ,x;, € G, then the
sum of the terms containing X, %, 18

(—1)S+1.’Eis(—1)s .’Eis,(l'il,...,1'/72,...71/'1';,...71'%‘.’Ej1,...,x]‘q)
—D)¥ e (=1 (2 7 T s VY=
+ (1) T, (1) T @y (T Ty Ty e Ty [Ty, 2, ) = 0.
[Case A-b]: suppose that there is a term containing z;_ x;, for some 1 < s,a <p
such that z;,2;, € G and z;, x;, ¢ G. Without the loss of generality, we assume
s < a.
Subcase (i): if {zi,,...,Zi,,...,x;,} € pnbhd(xz;,), then the sum of the terms
containing x; x;, is
< 1 — —~
(—1)94_ .Z‘is(—l)al‘ia(l‘il,. . .73',‘1'87 . ,.Z‘ia, . ,xip|xj1,. .. ,J}jq)

+(—1)°‘+1xia(—1)s+lxi (itil,...,fi:,...,l/'i\a,...,l'ip‘le,...,qu) :0

s
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Subcase (ii): if {zi,,...,Zi,,..., 2, } C pnbhd(z;,), then we set
' =min{t |3 <t <q{ry,...,%,,...,2z;,} £ pnbhd(zj,)}.
Lemma 3.2 implies that for any 3 <t < gq, x;,7j,,...,%j,_,7;, € G, so we have
B =min{t |8 <t< ¢ {xi,,.. . T T, x5, ..., @, } € pnbhd(xz,)}.
Subsubcase (ii)(a): if one of the following conditions is satisfied:
1) B does not exist,
2) 1'7;5{17]‘5, S G7
3) wi,xj, ¢ Gand {ziy,...,Ti, ..., Ti ..., 7, } £ pnbhd(z;,,),
then the sum of the terms containing z; x;_ is
(71)S+1Iis(71)axicx[(‘ri1v- .. a‘fi\sa R a'fi\aa cee 7Iip|‘rj17' .- a‘rjq)
+(*1)6(:61‘1,--~751:7~--7@7---7Ii],7lea--~7xj5,1‘xj57---’$jq)}
+ (—1)a+1xia[(—1)s+1$is(l’i1, e ,.fi\s, ce ,JZZ, e 7.’I,‘ip|$j1, ce 7qu>
+ (_1)5(_1)3+1xi5($i17~-~7-§i\5a~--;f;;-~-7xip7xj17~-~7$jg,1|xj5;-~-7qu>] = 0

Subsubcase (ii)(b): if z;,2;,, & G, {zi,..., T, Tiy. .., @, } C pnbhd(z;,, ),
then the sum of the terms containing z; x;_ is

(1) ey (1), [(Tiy, o Ty e Ty e Ty | Ty, T,

(=) (Ziys oo s Ty ooy Tay e e s Tigs Ty e e s Ty | Ty oo 4, )]
D {(=1)" oy (i, Ty T e @y [Ty, 25,
)

)

+
+ (=
/8/ —
+ (=1)" (x4, ... xzs,...,xia,...,xip,mjl,...,xjﬁ,71|xjﬁ,,...,qu)]
ﬁ S+1 — —
+( 1 ( ) [(‘Tha"'a‘risa"'vgjiav"-7Iipaxj13"'v‘rjﬁ—llzjﬁv"~7qu)
B'—=B+1(,.. 7 T ) ) . ) . -
+(-1) (x“,...,xls,...,xla,...,x%,xﬂ,...,xjﬁ,71|xjﬁ,,...,qu)]}70.
Note that in the above two subsubcases, if s = 1 and @ = p = 2 then the terms
containing (i, ..., Ti,, ., Tinys oo Tip|Tjy, .., Tj,) aTe zeros.
[Case A-c]: suppose that there is a term containing x;,x;_, for some 1 < a <
o' < p such that z; z;, ¢ G and z; o Lig ¢G.

