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Possibly the most fundamental combinatorial invariant associated to a finite simplicial

complex is its f-vector, the integral sequence expressing the number of faces of the

complex in each dimension. The h-vector of a complex is obtained by applying a simple

invertible transformation to its f-vector, and thus the two contain the same information.

Because some properties of the f-vector are easier expressed after applying this trans-

formation, the h-vector has been the subject of much study in geometric and algebraic

combinatorics. A convex-ear decomposition, first introduced by Chari in [7], is a way of

writing a simplicial complex as a union of subcomplexes of simplicial polytope bound-

aries. When a (d − 1)-dimensional complex admits such a decomposition, its h-vector

satisfies, for i < d/2, hi ≤ hi+1 and hi ≤ hd−i. Furthermore, its g-vector is an M-vector.

We give convex-ear decompositions for the order complexes of rank-selected sub-

posets of supersolvable lattices with nowhere-zero Möbius functions, rank-selected sub-

posets of geometric lattices, and rank-selected face posets of shellable complexes (when

the rank-selection does not include the maximal rank). Using these decompositions,

we are able to show inequalities for the flag h-vectors of supersolvable lattices and face

posets of Cohen-Macaulay complexes.

Finally, we turn our attention to the h-vectors of lattice path matroids. A lattice path

matroid is a certain type of transversal matroid whose bases correspond to planar lattice

paths. We verify a conjecture of Stanley in the special case of lattice path matroids and,

in doing so, introduce an interesting new class of monomial order ideals.
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Chapter 1

Preliminaries and Background

1.1 The h-Vector of a Finite Simplicial Complex

Let ∆ be a (d−1)-dimensional finite simplicial complex (in fact, all simplicial complexes

considered herein will be finite). One of the most basic invariants associated to ∆ is its f-

vector, the integral sequence that expresses that number of faces of ∆ in each dimension.

Formally, the f-vector of ∆, written f (∆), is the (d+1)-tuple ( f0, f1, f2, . . . , fd), where

fi is the number of (i−1)-dimensional faces of ∆. By convention we set f0 = 1 whenever

∆ is a non-empty complex. (Some authors use fi to denote the number of i-dimensional

faces, causing the indices of their f-vectors to differ from ours.) A simplicial complex

whose f-vector is (1, 4, 4, 1) is shown in Figure 1.1.

Figure 1.1: A simplicial complex with f-vector (1, 4, 4, 1).

The Kruskal-Katona-Schützenberger Theorem, whose proof and statement we omit

here, provides a classification of all possible simplicial complex f-vectors. The inter-

ested reader can refer to [23].

The f-polynomial of ∆, f∆(t), is
∑d

i=0 fitd−i. Many of the results that follow concern

the h-vector of a finite simplicial complex, defined as follows:

Definition 1.1.1 The h-vector of ∆, h(∆), is the (d + 1)-tuple (h0, h1, h2, . . . , hd), where

1



f∆(t − 1) = h0td + h1td−1 + h2td−2 + . . . + hd−1t + hd.

The polynomial f∆(t − 1) is called the h-polynomial of ∆, and is denoted h∆(t). A

few facts about the h-vector are immediate: First, by substituting the value t = 1 into

the h-polynomial, h0 + h1 + . . . + hd = h∆(1) = f∆(0) = fd, and so
∑

hi = fd, the number

of full-dimensional faces of ∆. Next, substituting the value t = 0 into the h-polynomial

yields hd = h∆(0) = f∆(−1) = (−1)d−1(− f0 + f1 − f2 + . . . + (−1)d−1 fd) = (−1)d−1χ̃(∆),

where χ̃ denotes the reduced Euler characteristic of ∆: χ̃(∆) = χ(∆) − 1. For example,

if ∆ is the complex in Figure 1.1, then f∆(t) = t3 + 4t2 + 4t + 1, so h∆(t) = f∆(t − 1) =

(t − 1)3 + 4(t − 1)2 + 4(t − 1) + 1 = t3 + t2 − t and h(∆) = (1, 1,−1, 0). Thus the h-vector

of a complex is not necessarily nonnegative.

For a second example, take ∆ to be the boundary of the octahedron. Then f (∆) =

(1, 6, 12, 8) and h(∆) = (1, 3, 3, 1).

Upon first glance, one might wonder what purpose the h-vector could serve. After

all, it holds the same information as the f-vector. However, it turns out that certain

properties of a complex’s f-vector are sometimes much better expressed through the

associated h-vector. A shining example of this phenomenon are the Dehn-Sommerville

relations (see, for instance, [28]):

Theorem 1.1.2 Suppose ∆ is the boundary complex of a simplicial d-polytope. Then

the h-vector of ∆ satisfies hi = hd−i for 0 ≤ i ≤ d.

In fact, all possible h-vectors (and thus all possible f-vectors) of simplicial polytope

boundaries have been characterized. To state the result, a few definitions are required.

Definition 1.1.3 Let Γ be a finite set of monomials. Γ is an order ideal if α ∈ Γ whenever

α|α′ for some α′ ∈ Γ.

2



Any simplicial complex can be viewed as a squarefree monomial order ideal by map-

ping the face {vi1 , vi2 , . . . , vin} to the monomial xi1 xi2 . . . xin . Thus the class of monomial

order ideals properly contains all finite simplicial complexes.

Definition 1.1.4 A finite sequence (m0,m1, . . . ,md) is an M-vector (also called an O-

sequence by some authors) if there exists a monomial order ideal Γ such that, for all i,

mi is the number of monomials of Γ of degree i.

Definition 1.1.5 Let ∆ be a (d − 1)-dimensional simplicial complex. The g-vector of ∆

is the sequence (h0, h1 − h0, h2 − h1, . . . , hbd/2c − hbd/2c−1).

The theorem classifying all simplicial polytope boundary h-vectors, known as the

g-Theorem, can now be stated. The “only if” direction was proven by Stanley in [21],

while the “if” direction was proven in [1] by Billera and Lee.

Theorem 1.1.6 An integral sequence (h0, h1, h2, . . . , hd) is the h-vector of a simplicial

d-polytope boundary if and only if:

(i) hi = hd−i whenever 0 ≤ i ≤ d, and

(ii) the associated g-vector is an M-vector.

One may be tempted to ask if other simplicial complexes satisfy all or part of the

above theorem. In fact, Swartz has shown that a large class of complexes have g-vectors

that are M-vectors, namely all complexes admitting convex-ear decompositions, a con-

cept introduced in the next section.
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1.2 Shellability and Convex-Ear Decompositions

Let G be a finite connected graph without loops, and let T ⊆ E(G) be a spanning tree

of G. It is a basic result in topology that G is homotopy equivalent to a wedge of

|E(G) \ T |-many circles. (Simply contract the spanning tree to see this: Every edge

not in the spanning tree has its endpoints identified.) When a simplicial complex is

shellable, a similar phenomenon takes place. Recall that a simplicial complex is called

pure if all its facets (maximal faces) are of the same dimension. Most of the results in

this section can be found in [4] or [3].

Definition 1.2.1 A pure complex ∆ is shellable if there exists an ordering of its facets,

F1, F2, . . . , Fn, such that Fi ∩ (
⋃i−1

j=1 F j) is a non-empty union of facets of ∂Fi whenever

1 < i ≤ n. If such a sequence of facets exists, it is called a shelling of ∆.

Figure 1.2: A shelling of the octahedron’s boundary.

Although Björner and Wachs have defined a notion of shellability for non-pure sim-

plicial complexes (see [5]), all shellable complexes considered herein will be pure. In

practice, the following alternate definition is often used to show that a particular ordering

of the facets of ∆ is a shelling.
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Proposition 1.2.2 The facet ordering F1, F2, . . . , Fn is a shelling of ∆ if and only if,

for all j and k with j < k, there exists a k′ < k such that |Fk′ ∩ Fk| = |Fk| − 1 and

F j ∩ Fk ⊆ Fk′ ∩ Fk.

Now fix a facet ordering F1, F2, . . . , Fn of the complex ∆, and write ∆i to denote the

subcomplex of ∆ generated by the first i facets of the ordering. The following is perhaps

a more intuitive characterization of shellings:

Proposition 1.2.3 The ordering F1, F2, . . . , Fn is a shelling of ∆ if and only if, for all i

with 2 ≤ i ≤ n, the set of faces ∆i \∆i−1 contains a unique minimal element (with respect

to inclusion).

In practice, one usually thinks of ∆i \ ∆i−1 as the set of “new” faces obtained by

adding Fi to ∆i−1. When the facet ordering is a shelling, the unique minimal element

of this set guaranteed by the previous proposition is called the unique minimal new face

(or u.m.n.f.) associated to Fi and is written r(Fi). The next few results illustrate the

parallel between shellable complexes and connected graphs. Throughout, let ∆ be a

(d − 1)-dimensional simplicial complex with shelling F1, F2, . . . , Fn.

Proposition 1.2.4 Let ∆′ be the subcomplex of ∆ generated by the set of facets {Fi :

r(Fi) , Fi}. Then ∆′ is contractible.

The complex ∆′ can be thought of as a higher-dimensional analogue of a connected

graph’s spanning tree. Now let Fi be a facet not included in ∆′. Then by definition

|r(Fi)| = d, meaning that Fi is attached to
⋃i−1

j=1 F j along its entire boundary. Thus,

contracting ∆′ yields the following:

5



Proposition 1.2.5 The complex ∆ is homotopy equivalent to a wedge of |{Fi : r(Fi) =

Fi}|-many (d − 1)-spheres.

Thus a shellable complex is either contractible or homotopy equivalent to a bouquet

of spheres. Shellings also tell us information about subcomplexes, as shown by the

following theorem of Danaraj and Klee ([8]):

Theorem 1.2.6 Let Σ be a pure, full-dimensional proper subcomplex of a d-sphere, and

suppose that Σ is shellable. Then Σ is a d-ball.

One benefit of a shelling is that it allows us to examine the change to a complex’s f-

vector at each step as follows: It is clear that f∆i(t) counts all faces of ∆i−1, plus the “new”

faces obtained by adding Fi to ∆i−1. Because the given facet ordering is a shelling, any

new face must contain the face r(Fi). Thus, attaching Fi to ∆i−1 contributes (t + 1)d−|r(Fi)|

to the f-polynomial of ∆i−1, and f∆i(t) = f∆i−1(t) + (t − 1)d−|r(Fi)|.

Let ∆0 be the empty complex, and set f∆0(t) = 0. Keeping track of the change to the

f-polynomial during each step of the shelling of ∆, f∆(t) =
∑n

i=1(t + 1)d−|r(Fi)|. Because

h∆(t + 1) = f∆(t) =
∑n

i=1(t + 1)d−|r(Fi)|, the h-vector of a shellable complex ∆ has the

following combinatorial interpretation:

Proposition 1.2.7 Fix a shelling F1, F2, . . . , Ft of ∆. The h-vector of ∆ is given by

hi = |{F j : |r(F j)| = i}|.

While a shelling can be thought of piecing together a complex from its facets, the

coarser concept of a convex-ear decomposition can be thought of as building a complex

out of subcomplexes of simplicial polytope boundaries:
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Definition 1.2.8 A complex ∆ has a convex-ear decomposition if there exist pure (d−1)-

dimensional subcomplexes Σ1, . . .Σt such that:

(i)
⋃t

1=1 Σi = ∆.

(ii) Σ1 is the boundary complex of a simplicial d-polytope, and for i > 1 there exists a

simplicial d-polytope ∆i so that Σi is a pure, full-dimensional subcomplex of ∂∆i.

(iii) For i > 1, Σi is a simplicial ball.

(iv) For i > 1, (
⋃i−1

j=1 Σ j) ∩ Σi = ∂Σi.

As an example, let ∆ be the 2-dimensional simplicial complex with the vertex set

{1, 2, 3, 4, 5, 6} and facets 123, 124, 126, 134, 135, 145, 156, 234, 236, 345, and 356. Let

Σ1 be the subcomplex with facets 123, 124, 134, and 234, let Σ2 be the subcomplex with

facets 135, 145, and 345, and let Σ3 be the subcomplex with facets 126, 156, 236, and

356. The sequence Σ1,Σ2,Σ3 is a convex-ear decomposition of ∆. In Figures 1.3 and

1.4, Σ2 is shown being attached to Σ1, and then Σ3 is shown being attached to Σ1 ∪ Σ2.

Figure 1.3: The first step in a convex-ear decomposition.

It is easy to verify this ordering is a convex-ear decomposition. The reader should

note, however, that Σ1,Σ3,Σ2 is not a convex-ear decomposition, as Σ3 ∩ Σ1 , ∂Σ3.

The following proposition is proven by a straightforward induction argument:

7



Figure 1.4: The second step in a convex-ear decomposition.

Proposition 1.2.9 Let ∆ be a (d − 1)-dimensional complex, and let Σ1,Σ2, . . . ,Σt be a

convex-ear decomposition of ∆. Then ∆ is homotopy equivalent to a wedge of t-many

(d − 1)-spheres.

