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Abstract

We investigate properties of rim-finite subsets of the plane (those which have topological
bases whose elements have finite boundaries), which are also arc-free. Recently (see [K. Bouhjar,
J.J. Dijkstra, Preprint], [K. Bouhjar, J.J. Dijkstra, J. van Mill, Topology Appl., to appear],
[M.N. Charatonik, W.J. Charatonik, Comment. Math. Univ. Carolin., to appear], [D.L. Fearnley,
J.W. Lamoreaux, Proc. Amer. Math. Soc., to appear] and [L.D. Loveland, S.M. Loveland, Houston J.
Math. 23 (1997) 485–497]) there has been considerable research regardingn-point sets (sets which
intersect each line in exactlyn-points). These spaces are rim-finite (since the interior of a triangle
has its boundary contained in a union of three lines, each of which hasn points of the space), and our
investigation provides a direction to generalize them. One of our main theorems seems to generalize
all known results regarding the dimension ofn-point sets (see, for example, [K. Bouhjar, J.J. Dijkstra,
J. van Mill, Topology Appl., to appear], [D.L. Fearnley, J.W. Lamoreaux, Proc. Amer. Math. Soc.,
to appear] and [J. Kulesza, Proc. Amer. Math. Soc. 116 (1992) 551–553]), and beyond that has, as
corollaries, the solutions to problems of Bouhjar and Dijkstra [Preprint], and L.D. Loveland and S.M.
Loveland [Houston J. Math. 23 (1997) 485–497]. In Bouhjar and Dijkstra [Preprint] it is asked if all
n-point sets which are arc-free must be zero-dimensional, and our result gives a positive answer.
In [L.D. Loveland, S.M. Loveland, Houston J. Math. 23 (1997) 485–497] it is asked whether a
connected 2-GM set must contain an arc, and again we give a positive answer.

Another main theorem states that ifX is a subset of�2 such that there is a nonnegative integern so
that every straight interval of length 1 has a local basis of open sets with boundaries which intersect
X in a set of cardinality less than or equal ton, then eitherX is zero-dimensional orX contains an
arc. We produce an example which demonstrates that, essentially, our theorem cannot be improved.
The “straight interval of length 1” cannot be replaced by “point”, because our example has a base of
open sets whose boundaries have cardinality less than or equal to 72 and contains no arcs, yet has
dimension 1. This example seems to be the first of a positive dimensional, rim-finite and arc-free
separable metric space.
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1. Introduction

All spaces considered are separable and metrizable. Call a spacerim-finite (rim-n) if
it has a basis of open sets whose boundaries are finite (have at mostn points). Rim-finite
continua have been studied rather extensively; important to us is that rim-finite continua
are arcwise connected, as shown by Ward in [9]. In this paper we studyarc-free rim-
finite subsets of�2, that is, rim-finite subsets which do not contain homeomorphic images
of [0,1]. By the result of Ward, such sets cannot contain continua. In particular we are
interested in the dimension properties of such sets, which must be at most one, since the
finite boundaries have dimension at most 0.

Our motivation comes from the fact that these spaces are apparently not well understood,
and yet simultaneously generalize the classes ofn-point sets, sets which intersect each
straight line in exactlyn points, andn-GM sets, those with the property that if straight a
lines separate two points of the set, then that line contains exactlyn points from the set.
There has been recent and interesting work involving these types of subsets of the plane
in [1–4,6].

Regardingn-point sets, it is shown in [5], answering a question of Mauldin (in [7]), that
each two-point set must be zero-dimensional. A key part of the proof was showing that
a two-point set can contain no arc. More recently, in [2], it is shown that no three-point
set could contain an arc, but that forn � 4 there aren-point sets which do contain arcs.
This prompted the question, posed by Dijkstra, of whether a three-point set must be zero-
dimensional. This question was recently answered in [4], where it is shown that three-point
sets are, in fact, zero-dimensional. A natural generalization of this is posed in [1], where
it is asked if ann-point set without any arcs must be zero-dimensional. Our main result
in Section 2 has, as a corollary, that this is the case. Our result is much stronger that this
though; it implies, for example, that if we only require thatX intersects all lines from dense
subsets of both the vertical and horizontal lines in at mostn-points, andX is arc-free, then
X is zero-dimensional. We point out that our method of proof expands, but relies on the
main idea in [4].

