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Abstract. We construct minimal free resolutions for all edge ideals which

have a linear free resolution.

1. Introduction

Let S = k[x1, . . . , xn] be the polynomial ring over a field k. In this paper we con-
sider minimal free resolutions of quadratic monomial ideals in S. By polarization,
the study of such resolutions is equivalent to the study of the resolutions of square-
free quadratic monomial ideals, that is, edge ideals. Such an ideal can be easily
encoded in a graph as follows: let G be a simple graph with vertices x1, . . . , xn,
then the edge ideal IG of the graph G is the monomial ideal in S generated by
{xixj | {xi, xj} is an edge of G}. The general goal is to relate the properties of
the minimal free resolution of IG and the combinatorial properties of the graph G.
In 1990, Fröberg [Fr] proved that IG has a linear free resolution if and only if the
complement graph G is chordal (see Definition 2.1). Because of this, IG is called a
linear edge ideal if G is chordal.

Minimal free resolutions were constructed for the following two classes of linear
edge ideals. In [CN], Corso and Nagel used cellular resolutions to get the mini-
mal free resolutions of the linear edge ideals IG where G is a Ferrers graph. In
[Ho], Horwitz constructed the minimal free resolutions of the linear edge ideals IG
provided that G does not contain an ordered subgraph of the form

•d

•a

•b

•c��
��

�
??

??
? with a < b < c < d,

which is called the pattern Γ in [Ho]. However, from Example 3.18 in [Ho], we see
that if G is complicated, then it may be impossible to satisfy the Γ avoidance condi-
tion. In Construction 3.4 and Theorem 3.7 we provide the minimal free resolutions
of all linear edge ideals. The construction is different than the one in [Ho] and the
following paragraph explains the difference.

In 1990, Eliahou and Kervaire [EK] constructed the minimal free resolutions
of Borel ideals. In 1995, Charalambous and Evans [CE] noted that the Eliahou-
Kervaire resolution can be obtained by using iterated mapping cones. Then in
2002, Herzog and Takayama [HT] used the iterated mapping cone construction to
obtain the minimal free resolutions of monomial ideals which have linear quotients
and satisfy some regularity condition. Following this idea, in 2007, Horwitz [Ho]
constructed the minimal free resolutions of a class of linear edge ideals. In [HT] and
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[Ho], the constructions are based on induction on the number of generators of the
monomial ideal and the resolutions are similar to the Eliahou-Kervaire resolution.
In this paper we use the mapping cone construction in a new way: (1) we use
induction on the number of variables, that is the number of vertices of G; (2) in
each induction step, we use the mapping cone construction twice. Consequently,
the minimal free resolution in this paper is very different from the Eliahou-Kervaire
resolution and is not a modification of the resolution obtained in [Ho] (See Remark
3.12).

Another thing that plays an important role in our construction is the notion
of a perfect elimination order (See Definition 2.1) of a chordal graph. From [Di]
and [HHZ], we know that every chordal graph has a perfect elimination order on
the set of vertices; conversely, it is easy to see that if a simple graph has a perfect
elimination order then it is chordal. Therefore, a simple graph is chordal if and only
if it has a perfect elimination order. In general, given a chordal graph, there are
many perfect elimination orders. In section 2 we give an algorithm (Algorithm 2.2)
to produce a special perfect elimination order on the vertices of a chordal graph.
This special perfect elimination order has a nice property (Lemma 3.2) and will be
used in the construction of the minimal free resolutions of linear edge ideals.

In section 3 we construct the minimal free resolutions of linear edge ideals and
Theorem 3.7 is the main result of this paper.

In section 4 we prove d2 = 0 case by case, where d is the differential defined in
Construction 3.4. The proof is not difficult but very long.

Section 5 gives a nice formula (Corollary 5.2) for calculating the Betti numbers
of linear edge ideals and the formula works for any perfect elimination order of G.
Finally, in Corollary 5.4, we use our method to prove another Betti number formula
obtained by Roth and Van Tuyl in [RV] (see also [HV]).
Acknowledgments. The author is thankful to Irena Peeva for providing the idea
of using induction on the number of vertices and two mapping cones to find minimal
free resolutions of all linear edge ideals. The author also thanks the referee for the
valuable suggestions.

2. Perfect Elimination Orders

In this section we use H to denote a chordal graph. In the other sections of this
paper, we have H = G.

Definition 2.1. Let H be a simple graph with vertices x1, . . . , xn. We write
xixj ∈ H if {xi, xj} is an edge of H. We say that C = (xj1xj2 . . . xjr ) is a cycle
of H of length r if xji 6= xjl for all 1 ≤ i < l ≤ r and xjixji+1 ∈ H for all
1 ≤ i ≤ r(where xjr+1 = xj1). A chord in the cycle C is an edge between two
non-consecutive vertices in the cycle. We say that H is a chordal graph if every
cycle of length > 3 in H has a chord. The order x1, . . . , xn on the vertices of H
is called a perfect elimination order if the following condition is satisfied: for any
1 ≤ i < j < l ≤ n, if xixj ∈ H and xixl ∈ H, then xjxl ∈ H.

The perfect elimination orders we will use in sections 3 and 4 are given by the
following algorithm.

Algorithm 2.2. Let H be a chordal graph with vertices x1, . . . , xn. Let Σ be a set
containing a sequence of sets.
Input: Σ = {{x1, . . . , xn}}, i = n+ 1.
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Step 1: Choose and remove a vertex v from the first set in Σ. Set i := i − 1 and
vi := v. If the first set in Σ is now empty, remove it from Σ. Go to setp 2.
Step 2: If Σ = ∅, stop. If Σ 6= ∅, suppose Σ = {S1, S2, . . . , Sr}. For any 1 ≤ j ≤ r,
replace the set Sj by two sets Tj and T ′j such that Sj = Tj∪T ′j, Tj∩T ′j = ∅, viw ∈ H
for any w ∈ Tj and viw′ /∈ H for any w′ ∈ T ′j. Now we set

Σ := {T1, T2, . . . , Tr, T
′
1, T

′
2, . . . , T

′
r}.

Remove all the empty sets from Σ. Go back to step 1.
Output: v1, . . . , vn.

Remark 2.3. The above algorithm is a modification of an algorithm of Rose-
Tarjan-Lueker. In section 5.2 of [RTL], they set

Σ := {T1, T
′
1, T2, T

′
2, . . . , Tr, T

′
r}.

The reason we difine Σ differently in Algorithm 2.2 is illustrated in Example 2.6
and Lemma 3.2.

Before proving Theorem 2.5, we make the following observation.

Lemma 2.4. Let v1, . . . , vn be an output of Algorithm 2.2. If vivl ∈ H, vjvl /∈ H
and i < j < l, then there exists λ with j < λ < l such that vivλ /∈ H and vjvλ ∈ H.

Proof. Since vivl ∈ H, vjvl /∈ H and i < j < l, it follows from the algorithm that
after vl is taken from the first set of Σ, vi and vj will be in different sets of Σ and
the set containing vi is before the set containing vj . If there does not exist j < λ < l
such that vivλ /∈ H and vjvλ ∈ H, then after vj+1 is taken from the first set of Σ,
the set containing vi is still before the set containing vj and in particular, vj is not
in the first set of the new Σ. So after removing vj+1 we need to remove a vertex
different from vj , which is a contradiction. So there must exist j < λ < l such that
vivλ /∈ H and vjvλ ∈ H. �

Theorem 2.5. The output of Algorithm 2.2 is a perfect elimination order of the
chordal graph H.

Proof. First, we see that v1, . . . , vn is a reordering of the vertices x1, . . . , xn of H.
To show that v1, . . . , vn is a perfect elimination order, we need only show that for
any 1 ≤ i < j < l ≤ n, if vivj ∈ H and vivl ∈ H, then vjvl ∈ H. Assume to the
contrary that vjvl /∈ H.

Since vivl ∈ H, vjvl /∈ H and i < j < l, Lemma 2.4 implies that there exists
j < λ1 < l such that vivλ1 /∈ H and vjvλ1 ∈ H. And we choose the largest λ1 which
satisfies this property. If vλ1vl ∈ H, then (vivjvλ1vl) is a cycle of length 4 with no
chord, which contradicts to the assumption that H is chordal. So vλ1vl /∈ H.

Since vivl ∈ H, vλ1vl /∈ H and i < λ1 < l, Lemma 2.4 implies that there
exists λ1 < λ2 < l such that vivλ2 /∈ H and vλ1vλ2 ∈ H. And we choose the
largest λ2 which satisfies this property. Note that by the choice of λ1, we have that
vjvλ2 /∈ H. If vλ2vl ∈ H, then (vivjvλ1vλ2vl) is a cycle of length 5 with no chord,
which contradicts to the assumption that H is chordal. So vλ2vl /∈ H.

Since vivl ∈ H, vλ2vl /∈ H and i < λ2 < l, Lemma 2.4 implies that there exists
λ2 < λ3 < l such that vivλ3 /∈ H and vλ2vλ3 ∈ H. And we choose the largest
λ3 which satisfies this property. Note that by the choices of λ1 and λ2, we have
that vjvλ3 /∈ H and vλ1vλ3 /∈ H. If vλ3vl ∈ H, then (vivjvλ1vλ2vλ3vl) is a cycle of
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length 6 with no chord, which contradicts to the assumption that H is chordal. So
vλ3vl /∈ H.