Convex-ear decompositions were first introduced by Chari in [7], where he proved

the following:

Theorem 1.2.10 Let ∆ be a (d − 1)-dimensional simplicial complex that admits a

convex-ear decomposition. Then, for i < d/2, the h-vector of ∆ satisfies:

(i) hi ≤ hd−i, and

(ii) hi ≤ hi+1.

Thus, the h-vector of a complex admitting a convex-ear decomposition bears some

resemblance to the h-vector of a simplicial polytope boundary. This similarity is deep-

ened by the following result of Swartz, proven in [25]:
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Theorem 1.2.11 Let ∆ be a (d − 1)-dimensional complex admitting a convex-ear de-

composition. Then the g-vector of ∆, (h0, h1 − h0, h2 − h1, . . . , hbd/2c − hbd/2c−1), is an

M-vector.

1.3 Poset Order Complexes and EL-Labelings

This first definition is an important one, ubiquitous throughout combinatorics:

Definition 1.3.1 A partially ordered set, or poset, (P,≤) consists of a point set P and a

relation ≤ satisfying:

(i) x ≤ x for all x ∈ P,

(ii) x ≤ y and y ≤ z⇒ x ≤ z, and

(iii) x ≤ y and y ≤ x⇒ x = y.

Although infinite posets have been the subject of much study, every poset considered

herein will be finite.

For points x, y of a partially ordered set (P,≤), x < y means x ≤ y and x , y. We say

y covers x if x < y and there is no z ∈ P such that x < z < y. If x ∈ P does not cover

any element of P, it is called a minimal element. If it is covered by no element of P,

it is called a maximal element. When P has a unique minimal element and/or a unique

maximal element, these are sometimes referred to as 0̂ and 1̂, respectively. When the

partial order in question is clear, sometimes we write P as short for (P,≤).

One poset that we will be studying a great deal is the Boolean lattice, defined as

follows:

9



Definition 1.3.2 For a positive integer d, the Boolean lattice Bd is the partially ordered

set of subsets of [d] = {1, 2, 3, . . . , d}, ordered by inclusion.

To picture a partially ordered set P, one often uses its Hasse diagram. The Hasse

diagram of P is the graph with vertex set {vx : x ∈ P} and edge set {(vx, vy) : y covers x},

drawn so that vx is lower than vy whenever x ≤ y. Figure 1.5 shows the Hasse diagram

of B3, the Boolean lattice on 3 elements:

Figure 1.5: The Hasse diagram of B3

If x1, x2, . . . , xn are elements of a partially ordered set P and x1 < x2 < . . . < xn, we

call this a chain in P. If {i1, i2, . . . , im} ⊆ [n], i1 < i2 < . . . < im, and m < n, we say

xi1 < xi2 < . . . < xim is a proper subchain of our first chain. A chain that is not a proper

subchain of any other chain is called maximal. If x1 < x2 < . . . < xn is not a proper

subchain of any chain starting at x1 and ending at xn, it is called saturated. For example,

∅ < {1, 2} < {1, 2, 3} is a chain in B3 that is a proper subchain of two maximal chains:

∅ < {1} < {1, 2} < {1, 2, 3}, and ∅ < {2} < {1, 2} < {1, 2, 3}. It is neither a saturated chain

nor a maximal one, although its subchain {1, 2} < {1, 2, 3} is saturated.

10



Now suppose P is a poset with a 0̂ such any two of its maximal chains have the same

number of elements, let z ∈ P, and let 0̂ < x1 < x2 < . . . < xm = z and 0̂ < y1 < y2 <

. . . < yn = z be two saturated chains. It follows that m = n, and we define the rank of

x, written rank(x), to be this common integer. A poset whose maximal chains all have

the same number of elements is called ranked or graded. The Boolean lattice Bd, for

example, is a graded poset: For any x ∈ Bd, rank(x) = |x|.

When P is a graded poset of rank d (that is, every maximal chain of P contains d+ 1

elements) with a 0̂ and a 1̂, several new posets can be constructed: For any S ⊆ [d − 1],

let PS be the poset on the points {x ∈ P : rank(x) ∈ S } ∪ {0̂, 1̂} with partial order

inherited from P. Taking our running example B3 and S = {1}, the poset (B3)S is as

shown in Figure 1.6.

Figure 1.6: Moving from B3 to (B3){1}

For any subset S ⊆ [d − 1] and any maximal chain c of P, let cS denote the subchain

of c consisting of all elements in c whose ranks are in S ∪ {0, d}. In particular, we write

c j as shorthand for c{ j}, the element of c of rank j with 0̂ and 1̂ adjoined. For any S , cS

is a maximal chain in PS .

Implicit in any poset is a simplicial complex, known as its order complex:

11



Definition 1.3.3 Let P be a poset. The order complex of P, written ∆(P), is the simpli-

cial complex with vertex set {vx : x ∈ P} such that {vx1 , vx2 , . . . , vxn} is a face of ∆(P) if

and only if xσ(1) < xσ(2) < . . . < xσ(n) is a chain in P for some permutation σ ∈ Sn.

When a poset P has a 0̂ or a 1̂, we will often investigate the order complex of the

proper part of P, namely P \ {0̂, 1̂}, rather than the whole poset. The reason for this is

simple: When P has a least or greatest element (or both), then ∆(P) is contractible, and

therefore not very topologically interesting. If P has either a greatest or a least element,

we write P to denote its proper part.

Figure 1.7: A poset and its order complex

Definition 1.3.4 Given a simplicial complex Σ, the face poset of Σ, written PΣ, is the

poset of faces of Σ, ordered by inclusion.

For example, if Σ is a single 2-dimensional simplex then PΣ = B3. The following

proposition shows that no topological information about Σ is lost in passing to its face

poset:

Proposition 1.3.5 Let Σ be a simplicial complex. Then the order complex ∆(PΣ \ ∅) is

the first barycentric subdivision of Σ.

12



Because facets of an order complex ∆(P) correspond to maximal chains in P, ∆(P) is

pure if and only if P is graded. If P is graded, the next natural question to ask is whether

∆(P) is shellable.

Definition 1.3.6 A labeling of a poset P is a function λ : {(x, y) ∈ P2 : y covers x} → Z.

In other words, λ is a way of writing an integer on each edge of the Hasse diagram of P.

Now let λ be a labeling of a poset P. If x, y ∈ P and y covers x, write λ(x, y) as short

for λ((x, y)). If c := x0 < x1 < x2 < . . . < xn is a saturated chain in P, we write λ(c) to

mean the word λ(x0, x1)λ(x1, x2) . . . λ(xn−1, xn). This word is called the label or λ-label

of c.

Definition 1.3.7 Let P be a graded poset with a 0̂ and 1̂, and let λ be a labeling of P.

We call λ an EL-labeling if:

(i) In each interval [x, y] of P, there is a unique saturated chain with strictly increasing

λ-label, and

(ii) The label of this chain is lexicographically first among all labels of saturated chains

in [x, y].

Whenever we say that a poset P admits an EL-labeling, we will also assume that P

is graded and has a 0̂ and 1̂. The following theorem, proven by Björner and Wachs in

[4], provides the motivation for EL-labelings:

Theorem 1.3.8 Let P be a poset admitting an EL-labeling λ. Then ∆(P) is shellable.

Moreover, lexicographic order (with respect to their λ-labels) of the maximal chains of

P yields a shelling of this complex.
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If σ = σ(1)σ(2) . . . σ(n) is a word of integers, recall that the weak descent set of

σ is the set {i : σ(i) ≥ σ(i + 1)}. As the following shows, EL-labelings also provide

information about an order complex’s h-vector.

Proposition 1.3.9 Let P be a poset admitting an EL-labeling λ. Then hi(∆(P)) is the

number of maximal chains of P whose λ-labels’ weak descent sets are of cardinality i.

Let P be a poset. The Möbius function µ : P × P → Z is recursively defined by

µ(x, x) = 1 for all x ∈ P, µ(x, y) = −
∑

x≤z<y µ(x, z), and µ(x, y) = 0 if x � y. The only

property of the Möbius function used here is given by the following proposition:

Proposition 1.3.10 Let P be a poset with an EL-labeling λ, and let x, y ∈ P with x < y.

Then |µ(x, y)| is equal to the number of saturated chains in [x, y] with weakly decreasing

λ-label.

In particular, |µ(0̂, 1̂)| counts the number of maximal chains of P with non-increasing

labels. We end this section with a few necessary definitions and an easy lemma which

will prove useful.

Definition 1.3.11 Let λ be an EL-labeling of a graded poset P, and let c be a non-

maximal chain in P. The completion of c, written com(c), is the maximal chain in P

that results from filling in each gap in c with the unique chain in that interval with an

increasing λ-label.

Notice that com(c) depends on the labeling λ, so we sometimes write comλ(c) to

avoid ambiguity. The following helpful lemma follows immediately from the definition

of an EL-labeling (we say that a subposet P′ of a graded poset P is full-rank if it is

graded and rank(P′) = rank(P)):
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Lemma 1.3.12 Let P be as above, let P′ be a full-rank subposet of P such that λ re-

stricted to P′ is an EL-labeling, and let c be a chain in P′. Then com(c) (as defined in

P) is a maximal chain in P′.

Finally, if c is a chain containing an element of rank j, we write c− j to denote the

chain that results from removing that element.

1.4 Matroids and Geometric Lattices

A matroid is a combinatorial axiomatization of linear independence, defined as follows:

Definition 1.4.1 A matroid M = M(E,I) is a finite set E along with a nonempty set I

of subsets of E satisfying the following constraints:

(i) If A ∈ I and B ⊆ A then B ∈ I, and

(ii) If A, B ∈ I and |A| < |B|, then there exists some x ∈ B \ A so that A ∪ {x} ∈ I.

The sets in I are called independent sets. If E′ ⊆ E, a basis of E′ is a set B ∈ I such

that no A ∈ I satisfies B ( A ⊆ E′. It is easy to see that any two bases of E′ must have

the same cardinality. This cardinality is called the rank of E′. In particular, if E′ ∈ I,

then rank(E′) = |E′|. A basis of the matroid M is simply a basis of the ground set E.

For a matroid M with point set E, its dual, written M∗, is the matroid with ground

set E and bases E \ B, where B is a basis of M.

Possibly the most intuitive example of a matroid is as follows: Let V be a vector

space, and let E be a finite set of vectors in V . For a subset A ⊆ E, say that A is
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independent if and only if it is linearly independent in V . It is easy to see that this

produces a matroid.

However, this is just one of the myriad settings in which matroids arise. For another,

let G = G(V, E) be a finite graph. The graphic matroid associated to G, written M(G),

is the matroid on the set E of edges of G, where A ⊆ E is independent if and only

if it contains no circuits. Under this correspondence, a set B ⊆ E is a basis of M(G)

if and only if it is the set of edges of some maximal spanning forest. Matroids were

first introduced by Hassler Whitney in [27]. The following proposition, whose proof is

straightforward, was one of the motivations for such an object:

Proposition 1.4.2 Let G be a planar graph, and let G∗ be its planar dual. Then M(G∗) =

M∗(G)

Now let M = M(E,I) be a matroid. A set F ⊆ E is called a flat of M if rank(F) <

rank(F ∪ {x}) for any x ∈ E \ F. For instance, if M is a matroid specified by a set of

vectors in a vector space V as described above, then F ⊆ E is a flat if and only if it is

the intersection of a subspace of V with E. That is, any vector in E \ F lies outside of

the subspace spanned by F.

The lattice of flats of a matroid M, written L(M), is the poset of all flats of M,

ordered by inclusion.

Although geometric lattices are usually defined in poset-theoretic terms, the follow-

ing is equivalent by a theorem of Birkhoff ([2]):

Definition 1.4.3 Let L be a poset. Then L is a geometric lattice if and only if there exists

a matroid M such that L ' L(M).
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For a matroid M with point set E, the independence complex of M, ∆(M), is the

simplicial complex with vertex set E, where A ⊆ E is a face of ∆(M) if and only it is an

independent set of the matroid.

Matroid independence complexes were first shown to be shellable by Provan and

Billera in [18], but here we use a technique first employed by Björner. Fix a total order

e1 < e2 < . . . < en of the elements of E. For a basis B, let B̂ denote the word of elements

of B, written in increasing order.

Theorem 1.4.4 (See, for instance, [3]) Let B̂1, B̂2, . . . , B̂t be all bases of M, listed in

lexicographic order. This ordering is a shelling of the independence complex ∆(M).

Now let Bi be a basis in the above ordering. If x ∈ Bi and Bi \ {x} is not contained in

any B j for j < i, then x is called internally active. For a basis B, let i(B) denote the set

of internally active elements of B. The next proposition appears in [3]:

Proposition 1.4.5 Let M be a rank r matroid, and let B1, B2, . . . , Bt be an ordering of

the above type. Then the h-vector of ∆(M) is given by hi = |{B j : |i(B j)| = r − i}|.

A point x ∈ E of a matroid is called a coloop if it is in every basis of the ma-

troid. Note that if M has a coloop then ∆(M) is a cone, since every one if its facets

must contain the vertex corresponding to the coloop. The first application of convex-ear

decompositions was given by Chari in [7]:

Theorem 1.4.6 The independence complex of a coloop-free matroid admits a convex-

ear decomposition.