We also show that the main theorem from Section 2 provides a solution to a problem
from [6]: must a connected 2-GM set contain an arc? In fact, using a result from [6], we
show that a positive-dimensional 2-GM set must be a simple closed curve, and also that a
positive-dimensionaln-GM set must contain an arc.

In Section 3, we prove a theorem based on the main result of Section 2, which states
that if X ⊂ �2 is arc-free and rim-n at each straight arc of length one, meaning that each
arc of length one has a local base with at mostn points ofX on the boundaries of the
base sets, thenX is zero-dimensional. If the “straight arc” could be replaced by “point” in
this theorem, then every arc-free, rim-n subset of�2 would be zero-dimensional. However
this is not the case, as is shown in Section 4, where an arc-free, rim-72 planar example
with positive dimension is given. Thus the theorem of Section 3, in some sense, isolates



J. Kulesza, J. Schweig / Topology and its Applications 124 (2002) 475–485 477

the weakest set of requirements to guarantee an arc-free rim-finite planar set is zero-
dimensional. We remark that, by Proposition 25 in [1], this example cannot be totally
disconnected.

2. Positive-dimensional n-point sets all contain arcs

We callX ⊆ �2 ann-point setif for all lines � ⊆ �2, |� ∩ X| = n. We callX a partial
n-point set if for all lines�⊆ �2, |�∩X| � n. We callX ⊆ �2 ann-GM-setif for all lines
� ⊆ �2 separating two points ofX, |� ∩ X| = n. It is easy to check that partialn-point
sets (and thusn-point sets) are rim-3n; if X is a partialn-point set, the open sets whose
boundaries are triangles have at most 3n boundary points inX. To see that a partialn-GM
setX is rim-3n, fix p ∈ X, and consider that if there are points ofX to the right ofp,
then there is a vertical line close top and to its right with at mostn points. Repeating
this reasoning, using the half planes determined by the lines parallel toy = x andy = −x

which containp, the result is clear.
Let H andV be sets of horizontal and vertical lines, respectively, in�2. Call H ′ ⊆ H

denseif for all �1, �2 ∈ H there is� ∈ H ′ such that� is between�1 and�2. Similarly, call
V ′ ⊆ V denseif for all �1, �2 ∈ V there is� ∈ V ′ such that� is between�1 and�2.

This is the main theorem of the section, which gives a large class of arc-free rim-finite
sets which must be zero-dimensional.

Theorem 2.1. Let H and V be countable dense sets of horizontal and vertical lines,
respectively, and letX ⊆ �2 such thatX contains no arcs and for every compact, convex
D ⊆ �2 there is annD with |X ∩D ∩ �| � nD for all lines� ∈ H ∪ V . Thendim(X) = 0.

The method of proof we use makes extensive use of the technique used in [4]. We break
the theorem down into several lemmas. For the remainder of the section, letA andB be two
horizontal line segments withπ1(A)= π1(B), letD ⊆ �2 be a compact, convex set whose
interior contains the compact rectangular region specified byA andB, and letn = nD as
defined in the theorem. Forx ∈ A, let S(x) denote the vertical line segment starting atA

and ending atB, with S(x)∩A = {x}.
Let x ∈ A and lety ∈ S(x). Generalizing the notion from [4], cally avoidableif there

exist two horizontal line segments�1(y) and�2(y) such that the following properties hold:
(1) Each of�1(y) and�2(y) ends onS(x);
(2) �1(y) is abovey and�2(y) is belowy;
(3) π1(�1(y))= π1(�2(y));
(4) �1(y)∩X ⊆ S(x) and�2(y)∩X ⊆ S(x);
(5) For allε > 0 there is a continuumC such thatC∩X = ∅, C ∩S(x) = ∅,C connects

�1(y) and�2(y), andπ1(C) ⊆ (π1(x)− ε,π1(x)+ ε).
More specifically, cally left-avoidableif �1(y) and�2(y) lie on the left side ofS(x), and

call it right-avoidableif �1(y) and�2(y) lie on the right side ofS(x). Call y unavoidable
if it is not avoidable. Note thaty does not necessarily have to be inX to be unavoidable.
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Lemma 2.2. Let x ∈ A and let y ∈ S(x) be left-avoidable. Let� ⊆ D be a horizontal
line segment withπ1(�) = [π1(x)− ε,π1(x)] for someε > 0 andy /∈ � such thatπ2(�) ∈
[π2(�2(y)),π2(�1(y))]. Then we can find a continuumC with C ∩ X ⊆ {y} such thatC
connects� andy, π1(C) ⊆ π1(�), andC ∩ S(x)= {y}.