Proceeding in the same way, we get an infinite sequence of vertices vλ1 , vλ2 ,
vλ3 , . . . such that λ1 < λ2 < λ3 < · · · . This is a contradiction because there are
only finitely many vertices. So vjvl ∈ H and we are done. �

The following example illustrates the difference among different perfect elimina-
tion orders.

Example 2.6. Let H be the following chordal graph.

•x1

•x2

•x3

•x5

•x4 •x6

•x7

rrrrr

rrrrr
LLLLL

LLLLL

Then x7, x6, x5, x1, x4, x2, x3 is a perfect elimination order of H, but it can not
be produced by Algorithm 2.2 or the algorithm in [RTL]; x7, x5, x6, x4, x3, x2, x1

is a perfect elimination order which can be produced by the algorithm in [RTL] ;
x7, x6, x5, x4, x3, x2, x1 is a perfect elimination order which is produced by Algo-
rithm 2.2.

If we compare these three perfect elimination orders, the third one looks nicer
in the sense that there is no unnecessary “jump” in the perfect elimination order.
Here, “jump” means going from one branch of the star-shaped graph H to another
branch. For example, in the first perfect elimination order, x5 is followed by x1

instead of x4; in the second perfect elimination order, x7 is followed by x5 instead
of x6. However, in the third perfect elimination order, this kind of “jump” does not
happen unless it is necessary, say, x6 is followed by x5. This nice property of the
perfect elimination orders produced by Algorithm 2.2 is reflected in Lemma 3.2 .

3. Construction of the Resolution

Let G be a simple graph with vertices x1, . . . , xn. The complement graph G of G
is the simple graph with the same vertex set whose edges are the non-edges of G.
The subgraph of G induced by vertices xi1 , . . . , xir for some 1 ≤ i1 < · · · < ir ≤ n
is the simple graph with the vertices xi1 , . . . , xir and the edges that connect them
in G. We define the preneighborhood of a vertex xj in G to be the set

pnbhd(xj) = {xi | i < j, xixj ∈ G}.
The following two lemmas will be important in section 3 and section 4.

Lemma 3.1. Let G be a simple graph with vertices x1, . . . , xn such that G is
chordal. Let x1, . . . , xn be in the reverse order of a perfect elimination order of
G. For any 1 ≤ i < j < l ≤ n, if xixj ∈ G, then xixl ∈ G or xjxl ∈ G. In
particular, if pnbhd(xi) 6⊆ pnbhd(xj) for some 1 ≤ i < j ≤ n then xixj ∈ G.

Proof. Assume to the contrary that xixl /∈ G and xjxl /∈ G, then xixl ∈ G and
xjxl ∈ G. Since x1, . . . , xn is in the reverse order of a perfect elimination order of
G, we have xixj ∈ G, and hence xixj /∈ G, which is a contradiction. �
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Lemma 3.2. Let G be a simple graph with vertices x1, . . . , xn such that G is
chordal. Let x1, . . . , xn be in the reverse order of a perfect elimination order of
G produced by Algorithm 2.2.

(1) If xixj ∈ G for some i < j, then for any i < t ≤ j we have pnbhd(xi) ⊆
pnbhd(xt) in G.

(2) If pnbhd(xi) 6⊆ pnbhd(xt) in G for some i < t, then xixj ∈ G for all j ≥ t.

Proof. Note that part (1) and part (2) are equivalent, so we only need to prove
part (1). Assume to the contrary that there exists i < t ≤ j such that pnbhd(xi) 6⊆
pnbhd(xt) in G. We choose the minimal t which satisfies this property. Then there
exists l < i such that xlxi /∈ G, xlxt ∈ G. Since x1, . . . , xn is in the reverse order
of a perfect elimination order of G, we must have that xixt /∈ G and in particular
t 6= j. Now since xixt /∈ G, xixj ∈ G and i < t < j, Lemma 2.4 implies that there
exists i < m < t such that xmxt ∈ G, xmxj /∈ G. However, xmxt ∈ G, xlxt ∈
G and l < m < t imply that xlxm ∈ G, so that pnbhd(xi) 6⊆ pnbhd(xm) and
i < m < t < j, which contradicts to the minimality of t. So for all i < t ≤ j,
pnbhd(xi) ⊆ pnbhd(xt) in G. �

Let G be a simple graph with vertices x1, . . . , xn. The edge ideal IG of the
graph G is the monomial ideal in the polynomial ring S = k[x1, . . . , xn] with the
minimal generating set {xixj | xixj ∈ G}. An important result about edge ideals
was obtained by Fröberg in [Fr].

Theorem 3.3 (Fröberg). Let IG be the edge ideal of a simple graph G. Then IG
has a linear free resolution if and only if G is chordal.

By the above theorem, the edge ideal IG of a simple graph G is called a linear
edge ideal if G is chordal. The goal of this section is to construct the minimal free
resolution of S/IG where IG is a linear edge ideal.

Construction 3.4. Let G be a simple graph with vertices x1, . . . , xn such that G
is chordal. Let x1, . . . , xn be in the reverse order of a perfect elimination order of
G produced by Algorithm 2.2.

If p ≥ 1, q ≥ 1, 1 ≤ i1 < · · · < ip < j1 < · · · < jq ≤ n and {xi1 , . . . , xip} ⊆
pnbhd(xj1), then the symbol (xi1 , . . . , xip |xj1 , . . . , xjq ) will be used to denote the
generator of the free S-module S(−xi1 · · ·xipxj1 · · ·xjq ) in homological degree p+
q − 1 and multidegree xi1 · · ·xipxj1 · · ·xjq . We set

B = {1}∪
⋃

p≥1,q≥1

{
(xi1 , . . . , xip |xj1 , . . . , xjq ) :

1 ≤ i1 < · · · < ip < j1 < · · · < jq ≤ n
{xi1 , . . . , xip} ⊆ pnbhd(xj1)

}
.
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We define the map d on the set B by d(1) = 1, d(xi1 |xj1) = xi1xj1 , and for
p+ q ≥ 3,

d(xi1 , . . . , xip |xj1 , . . . , xjq )

=
p∑
s=1

(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip |xj1 , . . . , xjq )

+
q∑
t=1

(−1)t+pxjt(xi1 , . . . , xip |xj1 , . . . , x̂jt , . . . , xjq )

+
p∑
s=1

(−1)s+1+βxis(xi1 , . . . , x̂is , . . . , xip , xj1 , . . . , xjβ−1 |xjβ , . . . , xjq )

+ (−1)pxjβ (xi1 , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq ),

where β = min{t | 2 ≤ t ≤ q, {xi1 , . . . , xip} 6⊆ pnbhd(xjt)}.
Note that if {xi1 , . . . , xip} ⊆ pnbhd(xjt) for all 1 ≤ t ≤ q, then β does not exist

and there are no β terms in the above formula. Also, if p+ q ≥ 3, then the formula
of d may yield symbols which are not in B and we will regard them as zeros. And
Lemma 3.2 implies that for any 1 ≤ t ≤ β − 1 and β ≤ t′ ≤ q, we have xjtxjt′ ∈ G.

Example 3.5. The following are some examples for the formula of d.
(1). If p ≥ 2 and q = 1, then just like the Koszul complex, we have that

d(xi1 , . . . , xip |xj1) =
p∑
s=1

(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip |xj1).

(2). If p ≥ 2, q = 3, {xi1 , . . . , xip}\pnbhd(xj2) = {xi1} and {xi1 , . . . , xip} ⊆
pnbhd(xj3), then β = 2 and a computation will reveal that

d(xi1 , . . . , xip |xj1 , xj2 , xj3)

= xi1 [(xi2 , . . . , xip |xj1 , xj2 , xj3) + (xi2 , . . . , xip , xj1 |xj2 , xj3)]

+
p∑
s=2

(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip |xj1 , xj2 , xj3)

+ (−1)2+pxj2 [(xi1 , . . . , xip |xj1 , xj3) + (xi1 , . . . , xip , xj1 |xj3)]

+ (−1)3+pxj3(xi1 , . . . , xip |xj1 , xj2).

(3). If p ≥ 2, q ≥ 4, β = 3, {xi1 , . . . , xip}\pnbhd(xj3) = {xi1 , xi2} and
{xi1 , . . . , xip} 6⊆ pnbhd(xj4), then a computation will reveal that

d(xi1 , . . . , xip |xj1 , . . . , xjq ) =
p∑
s=1

(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip |xj1 , . . . , xjq )

+
q∑
t=1

(−1)t+pxjt(xi1 , . . . , xip |xj1 , . . . , x̂jt , . . . , xjq ).

Lemma 3.6. Let d be the map defined in Construction 3.4. Then d2 = 0.

The proof of the above lemma is very long and is given in section 4. The next
theorem is the main result of this paper.
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Theorem 3.7. Let F be the multigraded complex of free S-modules with basis B and
differential d as defined in Construction 3.4. Then F is the minimal free resolution
of S/IG.