Nyman and Swartz have also shown the following ([17]):
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Theorem 1.4.7 Let L be a geometric lattice. Then the order complex ∆(L) admits a

convex-ear decomposition.

We will generalize this theorem in Section 3.1 to rank-selected subposets of geomet-

ric lattices.

Now let M be a matroid with point set E, and fix a bijection ω : [n] → E. A circuit

of M is a dependent set C such that C \ {e} is independent for any e ∈ C. Given the

above order, a broken circuit is a set of the form C \ {e} where C is a circuit and e is the

least element of C under the ordering ω.

The broken-circuit complex of M, BCω(M), is the simplicial complex of all subsets

of M that do not contain a broken circuit. Facets of BCω(M) are called nbc-bases. It is

easy to see that every nbc-basis of M must contain ω(1). For this reason, the complex

BCω(M) is a cone with apex ω(1), and the reduced broken-circuit complex, BCω(M) is

defined to be BCω(M) \ {ω(1)}.

It is clear that the complex BCω(M) (and the corresponding reduced complex) de-

pends on the ordering ω. The following can be found in [3]:

Proposition 1.4.8 The f-vector (and therefore the h-vector) of the broken circuit com-

plex BCω(M) is independent of the ordering ω.

1.5 Cohen-Macaulay Complexes

For definitions of the algebraic objects mentioned in this section, see [23].

Let ∆ be a (d−1)-dimensional simplicial complex with vertex set {v1, v2, . . . , vn}, and
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let k be a field. The face ring of ∆ (sometimes called the Stanley-Reisner ring of ∆) is the

quotient k[x1, x2, . . . , xn]/I∆, where I∆ is the ideal of the polynomial ring k[x1, x2, . . . , xn]

generated by all monomials of the form xi1 xi2 . . . xim such that {vi1 , vi2 , . . . , vim} is not a

face of ∆. We write k[∆] to denote this ring.

For a monomial η = xe1
1 xe2

2 . . . x
em
m , define λ(η) = λe1

1 λ
e2
2 . . . λ

em
m . The Hilbert series of

k[∆] (under the fine grading) is F(k[∆], λ) =
∑
λ(η), where the sum is over all non-zero

monomials of k[∆]. The following is shown in [23]:

Proposition 1.5.1 For any simplicial complex ∆ with vertex set {v1, v2, . . . , vn},

F(k[∆], λ) =
∑
F∈∆

∏
vi∈F

λi

1 − λi

Definition 1.5.2 A simplicial complex ∆ is Cohen-Macaulay if its face ring k[∆] is a

Cohen-Macaulay ring.

Recall that, for a face F ∈ ∆, the link of F is the subcomplex of ∆ given by

lk(F) = {G ∈ ∆ : F ∪ G ∈ ∆ and F ∩ G = ∅} (so in particular lk(∅) = ∆). The

following result, known as Reisner’s Theorem ([19]), gives a topological characteriza-

tion of Cohen-Macaulay complexes:

Theorem 1.5.3 Let ∆ be a simplicial complex. Then ∆ is Cohen-Macaulay if and only

if, for every face F of ∆, H̃i(lk(F)) = 0 whenever i < dim(lk(F)).

Definition 1.5.4 A Cohen-Macaulay complex ∆ is q-Cohen-Macaulay (or q-CM) if the

deletion of any set of q − 1 vertices from ∆ results in a Cohen-Macaulay complex of the

same dimension as ∆.

19



The following was shown by Swartz in [25]:

Theorem 1.5.5 Let ∆ be a complex that admits a convex-ear decomposition. Then ∆ is

2-Cohen-Macaulay.

Given Theorem 1.2.11, the above Theorem provides further motivation towards the

following conjecture of Björner and Swartz, posed in [25]:

Conjecture 1.5.6 Let ∆ be a 2-Cohen-Macaulay complex. Then the g-vector of ∆ is an

M-vector.
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Chapter 2

A Convex-Ear Decomposition for
Rank-Selected Supersolvable Lattices

The goal of this chapter is to prove the following theorem (necessary definitions are

provided in the following section):

Theorem 2.0.7 Let L be a supersolvable lattice of rank d with nowhere-zero Möbius

function, and let S ⊆ [d − 1]. Then the order complex ∆(LS ) admits a convex-ear

decomposition.

Given the work of Chari and Swartz, the above yields:

Corollary 2.0.8 Let L be as in the statement of the previous theorem. The h-vector of

∆(L) satisfies, for i < |S |/2,

(i) hi ≤ h|S |−i, and

(ii) hi ≤ hi+1

Furthermore, the g-vector of ∆ is an M-vector.

Our approach is a bit unorthodox: We first provide convex-ear decompositions for

supersolvable lattices with nowhere-zero Möbius functions, then for rank-selected sub-

posets of Boolean lattices, and finally for rank-selected subposets of supersolvable lat-

tices with nowhere-zero Möbius functions. As the reader unfamiliar with these topics

will soon see, the first two classes of posets are each special cases of the third. How-

ever, the first two decompositions will make it easy to state the third, while proving the
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third by itself would be quite cumbersome. The first decomposition, which is by far the

simplest, will also serve as an easy introduction to convex-ear decompositions.

2.1 Preliminaries

We begin this chapter by showing that the order complex of the proper part of a super-

solvable lattice with nowhere-zero Möbius function admits a convex ear decomposition.

It should be noted that our search for such a decomposition was motivated by Welker’s

result that such complexes are 2-Cohen-Macaulay ([26]).

Let P be a poset with d-many elements. An order completion of P is a total ordering

of its elements: x1 < x2 < . . . < xd such that if xi < x j in P then i < j. An order ideal

of P is a subset I ⊆ P such that if y ∈ I and x < y, then x ∈ I. Let I(P) be the poset of

order ideals of P ordered by inclusion.

The following definition is not the standard one, but is equivalent by the fundamental

theorem of finite distributive lattices (see, for instance, [24, Theorem 3.4.1]):

Definition 2.1.1 A finite lattice L is distributive if there exists a poset P such that L is

isomorphic to I(P).

All distributive lattices admit EL-labelings. To see this, let I and J be two order

ideals of some d-element poset P and note that J covers I in I(P) if and only if J = I∪{x}

for some minimal element x of P \ I. Thus there is a 1-1 correspondence between

maximal chains in I(P) and order completions of P (and so I(P) is pure of rank d).

Now let x1 < x2 < . . . < xd be an order completion of P, and define the labeling λ
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by λ(I, J) = n, where J = I ∪ {xn}. It is an easy exercise to show that λ is in fact an

EL-labeling.

In fact, λ has an interesting extra property: Each maximal chain in I(P) is labeled

with a permutation of [d]. This leads to the following definition:

Definition 2.1.2 Let P be a graded poset of rank d, and let λ be an EL-labeling of P.

We say that λ is an Sd-EL-labeling if every maximal chain of P is labeled by an element

of S d (when viewed as a word on the alphabet [d]).

Lemma 2.1.3 Let L be a distributive lattice of rank d, and let P be the poset for which

L is the lattice of order ideals. Then every Sd-EL-labeling λ of L is obtained from P in

the fashion described above. That is, for every Sd-EL-labeling λ, there exists a bijection

ν : P → [d] such that λ(I, J) = n if and only if J = I ∪ ν−1(n), where I and J are order

ideals of P.

Proof: The proof is by induction on d, the rank of L (and therefore also the number

of elements in the poset P). If d = 1, then P has only one element x and L is the two

element chain ∅ < {x}, and the result is trivial. Suppose d > 1. Let 1̂ be the top element

of L (that is, the order ideal consisting of the entire poset P), and let λ be an S d-EL-

labeling of L. There are two cases to consider: Either 1̂ covers just one element of L,

or it covers more than one element. In the first case, P must have a unique maximal

element x, and so L \ 1̂ is the lattice of order ideals for P \ x. Now λ restricted to L \ 1̂ is

an Sd−1-EL-labeling. By induction, there exists a bijection ν : P \ x→ [d − 1] that gives

rise to the labeling λ. Extending ν so that ν(x) = d completes the proof in this first case.

For the second case, let J1, J2, . . . , Jn be the maximal elements of L\ 1̂. Then each Ji,

viewed as an order ideal, contains every element of P except some maximal one. Call
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this corresponding element xi. λ restricted to each interval [0̂, Ji] is an S d−1-EL-labeling

(but with the alphabet [d] \ {λ(Ji, 1̂)} rather than [d − 1]). By induction, λ restricted to

each interval [0̂, Ji] corresponds to some labeling νi : P \ xi → [d] \ λ(Ji, 1̂). It remains

to be shown that these labelings agree (i.e., that they piece together to form a labeling

ν : P→ [d]). Let νi and νk be two labelings, and choose some x that is neither xi nor xk.

Let I and J be two order ideals of P, with J = I ∪ {x}. Since the chain I < J is contained

in both the intervals [0̂, Ji] and [0̂, Jk], λ(I, J) = νi(x) = νk(x). �

We are now ready to define this chapter’s basic object of study:

Definition 2.1.4 Let L be a lattice. L is supersolvable if there exists a maximal chain

cM of L, called the M-chain, such that the sublattice of L generated by cM and any other

(not necessarily maximal) chain of L is a distributive lattice.

Supersolvable lattices were first introduced by Stanley in [20]. Recall that a finite

group G is solvable if there exists a chain of subgroups {1} = G0 ⊆ G1 ⊆ G2 ⊆ . . . ⊆

Gn = G such that, for all i, Gi is normal in Gi+1 and Gi+1/Gi is abelian. A group is

supersolvable if, for all i, Gi is normal in G and the quotient group Gi+1/Gi is cyclic.

Supersolvable lattices are so named because the subgroup lattice of a supersolvable

group is such a lattice ([20]).

The next result shows that supersolvable lattices are interesting from a purely com-

binatorial perspective:

Theorem 2.1.5 (McNamara, [15]) Let P be a poset of rank d. Then P is a supersolvable

lattice if and only if it admits an Sd-EL-labeling.

Given the Sd-EL-labeling constructed earlier for distributive lattices, Theorem 2.1.5
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Figure 2.1: A rank 3 supersolvable lattice with an S3-EL-labeling.

shows that any distributive lattice is also supersolvable. We will also need the following

theorem of Stanley, implicitly shown in [20]:

Theorem 2.1.6 Let L be a rank d supersolvable lattice with S d-EL-labeling λ and M-

chain cM, let d be a chain in L, and let L′ be the (distributive) sublattice of L generated

by cM and d. Then λ restricted to L′ is an Sd-EL-labeling.

Also in [20], Stanley proves that, under an Sd-EL-labeling of a supersolvable lattice

L, the unique maximal chain with increasing label is an M-chain.

The Boolean lattice Bd is an example of a supersolvable lattice. To construct an

Sd-EL-labeling of Bd, simply let λ(x, y) = n, where y = x ∪ {n}. It is easily seen that

λ is such a labeling. In fact, Bd is a distributive lattice: It is the lattice of order ideals

for the d-element poset in which every set of elements is an order ideal, and thus no two

elements are comparable.

In the following sections we will need the concept of lexicographic order, defined
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as follows:

Definition 2.1.7 Let σ = σ(1)σ(2) . . . σ(d) and τ = τ(1)τ(2) . . . τ(d) be words of inte-

gers. The word σ is lexicographically less than τ, written σ <lex τ, if there exists an i

such that σ( j) = τ( j) for j < i and σ(i) < τ(i).

Lexicographic order is a total order. That is, for two distinct words of integers σ and

τ, each of length d, either σ <lex τ or τ <lex σ. We say that a sequence σ1, σ2, . . . , σn

of words of integers of length d is in reverse lexicographic order if σ j <lex σi whenever

i < j. (This differs from many authors’ definition of reverse lexicographic order.)

For σ ∈ Sd and i < j, write σ(i, j) to mean the set {σ(i), σ(i+1), . . . , σ( j)}. We close

this section with a helpful Lemma:

Lemma 2.1.8 If σ, τ ∈ Sd and σ <lex τ, there exists an m ∈ [d − 1] such that σ(m) <

σ(m + 1) and σ(1,m) , τ(1,m).

Proof: Let i1 < i2, < . . . < in be all integers in [d] satisfying σ(1, ik) = τ(1, ik)

(so, in particular, in = d). Then for all k with 1 ≤ k < n, σ(ik + 1, ik+1) = σ(1, ik+1) \

σ(1, ik) = τ(1, ik+1) \ τ(1, ik) = τ(ik + 1, ik+1). It is clear that the lexicographically last

permutation δ ∈ Sd with δ(ik + 1, ik+1) = τ(ik + 1, ik+1) for all k is the permutation

satisfying δ(ik + 1) > δ(ik + 2) > . . . > δ(ik+1). Because σ <lex τ, it cannot be the case

that σ = δ, and there must be some m ∈ [d − 1] \ {i1, i2, . . . , in} with σ(m) < σ(m + 1).

Since m is not equal to any ik, σ(1,m) , τ(1,m). �
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2.2 The Supersolvable Lattice

Let P be a poset. Throughout, we say that P has a nowhere-zero Möbius function if

µ(x, y) , 0 whenever x, y ∈ P and x ≤ y. The main result in this section is the following:

Theorem 2.2.1 Let L be a supersolvable lattice of rank d with nowhere-zero Möbius

function. Then ∆(L) admits a convex-ear decomposition.