Subcase (i): if {z,,...,%i,,... Ti_,,... %, } € pnbhd(z;,), then the sum of
the terms containing %aiﬂia, is

/ —~ —_—
(—1)a+1xia(—1)a Iia/ (SCil, . ,SCZ‘(X, . 7l‘ia/, . 71‘%‘26]'1, e ,Ijq)
! —~ —
+ (71)06 +1.’Eia, (71)a+1’l}ia (l’il, e ,l’ia, e ,Zia,,. . ,lL’ip|l'j1, e ,l‘jq) = 0

Subcase (ii): if {x;,,...,%i,,...,%i_,,..., 2, } C pnbhd(z;,), then the sum of
the terms containing x;,z;_, is

’ o~ —
(—l)aJrll‘ia(—l)a Qj‘ia/[(.’,til,.. .7562‘&,...71‘1'(1,,...71‘%‘.73]‘1,...,ijq)
—|—(—1)ﬁ($i1,...,.fi\a,...,LZ/IZ‘-;,...,[Eip,dijl,...,I‘jﬁ71|1‘jﬂ,...,x]‘q)]

! —~ —
+ (71)(1 +1£17ia,(71)a+lilfia[(l’il,...,I‘ia,...,Iia,,...,ZL‘ip|I]'le,...,l‘jq)
+(71)B(.’£1‘1,...,.T/lz,...,ﬂf/i;,...,Ltip,l'jl,...,(Ej571|1'j6,...,l'jq)] :0

Note that if « = 1 and o/ = p = 2, then in the above formula, the two terms
containing (i, ..., Ty, Ti_, -+ Ti,|Tj,...,Tj,) are zeros.

[Case B]: A € {i1,...,ip} and N = jy.
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[Case B-a]: suppose that there is a term containing x; x;, for some 1 < s <p
such that x; z;, € G, then it is easy to see that 3 # 2 and the sum of the terms
containing x; x;, is

(—1)S+1$1‘s (_1)1+(;D*1)1,j1 ($i1 geee ,f,z, ey l‘ip|93j2, . 7qu)
1 41 —~
+ (—1)p+ l‘jl(—l)é—i_ LL‘Z‘S (.Z‘il, e 7$i37 e ,{L‘ip|$j2, P ,qu) = 0.

[Case B-b]: suppose that there is a term containing z;_ x;, for some 1 < a <p
such that z;, z;, ¢ G.

Subcase (i): B = 2. If we have {x;,,...,%; ,...,2,,} € pnbhd(x;,), then
it is easy to see that there is no term containing x;_ x;, hence we must have
{xi,...,Ti,,..., 2, } C pnbhd(xz;,) and the sum of the terms containing x;, x;, is

(_1)a+1xia [(_1)171.]_1 (inV cee "T/l:w s 7xip|fj\17xj2a s 7qu)
1 —~ —~
+ (=D (1) ey (g, Tay yTiy Ty T4y, -0 2,)] = 0.

Subcase (ii): if 8> 2 and {z;,,...,Z,,...,x;,} € pnbhd(z;,), then the sum of
the terms containing x;_ x;, is

(_1)a+1xia<_1)pwj1(xi1a-~-a-f':13--~7xip‘f]:7$jzv~--aqu)
+ (*1)p+1.’£j1(71)a+1xia(l’il,. .. ,ZL/'Z':,. .. ,Z'ip|fj\l,.’£j2, N ,.qu) = 0

Subcase (iii): if # > 2 and {z;,,...,Zi,,...,2;,} C pnbhd(z;,), then the sum of
the terms containing z;_ z;, is

(=), (V)P (@i, Tany - - VT, | T Ty e T,)
+ (=D (=1 g (i, Tay Ty Tjrs Ty Ty | T oo oy T5,)]
+ (—l)erlIEjl(—l)aJrlIia [(II?Z'U. .. ,IZ?;!, . ,,Iip|$/;,$j2, . ,Cqu)
+ (71)ﬂ71(‘ri17"'a‘r/l:a"'axip7fj\17xj27'"7xjﬂ—1|xj[;‘7-"aqu)] = 0.
[Case C]: A € {i1,...,ip} and X € {jo,...,jq}-
[Case C-a]: if 1 < s <p, 2 <t <qsuchthat z;,x;, € G and t # 3, then the
sum of the terms containing z;_ z;, is
(=1) (= 1) D0y (), oo Ty ey @iy [Ty ey Ty @5,
—|—(—1)t+p$jt(—1)s+1$is(.Til,...,fi\s,...,J,‘ip|$j1,...,fj\”...,]}jq) =0.
[Case C-b]: suppose that there is a term containing x;, z;, for some 1 < a < p,
2 <t < g such that ; z;, ¢ G and t # f3.
Subcase (i): if {zs,,...,%i,,..., 25, } € pnbhd(z;,), then the sum of the terms
containing x; x;, is
(—1) "y (1) TP Vg (@, T [Ty T 1)
—|—(—1)t+pl‘jt(—1)a+1$ia(l‘il,...,l/‘;‘;,...,l‘ip|£j1,...,f_j:,...7ajjq) =0.