Proof. Without loss of generality, assume thatπ2(�) < π2(y). Choose a sequence{yi : i ∈
N} ⊆ S(x) between� ∩ S(x) andy converging toy such that{π2(yi): i ∈ N} is strictly
increasing, and such that for all positive integersm, �m is a horizontal line segment with
ym ∈ �m, π1(�m) ⊆ [π1(x) − ε/m,π1(x)], and�m ∩ X ⊆ {ym}. Let �0 = �. Notice that
the construction of such a sequence is possible by choosing line segments that are subsets
of lines inH , the countable dense set of horizontal lines. The last property is given by
the fact that for all�′ ∈ H ∪ V , |X ∩ �′ ∩ D| � n, so we may find some interval on
these lines disjoint fromX. Now we use the avoidability ofy to construct a continuum
with the desired properties. For each�m, find a continuumCm connecting�m to �m+1,
with π1(Cm) ⊆ π1(�m), and withCm ∩ X = ∅. Notice that this is possible, since�m and
�m+1 lie between�1(y) and �2(y), so we may find continua arbitrarily close toS(x).
Furthermore, for each nonnegative integerm, letKm ⊆ �m be a closed sub-arc containing
Cm ∩ �m andCm−1 ∩ �m with Km ∩ S(x) = ∅. Therefore, eachKm is disjoint fromX.
Let C′ = (

⋃
Km) ∪ (

⋃
Cm). Now, by construction,C′ intersects�. If we let C = Cl(C′),

thenC intersects� as well. Furthermore, it is clear thatC ∩ C′ ∩ S(x) = {y}, since any
other point onS(x) different fromy cannot be captured by the closure, as it cannot be a
limit point of the sequence{yi : i ∈ N}, and therefore cannot be a limit of the continua
connecting them. Similarly, it is clear thaty ∈ C by the same reasoning. Therefore,C is
our desired continuum.

Notice that Lemma 2.2 is symmetric, and also works with points that are right-avoidable.

Lemma 2.3. Let x ∈ A, let �1 and �2 be horizontal line segments strictly in betweenA

andB with π1(�1) = π1(�2) such thatπ1(x) ∈ Int(π1(�1)), and suppose that ally ∈ S(x)

between the two line segments are avoidable. Then there is a continuumC with C ∩X = ∅
such thatC connects�1 and�2 andπ1(C) ⊆ π1(�1).

Proof. Let S ⊆ S(x) be the closed interval in between�1 and �2. For eachy ∈ S, let
Uy ⊆ S(x) be the open (inS(x)) interval indicated by the intersections of�1(y) and�2(y)

