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Abstract. The game of Domineering is a combinatorial game that has been solved for several
boards, including the standard 8 × 8 board. We create new partizan – and some impartial –
combinatorial games by using triominoes instead of and along with dominoes. We analyze
these games for some small boards providing a dictionary of values and prove properties that
permit expressing some connected boards as sums of smaller subboards.

1. Introduction

The game of Domineering was invented by Göran Andersson around 1973, according to [2],
[3], and [6]. The two players in Domineering alternately tile a board using a regular domino
(a 2 × 1 tile). Left is usually called Vertical and Right Horizontal. They place their tiles,
without overlapping, vertically and horizontally, respectively. The player making the last move
wins. The game is partizan, since the set of moves is different for each player. Conway [3] and
Berlekamp, Conway, and Guy [1] have computed the value of Domineering for several boards,
not necessarily rectangular. D.M. Breuker, J.W.H.M Uiterwijk and H.J. van den Herik [2]
have determined who wins the game of Domineering for additional boards. In particular, they
showed that the first player can win on the classical 8× 8 board, which was the original game
presented by Andersson.

We create new combinatorial games by admitting the use of larger tiles and provide a dictio-
nary of values for each game. In these dictionaries, we represent unavailable squares –squares
that cannot be used during the play –by black squares. We also formulate and prove some
general properties of these games.

The basic theory of combinatorial games can be found in [1] and [3]. A concise 18-page
summary with the basic results in combinatorial game theory can be found in [4]. We recall
that for a partizan game G, Left can win if G > 0, Right can win if G < 0, the second player
can win if G = 0, and the first player can win if G||0 (G is fuzzy with (incomparable with) 0).

2. The Games

2.1. Triomineering. In our first game, we substitute the domino by a “straight” triomino;
that is, a 3×1 tile. We call this game Triomineering. Its rules are exactly the same as for Dom-
ineering: the two players, Vertical and Horizontal, tile alternately vertically and horizontally,
respectively. Overlapping is not permitted. The player making the last move wins.

Figure 1 gives the values of Triomineering for boards up to six squares, including the 35
boards with 6 squares, excluding their negatives obtained by a right angle turn. Figure 2
displays 59 boards with seven squares and their values. According to [1] Ch. 5, there are 108
boards with seven squares.
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Figure 1. Triomineering values for boards up to 6 squares.

Figure 2. Triomineering values for some boards with 7 squares.

Table 1. Values of Triomineering for small rectangular boards.

1 2 3 4 5 6
1 0 0 −1 −1 −1 −2
2 0 0 −2 −2 −2 −4
3 1 2 ±2 {3| − 3/2} {4| − 1,−1*} {4|0|||−1/2||−1|−2}
4 1 2 {3/2| − 3} ±5/2 {3| − 2,−2*} {3|−3/2|||−7/4|| − 3|−4}
5 1 2 {1, 1*| − 4} {2, 2*| − 3} ±2 {−3||−3,−3*| − 8}
6 2 4 {2|1||1/2|||0|−4} {4|3||7/4|||3/2|−3} {8|3, 3*||3} F

Table 1 depicts the value of Triomineering for some rectangular boards. We have omitted
“messy” values – those that take considerable space to express. Instead, we have used F to
indicate that the first player wins, V to indicate that Vertical wins, and H to indicate that
Horizontal wins. This notation is also used in the tables (below) containing the values of
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Tridomineering and L-Tridomineering for small rectangular boards. Note that, curiously, the
3× 3 board and the 5× 5 board have the same value.

Definition 2.1.1. A subset of a rectangular board is called 2-wide if it has a row with exactly
two consecutive squares and no row or column with three consecutive squares.

Clearly any 2-wide board is a 0-game, since no player is able to move.

Definition 2.1.2. Two boards F and G placed next to each other are said to be concatenated
horizontally or simply concatenated, if one can place a horizontal domino so that it covers one
square from F and one from G.

We denote any concatenation of G and F by GF .

Definition 2.1.3. Let G and F be subsets of rectangular boards, GF a concatenation of them.
If each column of GF intersects only one of the two boards, then G is smoothly left-aligned to
F , or simply left-aligned.

The definition evidently depends on how the boards are concatenated. For example, a1 can
be left-aligned to a2 in Figure 3 by moving them together in a parallel fashion. But if a2 is
lowered by two units, followed by concatenation with a1, then a1 is not left-aligned to a2. Also,
b1 cannot be left-aligned to b2 in a parallel fashion, but it can be if b2 is first lowered by one
unit (so the right arm of b1 meets the left arm of b2).