Subcase (ii): if {@;,,...,Z;,,...,2;,} C pnbhd(z;,), then as in subcase (ii) of
[Case A-b], we set

B = min{t | B<t<q{zi,....,Ti,,...,z;,} € pnbhd(z;,)}
=min{t | B <t <q{zi,,....Tip,...,Ti, Tj,...,Tj,_, } € pnbhd(z;,)}.
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Subsubcase (ii)(a): if ¢ < §, then the sum of the terms containing x;, z;, is

(_1)a+1$ia [(_1)t+(p_1)xjt (xilﬂ cee 7*/{1:‘7 cee 7-Tip|‘rj17' ) x/j\u v 7qu)

+(—1)ﬁ(—1)t+(p71)+1$]‘t(ﬂj‘il,...,f;':,...,Lljip,l‘jw...,1/‘.3:,...,,13]'571|33jﬁ,...7l‘jq)]
+ (=) Py, (= 1)y (@, oy Tis e oo @iy [Ty Ty e, T,
—l—(—1)ﬁ_l(xil7...,@,...,mip7xj1,...7@:,...,acjﬂ_1|xjﬁ,...,qu)]:0.

Subsubcase (ii)(b): if one of the following conditions is satisfied:

1) t > B and B’ does not exist,

2) t>pand t #£ 3,

3)t=p"=q,

4) t=p"and {zi,,..., i, .., 2, } € pnbhd(x;,, ),

then the sum of the terms containing x;_x;, is

(_1)a+1xia[<_1)t+(p_1)xjt ('Tin e a@a cee 7xip|xj1?' B fj\ta v 7qu)

+ (_1)5(_1>t+p_1xjt(xi1?'"51{2:17"'7xip7xj17"'7xjg71|xjga"'7@7"'7qu)]
+ ()P, (), (o, Tins o @4, 050, Ty 25,)
+(—1)ﬁ(£€i1,...,iC/Z‘:,...,l’ip,fﬂjl,...,.’Ej571|1'j/3,...,ZL'/;,...,CCJ'Q)] :0

Note that in the above two subsubcases, if @ = p = 1 then the terms containing
(Tiys oo Tigyovo s Tiy|Thy 5o oo, T, ..., x4, ) are zeros and (' does not exist.
Subsubcase (ii)(c): if ¢ = ¢ and {z;,,...,Z;,,...,x;,} C pnbhd(

), then
the sum of the terms containing x;_ x;, is

Ljgria

(=1 {(=1) TP Vg (@i, T oy @y [T oo Ty ey T,

F (1) @iy ooy Ty oo @iy T ooy Ty | Ty -5 T, )]
+(fl)ﬁ(fl)Hp*lxjt[(:cil,...,:c/i:,...,a:ip,le,...,xj571|xj5,...,@,...,qu)
(—1)t*ﬁ+1(mi1,...,x/i\a,...,:rip,le,...,xjt_1|xjt+1,...,:ch)]}
—I—(—1)t+pxjt(—1)°‘+1xia[(mil,...,f;,...,xipujl,...,a?;,...,qu)

—|—(—1)5(33i1,...,fi\a,...,xip,le,...,xj371|xjﬁ,...,x/j:,...,qu)] :0

[Case C-c|: suppose that there is a term containing x;, x;, for some 1 < s <p
such that z;,z;, € G. We set

ﬁ” = mln{t | ﬁ <t<g, {$i17 s axip} /g pnbhd(xjt)}
Lemma 3.2 implies that for any 8 <t <gq, xj,v,,...,2;,_,7;, € G, so we have
A" =min{t | B <t <gq, {wi, ... w4, 25,..., 2, } € pnbhd(z;,)}.