For the rest of this section, let L be a supersolvable lattice of the above type and

let λ be an Sd-EL-labeling as guaranteed by Theorem 2.1.5. To construct the ears of

the decomposition, let d1,d2, . . . ,dt be all maximal chains of L with decreasing labels.

(The order of the list is arbitrary, but fixed from here on.) This list is non-empty, since

µ(0̂, 1̂) , 0. For each i, let Li be the sublattice of L generated by di and cM, and let Σi

be the simplicial complex whose facets are given by maximal chains in Li that are not

chains in L j for any j < i. We let the Σi’s do double-duty, simultaneously representing

the complex mentioned above and the set of (not necessarily maximal) chains in L that

correspond to faces of that complex. Given the order below, it is sometimes helpful to

think of maximal chains (i.e., facets) of Σi as “new,” and maximal chains of Li that are

not in Σi as “old.”

We claim that Σ1,Σ2, . . . ,Σt is a convex-ear decomposition of ∆(L). As this will be

our easiest convex-ear decomposition, we give a somewhat pedantic treatment here in

order to acclimate the reader to the process.

Proof of property (ii): By definition, each Li is a distributive lattice. Fix i, and let

P be the poset such that I(P) ' Li. By Theorem 2.1.6 and Lemma 2.1.3, the chain cM

in Li gives us an order completion of P: x1 < x2 < . . . < xd. Similarly, the chain di

gives another order completion of P: xd < xd−1 < . . . < x1. So for any x j, xk ∈ P, one of
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the above order completions gives x j < xk, while the other gives xk < x j. Thus no two

elements in P are comparable, and any subset of elements is an order ideal of P. So Li

is isomorphic to Bd, the Boolean lattice on d elements. Since the order complex of Bd

is the first barycentric subdivision of the boundary of the d-dimensional simplex, and

since Σ1 = L1 and Σi ( Li for i > 1 (because cM is in every Li), this completes our proof

of property (ii) of the decomposition. �

In Figure 2.2 we show one of the subposets Li of the supersolvable lattice pictured

in Figure 2.1.

Figure 2.2: One of the subposets Li ' B3.

Proof of property (i): Let c := 0̂ = x0 < x1 < . . . < xd = 1̂ be a maximal chain

of L. We must show that c is a chain in Li for some i, and we do this by induction on

the number of ascents of the λ-label of c. If λ(c) has no ascents, then c = di for some i,

and is a chain in Li, by definition. Otherwise, c has at least one ascent, say at position

j. Since L has nowhere-zero Möbius function, the interval (x j−1, x j+1) has at least one

element other than x j. Let c′ be the chain that results from replacing x j in c with one

of these other elements, and note that λ(c′) now has a descent in its jth position. Since
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c′ has one fewer ascent than c, it belongs to some Li by induction. Because λ is an

EL-labeling on Li (Theorem 2.1.6), com((c′)− j) = c is a chain in Li by Lemma 1.3.12. �

Proof of property (iii): To prove that Σi is a ball for all i > 2, we show that reverse

lexicographic order of the maximal chains in Σi is a shelling. Applying Theorem 1.2.6

will then complete the proof. Let c := 0̂ = x0 < x1 < . . . < xd = 1̂ and e be two chains in

Σi, with e lexicographically later (and therefore earlier in the shelling) than c. Because

λ(c) <lex λ(e), Lemma 2.1.8 guarantees an m ∈ [d−1] such that λ(c) has an ascent in the

mth position. That is, λ(xm−1, xm) < λ(xm, xm+1). Since λ(c)(1,m) , λ(e)(1,m), em , xm.

Now let c′ be the unique maximal chain of Li that coincides with c everywhere but

the mth position. Then, by definition of an EL-labeling, c′ is lexicographically later than

c (and thus earlier in the shelling), |c \ c′| = 1, and c∩ e ⊆ c′. It remains to be shown that

c′ is in Σi. If c′ were not a chain in Σi, it would be a chain in Lk for some k < i, meaning

(c′)−m is a chain in Lk. But then, again by Lemma 1.3.12, com((c′)−m) = c is a chain in

Lk. This would imply that c is not a chain in Σi, which is a contradiction. �

Property (iv) remains to be proven. Because we will use the same method to prove

this property for later decompositions, we outline the method in full here in order to

refer back to it later.

Proof of property (iv): Fix i > 1, and note that a chain c in Σi is in ∂Σi if and only

if there exist two maximal chains containing it, cold and cnew, such that cold is a maximal

chain of Li but not Σi, and cnew is a maximal chain in Σi.

From the above description of chains in the boundary of Σi, ∂Σi ⊆ (
⋃i−1

1 Σ j) ∩ Σi. To

see the reverse inclusion, let c be a chain in (
⋃i−1

1 Σ j) ∩ Σi. Then c is, by definition, a

subchain of some facet of Σi. This chain is the required cnew. To complete the proof, we

must find a suitable cold. However, since c is a chain in
⋃i−1

1 Σ j, it must be a chain in some
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L j for j < i. Then Lemma 1.3.12 guarantees that com(c) is in L j, so set cold = com(c). �

Our next step is to show that rank-selected subposets of Boolean lattices admit

convex-ear decompositions. Because each Li is a Boolean lattice, we will then be able

to use this decomposition to obtain this chapter’s main result.

2.3 Rank-Selected Boolean Lattices

Recall that Bd denotes the rank d Boolean lattice, the poset of all subsets of [d] ordered

by inclusion. This section is devoted to proving the following:

Theorem 2.3.1 For any subset S ⊆ [d−1], the order complex ∆((Bd)S ) admits a convex-

ear decomposition.

We fix λ to be the “natural” Sd-EL-labeling of Bd, defined as follows: If x, y ∈ Bd

and y covers x then λ(x, y) = m, where y = x ∪ {m} when x and y are viewed as subsets

of [d]. It is clear that λ is an Sd-EL-labeling.

Now fix a subset S ⊆ [d − 1] for the remainder of this section, and write S as a

disjoint union of intervals, where a1 < a2 < . . . < as:

S = [a1, b1] ∪ [a2, b2] ∪ . . . ∪ [as, bs]

Let the above union be such that no ai − 1 or bi + 1 is a member of S and bi < ai+1 for

all i. Where appropriate, we also set b0 = 0 and as+1 = d.

Because maximal chains in Bd, under their λ-labels, are in bijection with permuta-

tions of [d], we do much of our work in the context of Sd, where we write permutations
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in word form: σ = σ(1)σ(2) . . . σ(d). When 1 ≤ m < n ≤ d, we write σ(i, j) to mean

the set {σ(i), σ(i + 1), . . . , σ( j)}.

Let c be a maximal chain in Bd with λ(c) = σ ∈ Sd. We wish to characterize

the labels of all chains that coincide with c at ranks in S . This will turn out to be the

coincidence set C(σ) described below. Similarly, the set Sp(σ) defined below is the set

of labels of chains that coincide with c at ranks not in S .

For a permutation σ ∈ Sd, define the coincidence set of σ, written C(σ), as the set

of all τ ∈ Sd such that τ(m) = σ(m) for all m ∈ S \ {a1, a2, . . . , as} and σ(bi + 1, ai+1) =

τ(bi + 1, ai+1) for all i. To visualize the set C(σ), define the bracketed word σC to be

the word of σ with a left bracket inserted before each σ(bi + 1) and a right bracket

inserted after each σ(ai) (as usual, we let b0 = 0 and as+1 = d). Then C(σ) is the set

of permutations that can be obtained by permuting the elements between the brackets of

σC.

For example, suppose d = 7, S = {2, 3, 4, 6}, and σ = 5 3 7 4 1 6 2. Then S =

[2, 4] ∪ [6, 6], and the bracketed word defined above is:

σC = [ 5 3 ] 7 4 [ 1 6 ] [ 2 ]

Thus the set C(σ) consists of four permutations: 3 5 7 4 1 6 2, 3 5 7 4 6 1 2, 5 3 7 4 1 6 2 =

σ, and 5 3 7 4 6 1 2.

Now define the span ofσ, written Sp(σ), to be the set of all permutations τ ∈ Sd such

that τ(m) = σ(m) whenever bi + 1 < m < ai for some i, and τ(ai, bi + 1) = σ(ai, bi + 1)

for all i. Here, we do not follow our convention that b0 = 0 and as+1 = d. As before,

define a bracketed word σSp as follows: insert a left bracket before each σ(ai) and a right

bracket after each σ(bi + 1). Then Sp(σ) consists of all permutations obtained from σ
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by permuting the elements between the brackets of σSp. Continuing with our example,

σSp = 5 [ 3 7 4 1 ] [ 6 2 ]

Thus a permutation in Sp(σ) is given by permuting the set {1, 3, 4, 7} within the first

bracket and the set {2, 6} within the second. (When no confusion can result, we say

‘bracket’ to mean the word specified by a pair of brackets.)

Note that the above definitions of C(σ) and Sp(σ) depend on our choice of the set

S ⊆ [d − 1]. However, as we have fixed one choice of S for the entire section, we

suppress ‘S ’ from our notation. Given the bracket interpretations of the sets C(σ) and

Sp(σ), the following lemma is obvious:

Lemma 2.3.2 Fix two permutations σ, τ ∈ Sd. Then σ ∈ C(τ) if and only if C(σ) =

C(τ), and σ ∈ Sp(τ) if and only if Sp(σ) = Sp(τ).

For a permutation σ ∈ Sd, let cσ denote the unique maximal chain in Bd with σ as

its λ-label. That is,

cσ := 0̂ = x0 < x1 < . . . < xd−1 < xd = 1̂

and σ(m) = λ(xm−1, xm) for all m. For a subset T ⊆ [d − 1], we write cσT as shorthand for

(cσ)T . The following is our reason for introducing the sets C(σ) and Sp(σ):

Lemma 2.3.3 Let σ, τ ∈ Sd. Then C(σ) = C(τ) if and only if cσS = cτS , and Sp(σ) =

Sp(τ) if and only if cσ[d−1]\S = cτ[d−1]\S .

Proof: Viewing elements of Bd as subsets of [d], the result easily follows. �

In Figure 2.3, we show (between the chain with increasing label and the chain with

decreasing label) the four maximal chains in B7 whose labels are permutations in C(σ),
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where σ and S are as in our running example (elements whose ranks are in S ∪ {0, 7}

are filled in).

Figure 2.3: Maximal chains whose labels are in C(σ).

Let P be any graded poset of rank d that admits an EL-labeling. Then the order

complex of PS is shellable and homotopy equivalent to t-many spheres (see [4]), where

t is the number of maximal chains of P whose labels have weak descent set S . In

the case we treat, where P = Bd, each label is a permutation and so t is the number

of permutations in Sd with descent set S . It makes sense, then, that our convex-ear

decomposition is constructed from the set D = {δ ∈ Sd : D(δ) = S }.

For any σ ∈ Sd, define a permutation δσ as follows: first, let πσ be the permutation

obtained by replacing each bracket in σC with the increasing word in those letters. In

keeping with our running example,

πC
σ = [ 3 5 ] 7 4 [ 1 6 ] [ 2 ]

where we have written πC
σ rather than just πσ in hopes of better readability. Next,

obtain δσ by replacing the contents of each bracket in πSp
σ with the decreasing word

in those letters. Continuing with our example, πSp
σ = 3 [ 5 7 4 1 ] [ 6 2 ], and so δSp

σ =
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3 [ 7 5 4 1 ] [ 6 2 ]

Note that, by construction, πσ is in both C(σ) and Sp(δσ), and so C(σ)∩ Sp(δσ) , ∅.

Proposition 2.3.4 For any σ ∈ Sd, δσ ∈ D.

Proof: Let n ∈ S . Then δσ(n) and δσ(n + 1) are in the same bracket of δSp
σ . Because

δσ is obtained from πσ by putting the contents of each bracket of πSp
σ in decreasing order,

it must be the case that δσ(n) > δσ(n + 1). Thus S ⊆ D(δσ). Suppose S , D(δσ), and

choose some m ∈ D(δσ) \ S . Then m = a j − 1 or m = b j + 1 for some j. Suppose

m = a j − 1. Because πσ(a j − 1) is in the same bracket of πC
σ as πσ(a j), πσ(a j − 1) <

πσ(a j). Furthermore, πσ(a j) is the leftmost element of some bracket of πSp
σ , and so by

construction δσ(a j) ≥ πσ(a j). Similarly, πσ(a j − 1) is either not in any bracket of πSp
σ or

is the rightmost element in some bracket, so δσ(a j − 1) ≤ πσ(a j − 1). Stringing these

inequalities together,

δσ(m) = δσ(a j − 1) ≤ πσ(a j − 1) < πσ(a j) ≤ δσ(a j) = δσ(m + 1),

which is a contradiction. The proof for the case in which m = b j + 1 for some j is

symmetric. Thus D(δσ) = S , so δσ ∈ D. �

Now choose σ, δ, τ ∈ Sd, with τ ∈ C(σ) ∩ Sp(δ). By Lemma 2.3.3, cτS = cσS and

cτ[d−1]\S = cδ[d−1]\S . Because only one maximal chain in Bd can satisfy both these con-

straints, it follows that the permutation τ is uniquely determined. Thus for any σ, δ ∈ Sd,

|C(σ) ∩ Sp(δ)| ≤ 1.