Proof. We prove by induction on the number of vertices of the graph G. If G has
one or two vertices then it is clear. Now as in Construction 3.4, let G have vertices
x1, . . . , xn with n ≥ 3.

If pnbhd(xn) = ∅ in G, then xixn ∈ G for all 1 ≤ i ≤ n−1. Since x1, . . . , xn is in
the reverse order of a perfect elimination order of G, it follows that G is a complete
graph, so that G has no edges. Hence IG = (0) and there is nothing to prove. Next
we will assume that pnbhd(xn) = {xλ1 , . . . , xλr} for some 1 ≤ λ1 < · · · < λr ≤ n−1.

Let G′ be the graph obtained from G by deleting the edges xλ1xn, . . . , xλrxn.
Then IG and IG′ are both edge ideals in S. Note that G′ is chordal. Indeed, it is
easy to see that xn, x1, x2, . . . , xn−1 is in the reverse order of a perfect elimination
order of G′ produced by Algorithm 2.2. Setting J = (xλ1 , . . . , xλr ) ⊆ S, we have
IG = IG′ + xnJ and a natural short exat sequence

0 −→ IG′ + xnJ

IG′
−→ S

IG′
−→ S

IG
=

S

IG′ + xnJ
−→ 0.

Note that xnJ ∩IG′ = xnIG′ : indeed, by Lemma 3.1 we see that IG′ ⊆ J and hence
xnIG′ ⊆ xnJ ∩ IG′ ; on the other hand, if xnm ∈ IG′ for some monomial m ∈ J ,
then m ∈ IG′ , and hence xnJ ∩ IG′ ⊆ xnIG′ . Therefore,

IG′ + xnJ

IG′
∼=

xnJ

xnJ ∩ IG′
=

xnJ

xnIG′
.

Let G′′ be the subgraph of G induced by the vertices x1, . . . , xn−1. Then G′′ is
chordal and x1, . . . , xn−1 is in the reverse order of a perfect elimination order of G′′
produced by Algorithm 2.2. Let S′ = k[x1, . . . , xn−1] ⊆ S. Then IG′′ is an edge
ideal in the polynomial ring S′ and IG′′S = IG′ . Set

B′ = {1} ∪
⋃

p≥1,q≥1

{
(xi1 , . . . , xip |xj1 , . . . , xjq ) :

(xi1 , . . . , xip |xj1 , . . . , xjq ) ∈ B
jq ≤ n− 1

}
.

Suppose that L is the multigraded complex of free S′-modules with basis B′ and
differential dL = d as defined in Construction 3.4, then by the induction hypothesis,
L is the minimal free resolution of S′/IG′′ . Let F′ = L

⊗
S. Since S = S′[xn] is a

flat S′-module, it follows that F′ is the multigraded minimal free resolution of the
S-module S′/IG′′

⊗
S = S/(IG′′S) = S/IG′ , and F′ has basis B′ and differential

d′ = dL = d as in Construction 3.4. Setting

A = {(xi1 , . . . , xip |xj1 , . . . , xjq , xn) : (xi1 , . . . , xip |xj1 , . . . , xjq ) ∈ B′},
T = {(xi1 , . . . , xip |xn) : p ≥ 1, {xi1 , . . . , xip} ⊆ pnbhd(xn)},

we have the disjoint union
B = B′ ∪ A ∪ T .

Let E : · · · → E1 → E0 → xnIG′ be the multigraded minimal free resolution
of xnIG′ induced naturally by the minimal free resolution F′ of S/IG′ . Then E
has basis A and the basis element (xi1 , . . . , xip | xj1 , . . . , xjq , xn) is in homological
degree p + q − 2 in E. We denote the differential of E by dE. Note that dE(xi1 |
xj1 , xn) = xi1xj1xn. Let K be the multigraded complex of free S-modules with
basis T and differential −∂ = −d where d is as in Construction 3.4. Note that the
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basis element (xi1 , . . . , xip | xn) is in homological degree p− 1 in K. And it is easy
to see that K is the minimal free resolution of xnJ .

For any (xi1 , . . . , xip |xj1 , . . . , xjq , xn) ∈ A , we have that

d(xi1 , . . . , xip |xj1 , . . . , xjq , xn) = µ1(xi1 , . . . , xip |xj1 , . . . , xjq , xn)

+ µ2(xi1 , . . . , xip |xj1 , . . . , xjq , xn)

+ µ3(xi1 , . . . , xip |xj1 , . . . , xjq , xn),

where µ1(xi1 , . . . , xip |xj1 , . . . , xjq , xn) is the sum of the terms of d(xi1 , . . . , xip |
xj1 , . . . , xjq , xn) that contain basis elements in A, µ2(xi1 , . . . , xip |xj1 , . . . , xjq , xn)
is the sum of the terms that contain basis elements in T and µ3(xi1 , . . . , xip |
xj1 , . . . , xjq , xn) is the sum of the terms that contain basis elements in B′. Note
that µ3(xi1 , . . . , xip |xj1 , . . . , xjq , xn) = (−1)q+1+pxn(xi1 , . . . , xip |xj1 , . . . , xjq ). And
by the definition of d, we can check that if p+ q ≥ 3, then

µ1(xi1 , . . . , xip |xj1 , . . . , xjq , xn) = dE(xi1 , . . . , xip |xj1 , . . . , xjq , xn).

We claim that −µ2 : E → K is a multigraded complex map of degree 0 lifting
the inclusion map φ : xnIG′ → xnJ . Indeed, φdE(xi1 |xj1 , xn) = xi1xj1xn, and

(−∂)(−µ2)(xi1 |xj1 , xn) =
{
∂(xj1(xi1 |xn)), if xi1xn ∈ G
∂(xi1(xj1 |xn)), if xi1xn /∈ G

= xi1xj1xn.

Hence, φdE(xi1 |xj1 , xn) = (−∂)(−µ2)(xi1 |xj1 , xn). Then we need to show that for
p+ q ≥ 3,

(−µ2)dE(xi1 , . . . , xip |xj1 , . . . , xjq , xn) = (−∂)(−µ2)(xi1 , . . . , xip |xj1 , . . . , xjq , xn).

By Lemma 3.6, we have that

0 = d2(xi1 , . . . , xip |xj1 , . . . , xjq , xn)(1)

= µ1µ1(xi1 , . . . , xip |xj1 , . . . , xjq , xn) + µ2µ1(xi1 , . . . , xip |xj1 , . . . , xjq , xn)

+ µ3µ1(xi1 , . . . , xip |xj1 , . . . , xjq , xn) + ∂µ2(xi1 , . . . , xip |xj1 , . . . , xjq , xn)

+ dµ3(xi1 , . . . , xip |xj1 , . . . , xjq , xn).

In the above formula, collecting the terms which contain basis elements in T , we
get

µ2µ1(xi1 , . . . , xip |xj1 , . . . , xjq , xn) + ∂µ2(xi1 , . . . , xip |xj1 , . . . , xjq , xn) = 0.

Since µ1 = dE for p+ q ≥ 3, it follows that

(−µ2)dE(xi1 , . . . , xip |xj1 , . . . , xjq , xn) = (−∂)(−µ2)(xi1 , . . . , xip |xj1 , . . . , xjq , xn),

and the claim is proved.
Let F′′ be the mapping cone MC(−µ2). Then F′′ : · · · → F ′′1 → F ′′0 →

xnJ/xnIG′ is a multigraded free resolution of xnJ/xnIG′ . Note that F ′′0 = K0

and F ′′i = Ei−1

⊕
Ki for i ≥ 1. If we denote the differential of F′′ by d′′,

then d′′0(xi1 |xn) = −∂(xi1 |xn) = −xi1xn, d′′1(xi1 |xj1 , xn) = −µ2(xi1 |xj1 , xn),
d′′1(xi1 , xi2 |xn) = −∂(xi1 , xi2 |xn), that is, d′′1 = (−µ2,−∂), and for i ≥ 2,

d′′i =
(
−dE 0
−µ2 −∂

)
=
(
−µ1 0
−µ2 −∂

)
.

Since the differential matrices of F′′ have monomial entries, F′′ is the minimal free
resolution of xnJ/xnIG′ ∼= (IG′ + xnJ)/IG′ .
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Next we define a map µ : F′′ → F′ such that µ : F ′′0 = K0 → F ′0 = S is given by
µ(xi1 |xn) = xi1xn and for i ≥ 1, µ : F ′′i = Ei−1

⊕
Ki → F ′i is given by µ = (µ3, 0).

