Mapping class groups groupe de travail

Le Jeudi à 14h. Salle de la bibliothèque.


Schedule

2014:

Date Speaker Topic Notes
6/2 Arnaud The symplectic representation of the mapping class group I (Farb-Margalit, 6.1 & 6.2) intro to Sp(2g,R) and H_1(S_g,Z); the Euclidean algorithm for curves.
13/2 Damien D. The symplectic representation of the mapping class group II (6.3 & 6.4) the representation, surjectivity onto Sp(2g,Z), congruence subgroups and finite index torsion-free subgroups (proof for Sp(2g,Z); proof for MCG is section 7/talk 4, below).
20/2 Basile The Torelli subgroup Examples of elements (6.5.2); Birman exact sequence; description of an (infinite) generating set & statement of finite generation (6.5.5); action on simple closed curves (6.5.4).
27/2 Damien T. Torsion in the mapping class group Realising finite subgroups of Mod(S_g) as groups of isometries of a hyperbolic surface; Hurwitz' 84(g-1) theorem; finite subgroups admit a faithful symplectic representation.
6/3 -x--x--x-
13/3 Camille Dehn-Nielsen-Baer Theorem The theorem says the (extended) mapping class group is isomorphic to the group of outer automorphisms of the fundamental group.
Lundi 31/3, 16h30 Andrew Introduction to the Nielsen-Thurston Classification Classifying mapping classes of the torus; periodic, reducible and pseudo-Anosov elements.
27/3 -x- -x- -x-
3/4 (9:30 a.m., la salle viséo - 632) Christian Quadratic Differentials Relating quadratic differentials to measured foliations (11.3); Teichmuller geodesics (11.8 - in particular 11.8.2).
10/4 -x- -x- -x-
17/4 Damien D. Moduli space I Proper discontinuity of the action of Mod(S_g) on Teich(S_g), the length spectrum and Wolpert's Lemma.
Lundi 28/4, 14h Arnaud Moduli space II Mumford's compactness criterion.
Mardi 29/4, 14h Basile Proof of Nielsen-Thurston classification Collar lemma; proofs that parabolic implies reducible and hyperbolic implies pseudo-Anosov.
1/5 -x- -x- -x-
8/5 -x- -x- -x-
15/5 -x- -x- -x-
22/5 Arnaud Relations to other fields I The link between finite MCG orbits and isomonodromic deformations (and related stuff, like PVI solutions).
5/6 **Room change: 004**Andrew Relations to other fields II Relationships between mapping class groups and arithmetic groups.
19/6 Camille Relations to other fields III Relationships between mapping class groups and outer automorphisms of free groups.

2013:

Date Speaker Topic Notes
17/10 Andrew A brief recap on the topology of surfaces The classification of surfaces; loops, arcs, twists; pants decompositions; diffeomorphisms.
24/10 Arnaud Examples of mapping classes and of mapping class groups Including: disc, sphere, pair of pants, annulus, torus...
31/10 -x- -x- -x-
7/11 Camille Curve Complex Definition, examples, connectedness and other important properties.
14/11 Basile Dehn twists I Definitions and properties, change of coordinates, some relations between Dehn twists.
21/11 Damien D. Dehn twists II Dehn-Likorish Theorem
28/11 Christian Introduction to Teichmuller space I Hyperbolic structures, definition of Teichmuller space, Teich(Pants), Fenchel-Nielsen coordinates.
5/12 Damien T. Introduction to Teichmuller space II Quasiconformal maps and the Teichmuller metric
12/12 Andrew The Alexander method and applications Statement of Alexander method. The MCG has trivial centre, solvable word problem, and trivial abelianisation.
19/12 -x- -x- No workshop - we resume in February.


References