Lemma 2.3.5 Let σ ∈ Sd and δ ∈ D, and suppose that C(σ)∩ Sp(δ) = {τ}. Then δ = δσ

if and only if the contents of each bracket of τC is increasing.
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Proof: Suppose each bracket of τC is increasing. As τ ∈ C(σ), it follows that τ = πσ,

as defined in the proof of Proposition 2.3.4. Since δσ is obtained by permuting elements

in the brackets of πSp
σ = τ

Sp, τ ∈ Sp(δσ). By assumption, τ ∈ Sp(δ), and so by Lemma

2.3.2 Sp(δσ) = Sp(δ). Because both δ and δσ are members of D, each bracket of δSp and

δ
Sp
σ must be decreasing, so δ = δσ.

Now suppose some bracket of τC is non-increasing. Put another way, the word

τ(b j + 1)τ(b j + 2) . . . τ(a j+1) is non-increasing for some j. Choose an m with b j + 1 ≤

m ≤ a j+1 − 1 and τ(m) > τ(m + 1). If it were the case that b j + 1 < m < a j+1 − 1, then

we would necessarily have δ(m) = τ(m) and δ(m + 1) = τ(m + 1), since both entries are

outside the brackets of δSp and τ ∈ Sp(δ). But then m ∈ des(δ) = S , a contradiction.

Therefore, either m = b j + 1 or m = a j+1 − 1. We treat only the first case, the proof of

the second being similar.

Note that τ ∈ C(σ) = C(πσ), and so πσ = πτ. Because πτ is obtained by putting the

brackets of τC in increasing order, τ(b j + 1) > τ(b j + 2) and so πτ(b j + 1) < τ(b j + 1). It

follows that Sp(πτ) , S p(τ). Putting this together,

Sp(δσ) = Sp(πσ) = Sp(πτ) , Sp(τ) = Sp(δ)

and so δ , δσ. �

Proposition 2.3.6 For σ ∈ Sr, δσ is the lexicographically least permutation in the set

{δ ∈ D : C(σ) ∩ S p(δ) , ∅}.

Proof: Fix δ ∈ D \ {δσ} such that C(σ) ∩ Sp(δ) = {τ} for some τ ∈ Sr. By the

previous proposition, some bracket of τC is non-increasing, meaning the word τ(b j +

1)τ(b j + 2) . . . τ(a j+1) is non-increasing for some j. So in forming the permutation πτ,

this bracket is put in increasing order. It follows that δτ = δσ is lexicographically less

than δ. �
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We now use our work in Sd to construct a convex-ear decomposition for the order

complex of (Bd)S . Let δ1, δ2, . . . , δt be all permutations in D, listed in lexicographic order

of their labels. For each i let di = cδi (in other words, di is the unique maximal chain

in Bd with δi as its λ-label). Also let Li be the poset generated by all maximal chains in

(Bd)S of the form cS , where c is a maximal chain in Bd such that c[r−1]\S = (di)[r−1]\S .

Finally, let Σi be the simplicial complex whose facets are given by maximal chains in

Li that are not chains in L j for any j < i. As in the previous section, we use Σi to refer

both to the simplicial complex above and the poset whose chains correspond to (not

necessarily maximal) chains in (Bd)S .

Proposition 2.3.7 Σ1,Σ2, . . . ,Σt is a convex-ear decomposition of the order complex

∆((Bd)S ).

To every maximal chain e in (Bd)S , associate an equivalence class of maximal chains

in Bd, namely all maximal chains c such that cS = e. By Lemma 2.3.3, this equivalence

class can be viewed as the set {cτ : τ ∈ C(σ)} for some σ ∈ Sr. We refer to C(σ) as the

class corresponding to e.

Next let c be a maximal chain in Bd such that cS is a maximal chain in Li. c[d−1]\S =

(di)[d−1]\S , and so, by Proposition 2.3.3, λ(c) ∈ Sp(δi). Let σ = λ(c). The chain cS then

corresponds to the equivalence class C(σ), and we have proven half of the following

lemma:

Lemma 2.3.8 Let σ ∈ Sd and let e be a maximal chain in (Bd)S corresponding to the

equivalence class C(σ). Then e is a maximal chain in Li if and only if C(σ)∩Sp(δi) , ∅.

Proof: We have already proven the “only if” direction above. For the other direction,

suppose C(σ) ∩ Sp(δi) , ∅. Choose the unique τ in this intersection. By Lemma 2.3.3,
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cτS = e and cτ[r−1]\S = (di)[r−1]\S , and so e is a maximal chain in Li. �

Now let e and σ be as in the statement of the above lemma, and suppose e is a facet

in Σi. Then δi is the lexicographically first permutation δ in D such that C(σ)∩Sp(δ) , ∅,

and so, by Proposition 2.3.6, δi = δσ. Summarizing,

Lemma 2.3.9 Let e be a maximal chain in (Bd)S corresponding to the class C(σ) for

some σ ∈ Sd. Then e represents a facet in Σi if and only if δi = δσ.

We are now ready to prove the properties of our convex-ear decomposition.

Proof of property (i): We must show that any maximal chain e in (Bd)S is a maximal

chain in some Li. By Lemma 2.3.8, we must find some δ ∈ D such that C(σ) ∩ Sp(δ) ,

∅, where C(σ) is the class corresponding to e. But Lemma 2.3.4 guarantees such a

permutation, namely δσ. �

Proof of property (ii): Fix di, and write di := 0̂ = x0 < x1 < . . . < xd = 1̂. A

maximal chain in Li is determined by a choice of maximal chain in each open interval

(xa j−1, xb j+1). Each of these intervals is isomorphic to Bb j−a j+2. As noted before, the order

complex of Bn is b(∂∆n−1), where ‘b’ denotes the first barycentric subdivision and ∆n−1

denotes the (n − 1)-dimensional simplex. Thus the order complex of Li is the product:

b(∂∆b1−a1+1) ∗ b(∂∆b2−a2+1) ∗ . . . ∗ b(∂∆bs−as+1)

where ‘∗’ denotes simplicial join (see [10] for background on this operation, and [28] for

its application to polytopes). It follows that the order complex of each Li is the boundary

complex of a simplicial polytope. Since Σ1 is the order complex of L1, it remains to be

shown that Σi is a proper subcomplex of the order complex of Li when i > 1.

Fix δi with i > 1, and define a permutation σ ∈ Sp(δi) by putting each bracket of δSp
i

in increasing order. There are two cases to consider: first, suppose that σ = 1 2 . . . d.
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In this case, we leave it to the reader to show that δi = δ1, the lexicographically first

permutation in Sd with descent set S , contradicting our assumptions. Now suppose

otherwise. Since each bracket of σSp is increasing, it must be the case that some bracket

of σC is non-increasing. Then, by Lemma 2.3.5, δi , δσ, since C(σ) ∩ Sp(δi) = {σ}.

Finally, by Proposition 2.3.6, δσ precedes δi lexicographically, and so δσ = δ j for some

j < i. �

Proof of property (iii): Fix i > 1, and let e be a maximal chain representing a

facet in Σi. Let ce be the unique maximal chain of Bd satisfying ce
S = e and ce

[d−1]\S =

(di)[d−1]\S , and define σe to be the label λ(c). Let e1, e2, . . . , en be the maximal chains of

(Bd)S corresponding to facets of Σi. Writing σ j as shorthand for σe j , let the above order

be so that σ j is lexicographically greater than σk whenever j < k. In particular, σ1 = δi.

We claim that this ordering is a shelling of Σi.

Let j < k. By Lemma 2.1.8, there must be some ascent σk(m) < σk(m+ 1) such that

σk(1,m) , σ j(1,m). Because ce j and cek coincide at ranks not in S , σ j(1, r) = σk(1, r)

for all r < S , by Lemma 2.3.3. Thus m ∈ S . Let σ′k be the permutation obtained from

σk by switching σk(m) and σk(m + 1).

Note that σ′k is lexicographically later than σk. We need to show that cσ
′
k

S is a chain

in Σi, which is equivalent to showing that δσ′k = δi. Since m ∈ S , the contents of

each bracket of (σ′k)
Sp are the same as the contents of the corresponding bracket of σSp

k .

Because σk ∈ Sp(δi), σ′k ∈ Sp(δi), meaning C(σ′k) ∩ Sp(δi) = {σ′k}. Now consider a

bracket in σS p
k :

σk(bp + 1)σk(bp + 2) . . . σk(ap+1)

By Lemma 2.3.5, this bracket is increasing (since δσk = δi, by assumption). Because

m ∈ S , the only way this bracket in (σ′k)
Sp can differ is if bp + 1 = m + 1 or ap+1 = m.

In the first case, σk(bp + 1) = σk(m + 1) is replaced by σk(m). In the second case,
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σk(ap+1) = σk(m) is replaced by σk(m + 1). However, since σk(m) < σk(m + 1), this

bracket is still increasing in (σ′k)
S p in both cases, and so δσ′k = δi by Lemma 2.3.5.

To complete the proof, we have to show that e j ∩ ek ⊆ e′k ∩ ek. Since ek coincides

with e′k everywhere except at rank m, it is enough to show that e j and ek do not intersect

at that rank. But this follows immediately, since σ j(1,m) , σk(1,m). �

Proof of property (iv): We take our cue from the proof of property (iv) in the

previoius section, since the Σi’s are defined analogously. That is, let ei and e j be facets

of Σi and Σ j, respectively, where i < j. Let e = ei ∩ e j. By the discussion in the proof of

property (iv) in the previous section, it suffices to find a facet eold of some Σk with k < j

such that eold contains e.

Define the maximal chain eold by eold = (com(e))S , and let σ be the λ-label of com(e).

By construction, πσ = σ. Now let τ be the λ-label of some maximal chain c in Bd with

cS = ei. It is clear that πτ is independent of the choice of maximal chain c, and that πσ

is lexicographically less than or equal to πτ. It follows that δσ is lexicographically less

than or equal to δτ, which means that eold is a facet of Σk for some k ≤ i < j. �

Now that we have constructed the most intricate of our convex-ear decompositions,

we can prove a theorem in the next section (Theorem 2.4.2) that allows us to provide

decompositions for posets that are essentially composed of Boolean lattices.

2.4 The Rank-Selected Supersolvable Lattice

It is implicit in our earlier work that supersolvable lattices are composed of Boolean

lattices that are pieced together in an orderly fashion. Using the previous sections, we

can prove the following:
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Theorem 2.4.1 Let L be a rank d supersolvable lattice with nowhere-zero Möbius func-

tion, and let S ⊆ [d − 1]. Then the order complex ∆(LS ) admits a convex-ear decompo-

sition.

Because the techniques used here will be based on our decomposition in Section 2.3,

and because we will use similar constructions in the following sections, we do most of

the work in the following theorem:

Theorem 2.4.2 Let P be a rank d poset with a 0̂ and 1̂, and suppose that P is a union

of subposets P1, P2, . . . , Pq, each isomorphic to the Boolean lattice Bd. That is, every

chain in P is a chain in Pi for some i. Let S ⊆ [d − 1]. The order complex ∆(PS ) admits

a convex-ear decomposition if, for each i > 1 there exists an Sd-EL-labeling λi of Pi

satisfying the following property: If e is a non-maximal chain in Pi that is also a chain

in P j for some j < i, then (comλi(e))S is a chain in Pk for some k < i.

Proof: The proof is by induction on q. If q = 1, then P = P1 is the Boolean lattice

Bd, and the proof reduces to Theorem 2.3.1. Now suppose that q > 1 and, by induction,

let Σ′1,Σ
′
2, . . . ,Σ

′
r be a convex-ear decomposition of ∆(P

q−1
S ), where Pq−1 is the subposet

of P generated by P1, P2, . . . , Pq−1. Since we focus our attention on the subposet Pq, set

λ = λq. Following Section 2.3, let δ1, δ2, . . . , δt be all permutations in Sd with descent

set S , listed in lexicographic order. For each i, let Li denote the subposet of (Pq)S

generated by all maximal chains of the form cS for some maximal chain c satisfying

c[d−1]\S = (di)[d−1]\S . Let Σ̂i denote the complex whose facets are given by maximal

chains in Li that are not chains in L j for any j < i, and let Σi be the subcomplex of

Σ̂i whose facets are maximal chains in Σi that are not chains in Pq−1. We claim that

the sequence Σ′1,Σ
′
2, . . . ,Σ

′
r,Σ1,Σ2, . . . ,Σt, once all Σi = ∅ are removed, is a convex-ear

decomposition of ∆(PS ).
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Property (i) is verified immediately, based on Section 2.3: ∆(P
q−1
S ) =

⋃q−1
i=1 Σi, by

induction, while ∆((Pq)S ) =
⋃t

i=1 Σi by Theorem 2.3.1.