Subcase (i): if 8 = q or {z4,,...,%;,,...,2;,}  pnbhd(z;,,,), then the sum of
the terms containing x; z;, is

(71)S+1xis(71)B+(p71)xj,8 (xil" ) fi:a cee amipp:jlv cee 79“{]733 cee 7qu)

+ (—1)’8+p$jg(—1)s+1$is(%‘17~~~,$/z‘:,-~,$ip|$j1,~-~733/]73,'~~,5qu) :0
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Subcase (ii): if {zi,,...,Zi,,..., 2, } C pnbhd(z;,,,) and z;,2;,, , ¢ G, then
p" = B+ 1 and the sum of the terms containing x; x;, is

(_1)s+1 ‘s(_1)6+(p_1)$jﬂ[($i1;~~-755'/1‘\57-~wl'ipllew'-w@anwqu)

(D) @iy ooy Ty Ty Ty o0 Ty [Tjgs 5 T5,)]
+( 1)54‘101. ( 1)S+1mis[($i17~--752’\5;-~-7xip|lea--~7@37-~-aqu)
+ (- 1) (Xigyeee 75@‘:,---,xi,ﬂmjl,--~79€j3,1|$jﬁ+1,---,qu)]ZO-

Subcase (iii): if one of the following conditions is satisfied:

1) B < qand " does not exist,

2) "> p+1and z; 75, €G,
) B> B+1, xix, ¢ Gand {z,...,Ti,...,z;,} £ pnbhd(z;,,)

then the sum of the terms containing x; x;, is

(=1 oy (—1) T Vg (@i, Tasy ooy iy [Ty T T,
( 1) (x7/17" 7572\57"'7$ip7xj1a'~-7Ij5—1|xj5+1"~-7qu)]
+ (— l)ﬁﬂgx (=) ey (ziy,y oy Ty
+(=

.,,Iip|$jl,...7f};,...,qu)
1) ( )S+1xis(xi17"-a@:a"

-axipw'rjly--~71'j@,1|1'j5+17--~71'jq)] :O

Subcase (IV) lf ﬁ// > ﬂ + 17 xisxjﬁu ¢ G7 {xiu o 75;57 e 71’%} g pnbhd(xjﬁ//)
then the sum of the terms containing x; x;, is

(_1)S+1xis(_1)6+(p_l)xj6 [(l‘u PR 71‘/i\37 R xip|xj1’ . 7@7 s ,J?jq)

(xil,...,x/i\s,...,$ip,mj1,...,xjﬁ71|xjﬁ+l,...,qu)]

-1 g+p$jﬁ{(—1)s+1$is [(l‘il,. .. ,fi\s, “ee ,a:ip|33j1, -

(1)
(1)
(71)3’71(%17'”7@7”.71%’%1"”
(1)
(=1)

.7Ij57...,$jq)

7fj\57"'azj5//,1|'rjﬁ//7"'7qu)]
-1 6(_1)S+1xis[(‘xi1a"-afi:a"-7xipaxj1"-~axj571|m]'5+17"'aqu)
_B(in...,{fi\s,...,(Eip71'j17...71{;@,...,.’L‘jg,,71|l'j6,,,...,(qu)}} :0

[Case C-d]: suppose that there is a term containing x;,z;, for some 1 < a <p
such that z; ;, ¢ G. As in [Case C-c], we set

B =min{t | B <t <gq, {xs,..., x5, } € pnbhd(z;,)}
=min{t | 8 <t < q,{zi,..., 2, T5,...,2j,_, } € pnbhd(z;,)}.

Subcase (i): if 8 =q or {z;,,...,Z;,,...,z;,} € pnbhd(z;, ), then the sum of
the terms containing x;,z;, is

(_1)a+1xia(_1)ﬁ+(pil)xj6 (mi17' . a'fi\aa v axip|xj17' . 71/9;% s aqu)

+ (—1)ﬁ+pl'j5(—1)a+1$ia(l‘il,...71/‘;;7...,J?ip|$j1, '7@7""1:_1[1) =0.
Subcase (ii): if {ziy,..., T, .-

.y, } € pnbhd(z;, ), then we have the following
three subsubcases.
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Subsubcase (ii)(a): if {z4,,...,Ti,,..., x5, } € pnbhd(z;,,,) and z;, z;,,, ¢ G,
then 3” = 34 1 and the sum of the terms containing x;,x;, is
(—1) (1P Va2, T i [Ty T 2,)
+ (—1)6(—1)ﬁ+p_1xjﬁ(xil,. Ty iy Ty Ty [Ty T,
+ (1) P, (= 1)y (i, Tans ooy iy [Ty ey Tggs o T
+(—1)5(:131»1,...,fi\a,...,xip,le,...,xjﬁ_1|xjﬁ+l7...,qu)} =0.