Figure 3. Aligned and non-aligned boards.

Proposition 2.1.4. Let G be left-aligned to F , and F left-aligned to H, with F being 2-wide.
Then in Triomineering,

(a) GF + FH ≤ GFH,
(b) If GF = G then GFH = G + FH,
(c) If FH = H then GFH = H + GF .

Proof. (a) It suffices to show that Horizontal can win as second player in GF +FH−GFH (see
Figure 4(a)). If Vertical begins by playing exclusively on G or H, then Horizontal can respond
by playing exclusively on −G or −H, respectively, and conversely. Since G is left-aligned to F ,
Vertical has no moves using squares from both of these boards, and the same holds for F and
H. The only way Vertical can use squares from two boards, is on −H and −F or −G and −F .
Horizontal can counter these moves by using squares from H and F or G and F , respectively.
These are the only options of Vertical since F is 2-wide, so no player can move exclusively on
F or move using squares from all three boards. Hence Horizontal can win.

(b) We first prove that GFH ≤ G+FH by showing that GFH−G−FH ≤ 0 (see Figure 4(b)).
If Vertical, as first player, plays exclusively on G or H, then Horizontal can respond by playing
exclusively on −G or −H, respectively, and conversely. Further, if Vertical plays using squares
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Figure 4. Illustrating the proof of Proposition 2.1.4.

from −H and −F , then Horizontal can move using squares from H and F , respectively. Since
these are the only options of Vertical, Horizontal can win.

To complete the proof, we use the result just proved and 2.1.4 (a):

GFH ≤ G + FH = GF + FH ≤ GFH,

and the result follows.

(c) The proof is the same as for (b). ¥

Corollary 2.1.5. Let G be left-aligned to ¤¤, and ¤¤ left-aligned to H. Then

(a) G¤¤ + ¤¤H ≤ G¤¤H,
(b) If G¤¤ = G then G¤¤H = G + ¤¤H,
(c) If ¤¤H = H then G¤¤H = H + G¤¤ .

Proof. These are special cases of Proposition 2.1.4 (a) – (c) with F = ¤¤ . ¥

Remarks.

(1) The condition that the boards must be aligned is necessary: Figure 5(a) depicts a case
where F is not left-aligned to H, with F 2-wide. Proposition 2.1.4 (a) does not hold, for
otherwise ∗+ {0| − 1}+ 1 = {1*|*} ≤ 0, which is false since {1*|*} is positive.

(2) The condition that F must be 2-wide is also necessary. Figure 5(b) exhibits a case where
F = 0 is not 2-wide and the proposition does not hold, since

{1| − 3}+ {1|1/2} = {2|3/2|| − 2| − 5/2} 6≤ {2|3/2|| − 2| − 3}.

Figure 5. Boards alignment and 2-wideness are necessary.



VARIATIONS OF THE GAME OF DOMINEERING 5

(3) If F 6= 0, then Proposition 2.1.4 does not hold. Consider F = G = H = the 3 × 1 tile.
Then GFH = ±2 (Table 1), and GF = FH = 2. Clearly, 2 + 2 6≤ ±2, so (a) does not hold.

(4) Proposition 2.1.4 holds also for playing “straight” n-polyomineering if we require F to
be (n − 1)-wide. The proof of this claim is entirely analogous to the above. For increasing
n, there is a growing set of (n − 1)-wide boards F , for each of which Proposition 2.1.4 holds.
For Domineering, however, Proposition 2.1.4 holds if and only if F is the 1 × 1 tile (see also
Proposition 2.2.1 below).

The last remark shows that for increasing size of the (smallest) tiling polyomino, the power
of Proposition 2.1.4 increases, as it permits to express as sums a growing variety of boards that
are not disjoint. This can be observed already for Triomineering. In Figure 6 we have applied
Proposition 2.1.4(b) to two different cases: The first one with F being the 2× 2 board, G the
3× 3 board, and H the 3× 1 tile. In the second case, we take F to be a 2× 2 board with one
square removed. Note that F need not to be rectangular. From Figure 6, we see that

{2|1|| − 2| − 3} = ±2 + {0| − 1}
±(2)* = ±2 + ∗

Figure 6. Two sample applications of Proposition 2.1.4 (b).