Property (ii) is almost verified as well: We know that each Σ̂i for i > 1 is a proper

subcomplex of the boundary of some d-dimensional simplicial polytope, and that the

same holds for each Σi because each is a subcomplex of Σ̂i. What remains to be shown

is that Σ1 is a proper subcomplex of some simplicial d-polytope boundary, as Σ̂1 is a

simplicial d-polytope boundary. In other words, it must be shown that some maximal

chain of Σ̂1 is a chain of Pq−1. Since δ1 = δ1, where 1 = 1 2 . . . d is the identity permu-

tation, the chain cS is in Σ̂1, where c is the maximal chain in Pq with λ(c) = 1. Since

c = com(0̂ < 1̂) and 0̂ < 1̂ is a chain in Pq−1, cS is a chain in Pq−1.

For property (iii), fix some i and let e1, e2, . . . , en be all maximal chains of Σi. For

each j, let ce j be the unique maximal chain of Pq that coincides with di at ranks not

in S and coincides with e j at ranks in S . Let σ j = λ(ce j), and let the above order of

maximal chains be such that σ j is lexicographically greater than σk whenever j < k. As

in Section 2.3, we claim that this ordering is a shelling of Σi. To this end, choose e j and

ek, with j < k. By Lemma 2.1.8, there must be some m ∈ [d−1] with σk(m) < σk(m+1)

and σ j(1,m) , σk(1,m). Because the chains ce j and cek coincide at ranks outside of

S , it must be the case that m ∈ S . Let σ′k be the permutation obtained from σk by

interchanging σk(m) and σk(m + 1), and let e′k be the associated chain. In the proof of

property (iii) in Section 2.3, it is shown that e j ∩ ek ⊆ e′k ∩ ek, and that e′k is not a chain

in Σ̂` for any ` < i. Thus, the only way the same proof could fail to work in the case

considered here is if e′k were a chain in Pq−1.

Indeed, suppose this were the case. In the proof of property (iii) in Section 2.3, it

is shown that δi = δσ′k . Thus, by Lemma 2.3.5, each bracket in (σ′k)
C is increasing,

meaning ce′k = com(e′k). Therefore, ce′k would be a chain in Pq−1, as would (ce′k)−m. Since
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cek = com((ce′k)−m), (cek)S would be a chain in Pq−1, contradicting the assumption that ek

is a maximal chain in Σi.

Finally, to prove property (iv), let e be a non-maximal chain in Σi ∩ ((
⋃i−1

j=1 Σ j) ∪

(
⋃r

k=1 Σ
′
k)). As in our previous proofs of property (iv), it suffices to find a maximal chain

eold in the union of all the earlier ears such that e′ contains e as a subchain. Here, we

must consider two cases: First, suppose that e is a chain in Σ j for some j < i. Because

Σ j is a subcomplex of Σ̂ j, the proof of this property in Section 2.3 produces a maximal

chain in ∪ j
k=1Σ̂k of which e is a subchain. Because this maximal chain is either a chain

in ∪ j
k=1Σk or Pq−1, this completes our proof in this case. For the second case, suppose

that e is a chain in Pq−1. Then (com(e))S is a chain in Pq−1. �

Proof of Theorem 2.4.1: With most of our work done by Theorem 2.4.2 and Section

2.2, the proof here is fairly painless: Let L be a rank d supersolvable lattice with Sd-

EL-labeling λ, let S ⊆ [d − 1], and let L1, L2, . . . , Lt be as in Section 2.2. That is, let

d1,d2, . . . ,dt be all maximal chains in L with decreasing λ-labels, and for each i let Li

be the sublattice of L generated by cM and di, where cM is the M-chain (i.e., the unique

maximal chain of L with increasing λ-label). In Section 2.2 it is shown that each Li is

isomorphic to the Boolean lattice Bd. Now let e be a non-maximal chain of some Li,

that is also a chain in L j for some j < i. Since λ restricts to an Sd-EL-labeling on L j

(by Theorem 2.1.6), Lemma 2.3.3 tells us that com(e) is a maximal chain in L j, meaning

(com(e))S is as well. Invoking Theorem 2.4.2 completes the proof. �

Theorem 2.4.2 also allows us to provide homology bases for poset order complexes

of the above type:

Theorem 2.4.3 Using the notation and hypothesis of Theorem 2.4.2, let di
1, d

i
2, . . . , d

i
ti

be all maximal chains in Pi whose λi-labels have descent set S , and such that no di
j is a
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chain in Pk for any k < i. For each di
j, let ∆i

j be the associated polytope in ∆(Pi). Then

the set {∆i
j}, for all relevant i and j, is a homology basis for ∆(P).

Proof: Because ∆(P) is homotopy equivalent to (
∑

ti)-many spheres (Proposition

1.2.9), and because no di
j is in ∆k

` for (k, `) lexicographically less than (i, j), the result

follows. �
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Chapter 3

More Convex-Ear Decompositions

In this chapter we construct two more convex-ear decompositions. The first expands

upon a result of Nyman and Swartz (Theorem 1.4.7), while the second will allow us to

prove enumerative properties for a class of flag h-vectors in Section 4.2.4

Combined, the two main results in this chapter read as follows:

Theorem 3.0.4 Let P be a graded poset of rank d, let S ⊆ [d−1], and suppose that P is

either a geometric lattice or the face poset of a (d − 1)-dimensional shellable simplicial

complex. Then ∆(PS ) admits a convex-ear decomposition, and thus its h-vector satisfies,

for i < |S |/2,

(i) hi ≤ h|S |−i, and

(ii) hi ≤ hi+1.

Furthermore, its g-vector is an M-vector.

3.1 The Rank-Selected Geometric Lattice

Let L be a geometric lattice of rank d. In [17], Nyman and Swartz show that ∆(L) admits

a convex-ear decomposition. We open this section by briefly describing their technique.

Let a1, a2, . . . , a` be a fixed linear ordering of the atoms of L. The minimal labeling

λ labels the edges of the Hasse diagram of L as follows: If y covers x, then λ(x, y) =

min{i : x ∨ ai = y}. Björner proved that λ is an EL-labeling ([3]).
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Viewing L as the lattice of flats of a simple matroid M, let B1, B2, . . . , Bt be all the

nbc-bases of M listed in lexicographic order. For a fixed i ≤ t, let Bi = {ai1 , ai2 , . . . , aid}

where ai1 < ai2 < . . . < aid under the fixed ordering of the atoms of L. Fix a permutation

σ ∈ Sd, and define ci
σ to be the maximal chain aiσ(1) < aiσ(1) ∨ aiσ(2) < . . . < aiσ(1) ∨ aiσ(2) ∨

. . . ∨ aiσ(d) . Define the basis labeling νi(ci
σ) of ci

σ to be the word iσ(1)iσ(2) . . . iσ(d).

For each i with 1 ≤ i ≤ t, let Li be the poset generated by the maximal chains

{ci
σ : σ ∈ Sd}, and let Σi be the simplicial complex whose facets are given by maximal

chains in Li that are not chains in any L j for j < i.

Theorem 3.1.1 [17] Σ1,Σ2, . . . ,Σt is a convex-ear decomposition of ∆(L).

The next lemma is shown in [17] and provides the key tool in proving the above

theorem.

Lemma 3.1.2 A chain c in Li is in Σi if and only if νi(c) = λ(c)

The main theorem of this section is the following:

Theorem 3.1.3 If L is a rank d geometric lattice and S ⊆ [d − 1], the order complex

∆(LS ) admits a convex-ear decomposition.

Proof: Each Li is clearly isomorphic to the Boolean lattice Bd under the mapping

aiσ(1) ∨ aiσ(2) ∨ . . .∨ aiσ(m) → {σ(1), σ(2), . . . , σ(m)}. Moreover, the basis labeling νi is the

standard Sd-EL-labeling of Li (though with the alphabet {i1, i2, . . . , id} rather than [d]).

Now fix some i, and suppose that e is a non-maximal chain in Li that is also a chain

in L j for some j < i. Suppose that j is the least such integer, and consider the maximal
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chain c = comν j(e). This chain can clearly not be in Lk for any k < j, because then e

would be a chain in Lk, contradicting the minimality of j. Thus ν j(c) = λ(c) by Lemma

3.1.2, meaning c = comλ(e). Now consider the chain c′ = comνi(e). If c′ is not a chain in

Lk for any k < i then, again by Lemma 3.1.2, λ(c′) = νi(c′). Thus c′ = comλ(e), which is

a contradiction since the chain comλ(e) is uniquely determined. Thus comνi(e) must be

a chain in Lk for some k < i, and so its subchain (comνi(e))S is a chain in Lk. Applying

Theorem 2.4.2 completes the proof. �

3.2 The Rank-Selected Face Poset of a Shellable Complex

The main result of this section can be seen as motivated by Hibi’s result ([11]) that the

codimension-1 skeleton of a shellable complex Σ is 2-Cohen-Macaulay:

Theorem 3.2.1 Let Σ be a (d−1)-dimensional shellable complex with face poset PΣ, and

let S ⊆ [d − 1]. Then the order complex ∆((PΣ)S ) admits a convex-ear decomposition.

Proof: Fix a shelling F1, F2, . . . , Ft of Σ, and for each i let Pi denote the face poset

of Fi. Then each Pi is isomorphic to the Boolean lattice Bd. Our proof relies on the

following obvious fact: Let e be a non-maximal chain in Pi, and let x be its element of

highest rank. Then e is not a chain in L j for any j < i if and only if, when viewed as a

face of Fi, x contains the unique minimal new face r(Fi).

Now fix some i. Any bijection φ : Fi → [d] induces an Sd-EL-labeling λφ of Pi in

the obvious way: For x, y ∈ Pi with y = x∪{v} for some vertex v of Fi, set λφ(x, y) = φ(v).

Let φ : Fi → [d] be any bijection that labels vertices in r(Fi) last. That is, if v ∈ r(Fi)

and w ∈ Fi \ r(Fi) then φ(w) < φ(v). Set λ = λφ. Suppose e is a non-maximal chain in

Pi that is also a chain in P j for some j < i, and let x be the element of e of highest rank.
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By the above observation, r(Fi) * x. If v is the vertex in Fi \ x with the greatest φ-label

then, by definition of φ, v ∈ r(Fi). Let c = comλ(e), and let σ = λ(c). Then σ(d) = φ(v).

Since d < S (because S ⊆ [d − 1]), the element of cS of highest rank, when viewed as a

face of Fi, does not contain the vertex v. Because v ∈ r(Fi), cS must be a chain in P j for

some j < i.

We are almost in a position to apply Theorem 2.4.2. The only possible snag is

that, unless Σ consists of a single facet, PΣ has no greatest element. However, the only

place this property is used in the proof of the theorem is in showing property (ii) of the

decomposition. That is, for any i > 1 it must be shown that cS is a chain in P j for some

j < i, where c is the unique maximal chain in Pi with increasing λ-labels. As before, let

x be the element in cS of highest rank. Since the rank of x must be less than d (because

S ⊆ [d − 1]), x cannot contain the vertex φ−1(d) (when viewed as a face of Fi). Since

r(Fi) , ∅ because i > 1 and φ−1(d) ∈ r(Fi), r(Fi) * x. Thus cS must be a chain in P j for

some j < i. We can now apply Theorem 2.4.2 to obtain our result. �

The above theorem does not hold if d ∈ S . Indeed, if Σ is the shellable complex

consisting of two 2-dimensional simplices joined at a common boundary facet and S =

{2, 3} ⊆ [3], then ∆((PΣ)S ) does not admit a convex-ear decomposition, as it is a tree.

Let Σ′ be the 3-dimensional complex given by two 3-dimensional simplices joined at

boundary facets, and let Σ be its 2-skeleton. Then Σ admits a convex-ear decomposition

and, moreover, so does the complex ∆((PΣ)S ) for any choice of S ⊆ [3]. Figure 3.1

shows the case when S = {2, 3}.

Thus, we can conjecture the following:

Conjecture 3.2.2 When Σ is a (d − 1)-dimensional complex admitting a convex-ear

decomposition and S ⊆ [d], the complex ∆((PΣ)S ) admits a convex-ear decomposition.
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Figure 3.1: The complex ∆((PΣ){2,3}) as a subcomplex of Σ.

A (d − 1)-dimensional complex Σ with vertex set V is called balanced if there exists

a φ : V → [d] such that φ(v) , φ(w) whenever v and w are in a common face of Σ. The

function φ is called a coloring of Σ.

The order complex of any graded poset P is always balanced: For a vertex v of ∆(P),

simply let φ(v) be the rank of v when considered as an element of the poset P. Thus

the barycentric subdivision of any simplicial complex is balanced, since it is the order

complex of its face poset.

If Σ is a (d − 1)-dimensional balanced complex with coloring φ and S ⊆ [d], define

the ΣS to be the subcomplex of Σ with faces {F ∈ Σ : φ(v) ∈ S for all v ∈ F}. With these

new definitions, we can rephrase Theorem 3.2.1 in a more geometric tone.