with S(x). Now since the set{Uy : y ∈ S} coversS, which is compact, we can find a
minimal finite set{y1, y2, . . . , yt} such that{Uyr : 1 � r � t} coversS. For eachyr , let δr
be the length of the line segment�1(y), and letδ = min{δr : 1 � r � t}. Notice thatδ > 0.
Assume that(π1(x)− δ,π1(x)+ δ)⊆ π1(�1) = π1(�2). If not we can pick a new, smaller,
δ such that this holds. Now for eachyr , make the rectangular regionB(r) as follows: Trim
each of�1(yr) and�2(yr) so that they each still end onS(x) but now each has lengthδ.
Next, union each of the two line segments with its reflection acrossS(x). These two line
segments we have just obtained make up one pair of sides ofB(r). The other sides are
obtained from connecting the line segments to each other vertically. Now it is clear that
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the set{Int(B(r)): 1 � r � t} coversS. For eachB(r), we can find a continuumC(r)
connecting the top and bottom ofB(r), and in the side ofB(r) that the line segments for
yr started on, such thatC(r) ∩ X = ∅ andC(r) ⊆ B(r). Notice that no more than two
of these rectangles can overlap in one place, since that would contradict our choice of a
minimal covering set. Now for eachr ands wherer �= s andB(r)∩B(s) �= ∅, find a point
i(r, s) ∈ Int(B(r) ∩ B(s)) ∩ S such thati(r, s) /∈ X. This is possible because otherwise
Int(B(r) ∩ B(s)) ∩ S ⊆ X, contradicting our assumption thatX does not contain an arc.
Suppose thatB(s) is aboveB(r). Now suppose thatC(r) lies in the left side ofB(r).
Using Lemma 2.2, connect the left half of the line segment that is the top ofB(r) to
i(r, s) with a continuumC(r, s) such thatC(r, s)∩X = ∅, C(r, s)⊆ B(r). Do the obvious
parallel construction for the bottom ofB(r), connecting the left half of the line segment
that is the bottom ofB(r) to i(r, t) with a continuumC(r, t) such thatC(r, t) ∩ X = ∅,
C(r, t) ⊆ B(r), and whereB(t) is the box that overlapsB(r) on the bottom. Repeat this
process for allB(r), remembering to find continua on the same side ofB(r) thatC(r) is
on. Once this process is done, simply connect the different continua to each other using
segments from the top and bottom sides of eachB(r) but disjoint from the intersection of
the sides withS. Doing this clearly gives us a continuumC that connects�1 and�2, by
taking the union of all the constructed continua. To see that this continuum is close enough
to S, notice thatπ1(C)⊆ π1(B(r)) for anyp, and that for anyr, π1(B(r)) ⊆ (π1(�1)). To
see thatC ∩X = ∅, notice that each continuum we found was disjoint fromX, and that the
only parts used from the horizontal line segments were used to connectC(r) toC(r, s) for
somer ands, and so were disjoint fromS(x). However, this means the pieces were also
disjoint fromX, and soC ∩X = ∅.

Lemma 2.4. Let x ∈ A, let y ∈ S(x), and let {xi: i ∈ N} ⊆ A \ {x} be a sequence
converging tox such that{π1(xi): i ∈ N} is a strictly increasing sequence. Letγ > 0
and suppose that, for all positive integersi, S(xi)∩Nγ (y) contains only avoidable points.
Theny itself is avoidable.

Proof. Let ε > 0. Choose horizontal line segments�1 and�2 as in the definition of left
avoidability fory so that each lies withinNγ (y). Once again, this is possible by picking
line segments that are subsets of lines inH . Now find subsets of�1 and�2, �′

1 and�′
2 such

that each is still a horizontal line segment ending atS(x) with π1(�
′
1) = π1(�

′
2), but now

each has length less thanε. Now choosext ∈ {xi : i ∈ N} so thatd(xt , x) < ε. Now since
S(xt )∩Nγ (y) contains only avoidable points, we may find, by Lemma 2.3, a continuumC

connecting�′
1 and�′

2 such thatπ1(C)⊆ π1(�
′
1) andC ∩X = ∅. But thenC is our required

continuum forε, and soy is avoidable.

Since this proof is perfectly symmetric, it also works with sequences that are strictly
decreasing. Since from any sequence{xi : i ∈ N} ⊆ A which both converges tox and
has infinitely many distinct terms we can pick out either a strictly increasing or strictly
decreasing subsequence converging tox, we have the following:
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Corollary 2.5. Let x ∈ A and let y ∈ S(x). Let {xi: i ∈ N} ⊆ A be a sequence, with
infinitely many distinct points, converging tox, and letγ > 0 be such thatS(xi) ∩ Nγ (y)

contains only avoidable points for all positive integersi. Theny is avoidable.

Lemma 2.6. There is a continuumC connectingA and B such thatC ∩ X = ∅ and
π1(C) ⊆ π1(A).

Proof. If there is somex ∈ Int(A) with S(x) containing only avoidable points, then by
Lemma 2.3 we can find a continuum with the desired properties by choosing horizontal
line segmentsA′ andB ′ with π1(A

′) = π1(B
′)= π1(A)= π1(B) strictly above and below

A andB, respectively. The result is obtained by takingA = h1 andB = h2 as in the
hypotheses of the lemma. So assume that for allx ∈ Int(A), S(x) contains at least one
unavoidable point. LetV ′ = {x ∈ A: there is a line� ∈ V with x ∈ �}. Notice that, for all
x ∈ V ′, |S(x) ∩ X| � n. For each integert with 1 � t � n, let Wt = {x ∈ V ′: S(x) has
exactlyt unavoidable points}. Note that

V ′ =
⋃

1�t�n

Wt .