We claim that −µ is a multigraded complex map of degree 0 lifting the inclusion
map ψ : (IG′ + xnJ)/IG′ → S/IG′ . Indeed, if i = 0 then ψd′′0(xi1 |xn) = −xi1xn,
d′0(−µ)(xi1 |xn) = −xi1xn, and hence ψd′′0 = d′0(−µ). If i = 1 then

(−µ)d′′1(xi1 |xj1 , xn) = (−µ)(−µ2)(xi1 |xj1 , xn)

=
{
µ(xj1(xi1 |xn)), if xi1xn ∈ G
µ(xi1(xj1 |xn)), if xi1xn /∈ G

= xi1xj1xn,

d′1(−µ)(xi1 |xj1 , xn) = d′1(xn(xi1 |xj1))
= xi1xj1xn,

(−µ)d′′1(xi1 , xi2 |xn) = (−µ)(−∂)(xi1 , xi2 |xn)

= µ(xi1(xi2 |xn)− xi2(xi1 |xn))
= xi1xi2xn − xi2xi1xn = 0,

d′1(−µ)(xi1 , xi2 |xn) = d′1(0) = 0,

and hence (−µ)d′′1 = d′1(−µ). If i ≥ 2 then it is easy to see that for p ≥ 3,

(−µ)d′′i (xi1 , . . . , xip |xn) = d′i(−µ)(xi1 , . . . , xip |xn) = 0,

so we need only to prove that for p+ q = i+ 1 ≥ 3,

(−µ)d′′i (xi1 , . . . , xip |xj1 , . . . , xjq , xn) = d′i(−µ)(xi1 , . . . , xip |xj1 , . . . , xjq , xn),

that is,

µ(−µ1 − µ2)(xi1 , . . . , xip |xj1 , . . . , xjq , xn) = dµ3(xi1 , . . . , xip |xj1 , . . . , xjq , xn).

Since µµ2(xi1 , . . . , xip |xj1 , . . . , xjq , xn) = 0, it suffices to prove that

−µ3µ1(xi1 , . . . , xip |xj1 , . . . , xjq , xn) = dµ3(xi1 , . . . , xip |xj1 , . . . , xjq , xn).

However, in formula (1), collecting the terms which contain basis elements in B′,
we see that

µ3µ1(xi1 , . . . , xip |xj1 , . . . , xjq , xn) + dµ3(xi1 , . . . , xip |xj1 , . . . , xjq , xn) = 0,

and the claim is proved. So µ : F′′ → F′ is a complex map lifting −ψ : (IG′ +
xnJ)/IG′ → S/IG′ , and it is eay to see that µ is multigraded of degree 0.

Let F∗ be the mapping cone MC(µ). Then F∗ : · · · → F ∗1 → F ∗0 → coker(−ψ)
gives a multigraded free resolution of coker(−ψ) = S/IG. Note that F ∗0 = S,
F ∗1 = F ′′0

⊕
F ′1 = K0

⊕
F ′1 and for i ≥ 2, F ∗i = F ′′i−1

⊕
F ′i = Ei−2

⊕
Ki−1

⊕
F ′i .

If we denote the differential of F∗ by d∗, then d∗0(1) = 1, d∗1 = (µ, d′1),

d∗2 =
(
−d′′1 0
µ d′2

)
=
(
µ2 ∂ 0
µ3 0 d

)
,

and for i ≥ 3,

d∗i =
(
−d′′i−1 0
µ d′i

)
=

µ1 0 0
µ2 ∂ 0
µ3 0 d

 .

Note that F∗ and F have the same basis and the same differential. So F∗ = F, and
then F is a multigraded free resolution of S/IG. Since di(Fi) ⊆ (x1, . . . , xn)Fi−1

for all i ≥ 1, the resolution F is minimal, and we are done. �
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Example 3.8. Let G be the following graph.

•x1

•x2

•x3

•x4
��

��
�

??
??

?

Then G is chordal and x1, x2, x3, x4 is in the reverse order of a perfect elimination
order of G produced by Algorithm 2.2. Note that

S = k[x1, x2, x3, x4], IG = (x1x2, x1x3, x1x4, x2x4),

pnbhd(x1) = ∅, pnbhd(x2) = {x1}, pnbhd(x3) = {x1}, pnbhd(x4) = {x1, x2}.
By Construction 3.4, the minimal free resolution of S/IG has basis

1; (x1|x2, x3, x4), (x1|x2, x3), (x1|x2, x4), (x1|x2);

(x1|x3, x4), (x1|x3); (x1, x2|x4), (x1|x4), (x2|x4).
And we have the map d such that

d(x1|x2) = x1x2, d(x1|x3) = x1x3,

d(x1|x4) = x1x4, d(x2|x4) = x2x4,

d(x1|x2, x3) = x2(x1|x3)− x3(x1|x2),

d(x1|x2, x4) = x2(x1|x4)− x4(x1|x2),

d(x1|x3, x4) = x3(x1|x4)− x4(x1|x3),

d(x1, x2|x4) = x1(x2|x4)− x2(x1|x4),

d(x1|x2, x3, x4) = x2(x1|x3, x4)− x3(x1|x2, x4) + x4(x1|x2, x3).

Therefore, the minimal free resolution of S/IG is

0→ S(−x1x2x3x4) d3−→ S(−x1x2x3)⊕ S(−x1x2x4)⊕ S(−x1x3x4)⊕ S(−x1x2x4)
d2−→ S(−x1x2)⊕ S(−x1x3)⊕ S(−x1x4)⊕ S(−x2x4) d1−→ S → S/IG,

where

d3 =


x4

−x3

x2

0

 , d2 =


−x3 −x4 0 0
x2 0 −x4 0
0 x2 x3 −x2

0 0 0 x1

 , d1 =
(
x1x2 x1x3 x1x4 x2x4

)
.

Remark 3.9. In the above example, we have that pnbhd(x1) ⊆ pnbhd(x2) ⊆
pnbhd(x3) ⊆ pnbhd(x4). But in general, given a linear edge ideal IG, there may
not exist a perfect elimination order of G such that its reverse order x1, . . . , xn
satisfies pnbhd(xi) ⊆ pnbhd(xi+1) in G for i = 1, . . . , n − 1. For example, if G
is the star-shaped chordal graph in Example 2.6, then we can check that G has
no perfect elimination order satisfying the above property. However, the following
proposition says that if the above property is satisfied then the perfect elimination
order of G can be produced by Algorithm 2.2.

Proposition 3.10. Let G be a simple graph with vertices x1, . . . , xn such that G
is chordal. Let x1, . . . , xn be in the reverse order of a perfect elimination order of
G such that pnbhd(xi) ⊆ pnbhd(xi+1) in G for i = 1, . . . , n − 1. Then the perfect
elimination order xn, . . . , x1 of G can be produced by Algorithm 2.2.
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Proof. First we choose vn = x1 in Algorithm 2.2. Since pnbhd(x2) ⊆ pnbhd(xj)
in G for any 2 < j ≤ n, it follows that if x1x2 /∈ G then x1xj /∈ G for all 2 <
j ≤ n, so that in Algorithm 2.2 we can choose vn−1 = x2. Now suppose that we
have chosen vn = x1, vn−1 = x2, . . . , vn−(i−2) = xi−1 for some 3 ≤ i ≤ n. Since
pnbhd(xi) ⊆ pnbhd(xj) in G for any i < j ≤ n, it follows that for any 1 ≤ l ≤ i−1,
if xlxi /∈ G then xlxj /∈ G for all i < j ≤ n, so that in Algorithm 2.2 we can choose
vn−(i−1) = xi. So by using induction we see that xn, . . . , x1 can be the output of
Algorithm 2.2 and we are done. �

Remark 3.11. If the conditions in the above proposition are satisfied, then there
will be no β terms in the differential formula. However, as we have seen in Remark
3.9, the conditions in the above proposition can not always be satisfied, especially
when G is a complicated chordal graph. So in general, the β terms in the differential
formula can not be avoided.

Remark 3.12. Let G = Kn be the complete graph with n vertices x1, . . . , xn.
Then we have the Eliahou-Kervaire resolution of S/IG. It is easy to see that
the basis element (xixj ; i1, . . . , ip, j1, . . . , jq) with i1 < · · · < ip < i < j1 <
· · · < jq < j in the Eliahou-Kervaire resolution corresponds naturally to the
basis element (xi1 , . . . , xip , xi|xj1 , . . . , xjq , xj) in Construction 3.4. But the dif-
ferential maps defined on them are different. For example, if G = K3, then
d(x2x3; 1) = x1(x2x3; ∅) − x3(x1x2; ∅), but d(x1, x2|x3) = x1(x2|x3) − x2(x1|x3).
So in the case of complete graphs, the resolution defined in Construction 3.4 does
not recover the Eliahou-Kervaire resolution. By contrast, the resolution in [Ho]
recovers the Eliahou-Kervaire resolution in the case of complete graphs.

4. The Proof of d2 = 0

Before proving Lemma 3.6, we look at the following example.

Example 4.1. Let G be the graph such that G is the chordal graph given in Exam-
ple 2.6. Then x1, x2, x3, x4, x5, x6, x7 is in the reverse order of a perfect elimination
order of G produced by Algorithm 2.2. Note that in G,

pnbhd(x5) = {x1, x2, x3} 6⊆ pnbhd(x6) = {x1, x2, x4, x5}.