Theorem 3.2.3 Let Σ′ be a (d − 1)-dimensional shellable complex, and let Σ be the first

barycentric subdivision of its codimension-1 skeleton. Then, for any coloring φ of the

vertices of Σ and any S ⊆ [d − 1], the complex ΣS admits a convex-ear decomposition.
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Chapter 4

Applications to the Flag h-Vector

4.1 Preliminaries

Let P be a graded poset of rank d with order complex ∆ = ∆(P). For S ⊆ [d − 1], let

fS = fS (P) be the number of maximal chains of the rank selected subposet PS . This

gives a natural refinement of the f-vector of ∆ since fi(∆) =
∑
|S |=i fS (P).

We also define the flag h-vector of ∆ by hS =
∑

T⊆S (−1)|S−T | fT . Equivalently, by

inclusion-exclusion (see [24]), fS =
∑

T⊆S hT . If the poset P admits an EL-labeling, the

flag h-vector has a nice enumerative interpretation (see, for instance, page 133 of [24]):

Proposition 4.1.1 Let P be a poset that admits an EL-labeling. Then hS counts the

number of maximal chains of P whose labels have descent set S .

The above proposition in conjunction with Proposition 1.3.9 implies that the flag

h-vector of P satisfies:

hi(∆) =
∑
|S |=i

hS (P)

whenever P admits an EL-labeling. In fact, this is true for any graded poset, and so the

flag h-vector is a refinement of the usual h-vector in the same way that the flag f-vector

is a refinement of the usual f-vector.

Now let σ ∈ S d be a permutation written as a word in [d]: σ = σ(1)σ(2) . . . σ(d). If

we interchange σ(i) and σ(i+1) for some i < D(σ), we call this a switch. The word σ is

less than τ in the weak order (sometimes called the weak Bruhat order), written σ <w τ,

if τ can be obtained from σ by a sequence of switches.
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For example, 1 3 2 4 <w 1 4 2 3, since 1 3 2 4 <w 1 3 4 2 <w 1 4 3 2.

When S ⊆ [d], let Dd
S = {σ ∈ S d : D(σ) = S }. For two subsets S ,T ⊆ [d], we say

that S dominates T if there exists an injection φ : Dd
T → Dd

S such that τ <w φ(τ) for

all τ ∈ Dd
T . If d = 4, the set {1, 3} dominates the set {1}. To see this, define a function

φ : D4
{1} → D4

{1,3} by φ(τ) = τ(1)τ(2)τ(4)τ(3). Then φ(τ) ∈ D4
{1,3} for any τ ∈ D4

{1}, and φ

is clearly injective.

For a study of which pairs of subsets S ,T ⊆ [d] satisfy this dominance relation, see

[9] or [17].

4.2 The Flag h-Vector of a Face Poset

In [17], the authors prove the following:

Theorem 4.2.1 If L is a geometric lattice of rank d, S ,T ⊆ [d − 1], and S dominates T ,

the flag h-vector of ∆(L) satisfies hT ≤ hS .

Using the convex-ear decomposition from Section 2.2, the proof of the above theo-

rem carries over verbatim:

Theorem 4.2.2 Let L be a rank d supersolvable lattice with nowhere-zero Möbius func-

tion. Let S ,T ⊆ [d − 1], and suppose that S dominates T . Then the flag h-vector of ∆

satisfies hT ≤ hS .

Proof: Let λ be an Sd-EL-labeling of L. For any subset A ⊆ [d − 1], hA is the

number of maximal chains of L whose λ-labels have descent set A. Fix an ear Σi of the
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decomposition given in Section 2.2. Let c be a maximal chain in Σi with σ = λ(c) and

D(σ) = T . Suppose σ(m) < σ(m + 1) is an ascent, let σ′ be the permutation obtained

from σ by interchanging σ(m) and σ(m + 1), and let c′ be the unique chain of L with

λ(c′) = σ′. Then c′ is a chain in Σi (if c′ were in some earlier L j, then c = com(c′−m)

would be as well). Now let φ : Dd
T → Dd

S be an injection with σ <w φ(σ) for all σ ∈ Dd
T .

Then for every σ ∈ Dd
T such that a maximal chain in Σi has σ as its label, the above

shows that there is a maximal chain in Σi with φ(σ) as its label. Because this is true for

each step in the convex-ear decomposition, the result follows. �

Our goal in this section is to find an analogue of the above theorems for face posets

of Cohen-Macaulay simplicial complexes.

Let P be a graded poset of rank d with a 0̂ and 1̂, and let ∆ = ∆(P) be the order

complex of its proper part. Under the fine grading of the face ring k[∆], F(k[∆], λ) =∑
F∈∆
∏

xi∈F
λi

1−λi
. We specialize this grading to accommodate the flag h-vector as follows:

identify λi and λ j whenever the vertices in ∆ to which they correspond have the same

rank r (as elements of P). Call this new variable νr. This specialized grading yields:

F(k[∆], ν) =
∑

S⊆[d−1]

fS

∏
i∈S

νi

1 − νi

We put this over the common denominator of
∏

i∈[d−1](1 − νi) to obtain:

F(k[∆], ν) =
∑

S⊆[d−1]

fS
∏

i∈S νi
∏

i<S (1 − νi)∏
i∈[d−1](1 − νi)

=
∑

S⊆[d−1]

hS
∏

i∈S νi∏
i∈[d−1](1 − νi)

Now suppose ∆ triangulates a ball, and let ∆′ = ∆ − ∂∆ − ∅. The following equation is

Corollary II.7.2 from [23]:

(−1)dF(k[∆], 1/λ) = (−1)d−1χ̃(∆) +
∑
F∈∆′

∏
xi∈F

λi

1 − λi
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Letting f ′S be the flag f-vector for ∆′, noting that χ̃(∆) = 0, plugging in 1/λ in place of

λ, and specializing to the ν-grading, the previous expression becomes:

(−1)dF(k[∆], ν) =
∑

S⊆[d−1]

f ′S
∏
i∈S

1
νi − 1

Putting the above over the common denominator of
∏

i∈[d−1](νi − 1) and multiplying by

(−1)d gives us:

F(k[∆], ν) =
∑

S⊆[d]

f ′S
∏

i<S (νi − 1)∏d
1(1 − νi)

Comparing with our earlier expression for F(k[∆], ν) and noting that the denominators

are equal, ∑
S⊆[d−1]

hS

∏
i∈S

νi =
∑

S⊆[d−1]

f ′S
∏
i<S

(νi − 1)

In general, the flag f- and h-vectors satisfy the equation

∑
S⊆[d−1]

fS

∏
i<S

(νi − 1) =
∑

S⊆[d−1]

hS

∏
i<S

νi

So, we can write the above equation as:

∑
S⊆[d−1]

f ′S
∏
i<S

(νi − 1) =
∑

S⊆[d−1]

h[d−1]−S

∏
i<S

νi

We now apply this above equation to obtain a set of inequalities for the flag h-vector

of the face poset of a shellable simplicial complex.

Let Σ be a d-dimensional shellable complex with face poset PΣ and shelling order

F1, F2, . . . , Ft, and for each i let Pi be the face poset of Fi. Let A = [d − 1], and set

∆ = ∆((PK)A). Note that ∆ is simply the order complex of PΣ once we remove the

elements corresponding to the facets of Σ and the element corresponding to the empty

set. Let Σ1,Σ2, . . . ,Σt be the convex-ear decomposition of ∆ given in Section 3.2.1.
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Lemma 4.2.3 Let S ,T ⊆ [d − 1]. If S dominates T then, for any i, there are at least as

many maximal chains in Σi with descent set S (under the labeling described in the proof

of Theorem 6.2) as there are with descent set T .

Proof: Because the poset PΣ satisfies the hypotheses of Theorem 2.4.2, the proof of

this lemma is identical to the proof of Theorem 4.2.2. �

Theorem 4.2.4 Let S ,T ⊆ [d − 1], and suppose that S dominates T . Then the flag

h-vector of ∆ satisfies hT ≤ hS .

Proof: The argument here is based on the one given in [17] for geometric lattice

order complexes. hT (Σ1) ≤ hS (Σ1), since the poset associated to Σ is just the Boolean

lattice Bd. In general, suppose the result holds for Σ1 ∪ Σ2 ∪ . . .Σk−1. Let Ω = Σ1 ∪

Σ2 ∪ . . .Σk−1, and let Σ′k = Σk − ∂Σk − ∅. Because Σk triangulates a ball, we can now use

our earlier expression for the flag h-vector of a ball and invoke an argument similar to

Chari’s in [7]:

∑
S⊆[d]

hS (Ω ∪ Σk)
∏
i<S

νi =
∑

S⊆[d]

fS (Ω ∪ Σk)
∏
i<S

(νi − 1)

=
∑

S⊆[d]

fS (Ω)
∏
i<S

(νi − 1) +
∑

S⊆[d]

fS (Σ′k)
∏
i<S

(νi − 1)

=
∑

S⊆[d]

hS (Ω)
∏
i<S

νi +
∑

S⊆[d]

h[d]−S (Σk)
∏
i<S

νi

=
∑

S⊆[d]

(hS (Ω) + h[d]−S (Σk))
∏
i<S

νi

Reverse lexicographic order of the maximal chains of Σk is a shelling (as shown in

Theorem 2.4.2), so it follows that hS (Σk) is the number of maximal chains of Σk whose

labels have ascent set S . Thus h[d]−S counts the number of maximal chains in Pk with

descent set S . Since we add at least as many maximal chains whose labels have descent
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set S as we do maximal chains whose labels have descent set T (Lemma 4.2.3), the

result follows. �

The previous theorem can be generalized to face posets of Cohen-Macaulay com-

plexes.

Theorem 4.2.5 Let K be a d-dimensional Cohen-Macaulay simplicial complex with

face poset P, and let ∆ = ∆(P). Let S ,T ⊆ [d − 1], and suppose that S dominates T .

Then the flag h-vector of ∆ satisfies hT ≤ hS .

Proof: First, note that any linear inequality of the flag h-vector of a complex is

equivalent to some linear inequality of the flag f-vector of that complex. Next we note

that, in the case when ∆ is the order complex of the face poset of a complex K, a linear

inequality of the flag f-vector is equivalent to a linear inequality of the standard f -vector

of K. To see why this is true, let S ⊆ [d] and write S as a decreasing word: a1, a2, . . . , am.

Then fS is simply the product b1b2 . . . bm, where b1 = fa1(K) and for i > 1 bi = bi−1

(
ai−1
ai

)
.

Since Stanley has shown that all linear inequalities involving the f-vector of Cohen-

Macaulay complexes are of the form
∑

i cihi ≥ 0 where each ci ≥ 0, and since every

Cohen-Macaulay h-vector is the h-vector of some shellable complex (see, for instance,

[23]), it must be the case that Theorem 4.2.4 amounts to an inequality of the above form.

Because hi(∆) ≥ 0 for all i when ∆ is Cohen-Macaulay (see for instance [23], pg. 57), it

follows that Cohen-Macaulay complexes satisfy the conclusion of Theorem 4.2.4. �

We now show that Theorem 4.2.5 cannot be extended to include posets whose order

complexes are Cohen-Macaulay (or 2-CM, for that matter):

A graded poset P is Eulerian if for all x, y ∈ P with x < y µ(x, y) = (−1)k, where

k = rank(y) − rank(x). An Eulerian poset whose order complex is Cohen-Macaulay is
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called Gorenstein*. It can be shown that the order complex of a Gorenstein* poset is

2-Cohen-Macaulay. For S ⊆ [n], define w(S ) to be the set of all i ∈ [n] such that exactly

one of i and i + 1 is in S . For instance, if S = {2, 3} ⊆ [4] then w(S ) = {1, 3}. Since

Conjecture 2.3 from [22] was proved by Karu in [13], we can rephrase Proposition 2.8

from [22] as:

Proposition 4.2.6 If S ,T ⊆ [n] are such that hT (∆) ≤ hS (∆) whenever ∆ is the order

complex of a Gorenstein* poset then w(T ) ⊆ w(S ).

Now consider S ,T ⊆ [4] given by S = {1, 2} and T = {1}. In [17], it is shown that

S dominates T . However, w(S ) = {2} and w(T ) = {1}, so w(T ) * w(S ) and it is clear

that we cannot weaken the assumptions of Theorem 4.2.5 to include the wider class of

Cohen-Macaulay posets (or even 2-CM posets).

We close this section by mentioning an interesting consequence to Theorem 4.2.5.

Corollary 4.2.7 For each pair of subsets S ,T ⊆ [d − 1], where S dominates T , there

exist nonnegative integers aS ,T
1 , a

S ,T
2 , . . . , a

S ,T
d such that, for any d-dimensional Cohen-

Macaulay K with face poset P and face poset order complex ∆ = ∆(P − ∅),

hS (∆) − hT (∆) =
d∑

i=1

aS ,T
i hi(K)

Proof: In the proof of Theorem 4.2.5, we see how linear inequalities of the flag

h-vector of ∆ translate to linear inequalities of the h-vector of K. The conclusion of

the theorem tells us that hS (∆) − hT (∆) ≥ 0 whenever S dominates T . Since all linear

inequalities of the h-vector of K must be of the form
∑d

i=0 aihi(K) ≥ 0, where each

ai ≥ 0, the corollary follows. �

Question 4.2.8 Can one find a combinatorial interpretation of the coefficients {aS ,T
i }?