In general we cannot divide a “connected” board into pieces so that the value of the original
board equals the sum of the values of the smaller boards, but here we can.

2.2. Tridomineering. Here Vertical and Horizontal alternate in tiling with either a domino or
a straight triomino. The player making the last move wins. A dictionary of values for boards
of up to six squares is depicted in Figure 7. Table 2 presents some of the values of rectangular
boards.

Proposition 2.2.1. Let G be left-aligned to ¤, and ¤ left aligned to H. Then for Tridomi-
neering we have,

(a) G¤ + ¤H ≤ G¤H,
(b) If G¤ = G then G¤H = G + ¤H,
(c) If ¤H = H then G¤H = H + G¤ .

Proof. Same as Proposition 2.1.4 with F replaced by ¤. ¥

This proposition holds also for Domineering; see [3] Ch. 10.
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Figure 7. Tridomineering values for boards up to 6 squares.

Table 2. Values of Tridomineering for small rectangular boards.

1 2 3 4 5
1 0 −1 −1 −2 −2
2 1 ±1 {2|−1} {2|0||−1*} {0, {3|0}|−1, {0|−2}}
3 1 {1|−2} ±2 {2|−1||−2↑} {−1, {3|−1}| − 7/4, {−1|−4}}
4 2 {1*||0|−2} {2↓||1|−2} ±1* F
5 2 {1, {2|0}|0, {0|−3}} {7/4, {4|1}|1, {1|−3}} F F

2.3. L-Tridomineering. In this game we adjoin a third tiling piece in addition to the domino
and straight triomino: an L-shaped triomino; that is, a 2 × 2 tile with one square removed.
The L-triomino adds a total of 4 new moves to the set of moves of each player, since it can be
rotated and placed in 4 different positions on a rectangular board. A dictionary of values of
this game for small boards is exhibited in Figures 8 and 9, and Table 3 depicts the values of
L-Tridomineering for some rectangular boards.

Table 3. Values of L-Tridomineering for small rectangular boards.

1 2 3 4 5
1 0 −1 −1 −2 −2
2 1 ±1 {2|−1} {1*, {2|0}|−1*} {0, {3|0}|0, {0|−2}}
3 1 {1|−2} ±2 H H
4 2 {1*|{0|−2},−1*} V F F
5 2 {0, {2|0}|0, {0|−3}} V F F

As can be seen in the dictionaries of Figures 8 and 9, the value *2 is attained several times
on small boards of L-Tridomineering. The first time is on a board of only 6 squares. For
domineering, on the other hand, it is not so easy to construct a board with value *2. Such a
board was recently constructed by G.C. Drummond-Cole, see [5]. It appears that the values
of L-Tridomineering are hotter than those of our preceding games. If this is indeed the case in
general, it may be due to the L-shaped triomino, which can be used by both players. Thus the
game resembles more an impartial game, every nonzero value of which is hot.
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Figure 8. L-Tridomineering values for boards up to 6 squares.

Figure 9. L-Tridomineering values for some boards with 7 squares.

L-Tridomineering also satisfies Proposition 2.2.1 of Tridomineering.

3. Computation of the values

The values presented in this paper were computed using Aaron Siegel’s Combinatorial Game
Suite software (CGS) [8]. For CGS to understand the rules of the newly created games, it was
necessary to write a Java plug-in for each game. The plug-ins were designed so CGS creates all
possible positions that can be reached in a game without considering efficiency. This approach
differs from that of [2] where the authors cut off some positions using an α−β search technique
to determine the winner. However, we computed also the values of the games, needed for
playing sums.
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To improve the efficiency, we could have written a code that deletes dominated positions
and replaces reversible ones early in the search, rather than finding all the possible positions
reached in the game and then simplifying by using domination and reversibility. Due to memory
constraints, we restricted the computation to boards not exceeding 6× 6. We did not present
here all the values that were computed. For those too long to write down, we only present the
winner, according to whether G is positive, negative, zero, or fuzzy with 0. For example, the
value corresponding to the game of Triomineering played on the 6× 6 board is

±({2|1||1/2}, {{6|5||9/2|||2|1||1/2}, {6|5||9/2|||4|0}|{4|0|||−1/2||−1|−2}, {7/2||3|2|||−1/2||−1|−2}})
which is fuzzy with 0, and so the first player wins.