Next we check that d2(x1, x2, x3|x5, x6) = 0. In fact, by the definition of d, we have
that

d(x1, x2, x3|x5, x6) =x1(x2, x3|x5, x6)− x2(x1, x3|x5, x6)

+ x3[(x1, x2|x5, x6) + (x1, x2, x5|x6)]− x6(x1, x2, x3|x5),

d(x1(x2, x3|x5, x6)) =x1x2(x3|x5, x6)− x1x3[(x2|x5, x6) + (x2, x5|x6)]

+ x1x6(x2, x3|x5),

d(−x2(x1, x3|x5, x6)) =− x2x1(x3|x5, x6) + x2x3[(x1|x5, x6) + (x1, x5|x6)]

− x2x6(x1, x3|x5),

d(x3(x1, x2|x5, x6)) =x3x1(x2|x5, x6)− x3x2(x1|x5, x6)

− x3x5(x1, x2|x6) + x3x6(x1, x2|x5),

d(x3(x1, x2, x5|x6)) =x3x1(x2, x5|x6)− x3x2(x1, x5|x6) + x3x5(x1, x2|x6),

d(−x6(x1, x2, x3|x5)) =− x6x1(x2, x3|x5) + x6x2(x1, x3|x5)− x6x3(x1, x2|x5).
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So the sum of the terms in d2(x1, x2, x3|x5, x6) containing x1x2 is

x1x2(x3|x5, x6)− x2x1(x3|x5, x6) = 0;

the sum of the terms in d2(x1, x2, x3|x5, x6) containing x1x3 is

−x1x3[(x2|x5, x6) + (x2, x5|x6)] + x3x1(x2|x5, x6) + x3x1(x2, x5|x6) = 0;

and similarly, we have

x2x3[(x1|x5, x6) + (x1, x5|x6)]− x3x2(x1|x5, x6)− x3x2(x1, x5|x6) = 0,

−x3x5(x1, x2|x6) + x3x5(x1, x2|x6) = 0,
x1x6(x2, x3|x5)− x6x1(x2, x3|x5) = 0,
−x2x6(x1, x3|x5) + x6x2(x1, x3|x5) = 0,
x3x6(x1, x2|x5)− x6x3(x1, x2|x5) = 0.

Therefore, d2(x1, x2, x3|x5, x6) = 0.

Proof of Lemma 3.6. First we have that

d2(xi1 |xj1) = d(xi1xj1) = xi1xj1 = 0 in S/IG,

d2(xi1 , xi2 |xj1) = d(xi1(xi2 |xj1)− xi2(xi1 |xj1))
= xi1xi2xj1 − xi2xi1xj1 = 0,

d2(xi1 |xj1 , xj2) =
{
d(xj1(xi1 |xj2)− xj2(xi1 |xj1)), if xi1xj2 ∈ G
d(xi1(xj1 |xj2)− xj2(xi1 |xj1)), if xi1xj2 /∈ G

=
{
xj1xi1xj2 − xj2xi1xj1 , if xi1xj2 ∈ G
xi1xj1xj2 − xj2xi1xj1 , if xi1xj2 /∈ G

= 0.

Next we need only to prove that d2(xi1 , . . . , xip |xj1 , . . . , xjq ) = 0 for p + q ≥ 4.
Just as in Example 4.1, it suffices to prove that if we write out all the terms of
d2(xi1 , . . . , xip |xj1 , . . . , xjq ), then given any λ, λ′ ∈ {i1, . . . , ip, j1, . . . , jq}, the sum
of the terms containing xλxλ′ is zero, that is all the terms containing xλxλ′ cancel.
Hence, a computation will reveal that if β does not exist, that is {xi1 , . . . , xip} ⊆
pnbhd(xjt) for all 1 ≤ t ≤ q, then d2(xi1 , . . . , xip |xj1 , . . . , xjq ) = 0. So we will
assume that q ≥ 2 and β exists. The proof is case by case and there are five main
cases.

[Case A]: λ, λ′ ∈ {i1, . . . , ip}.
[Case A-a]: if 1 ≤ s < s′ ≤ p such that xisxjβ ∈ G and xis′xjβ ∈ G, then the

sum of the terms containing xisxis′ is

(−1)s+1xis(−1)s
′
xis′ (xi1 , . . . , x̂is , . . . , x̂is′ , . . . , xip |xj1 , . . . , xjq )

+ (−1)s
′+1xis′ (−1)s+1xis(xi1 , . . . , x̂is , . . . , x̂is′ , . . . , xip |xj1 , . . . , xjq ) = 0.

[Case A-b]: suppose that there is a term containing xisxiα for some 1 ≤ s, α ≤ p
such that xisxjβ ∈ G and xiαxjβ /∈ G. Without the loss of generality, we assume
s < α.

Subcase (i): if {xi1 , . . . , x̂iα , . . . , xip} 6⊆ pnbhd(xjβ ), then the sum of the terms
containing xisxiα is

(−1)s+1xis(−1)αxiα(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip |xj1 , . . . , xjq )
+ (−1)α+1xiα(−1)s+1xis(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip |xj1 , . . . , xjq ) = 0.
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Subcase (ii): if {xi1 , . . . , x̂iα , . . . , xip} ⊆ pnbhd(xjβ ), then we set

β′ = min{t | β < t ≤ q, {xi1 , . . . , x̂iα , . . . , xip} 6⊆ pnbhd(xjt)}.
Lemma 3.2 implies that for any β ≤ t ≤ q, xj1xjt , . . . , xjβ−1xjt ∈ G, so we have

β′ = min{t | β < t ≤ q, {xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1} 6⊆ pnbhd(xjt)}.
Subsubcase (ii)(a): if one of the following conditions is satisfied:

1) β′ does not exist,
2) xisxjβ′ ∈ G,
3) xisxjβ′ /∈ G and {xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip} 6⊆ pnbhd(xjβ′ ),

then the sum of the terms containing xisxiα is

(−1)s+1xis(−1)αxiα [(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip |xj1 , . . . , xjq )

+ (−1)β(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ , . . . , xjq )]
+ (−1)α+1xiα [(−1)s+1xis(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip |xj1 , . . . , xjq )

+ (−1)β(−1)s+1xis(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ , . . . , xjq )] = 0.

Subsubcase (ii)(b): if xisxjβ′ /∈ G, {xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip} ⊆ pnbhd(xjβ′ ),
then the sum of the terms containing xisxiα is

(−1)s+1xis(−1)αxiα [(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip |xj1 , . . . , xjq )

+ (−1)β(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ , . . . , xjq )]
+ (−1)α+1xiα{(−1)s+1xis [(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip |xj1 , . . . , xjq )

+ (−1)β
′
(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ′−1

|xjβ′ , . . . , xjq )]

+ (−1)β(−1)s+1xis [(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ , . . . , xjq )

+ (−1)β
′−β+1(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ′−1

|xjβ′ , . . . , xjq )]} = 0.

Note that in the above two subsubcases, if s = 1 and α = p = 2 then the terms
containing (xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip |xj1 , . . . , xjq ) are zeros.

[Case A-c]: suppose that there is a term containing xiαxiα′ for some 1 ≤ α <
α′ ≤ p such that xiαxjβ /∈ G and xiα′xjβ /∈ G.

Subcase (i): if {xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip} 6⊆ pnbhd(xjβ ), then the sum of
the terms containing xiαxiα′ is

(−1)α+1xiα(−1)α
′
xiα′ (xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip |xj1 , . . . , xjq )

+ (−1)α
′+1xiα′ (−1)α+1xiα(xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip |xj1 , . . . , xjq ) = 0.

Subcase (ii): if {xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip} ⊆ pnbhd(xjβ ), then the sum of
the terms containing xiαxiα′ is

(−1)α+1xiα(−1)α
′
xiα′ [(xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip |xj1 , . . . , xjq )

+ (−1)β(xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip , xj1 , . . . , xjβ−1 |xjβ , . . . , xjq )]

+ (−1)α
′+1xiα′ (−1)α+1xiα [(xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip |xj1 , . . . , xjq )

+ (−1)β(xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip , xj1 , . . . , xjβ−1 |xjβ , . . . , xjq )] = 0.

Note that if α = 1 and α′ = p = 2, then in the above formula, the two terms
containing (xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip |xj1 , . . . , xjq ) are zeros.

[Case B]: λ ∈ {i1, . . . , ip} and λ′ = j1.
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[Case B-a]: suppose that there is a term containing xisxj1 for some 1 ≤ s ≤ p
such that xisxjβ ∈ G, then it is easy to see that β 6= 2 and the sum of the terms
containing xisxj1 is

(−1)s+1xis(−1)1+(p−1)xj1(xi1 , . . . , x̂is , . . . , xip |xj2 , . . . , xjq )
+ (−1)p+1xj1(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip |xj2 , . . . , xjq ) = 0.

[Case B-b]: suppose that there is a term containing xiαxj1 for some 1 ≤ α ≤ p
such that xiαxjβ /∈ G.

Subcase (i): β = 2. If we have {xi1 , . . . , x̂iα , . . . , xip} 6⊆ pnbhd(xjβ ), then
it is easy to see that there is no term containing xiαxj1 , hence we must have
{xi1 , . . . , x̂iα , . . . , xip} ⊆ pnbhd(xjβ ) and the sum of the terms containing xiαxj1 is

(−1)α+1xiα [(−1)pxj1(xi1 , . . . , x̂iα , . . . , xip |x̂j1 , xj2 , . . . , xjq )

+ (−1)β(−1)p+1xj1(xi1 , . . . , x̂iα , . . . , xip , x̂j1 |xj2 , . . . , xjq )] = 0.