Now sinceV ′ is dense inA, there is some minimalm such thatWm is somewhere dense.
Let J ′ ⊆ A be an interval in whichWm is dense. Now since for eacht < m Wt is nowhere
dense, we can find a subintervalJ ⊆ J ′ such that, for allt < m, Wt ∩ J = ∅. We now
show that for allx ∈ J , S(x) cannot have more thanm unavoidable points. Suppose that
x ∈ J andS(x) hasm+ 1 unavoidable points. Choose a sequence{xi: i ∈ N} ⊆ J ∩Wm

converging tox such that{π1(xi): i ∈ N} is strictly increasing. Now for eachxi in the
sequence,S(xi) has onlym unavoidable points. Therefore, there is some unavoidable point
y ∈ S(x) and someγ > 0 such that there are infinitely many pointsxi in the sequence with
S(xi) ∩ Nγ (y) containing only avoidable points. However, these infinitely many points
can be formed into a subsequence satisfying the hypotheses of Lemma 2.4, and soy is
avoidable, a contradiction. Therefore, unlesst =m, Wt ∩ J = ∅.

Now for each integert with 1 � t � m, letYt = {x ∈ J \Wm: x has exactlyt unavoidable
points}. LetY = ⋃

1�t�m Yt . Now sinceV ′ is countable andWm ⊆ V ′, there is some least
k such thatYk is somewhere dense inJ . Let I ′ ⊆ J be an interval in whichYk is dense.
Now since eachYt , with t < k, is nowhere dense, we can find an intervalI ⊆ I ′ ⊆ J

disjoint from allYt wheret < k. Now we already know thatk � m. We want to show that
k = m. If k < m, pick anx ∈ Wm ∩ I , and choose a strictly increasing sequence inI ∩ Yk

converging tox. But duplicating the argument used earlier, we see that this would mean
that one of the unavoidable points inS(x) is actually avoidable, a contradiction. Therefore,
k = m. Now sinceI = Wm ∪ Yk andk =m, we have that for allx ∈ I S(x) has exactlym
unavoidable points.

We now define a functionf : I �→ X. For allx ∈ I , let f (x) be the highest unavoidable
point onS(x). Clearly,f is 1–1. Now, to showf is continuous, fixx ∈ I andε > 0; we
may assume thatε is less than half the distance between each pair of unavoidable points
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onS(x). Sincef (x) is unavoidable, there is aδ > 0 such that ifz ∈ I andd(x, z) < δ, then
there is an unavoidable point ofS(z) within ε of each unavoidable point ofS(x), including
f (x). It is easy to see that this point must bef (z). Thusf is continuous, andX contains
an arc, a contradiction.

Note that everything we have done up to Lemma 2.6 could have been done to obtain
horizontal continua instead of vertical continua, by doing everything with the plane rotated
by π/2.

Proof of Theorem 2.1. Let p ∈ X, let � be the vertical line throughp, and letε > 0. Let
D ⊂ �2 be compact and convex, withNε(p) ⊆D, and letn= nD . Choose two horizontal
line segments�1 and�2 above and belowp, respectively, such that each is contained in
Nε(p), π1(�1) = π1(�2), �1 ∩ X ⊆ �, �2 ∩ X ⊆ �, andπ1(�) ∈ Int(π1(�1)). This choice
is possible, once again, by choosing line segments that are subsets of lines inH . Now,
by Lemma 2.6, we can connect each side of the line segments with continua that are
disjoint from X. Taking the union of the two horizontal line segments, we have a set
whose intersection withX is at most the two points where�1 and�2 intersect�. However,
by the nature of Lemma 2.6, we can find two continua above and belowp, respectively,
that connect the first two continua. This is by the fact that Lemma 2.6 can be applied to
obtain continua connecting vertical lines rather than horizontal lines. Therefore, the union
of the four continua (two from the first application of Lemma 2.6 and two from the second
application) gives us the boundary of a set, closed and open inX, aroundp, and inside
Nε(p), proving the theorem.