Subsubcase (ii)(b): if {z;,,

..., } € pnbhd(z;,, ) and one of the following
conditions is satisfied:

1) B does not exist,
2) Iial‘jﬁ,, S G,
3) zi,xj,, ¢ G and {z;,...,Ti,...,z;,} € pnbhd(z;,,),
then the sum of the terms containing x;,z;, is
(_1)a+1xia [(_1)5"!‘(1)—1)%-],[3 (xila s 75['{7:17 v axipllev .. ?‘T/j\ﬁ7 . 7qu)
+ (—1)5(—1)5+p_1mjﬁ (Tiys oo Ty Ty Ty Ty [Ty T4, )]
+ (_1)ﬁ+pxj5[(_1)a+1xia($i17~ .. afz:n- . ,J}Z‘p|.’lﬁj1, ‘e ,.’I,{j;, . ,.’I?jq)
+ (—1)ﬁ<—1)a+1l‘ia($il,. .. 71,{117 . ,J?ip,$j1,. .. 7Ijﬁ—1|xjﬁ+17 - ,Ijq)] = 0

Subsubcase (ii)(c): if 8" > B+ 2, w2, ¢ G and {z;,,
pnbhd(z;, ), then the sum of the terms containing z;,x;, is

(~1)+a

...7.’1%&7...,{,62‘?} -

ia[(_1)5+(p_1)$j3(wi17 . ,LL{ZZ, . 73,‘1‘?‘37]‘1,. . "fj\ﬁ7 - ,{L‘jq)
_1)54—1)—1

|
—_
®
—

+< ) xjﬁ(xil?""@""7xip7$j17"'7"’L‘j[371|x‘]‘[3+17"'7$]‘q)}
+ (—1)ﬂ+pxj3{(—1)a+1{1}ia[(.Til’ e ,.’IZ‘;, ‘e ,.’I,‘ip|l‘j1,. .. ’Z{J;’ [N 7.’I,‘jq)
—|—(—1)ﬁ _1(a:i1,...,f;,...,xip,le,...,a:/];,...,xjﬁ,,71|a:jﬁ,,,...,qu)]

( ) "7@7"')171'1)79:]'17'--7xj5—1|xjﬁ+1v'--7qu)
+(71)’8 7ﬁ(.€0i1,...,SC/;I,...,IIZip,CEjl,...,Cﬂ/j\s,...,ZL’jﬂ,,il‘IjB/,,...,qu)]} :0
Subcase (iii): if {z;,,...,Z;,,...,z;,} € pnbhd(z;,), then just as in subcase (ii),

we have the following three subsubcases.
Subsubcase (iii)(a): if {zi,,...,Zi,,..., 2, } € pnbhd(z;,,,) and z;, z;,,, ¢ G,
then 3" = 3+ 1 and the sum of the terms containing x; x;, is
(—1)* (1O Vg (@i, Ty @i [Ty ey Ty ey ,)
+(71)’6(1‘i17...,1/‘;;,. ..,xjﬁ71|xjﬁ+1,...,qu)]
+ (1) Py (<1) (@i, T
+(71)’&(1171'1,...,fi:,...,ilfip,l’jl,
Subsubcase (iii)(b): if {z;,,
conditions is satisfied:
1) B does not exist,
2) xiaxjﬁ,, S G,
3) i xj,, ¢ Gand {z;,...,Ti,...,z;,}  pnbhd(z;,,),

..,Iip,l‘jl,.
...,I¢p|l’jl,...7@,...,$jq)
...,xj571|xj5+1,...,qu)] :0

..., xi,} € pnbhd(z;,,,) and one of the following
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then the sum of the terms containing x;,z;, is
(—1)a+1xia(—1)[3+(p_1)a:jﬁ[(xil, R T s Ty | Ty ,x/];, CT,)
+(—l)ﬁ(ajil,...,fl;,...,xip,le,...,xjﬁ71|xjﬂ+1,...,qu)]
+ (—1)ﬁ+pxjﬁ[(—1)°‘+1xia(xi1,. Ty T [Ty T, T
+ (—1)ﬁ(—1)a+1xia(xil,. R Ty Ty ey gy |Tjas o5 25,)] = 0.
Subsubcase (iii)(c): if 3" > B+ 2, zi, 2, ¢ G and {z,..., T, .., 2} C

pnbhd(xjﬁ/,), then the sum of the terms containing z;, x;, is

(—1) (1) (@, Ty @i [Ty e Ty ey 2,)