Subcase (ii): if β > 2 and {xi1 , . . . , x̂iα , . . . , xip} 6⊆ pnbhd(xjβ ), then the sum of
the terms containing xiαxj1 is

(−1)α+1xiα(−1)pxj1(xi1 , . . . , x̂iα , . . . , xip |x̂j1 , xj2 , . . . , xjq )
+ (−1)p+1xj1(−1)α+1xiα(xi1 , . . . , x̂iα , . . . , xip |x̂j1 , xj2 , . . . , xjq ) = 0.

Subcase (iii): if β > 2 and {xi1 , . . . , x̂iα , . . . , xip} ⊆ pnbhd(xjβ ), then the sum of
the terms containing xiαxj1 is

(−1)α+1xiα [(−1)pxj1(xi1 , . . . , x̂iα , . . . , xip |x̂j1 , xj2 , . . . , xjq )

+ (−1)β(−1)p+1xj1(xi1 , . . . , x̂iα , . . . , xip , x̂j1 , xj2 , . . . , xjβ−1 |xjβ , . . . , xjq )]
+ (−1)p+1xj1(−1)α+1xiα [(xi1 , . . . , x̂iα , . . . , xip |x̂j1 , xj2 , . . . , xjq )

+ (−1)β−1(xi1 , . . . , x̂iα , . . . , xip , x̂j1 , xj2 , . . . , xjβ−1 |xjβ , . . . , xjq )] = 0.

[Case C]: λ ∈ {i1, . . . , ip} and λ′ ∈ {j2, . . . , jq}.
[Case C-a]: if 1 ≤ s ≤ p, 2 ≤ t ≤ q such that xisxjβ ∈ G and t 6= β, then the

sum of the terms containing xisxjt is

(−1)s+1xis(−1)t+(p−1)xjt(xi1 , . . . , x̂is , . . . , xip |xj1 , . . . , x̂jt , . . . , xjq )
+ (−1)t+pxjt(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip |xj1 , . . . , x̂jt , . . . , xjq ) = 0.

[Case C-b]: suppose that there is a term containing xiαxjt for some 1 ≤ α ≤ p,
2 ≤ t ≤ q such that xiαxjβ /∈ G and t 6= β.

Subcase (i): if {xi1 , . . . , x̂iα , . . . , xip} 6⊆ pnbhd(xjβ ), then the sum of the terms
containing xiαxjt is

(−1)α+1xiα(−1)t+(p−1)xjt(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jt , . . . , xjq )
+ (−1)t+pxjt(−1)α+1xiα(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jt , . . . , xjq ) = 0.

Subcase (ii): if {xi1 , . . . , x̂iα , . . . , xip} ⊆ pnbhd(xjβ ), then as in subcase (ii) of
[Case A-b], we set

β′ = min{t | β < t ≤ q, {xi1 , . . . , x̂iα , . . . , xip} 6⊆ pnbhd(xjt)}
= min{t | β < t ≤ q, {xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1} 6⊆ pnbhd(xjt)}.
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Subsubcase (ii)(a): if t < β, then the sum of the terms containing xiαxjt is

(−1)α+1xiα [(−1)t+(p−1)xjt(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jt , . . . , xjq )

+ (−1)β(−1)t+(p−1)+1xjt(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , x̂jt , . . . , xjβ−1 |xjβ , . . . , xjq )]
+ (−1)t+pxjt(−1)α+1xiα [(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jt , . . . , xjq )

+ (−1)β−1(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , x̂jt , . . . , xjβ−1 |xjβ , . . . , xjq )] = 0.

Subsubcase (ii)(b): if one of the following conditions is satisfied:

1) t > β and β′ does not exist,
2) t > β and t 6= β′,
3) t = β′ = q,
4) t = β′ and {xi1 , . . . , x̂iα , . . . , xip} 6⊆ pnbhd(xjβ′+1

),

then the sum of the terms containing xiαxjt is

(−1)α+1xiα [(−1)t+(p−1)xjt(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jt , . . . , xjq )

+ (−1)β(−1)t+p−1xjt(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ , . . . , x̂jt , . . . , xjq )]
+ (−1)t+pxjt(−1)α+1xiα [(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jt , . . . , xjq )

+ (−1)β(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ , . . . , x̂jt , . . . , xjq )] = 0.

Note that in the above two subsubcases, if α = p = 1 then the terms containing
(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jt , . . . , xjq ) are zeros and β′ does not exist.

Subsubcase (ii)(c): if t = β′ and {xi1 , . . . , x̂iα , . . . , xip} ⊆ pnbhd(xjβ′+1
), then

the sum of the terms containing xiαxjt is

(−1)α+1xiα{(−1)t+(p−1)xjt [(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jt , . . . , xjq )
+ (−1)t(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjt−1 |xjt+1 , . . . , xjq )]

+ (−1)β(−1)t+p−1xjt [(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ , . . . , x̂jt , . . . , xjq )

(−1)t−β+1(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjt−1 |xjt+1 , . . . , xjq )]}
+ (−1)t+pxjt(−1)α+1xiα [(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jt , . . . , xjq )

+ (−1)β(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ , . . . , x̂jt , . . . , xjq )] = 0.

[Case C-c]: suppose that there is a term containing xisxjβ for some 1 ≤ s ≤ p
such that xisxjβ ∈ G. We set

β′′ = min{t | β < t ≤ q, {xi1 , . . . , xip} 6⊆ pnbhd(xjt)}.

Lemma 3.2 implies that for any β ≤ t ≤ q, xj1xjt , . . . , xjβ−1xjt ∈ G, so we have

β′′ = min{t | β < t ≤ q, {xi1 , . . . , xip , xj1 , . . . , xjβ−1} 6⊆ pnbhd(xjt)}.

Subcase (i): if β = q or {xi1 , . . . , x̂is , . . . , xip} 6⊆ pnbhd(xjβ+1), then the sum of
the terms containing xisxjβ is

(−1)s+1xis(−1)β+(p−1)xjβ (xi1 , . . . , x̂is , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β+pxjβ (−1)s+1xis(xi1 , . . . , x̂is , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq ) = 0.
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Subcase (ii): if {xi1 , . . . , x̂is , . . . , xip} ⊆ pnbhd(xjβ+1) and xisxjβ+1 /∈ G, then
β′′ = β + 1 and the sum of the terms containing xisxjβ is

(−1)s+1xis(−1)β+(p−1)xjβ [(xi1 , . . . , x̂is , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β(xi1 , . . . , x̂is , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )]

+ (−1)β+pxjβ (−1)s+1xis [(xi1 , . . . , x̂is , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β(xi1 , . . . , x̂is , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )] = 0.

Subcase (iii): if one of the following conditions is satisfied:

1) β < q and β′′ does not exist,
2) β′′ > β + 1 and xisxjβ′′ ∈ G,
3) β′′ > β + 1, xisxjβ′′ /∈ G and {xi1 , . . . , x̂is , . . . , xip} 6⊆ pnbhd(xjβ′′ )

then the sum of the terms containing xisxjβ is

(−1)s+1xis(−1)β+(p−1)xjβ [(xi1 , . . . , x̂is , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β(xi1 , . . . , x̂is , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )]

+ (−1)β+pxjβ [(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )] = 0.

Subcase (iv): if β′′ > β + 1, xisxjβ′′ /∈ G, {xi1 , . . . , x̂is , . . . , xip} ⊆ pnbhd(xjβ′′ ),
then the sum of the terms containing xisxjβ is

(−1)s+1xis(−1)β+(p−1)xjβ [(xi1 , . . . , x̂is , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β(xi1 , . . . , x̂is , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )]

+ (−1)β+pxjβ{(−1)s+1xis [(xi1 , . . . , x̂is , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β
′′−1(xi1 , . . . , x̂is , . . . , xip , xj1 , . . . , x̂jβ , . . . , xjβ′′−1

|xjβ′′ , . . . , xjq )]

+ (−1)β(−1)s+1xis [(xi1 , . . . , x̂is , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )

+ (−1)β
′′−β(xi1 , . . . , x̂is , . . . , xip , xj1 , . . . , x̂jβ , . . . , xjβ′′−1

|xjβ′′ , . . . , xjq )]} = 0.

[Case C-d]: suppose that there is a term containing xiαxjβ for some 1 ≤ α ≤ p
such that xiαxjβ /∈ G. As in [Case C-c], we set

β′′ = min{t | β < t ≤ q, {xi1 , . . . , xip} 6⊆ pnbhd(xjt)}
= min{t | β < t ≤ q, {xi1 , . . . , xip , xj1 , . . . , xjβ−1} 6⊆ pnbhd(xjt)}.

Subcase (i): if β = q or {xi1 , . . . , x̂iα , . . . , xip} 6⊆ pnbhd(xjβ+1), then the sum of
the terms containing xiαxjβ is

(−1)α+1xiα(−1)β+(p−1)xjβ (xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β+pxjβ (−1)α+1xiα(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq ) = 0.