55



Chapter 5

The h-Vector of a Lattice Path Matroid

5.1 Preliminaries

We begin this section with a common matroid construction:

Definition 5.1.1 Let A1, A2, . . . , At be a collection of finite sets. The transversal matroid

corresponding to this collection is the matroid with ground set
⋃t

i=1 Ai and independent

sets {S ⊆
⋃t

i=1 Ai : |S ∩ Ai| ≤ 1 for all i}.

The collection {Ai} is known as a presentation of the transversal matroid M. Note

that distinct presentations can give rise to the same transversal matroid.

Definition 5.1.2 Let M be a transversal matroid. If M has a presentation

[a1, c1], [a2, c2], . . . , [ar, cr] where each [ai, ci] is an interval in the integers, a1 < a2 <

. . . < ar, and c1 < c2 < . . . < cr, then M is called a lattice path matroid.

Anytime we speak of a lattice path matroid M, we assume (unless explicitly stated

otherwise) that it has a presentation of the above type, where a1 = 1. We thus identify

points of the matroid with the set [cr]. When M is a lattice path matroid, it admits an

alternate geometric interpretation. Before describing this interpretation, however, we

need a few definitions:

A lattice path to the point (n, r) is a sequence, beginning at the origin, of unit length

steps, each either directly north or directly east. For a lattice path p to (n, r), define a set
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Bp ⊆ [n + r] by Bp = {i : the ith step of p is north}. Similarly, for a basis B, associate a

lattice path pB such that BpB = B. That is, pB is the lattice path whose ith step is north if

and only if i ∈ B.

Proposition 5.1.3 Suppose M is a lattice path matroid with a presentation of the above

type. Let Ba be the basis {a1, a2, . . . , ar}, and define Bc analogously. Then all bases of M

are of the form Bp, where p is some lattice path within the region specified by pBa and

pBc .

For example, let M be the lattice path matroid with presentation [1, 3], [2, 5], [4, 7],

and [6, 8]. Then the region specified by pBa and pBc is as shown in Figure 5.2.3. The

lattice path shown within the region corresponds to the basis {2, 3, 4, 7}.

Figure 5.1: A lattice path matroid with basis {2, 3, 4, 7}.

Lattice path matroids were first introduced by Bonin, de Mier, and Noy in [6], where

it is shown that an element of a basis B of M is internally active if and only if the

corresponding north step of pB coincides with pBa . For example, the basis in the figure

above has only one internally active element: 4.

Given Proposition 1.4.5, the h-vector of a lattice path matroid carries some interest-

ing geometric information:

Corollary 5.1.4 Let M be a rank r lattice path matroid as above, and let ∆ = ∆(M) be
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its independence complex. For all i, hi(∆) is the number of lattice paths between pBa and

pBc that coincide with pBa exactly r − i times.

5.2 A Conjecture of Stanley

Let Γ be a monomial order ideal (see Definition 1.1.3). An element α ∈ Γ is called

maximal if α|β and β ∈ Γ implies α = β.

Definition 5.2.1 A monomial order ideal is pure if all its maximal elements are of the

same degree. A pure M-vector is a degree sequence of some pure monomial order ideal.

Not all M-vectors are pure: The sequence (1, 3, 1) is an M-vector (since it is the

degree sequence of the order ideal {1, x, y, z, xy}), but it is not pure since a degree 2

monomial can have at most two degree 1 divisors. The following was conjectured by

Stanley (see, for instance, [23]):

Conjecture 5.2.2 The h-vector of a matroid is a pure M-vector.

In [16], Merino shows this to be true in the case when M is a cographic matroid

(when M∗ = M(G) for some graph G).

Theorem 5.2.3 Stanley’s conjecture holds in the case when M is a lattice path matroid.

Proof: If M is any matroid with a coloop e, then the h-vector of M is the h-vector

of M − e with an extra 0 appended. Thus, we may assume that M is coloop-free. Let

[a1, c1], [a2, c2], . . . , [ar, cr] be a presentation of M with a1 < a2 < . . . < ar and c1 <
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c2 < . . . < cr, and let M0 be the lattice path matroid with presentation [a1 + 1, c1], [a2 +

1, c2], . . . , [ar+1, cr]. Since M has no coloops, ai < ci for all i, hence M0 is well-defined.

It follows that the number of bases of M0 is the number of bases of M with 0 external

activity, which is hr(M). Let n denote the nullity of M, and note that n = cr − r. For

bi ∈ [ai, ci], let m(bi) = 1 if bi = ai and xbi−i otherwise. For a basis B = b1 < b2 < . . . < br

of M0, let ηB be the degree r − k monomial m(b1)m(b2) . . .m(br), where k is the internal

activity of B.

It is easy to visualize the monomial η(B): Above each column of the lattice path

representation of M, place a variable. Then η(B) has one occurence of every variable

corresponding to a north step of B, except when this step coincides with the leftmost

path. Figure 5.2 gives an example of this: Every north step in the basis B contributes to

the monomial η(B), except for the third one (since it coincides with the leftmost path).

Figure 5.2: A basis B with η(B) = w2y.

Finally, let ∆M0 be the monomial order ideal generated by the set {ηB : B is a basis

of M0}. ∆M0 is pure, since it is generated by degree-r monomials.

Let B = b1 < b2 < . . . < br be a basis with t-many internally active elements. Then

B contributes 1 to hr−t, and ηB is necessarily a degree-(r − t) monomial. To see that ηB

divides some monomial in ∆M0 , let B′ = b′1 < b′2 < . . . < b′r by b′i = ai + 1 if bi = ai and

b′i = bi otherwise. Since bi + 1 = bi+1 implies that bi+1 = ai+1, it follows that this process
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Figure 5.3: Producing M0 from M.

returns a basis. Furthermore, B′ is a basis of M0, and ηB|ηB′ , as desired.

We now wish to show that if B is a basis with t-many internally active elements and

ν is a monomial dividing ηB with degree(ν) =degree(ηB)− 1, then ν = ηB′ for some basis

B′ of M. Let xν = ηB, and let bi ∈ B be the least b j ∈ B such that m(b j) = x. Let

k = max A, where A = { j : j ≤ i and b j−1 ≤ a j − 1} (we later address the case in which

A = ∅). Define a new basis B′ = b′1 < b′2 < . . . < b′r by b′j = b j if j < k or j > i, b′k = ak,

and b′j = b j−1 + 1 otherwise. First, note that B′ is a basis, since bk−1 = b′k−1 < ak = b′k.

Next, note that the internally active elements of B′ are exactly those of B plus bk. This

is because the only elements changed in B′ are those b j with k ≤ j ≤ i, and whenever

k < j ≤ i b′j = b j−1 + 1 > a j, meaning b′j is not internally active. For all j with k < j ≤ i,

m(b′j) = xb′j− j = x(b j−1+1)− j = xb j−1−( j−1) = m(b j−1). It follows that ηB′ = ν. Now suppose

that A = ∅. Simply define B′ = b′1 < b′2 < . . . < b′r by b′1 = a1, b′j = b j−1 whenever

1 < j ≤ i, and b′j = b j for j > i. A similar argument shows that ηB = ν in this case as

well.

Thus there is a 1− 1 correspondence between degree-d monomials in ∆M0 and bases

of M with (r−d)-many internally active elements, which are exactly the bases contribut-

ing to hd(M). This proves our theorem. �
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The above argument has an easy geometric interpretation: Let ν and ηB be as above.

We wish to produce a lattice path corresponding to some B′ such that ν = ηB′ . As above,

let x = ηB/ν. Take the lattice path corresponding to ηB, and remove the lowest north step

of this path that contributes x to ηB.

Figure 5.4: Removing the lowest step in B that corresponds to x in ηB.

What results is an incomplete lattice path (since we have removed a step). Now

make a note of the highest point beneath the removed step at which the path touches

(not necessarily coincides with) the leftmost path. In Figure 5.5, this point is noted with

an arrow.

Figure 5.5: The point in question.

Cut the path at this point, and move the top piece up one unit step, as shown in Figure

5.6.
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Figure 5.6: Moving the piece up one step.

Finally, fill in the missing step in the resulting path. Since this new path coincides

with the leftmost path at the filled-in step, its monomial is ν, as desired.

Figure 5.7: The resulting path, whose associated monomial is ν.

Definition 5.2.4 If M is a lattice path matroid, let ∆M be the associated pure mono-

mial order ideal, as defined in the proof of Theorem 5.2.3. We call ∆M the lpm-ideal

associated to M.

The proof of Theorem 5.2.3 actually shows slightly more than Stanley’s conjecture:

It shows that the h-vector of any coloop-free lattice path matroid is the M-vector of

some lpm-ideal (namely ∆M0). Macaulay’s Theorem (see [23]) provides an arithmetic
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characterization of all M-vectors, yet no such characterization of all pure M-vectors is

known. This prompts the following question:

Question 5.2.5 Can an arithmetic characterization of all M-vectors associated to lpm-

ideals be found?

5.3 The Relationship to Shifted Complexes

Definition 5.3.1 A simplicial complex ∆ is shifted if there exists an ordering v1 < v2 <

. . . < vn of its vertex set such that F \ {v j} ∪ {vi} is a face of ∆ whenever F is a face

and i < j. That is, swapping a vertex in a face of ∆ for a vertex earlier in the ordering

always results in another face.

One main reason for the introduction of shifted simplicial complexes is the following

theorem of Kalai (see, for instance, [12]):

Theorem 5.3.2 Let ∆ be a simplicial complex. Then there exists a shifted complex ∆′

with the same f-vector (and thus the same h-vector) as ∆.

For the remainder of this section, we work exclusively with pure complexes, and we

fix a vertex set V with ordering v1 < v2 < . . . < vn. The poset of shifted d-sets, which

we write as Φd, is the poset of all subsets of V of cardinality d, where B covers A if

A = B \ {v j} ∪ {vi} and i < j. Φd obviously depends on the set V , but since we work

with the same V for this whole section, we suppress it from the notation. It is easy to

see that this cover relation gives rise to a partial order. Indeed, the only problem would

be if there exist A1, A2, . . . , Am such that A1 < A2 < . . . < Am < A1. For A ∈ Φd with
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A = {vi1 , vi2 , . . . , vid}, let
∑

A =
∑d

j=1 i j. Then
∑

A <
∑

B whenever B covers A, so the

above situation cannot happen.

For any setA = {Ai} of d-sets of V , let tr(A) denote the transitive closure ofA. That

is, tr(A) = {B : B ⊆ A for some A ∈ A}. By definition, tr(A) is a simplicial complex

whose vertex set is contained in V .

If P is a poset with a least element 0̂, a principal order ideal of P is an interval of the

form [0̂, x] for some x ∈ P. Klivans proved the following in [14]:

Theorem 5.3.3 Let M be a rank d matroid with point set V whose independence com-

plex is shifted. Then ∆(M) is isomorphic to tr(I) for some principal order ideal I ⊆ Φd.

Conversely, tr(I) is a matroid complex for any principal order ideal I ⊆ Φd.

In order to talk about a principal order ideal of Φd, we need to know that it has a

least element. But this is clearly the set {v1, v2, . . . , vd}. Call this set F0̂. Similarly, Φd

has a largest element, F1̂ = {vn−d+1, vn−d+2, . . . , vn}.

The above theorem shows that, to every F ∈ Φd, we can associate a shifted matroid

complex tr([F0̂, F]), where [F0̂, F] is the principal order ideal in Φd generated by F.

Let MF be the associated shifted matroid. In fact, every shifted matroid is a lattice

path matroid. To see this, let MF be a shifted matroid, with F = {vi1 , vi2 , . . . , vid} and

i1 < i2 < . . . < id. Let the basis Ba = {1, 2, . . . , d}, and let Bc = {i1, i2, . . . , id}. We leave

to the reader the easy task of verifying that MF is the lattice path matroid specified by

pBa and pBc .

Similarly, let F ∈ Φd. Then the complex tr([F, F1̂]) is isomorphic to the lattice path

matroid specified by the paths pBa and pBb , where Ba is the basis corresponding to F and

Bc is the basis corresponding to F1̂. Call such a complex a reverse-shifted matroid. An
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example of such a matroid is given in Figure 5.9.

Figure 5.8: The shifted matroid determined by the facet {3, 5, 7, 8}.

Figure 5.9: The reverse shifted matroid determined by the facet {1, 2, 4, 6}.

Finally, consider an interval [F, F′] in Φd. Because [F, F′] = [F0̂, F
′] ∩ [F, F1̂], the

complex tr([F, F′]) is isomorphic to the lattice path matroid specified by pBa and pBc ,

where Ba corresponds to F and Bc corresponds to F′.

Figure 5.10: The lattice path matroid corresponding to [{1, 2, 4, 6}, {3, 5, 7, 8}].

Recalling Definition 5.2.4, we obtain the following corollary to the above character-

ization of lattice path matroids:
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Corollary 5.3.4 A sequence (h0, h1, . . . , hd) is the M-vector of some lpm-ideal if and

only if there exists some interval [F, F′] ⊆ Φd such that the above sequence is the h-

vector of tr([F, F′]).

Thus, understanding the combinatorics of lattice path matroids is a natural direction

in the study of shifted simplicial complexes.
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