F (1) @iy oo Tam e o s Ty Ty e ey Ty [Ty e e o0 T,)]
+ (=1) P {(= 1) 2y (i ooy Tis e oy T | Ty ooy Do 5 T,
+ (- 1)6 (a:il,...,fi:,...,xip,xju...,x?\ﬁ,...,xjﬁ,,_1|:vj5,,,...,sch)]
+ (- 1)5( )O""lxza[(m“,...,x/i\a,...,xip,le,...,xj371|xjﬁ+1,...,qu)
)

17 —~
( 1 p ﬁ(aiil,...,Jiia,...,xip,le,...,.Ij57...71‘jﬁ,,71‘$jﬂ,,,...,Jijq)]} =0.

[Case D]: A = ji and N € {ja,....,Jq}
[Case D-a]: suppose that there is a term containing z;, z;, for some 2 <t < ¢

such that t # (3, then 8 # 2 and if ¢t = 2 then § # 3. Hence, the sum of the terms
containing x;, x;, is

(71)1+px]'1(71)(t71)+p$jt (xi17' . . a‘xip|l/'j\17 cee 7@, cee aqu)
=+ (—1)t+pxjt(—1)1+ple(mil,. .. ,Iip|.13:, e ,fj\” e ,J}jq) = 0.

[Case D-b]: suppose that there is a term containing x;, x;,.

Subcase (i): # = 2. Assume that {z;,,...,2;,} € pnbhd(xj,), then there is no
term containing xj x;,, hence we must have {z; ,...,z; } C pnbhd(z;,) and the
sum of the terms containing x;, z;, is

(_1)ﬂ+pxjﬁ[(_1)1+ple (xil, . ,.’Eip|$/j\1,l‘j3, - ,J)jq)
+ (—1)6(—1)p+2$]‘1 (l‘il,. .. ,J}ip,l{j\1|l‘j3, . ,Jqu)] = 0

Subcase (ii): if 3 > 2 such that 8 = q or {x;,,...,z;,} € pnbhd(z;,,,), then

the sum of the terms containing x; z;, is
(_1)1+px]'1 (_1)(5—1)+ijﬁ ('rin se . a‘rip|xj27 DR 7@a se . aqu)
+ (_1)ﬁ+pxjﬁ(_1)1+ple (J}il,. cey J}ip|$j2, e 7'fj\57 . ,.I‘jq) =0.

Subcase (iii): if 3 > 2 and {w;,,...,2;,} € pnbhd(z;,,,), then the sum of the
terms containing x;, x;, is

(_1)1+p1,4 (— )(ﬁil)erIjﬁ[(:Eil, e 7'T'ip|mj27 .. 'afj\gv e 7qu)

+ (- ) (z“,.. xzp,xﬂ,...,xjﬂil|xj5+l,...,qu)]
+ (1) Pz, (- DY Pas (2, @i @ T, 5,)
+ (71),3(71);04»2‘%3_1 (:Cila ceey Ly Tjigs - - 'ﬂzj5—1|xj/3+17' .. 7l'jq)} = 0.

[Case E]: \, N € {Ja,...,Jq}-
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[Case E-a]: if 2 <t <t < ¢ such that t # 8 and ¢’ # 3, then the sum of the
terms containing z;,x;,, is

;o —~ —
(71)t+pxjt(71)(t 1)+;ijt, (xi17 <o Ty, |‘Tj1 yer s Lgpy ey Lgyysne- >qu)

/ —~ —_—
+ (—].)t +pxjt/(_1)t+pxjt(xi1; e 7xip|xj17 N ,QI}jt, e ,.’Ejt,, e ,iqu) = 0

[Case E-b]: suppose that there is a term containing x;,z;, for some 2 <t < ¢
with ¢ # 3. As in [Case C-c], we set

B =min{t | <t <q{zi,...,z;,}  pnbhd(z;,)}
=min{t | B <t < q,{wi,..., Ti,, Tj,... ,Ijﬁ,l} ¢ pnbhd(z;,)}.