Corollary 2.7. If X is an n-point set, partial n-point set, or n-GM set containing no arcs,
thendim(X) = 0.

Proof. The proof for then-point set and partialn-point set is immediate. Now supposeX
is ann-GM set. There are at most two horizontal lines that hitX but do not separate two
points of it. Therefore, the set of horizontal lines hittingX in n or fewer places is dense.
Similarly, the set of vertical lines hittingX in n or fewer places is dense, and we can now
apply the theorem.

This also gives us the answer to a question of L.D. Loveland and S.M. Loveland in
[6], namely must a connected 2-GM set contain an arc? (If a 2-GM set contains an arc,
it must be a simple closed curve, by a result in [6].) We therefore have a result, that any
positive-dimensional 2-GM set is a simple closed curve.

3. A similar result for sets forming finite bases around arcs of length 1

Notice that our hypotheses for Theorem 2.1 could be changed to: SupposeX ⊆ �2 and
H andV are dense sets of horizontal and vertical lines, respectively. Suppose further that
for any compact, convex setD ⊆ �2 there is a positive integernD such that, for any line
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� ∈ H ∪ V , � ∩X ∩ D contains at mostnD unavoidable points. The proof of the theorem
would then be virtually unchanged, as the reader can verify.

LetU ⊆ P(�2) be a set of open sets. CallU anarc-basisif for any A ⊆ �2 whereA is
an arc of length 1 and for any closed setC ⊆ �2 with C ∩ A = ∅ there is aV ∈ U such
thatA ⊆ V and Cl(V ) ∩C = ∅.

For any positive integern, call X ⊆ �2 ann-arc-finite setif there is some arc-basisU
such that for allV ∈U |Bd(V )∩X| � n.

Theorem 3.1. Let n be a positive integer, and letX ⊆ �2 be ann-arc-finite set with the
associated arc-basisU . Then eitherX contains an arc, ordim(X)= 0.

Proof. We give only an outline, as this proof mirrors the proof of Theorem 2.1. First, pick
two horizontal line segmentsA andB with π1(A)= π1(B) andπ2(A)− π2(B)= 1. Now
look at all the vertical line segments of length 1 connectingA to B. LetC be one of these
segments. Let{Vi ∈ U : i ∈ N} be a sequence of open sets aroundC, such that for alli ∈N ,
Cl(Vi+1) ⊆ Vi . This is possible because of the basis property. Now this means that, since
|Bd(Vi) ∩X| � n, for all i, C cannot have more thann unavoidable points, since if it has
n + 1, one of these points must have a sequence of continua disjoint fromX, each a part
of the boundary for someVi , converging to it, meaning it is avoidable. Therefore, each
vertical line segment connectingA andB has at mostn unavoidable points, and we can
apply the proof of Theorem 2.1.

From [1], a subsetX of �2 is called almost an n-point setif there is a nowhere dense
subsetZ of the angles in[0,π] such that every line with angle of inclination not inZ meets
X in exactlyn points. It is clear that an almostn-point set is 3n-arc-finite, using triangles
with sides whose angles of inclination are not inZ. Therefore we have:

Corollary 3.2. Each arc-free, almostn-point set is zero-dimensional.

4. A positive-dimensional rim-72 set with no arcs

With Theorem 3.1 in place, one may conjecture a positive answer to the following
question:

If X ⊆ �2, n is a positive integer, andU is a basis for the plane (in the usual sense) such
that for allV ∈ U , |Bd(V )∩X| � n, does dim(X) > 0 imply thatX contains an arc?

It turns out that the answer to this question is “no”, and we now turn to giving an example
which illustrates this.

Example. There is a rim-72 subsetX of �2 which contains no arcs but which satisfies
dim(X) = 1.