Subcase (ii): if {xi1 , . . . , x̂iα , . . . , xip} ⊆ pnbhd(xjβ ), then we have the following
three subsubcases.
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Subsubcase (ii)(a): if {xi1 , . . . , x̂iα , . . . , xip} ⊆ pnbhd(xjβ+1) and xiαxjβ+1 /∈ G,
then β′′ = β + 1 and the sum of the terms containing xiαxjβ is

(−1)α+1xiα [(−1)β+(p−1)xjβ (xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β(−1)β+p−1xjβ (xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )]

+ (−1)β+pxjβ (−1)α+1xiα [(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )] = 0.

Subsubcase (ii)(b): if {xi1 , . . . , xip} ⊆ pnbhd(xjβ+1) and one of the following
conditions is satisfied:

1) β′′ does not exist,
2) xiαxjβ′′ ∈ G,
3) xiαxjβ′′ /∈ G and {xi1 , . . . , x̂iα , . . . , xip} 6⊆ pnbhd(xjβ′′ ),

then the sum of the terms containing xiαxjβ is

(−1)α+1xiα [(−1)β+(p−1)xjβ (xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β(−1)β+p−1xjβ (xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )]

+ (−1)β+pxjβ [(−1)α+1xiα(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β(−1)α+1xiα(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )] = 0.

Subsubcase (ii)(c): if β′′ ≥ β + 2, xiαxjβ′′ /∈ G and {xi1 , . . . , x̂iα , . . . , xip} ⊆
pnbhd(xjβ′′ ), then the sum of the terms containing xiαxjβ is

(−1)α+1xiα [(−1)β+(p−1)xjβ (xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β(−1)β+p−1xjβ (xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )]

+ (−1)β+pxjβ{(−1)α+1xiα [(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β
′′−1(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , x̂jβ , . . . , xjβ′′−1

|xjβ′′ , . . . , xjq )]

+ (−1)β(−1)α+1xiα [(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )

+ (−1)β
′′−β(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , x̂jβ , . . . , xjβ′′−1

|xjβ′′ , . . . , xjq )]} = 0.

Subcase (iii): if {xi1 , . . . , x̂iα , . . . , xip} 6⊆ pnbhd(xjβ ), then just as in subcase (ii),
we have the following three subsubcases.

Subsubcase (iii)(a): if {xi1 , . . . , x̂iα , . . . , xip} ⊆ pnbhd(xjβ+1) and xiαxjβ+1 /∈ G,
then β′′ = β + 1 and the sum of the terms containing xiαxjβ is

(−1)α+1xiα(−1)β+(p−1)xjβ [(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )]

+ (−1)β+pxjβ (−1)α+1xiα [(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )] = 0.

Subsubcase (iii)(b): if {xi1 , . . . , xip} ⊆ pnbhd(xjβ+1) and one of the following
conditions is satisfied:

1) β′′ does not exist,
2) xiαxjβ′′ ∈ G,
3) xiαxjβ′′ /∈ G and {xi1 , . . . , x̂iα , . . . , xip} 6⊆ pnbhd(xjβ′′ ),
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then the sum of the terms containing xiαxjβ is

(−1)α+1xiα(−1)β+(p−1)xjβ [(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )]

+ (−1)β+pxjβ [(−1)α+1xiα(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β(−1)α+1xiα(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )] = 0.

Subsubcase (iii)(c): if β′′ ≥ β + 2, xiαxjβ′′ /∈ G and {xi1 , . . . , x̂iα , . . . , xip} ⊆
pnbhd(xjβ′′ ), then the sum of the terms containing xiαxjβ is

(−1)α+1xiα(−1)β+(p−1)xjβ [(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )]

+ (−1)β+pxjβ{(−1)α+1xiα [(xi1 , . . . , x̂iα , . . . , xip |xj1 , . . . , x̂jβ , . . . , xjq )

+ (−1)β
′′−1(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , x̂jβ , . . . , xjβ′′−1

|xjβ′′ , . . . , xjq )]

+ (−1)β(−1)α+1xiα [(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )

+ (−1)β
′′−β(xi1 , . . . , x̂iα , . . . , xip , xj1 , . . . , x̂jβ , . . . , xjβ′′−1

|xjβ′′ , . . . , xjq )]} = 0.

[Case D]: λ = j1 and λ′ ∈ {j2, . . . , jq}.
[Case D-a]: suppose that there is a term containing xj1xjt for some 2 ≤ t ≤ q

such that t 6= β, then β 6= 2 and if t = 2 then β 6= 3. Hence, the sum of the terms
containing xj1xjt is

(−1)1+pxj1(−1)(t−1)+pxjt(xi1 , . . . , xip |x̂j1 , . . . , x̂jt , . . . , xjq )
+ (−1)t+pxjt(−1)1+pxj1(xi1 , . . . , xip |x̂j1 , . . . , x̂jt , . . . , xjq ) = 0.

[Case D-b]: suppose that there is a term containing xj1xjβ .
Subcase (i): β = 2. Assume that {xi1 , . . . , xip} 6⊆ pnbhd(xj3), then there is no

term containing xj1xjβ , hence we must have {xi1 , . . . , xip} ⊆ pnbhd(xj3) and the
sum of the terms containing xj1xjβ is

(−1)β+pxjβ [(−1)1+pxj1(xi1 , . . . , xip |x̂j1 , xj3 , . . . , xjq )

+ (−1)β(−1)p+2xj1(xi1 , . . . , xip , x̂j1 |xj3 , . . . , xjq )] = 0.

Subcase (ii): if β > 2 such that β = q or {xi1 , . . . , xip} 6⊆ pnbhd(xjβ+1), then
the sum of the terms containing xj1xjβ is

(−1)1+pxj1(−1)(β−1)+pxjβ (xi1 , . . . , xip |xj2 , . . . , x̂jβ , . . . , xjq )

+ (−1)β+pxjβ (−1)1+pxj1(xi1 , . . . , xip |xj2 , . . . , x̂jβ , . . . , xjq ) = 0.

Subcase (iii): if β > 2 and {xi1 , . . . , xip} ⊆ pnbhd(xjβ+1), then the sum of the
terms containing xj1xjβ is

(−1)1+pxj1(−1)(β−1)+pxjβ [(xi1 , . . . , xip |xj2 , . . . , x̂jβ , . . . , xjq )

+ (−1)β−1(xi1 , . . . , xip , xj2 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )]

+ (−1)β+pxjβ [(−1)1+pxj1(xi1 , . . . , xip |xj2 , . . . , x̂jβ , . . . , xjq )

+ (−1)β(−1)p+2xj1(xi1 , . . . , xip , xj2 , . . . , xjβ−1 |xjβ+1 , . . . , xjq )] = 0.

[Case E]: λ, λ′ ∈ {j2, . . . , jq}.
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[Case E-a]: if 2 ≤ t < t′ ≤ q such that t 6= β and t′ 6= β, then the sum of the
terms containing xjtxjt′ is

(−1)t+pxjt(−1)(t
′−1)+pxjt′ (xi1 , . . . , xip |xj1 , . . . , x̂jt , . . . , x̂jt′ , . . . , xjq )

+ (−1)t
′+pxjt′ (−1)t+pxjt(xi1 , . . . , xip |xj1 , . . . , x̂jt , . . . , x̂jt′ , . . . , xjq ) = 0.

[Case E-b]: suppose that there is a term containing xjtxjβ for some 2 ≤ t ≤ q
with t 6= β. As in [Case C-c], we set

β′′ = min{t | β < t ≤ q, {xi1 , . . . , xip} 6⊆ pnbhd(xjt)}
= min{t | β < t ≤ q, {xi1 , . . . , xip , xj1 , . . . , xjβ−1} 6⊆ pnbhd(xjt)}.

Subcase (i): if one of the following conditions is satisfied:

1) β = q,
2) β = q − 1 and t = q,
3) β′′ = β + 1 and t 6= β′′,
4) β′′ = β + 1, t = β′′ and {xi1 , . . . , xip} 6⊆ pnbhd(xjβ+2),
5) β′′ = β + 2 and t = β + 1,

then the sum of the terms containing xjtxjβ is

(−1)t+pxjt(−1)(β−1)+pxjβ (xi1 , . . . , xip |xj1 , . . . , x̂jt , . . . , x̂jβ , . . . , xjq )

+ (−1)β+pxjβ (−1)t+pxjt(xi1 , . . . , xip |xj1 , . . . , x̂jt , . . . , x̂jβ , . . . , xjq )
= 0, for t < β;

(−1)t+pxjt(−1)β+pxjβ (xi1 , . . . , xip |xj1 , . . . , x̂jβ , . . . , x̂jt , . . . , xjq )

+ (−1)β+pxjβ (−1)(t−1)+pxjt(xi1 , . . . , xip |xj1 , . . . , x̂jβ , . . . , x̂jt , . . . , xjq )
= 0, for t > β.