Subcase (i): if one of the following conditions is satisfied:

1) B=q,

2) B=qg—1land t=gq,

3) B = f+1andt A @,

4; ﬂ:ij’%-l, t=p" and {z;,,...,2; } € pnbhd(z;,_,),
5) ' =p+2andt=0+1,

then the sum of the terms containing x;,x;, is

(_1)t+p$jt(_1)(ﬁ_1)+p$jﬁ<xi1a--~7xip‘xj15"-7@%"7@3’"-"%%)
+(—1)B+pxjﬁ(—1>t+pl‘jt($il,...,.Z‘ipll‘jl,...,l‘/j:7...,.@,...,J}jq)
=0, fort< f;
(—1)t+p$jt(—1)ﬁ+p(£jﬁ(xil,...,"Eip|l'j1,...7@,...,@,...,$jq)
(=1 P (D) (2@ | Ty T T,
=0, fort>p.

Subcase (ii): if 8" = 8+ 1, t = 3" and {z;,,...,2;,} C pnbhd(x;,,,), then the
sum of the terms containing xj,z;, is

(—1)t+p$jt(—1)ﬂ+pxjﬁ[(xil, e T | Ty Ty Ty )

+ (—l)ﬁ(xil7...,:rip,le, e T Ty 2]

+ (—l)ﬁerij(—l)(t*l)erxjt[(xil, T Ty T, Ty )
+ (—l)ﬁ(xil,...,xip,le, .. axqu‘mjgua ooz )] = 0.

Subcase (iii): if one of the following conditions is satisfied:

1) B=q—1,t<pand {z;,...,2;,} C pnbhd(z;,),
2) B8 <q—2and " does not exist,
) B >pPB+1,t£3" suchthat t A+ 1or 8" # F+2,
) ' >pB+1landt=p8" =¢q,
) 8" >pB+1,t=p"and {z;,,...,z;,} € pnbhd(z;,, ),
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then the sum of the terms containing z;,x;, is

(—1)t+pxjt(—1)(ﬂ71)+pxjﬁ[(a:il,...,a:ip|xj1, Ty Ty e, T

+ (—l)ﬁfl(mil,...,mip,le,...,fj:,...,:@|xj5+l,...,qu)}

+ (1) P (= 1) P2y, (Tigs ooy @iy [Tgys ey Ty ooy T s T,

+ (fl)ﬁ(—l)terJrlxjt(x,;l,...,xip,le,...,@:,...,@\xm“,...,qu)]
=0, fort<g;
(—1)t+pxjt(—1)5+pmjﬂ[(xil,...,xip|le,...,x/j;,...,@7...,$jq)

+ (—1)6(xi1,...,xip,le,...,xjﬂ71|a:jﬁ+1,...,fj\t,...,qu)]

+ (=1 P ()P (2 @ [Ty T T T,
+ (=D)P(=1) Py, (4, . iy Ty Tja | Tiaiis ey Ty e ey Tj,)]
=0, fort>g.

Subcase (iv): if 87 > B+ 1, ¢t = 8" and {z;,,...,2;,} C pnbhd(z;,, ), then
the sum of the terms containing z;,z;, is

(—1)t+pxjt(—1)ﬂ+pxjﬁ[(xil,...,xip|xj1,...,x/];,...,fj:,...,a:jq)

+ (—1)5(%,...,acip,le,...,xjﬁ71|xjﬁ+1,...,fj\t,...,asjq)]

+ (=1) P (=D (2, iy [Ty Ty Ty T,
+ (—l)t_l(a:il,...,a:ip,le,...,x’ﬁa,...,xjt71|xjt+l,...,qu)]

+ (—1)5(—1)t_1+pxjt[(xil,...,xip,le, s T T Ty T,)
(—1)t7ﬁ(a:i1,...,xip,xj1,...,x/j;,...,xjt71|xjt+l,...,qu)]} =0.

Since the above five main cases have included all the possible terms, it follows
that d?(x;,, ... s Tiy T4, ..., xj,) = 0 and we are done. O

5. BETTI NUMBERS

In Section 3, to construct the differential maps of the minimal free resolution of
S/Iq, we need to assume that z,, . .., r; is a perfect elimination order of G produced
by Algorithm 2.2. However, to get a nice formula for Betti numbers (Corollary 5.2),
we only need to know a basis for the minimal free resolution. Therefore, we have
the following theorem which does not require that the perfect elimination order
Zp,...,x; of G is produced by Algorithm 2.2.