Construction. We call a number in[0,1] triadic if it can be written in the formn/3k

for some integern satisfying 0� n � 3k, and triadic of orderk if the denominator is 3k
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when it is written in lowest terms. We letV (k) andH(k) denote the vertical and horizontal
lines, respectively, whose fixed coordinate is triadic of orderk, and letV = ⋃

k∈N V (k),
H = ⋃

k∈N H(k), andL= V ∪H , with L(k) defined in the obvious fashion. The example
X will be a subset of[0,1]2. Let F = [0,1]2 ∩ (V ∪ H); when we refer to a line, we
will actually mean its intersection with[0,1]2. By a k-squarewe mean the square whose
sides come from four lines, two lines inH determined by fixed coordinatesn/3k and
(n+ 1)/3k for some 0� n < 3k, and two lines inV determined by fixed coordinatesm/3k

and (m + 1)/3k for some 0� m < 3k. It is clear that a basis forX can be obtained by
using the sets which are, for somek, either interiors ofk-squares, or are squares formed by
starting with fourk-squares which intersect at a common point, and taking the interior of
their union (this needs to be adjusted slightly in an obvious way at points of the boundary
of [0,1]2). The boundaries of these basis elements are clearly contained inF . Our goal
is to constructX so thatX ∩ bd(S) ⊂ F , for everyk-squareS, is a boundedly finite set.
To this end, letP denote the set of points inF which are the intersections of lines of
the form lv ∈ V (k) and lh ∈ H(m) where|k − m| � 2. P is a countable set. Notice that
if S is a k-square for anyk, thenP contains at most 10 points of any side ofS, hence
|bd(S) ∩ P | � 40 (in fact one can see that|bd(S) ∩ P | � 36 since either a corner of a
square is inP and thus counted twice in this, or there are at most 9 points on the sides
containing that corner). We will, in fact, constructX so thatX ∩ F = P ; thus, from the
above discussion, we will be sure that the basis elements which are interiors of squares are
at most rim-36, and the basis elements which are interiors of unions of four intersecting
squares are at most rim-72.

The procedure will now be described. First, we need:

Lemma 4.1. If K is a continuum in[0,1]2 from [0,1] × {0} to [0,1] × {1}, then either
K ∩P �= ∅ or |K ∩ [0,1]2\F | = c.

This lemma and transfinite induction will be used to find a subsetX∗ of [0,1]2\F
which intersects every continuum of the type mentioned in the lemma. This guarantees
thatX = X∗ ∪ P satisfies dim(X) � 1. Also, the construction is done in such a way that
[0,1]2\X intersects each arc of[0,1]2. It is then clear thatX is as desired.

Assuming the lemma, we constructX∗. Enumerate by{Aα: α < c} the collection of
arcs in[0,1]2, and by{Kα : α < c} the collection of continua in[0,1]2 from the top to the
bottom. By transfinite induction, for eachα < c, we find pointsxα andyα (with xα ’s not
necessarily distinct). DefiningXγ = {xβ : β � γ } andYγ = {yβ : β � γ }, we will require
that yα ∈ Aα\((⋃β<α Xα) ∪ P) andxα ∈ Kα\(F ∪ Yα). It follows thatX∗ = ⋃

α<c Xα

intersects each member of{Kα: α < c} and does not intersectY ∗ = ⋃
α<c Yα , which

intersects each member of{Aα: α < c}. ThusX∗ will be as required above.
Assume, for allβ < α pointsxβ andyβ have been found appropriately. Observe that

P ∪ (
⋃

β<α Xβ) has fewer thatc points and so we can chooseyα ∈Aα\(P ∪ (
⋃

β<α Xβ)).
Then if Kα ∩ P = ∅, by Lemma 4.1, there are enough points ofKα\F to choose
xα ∈ Kα\(F ∪ Yα).
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Before proving Lemma 4.1, we introduce some more notation and concepts. For each
line l ∈ L, l\P is a collection of open intervals. LetS(k) denote the set of such intervals
arising fromL(k) lines, and letS = ⋃

k∈N S(k). Most elements ofS(k) can be seen to have
length 1/3k+2, except where they have length 1/3k+1 due to crossings with lines inL(r)
for somer < k − 2. Fors ∈ S, by the chain component of swe mean

⋃{t ∈ S: there is
a sequences = s0, s1, . . . , sr = t of elements ofS with si ∩ si+1 �= ∅, for 0 � i < r}. The
collection of chain components partitionsF\P into countably many sets,{Ci : i ∈ N},
since there are only countably many intervals inS, and the chaining process gives an
equivalence relation. The intervals fromS which make up a chain component will be called
its links.

The next lemma illustrates the critical relationship between pairs of chain components:

Lemma 4.2. For any two distinct chain componentsCi andCj , cl(Ci) ∩ cl(Cj ) = ∅, or
else the points of intersection are endpoints of links of bothCi andCj (and are thus inP ).