Subcase (ii): if β′′ = β + 1, t = β′′ and {xi1 , . . . , xip} ⊆ pnbhd(xjβ+2), then the
sum of the terms containing xjtxjβ is

(−1)t+pxjt(−1)β+pxjβ [(xi1 , . . . , xip |xj1 , . . . , x̂jβ , x̂jt , . . . , xjq )

+ (−1)β(xi1 , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+2 , . . . , xjq )]

+ (−1)β+pxjβ (−1)(t−1)+pxjt [(xi1 , . . . , xip |xj1 , . . . , x̂jβ , x̂jt , . . . , xjq )

+ (−1)β(xi1 , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+2 , . . . , xjq )] = 0.

Subcase (iii): if one of the following conditions is satisfied:

1) β = q − 1, t < β and {xi1 , . . . , xip} ⊆ pnbhd(xjq ),
2) β ≤ q − 2 and β′′ does not exist,
3) β′′ > β + 1, t 6= β′′ such that t 6= β + 1 or β′′ 6= β + 2,
4) β′′ > β + 1 and t = β′′ = q,
5) β′′ > β + 1, t = β′′ and {xi1 , . . . , xip} 6⊆ pnbhd(xjβ′′+1

),
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then the sum of the terms containing xjtxjβ is

(−1)t+pxjt(−1)(β−1)+pxjβ [(xi1 , . . . , xip |xj1 , . . . , x̂jt , . . . , x̂jβ , . . . , xjq )

+ (−1)β−1(xi1 , . . . , xip , xj1 , . . . , x̂jt , . . . , x̂jβ |xjβ+1 , . . . , xjq )]

+ (−1)β+pxjβ [(−1)t+pxjt(xi1 , . . . , xip |xj1 , . . . , x̂jt , . . . , x̂jβ , . . . , xjq )

+ (−1)β(−1)t+p+1xjt(xi1 , . . . , xip , xj1 , . . . , x̂jt , . . . , x̂jβ |xjβ+1 , . . . , xjq )]
= 0, for t < β;

(−1)t+pxjt(−1)β+pxjβ [(xi1 , . . . , xip |xj1 , . . . , x̂jβ , . . . , x̂jt , . . . , xjq )

+ (−1)β(xi1 , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , x̂jt , . . . , xjq )]

+ (−1)β+pxjβ [(−1)(t−1)+pxjt(xi1 , . . . , xip |xj1 , . . . , x̂jβ , . . . , x̂jt , . . . , xjq )

+ (−1)β(−1)t−1+pxjt(xi1 , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , x̂jt , . . . , xjq )]
= 0, for t > β.

Subcase (iv): if β′′ > β + 1, t = β′′ and {xi1 , . . . , xip} ⊆ pnbhd(xjβ′′+1
), then

the sum of the terms containing xjtxjβ is

(−1)t+pxjt(−1)β+pxjβ [(xi1 , . . . , xip |xj1 , . . . , x̂jβ , . . . , x̂jt , . . . , xjq )

+ (−1)β(xi1 , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , x̂jt , . . . , xjq )]

+ (−1)β+pxjβ{(−1)(t−1)+pxjt [(xi1 , . . . , xip |xj1 , . . . , x̂jβ , . . . , x̂jt , . . . , xjq )
+ (−1)t−1(xi1 , . . . , xip , xj1 , . . . , x̂jβ , . . . , xjt−1 |xjt+1 , . . . , xjq )]

+ (−1)β(−1)t−1+pxjt [(xi1 , . . . , xip , xj1 , . . . , xjβ−1 |xjβ+1 , . . . , x̂jt , . . . , xjq )

(−1)t−β(xi1 , . . . , xip , xj1 , . . . , x̂jβ , . . . , xjt−1 |xjt+1 , . . . , xjq )]} = 0.

Since the above five main cases have included all the possible terms, it follows
that d2(xi1 , . . . , xip |xj1 , . . . , xjq ) = 0 and we are done. �

5. Betti Numbers

In Section 3, to construct the differential maps of the minimal free resolution of
S/IG, we need to assume that xn, . . . , x1 is a perfect elimination order ofG produced
by Algorithm 2.2. However, to get a nice formula for Betti numbers (Corollary 5.2),
we only need to know a basis for the minimal free resolution. Therefore, we have
the following theorem which does not require that the perfect elimination order
xn, . . . , x1 of G is produced by Algorithm 2.2.

Theorem 5.1. Let G be a simple graph with vertices x1, . . . , xn such that G is
chordal and x1, . . . , xn is in the reverse order of a perfect elimination order of G.
Then in the polynomial ring S = k[x1, . . . , xn] we have the linear edge ideal IG of
the graph G. Let the symbol (xi1 , . . . , xip |xj1 , . . . , xjq ) be as defined in Construction
3.4. And we set

B = {1}∪
⋃

p≥1,q≥1

{
(xi1 , . . . , xip |xj1 , . . . , xjq ) :

1 ≤ i1 < · · · < ip < j1 < · · · < jq ≤ n
{xi1 , . . . , xip} ⊆ pnbhd(xj1)

}
.

Then there exists a multigraded minimal free resolution F of S/IG such that F has
basis B.
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We will not prove Theorem 5.1 because the proof is very similar to the proof
of Theorem 3.7. The only difference is that in the proof of Theorem 3.7 we know
the complex maps −µ2 : E → K and µ : F′′ → F′ explicitly, while in the proof of
Theorem 5.1 we only know their existence. However, we can still use the mapping
cones to show the existence of the multigraded minimal free resolution with the
desired basis B.

Now Theorem 5.1 imply immediately the following corollary about Betti numbers
and the projective dimension of S/IG.

Corollary 5.2. Let IG be a linear edge ideal as defined in Theorem 5.1. For
2 ≤ i ≤ n, we set λi = |pnbhd(xi)|. Then for i ≥ 1, the Betti numbers of S/IG are

bi,j(S/IG) =


n∑
l=2

(
λl∑
p=1

(
λl
p

)(
n− l
i− p

))
, if j = i+ 1,

0, if j 6= i+ 1,

and the projective dimension of S/IG is

projdim(S/IG) = n−min{i− λi : 2 ≤ i ≤ n and λi 6= 0} ≤ n− 1.

Proof. The formula for Betti numbers follows from counting the number of basis
elements of homological degree i and degree i + 1 in B. The projective dimension
formula also follows easily by looking at the basis elements in B. Since λi ≤ i − 1
for 2 ≤ i ≤ n, it follows that projdim(S/IG) ≤ n− 1. �

Example 5.3. Let G be the graph such that G is the chordal graph given in Exam-
ple 2.6. Then x1, x2, x3, x4, x5, x6, x7 is in the reverse order of a perfect elimination
order of G and we have that

λ2 = 0, λ3 = 1, λ4 = 2, λ5 = 3, λ6 = 4, λ7 = 5.

Therefore, by Corollary 5.2, we have projdim(S/IG) = 5 and a computation will
reveal that the Betti numbers of S/IG are

b1,2 = 15, b2,3 = 40, b3,4 = 45, b4,5 = 24, b5,6 = 5.

In [RV] and [HV], the following formula for the Betti numbers is proved by using
Hochster’s formula. Now we prove the formula by using Theorem 5.1.

Corollary 5.4. Let IG be the linear edge ideal of a graph G with vertices x1, . . . , xn.
For any nonempty subset σ of {x1, . . . , xn}, let Gσ be the subgraph of G induced by
σ and let #(Gσ) be the number of connected components of Gσ. Then for i ≥ 1,
we have

bi,j(S/IG) =


∑

σ⊆{x1,...,xn},|σ|=i+1

(
#(Gσ)− 1

)
, if j = i+ 1,

0, if j 6= i+ 1.

Proof. Without the loss of generality, we can assume that xn, . . . , x1 is a perfect
elimination order of the chordal graph G. Let B be as defined in Theorem 5.1. We
say that the vertex xs is smaller than the vertex xt if s < t. For any i ≥ 1, let
σ = {xα1 , . . . , xαi+1} be a subset of {x1, . . . , xn} for some 1 ≤ α1 < · · · < αi+1 ≤ n.
We claim that (xα1 , . . . , xαp−1 |xαp , . . . , xαi+1) ∈ B if and only if p 6= 1 and xαp is the
smallest vertex in the connected component of Gσ containing xαp . Indeed, if p ≥ 2
and xαp is the smallest vertex in the connected component of Gσ containing xαp ,
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then xαsxαp ∈ G for all 1 ≤ s ≤ p− 1, so that (xα1 , . . . , xαp−1 |xαp , . . . , xαi+1) ∈ B.
On the other hand, assume that p ≥ 2 and there exists 1 ≤ s ≤ p− 1 such that xαs
and xαp are in the same connected component of Gσ. Set σ′ = {xα1 , . . . , xαp} ⊆ σ.
Since xαi+1 , . . . , xα1 is a perfect elimination order of Gσ, it is easy to see that xαs
and xαp are still in the same connected component of Gσ′ . Therefore, there exists
1 ≤ s′ ≤ p − 1 such that xαs′xαp ∈ Gσ′ , and hence xαs′xαp /∈ G, which implies
(xα1 , . . . , xαp−1 |xαp , . . . , xαi+1) /∈ B. So the claim is proved. It follows that there are
#(Gσ)− 1 basis elements in B with multidegree xα1 · · ·xαi+1 and we are done. �
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