Theorem 5.1. Let G be a simple graph with vertices x1,...,x, such that éi's
chordal and x1,...,x, is in the reverse order of a perfect elimination order of G.
Then in the polynomial ring S = k[xy,...,2,] we have the linear edge ideal I of

the graph G. Let the symbol (2, , ..., % |z, ..., x;,) be as defined in Construction
3.4. And we set

1<if < - <ip<ji<--<jo<m
B={1}U {(:c e @ Ty ) P 1
ngﬂ A Pl {xgy, ., ) € pnbhd(xy,)

Then there exists a multigraded minimal free resolution F of S/Ig such that F has
basis B.

b
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We will not prove Theorem 5.1 because the proof is very similar to the proof
of Theorem 3.7. The only difference is that in the proof of Theorem 3.7 we know
the complex maps —p2 : E — K and p : F — F’/ explicitly, while in the proof of
Theorem 5.1 we only know their existence. However, we can still use the mapping
cones to show the existence of the multigraded minimal free resolution with the
desired basis B.

Now Theorem 5.1 imply immediately the following corollary about Betti numbers
and the projective dimension of S/Iq.

Corollary 5.2. Let Ig be a linear edge ideal as defined in Theorem 5.1. For
2 <i<n, we set \; = |pnbhd(z;)|. Then for i > 1, the Betti numbers of S/Ig are

bi i (S/1c) = i (ﬁ: Cj) (?:;)) , =i,

=2 \p=1
0, ifj#i+1,
and the projective dimension of S/Ig is
projdim(S/Ig) =n—min{i — A; : 2<i<nand A\ #0} <n-—1.

Proof. The formula for Betti numbers follows from counting the number of basis
elements of homological degree ¢ and degree ¢ + 1 in B. The projective dimension
formula also follows easily by looking at the basis elements in B. Since \; < i —1
for 2 < i < n, it follows that projdim(S/Ig) <mn — 1. O

Example 5.3. Let G be the graph such that G is the chordal graph given in Exam-
ple 2.6. Then w1, z2, x3, 4, 25, T6, T7 is in the reverse order of a perfect elimination
order of G and we have that

A=0,A3=1 =2, =3, ¢ =4, \y=5.

Therefore, by Corollary 5.2, we have projdim(S/Is) = 5 and a computation will
reveal that the Betti numbers of S/Ig are

b1y =15, byg =40, by =45, bys = 24, bs = 5.

In [RV] and [HV], the following formula for the Betti numbers is proved by using
Hochster’s formula. Now we prove the formula by using Theorem 5.1.

Corollary 5.4. Let I be the linear edge ideal of a graph G with vertices x1, ..., Tp.
For any nonempty subset o of {z1,...,2,}, let G, be the subgraph of G induced by
o and let #(Gy) be the number of connected components of G,. Then for i > 1,
we have

(#(Gy)—1), ifj=i+1,

biJ(S/IG) = ocC{z1,....xn },|o|=14+1
0, if j #i+ 1.
Proof. Without the loss of generality, we can assume that z,,...,z; is a perfect

elimination order of the chordal graph G. Let B be as defined in Theorem 5.1. We
say that the vertex xs is smaller than the vertex x; if s < t. For any i > 1, let
0=A{%a,,...,%a,,, } beasubset of {x1,...,2,} forsome 1 <oy < - <y <.
We claim that (za,,...,Za, ,|Tay, -+ Ta;y,) € Bifand only if p # 1 and 2, is the
smallest vertex in the connected component of G, containing Tq,- Indeed, if p > 2
and x, is the smallest vertex in the connected component of G, containing Ta,,
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then 24,24, € G forall 1 <s <p—1,so that (za,,...,%a, ,|Tay, - Tasy,) € B.
On the other hand, assume that p > 2 and there exists 1 < s < p—1 such that z,,
and z,, are in the same connected component of G,. Set 0’ = {z4,,...,2q,} C 0.
Since Ta,,,, ..., Tq, is a perfect elimination order of G,, it is easy to see that x4,
and 7, are still in the same connected component of Gy Therefore, there exists
1 < s < p—1such that z,_,7,, € Gy, and hence To,,Ta, ¢ G, which implies
(Tays- s Zay i |[Tays s Tazy,) & B. So the claim is proved. It follows that there are
#(G,) — 1 basis elements in B with multidegree zq, - - Zq,,, and we are done. O
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