If s is a closed side of ak-squareB, the quadrant ofs in B is the union ofs with the
open triangular region which hass for one side, and the other two sides, whose union we
call D(s,B), are the segments from the endpoints ofs to the center ofB.

This lemma which is needed to prove Lemma 4.2, indicates how limited chains are, in
terms of length:

Lemma 4.3. If s is a closed side of ak-squareB, the intersection, withB, of the closure
of the union of all chain components which intersects is contained in the quadrant ofs
in B.

Proof. If an elements1 of S(r1) intersectss at a pointp1, then r1 � k + 1 and s1 is
perpendicular tos. The distance fromp1 to any other point ofs1 ∩B is less than 1/3r1+2,
while the distance fromp1 to D(s,B) is at least(

√
2/2)(1/3r1). Now, if an elements2

of S(r2) intersectss1 at a pointp2 of B, then r2 � r1 + 3 and the distance ofp2 to
any other point ofs2 is at most 1/3r2+2 � 1/3r1+5. Continuing in this fashion, we see
that if s = s0, s1, s2, . . . , sm is a chain fromp1 into B, then the maximum distance from
p1 to a point on the chain is bounded by the sum 1/3r1+2(1 + 1/27+ 1/272 + · · ·) =
(1/3r1+2)(27/26) < 1/2(

√
2/2)(1/3r1). Thus the distance from the point of intersection

of a chain component intoB with s to any point of that chain component inB is less than
half the distance of that point of intersection to the setD(s,B). The lemma follows.

Proof of Lemma 4.2. SupposeC1 andC2 are distinct chain components, andp is not
an endpoint of a link of eachCi . We must show thatp is not in

⋂
i∈{1,2} cl(Ci). First,

consider the case wherep is in the interior of somek-squareB such that the complement
of B contains points of bothCi ’s. Then bothCi ’s intersect the boundary ofB, or elsep
is not in the closure ofCi ∩ B, for both i ∈ {1,2}. But p is in only one quadrant ofB,
(by Lemma 4.3,p is not on a diagonal; otherwisep cannot be in the closure of eitherCi

which must intersect sides ofB). If theCi ’s do not intersect a common side ofB then by
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Lemma 4.3 we are done. But even if they do, we can subdivide along that side and apply
Lemma 4.3 to the smaller boxes to see thatp can only be in the closure of one of theCi ’s.
The case thatp is not in the interior of somek-square requiresp being either on one or
two lines inL. Then we can takeB to be, for small enoughk, the union of allk-squares
containingp (there are either two or four of these), so that bothC1 andC2 contain points
outside the union of these boxes, and also small enough so that for at least onei ∈ {1,2},
theL lines throughp when intersected withB contain no points ofCi . Then applying
Lemma 4.3 to each of the sides of thek-squares which are in the boundary ofB, it is clear
thatp cannot be in the closure ofCi , sinceCi ’s chains can only enter through these sides.

Proof of Lemma 4.1. Fix K a continuum from the top to the bottom of[0,1]2. By the
methods from the proof of Lemma 4.3, one can easily check that no chain component
has diameter greater than 1/3. ThusK is not contained in a chain component. Either
the sets of the formK ∩ cl(Ci) are pairwise disjoint, or elseK contains a point ofP ,
by Lemma 4.2. AssumingK ∩ P = ∅, then K is partitioned into closed sets by the
collection{K ∩ cl(Ci): i ∈ N} ∪ {{x}: x ∈ K\⋃

i∈N cl(Ci)}. By the Sierpinski Theorem
[8, Exercise 4.6.1] no continuum can be partitioned by countably many closed sets, so
{{x}: x ∈K\⋃

i∈N cl(Ci)} must be uncountable. Its cardinality isc because this set isGδ

in K, and cannot be countable.

Remark. Since bothV andH are dense in the sets of vertical and horizontal lines which
intersectX, andX intersects each such line in a finite set, this means the boundedness
conditions in Theorems 2.1 and 3.1 cannot be relaxed to just finite. Thus the condition
|X ∩ D ∩ �| � nD in Theorem 2.1, and then-arc-finite condition of Theorem 3.1 seem to
be necessary.
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