4. Some families of values

Note that square boards have values of the form {A| − A} = ±A, where A is any game,
since the set of moves for Horizontal and Vertical are the same by symmetry. We also note
that Tables 1-3 are antisymmetric, since the value of a game on a board B is the negative of
the game on board B′, where B′ is the rotation of B by 90◦ about its center (clockwise or
counterclockwise).

Finally, in addition to the dictionaries of values already provided, we present in Figure 10
some patterns of boards that have a clearly discernible pattern of values. One can prove the
validity of some of these patterns by using the properties that were pointed out in Proposi-
tions 2.1.4 and 2.2.1. For example, to prove by induction the validity of the first sequence of
Triomineering , we use Proposition 2.1.4 (a) and (b), and the well-known fact that ∗+∗+ · · ·+∗
is 0 if we add an even number of stars, and ∗ if we add an odd number of them.

The last two lines of Figure 10 constitute a sequence of values for L-Tridomineering. The
values obtained are,

∗, ↓, {↓ | − 1},−1,−1*,−1↓︸ ︷︷ ︸, {−1↓ | − 2},−2,−2*,−2↓︸ ︷︷ ︸, {−2↓ | − 3},−3,−3*,−3↓︸ ︷︷ ︸ · · ·

The emerging pattern is a four-term block of the form {(1 − a) ↓ | − a},−a,−a*,−a ↓ for
a ∈ Z≥1 increasing in steps of 1.

We remark, in passing, that the “double cross” in Fig 10 (second board from left in first
row of L-Tridomineering) has value {{0|− 1}, ∗|∗, 0, {0|− 1}} = {∗|0, {0|− 1}} (by domination)
= {∗|0} (by reversibility) = ↓ . Note that, perhaps a bit counterintuitively, the best opening
move for Right is to tile with a domino the middle 2 squares.

5. Lemineering, an Impartial Game

Motivated by L-Tridomineering, we create a game in which each of the two players is only
allowed to use the L-triomino. Since the sets of moves for each player are identical, Lemineering
is an impartial game, so the Sprague-Grundy theory tells us that its values are nimbers. So for
each short game of Lemineering G, we have,

G = {∗a1, ∗a2, · · · , ∗an| ∗a1, ∗a2, · · · , ∗an} = mex{∗a1, ∗a2, · · · , ∗an} ,

where for any set S ( Z≥0, mexS = minZ≥0 \ S = smallest nonnegative integer not in S.
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Figure 10. Families of patterns in these games.

We present the value of Lemineering for small rectangular boards in Table 4. Note that
Table 4 is symmetric, since every nimber is its own negative.

Table 4. Sprague-Grundy values for Lemineering.

1 2 3 4 5 6
1 0 0 0 0 0 0
2 0 1 2 0 3 1
3 0 2 0 1 2 2
4 0 0 1 0 1 0
5 0 3 2 1 0 1
6 0 1 2 0 1 1
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There is also an impartial version of Domineering called Cram. In this game, both players
are allowed to place horizontal and vertical dominoes. Winning strategies for this game have
been found for some rectangular boards [7]. A similar analysis can be done to find winning
strategies for the impartial versions of Triomineering and Tridomineering. For example, on an
m× n board, where both m and n are even, the second player can win the impartial version of
Triomineering and Tridomineering by reflecting the first players move through both axes. For
Tridomineering, if one of m or n is odd and the other is even, the first player can win by tiling
the middle two squares and then applying the symmetry strategy. If m,n > 1 are odd and
we play the impartial version of Triomineering or Tridomineering, the first player can win by
tiling the middle three squares and then playing by symmetry. Unfortunately, these symmetry
arguments do not work for Lemineering, since we are only allowed to use the L-shaped triomino;
so the first player could place an L-triomino in the middle of the board, breaking all existing
symmetry.

6. Concluding Remarks

• We proved some properties of Triomineering (Proposition 2.1.4) which generalize those
of Domineering (Proposition 2.2.1). This may lead one to think that there could be
some isomorphism between Triomineering and Domineering. We believe, however, that
this is not the case. In particular, we propose that there is no position in Triomineering
with value

±(0, {{2|0}, 2+2 |{2|0},−2}),
which is the value of a 4× 4 board in Domineering.

• It is natural to generalize the results of this paper to larger polyominoes. Results of the
form of Proposition 2.1.4 grow stronger with increasing size of the smallest participating
polyomino.

• The games presented here were analyzed for normal play; that is, the player making
the last move wins. One can also analyze these games for misère play, where the player
making the last move loses, but then the obvious usefulness of sums is lost.
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