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Abstract

We investigate properties of rim-finite subsets of the plane (those which have topological
bases whose elements have finite boundaries), which are also arc-free. Recently (see [K. Bouhjar,
J.J. Dijkstra, Preprint], [K. Bouhjar, J.J. Dijkstra, J. van Mill, Topology Appl., to appear],
[M.N. Charatonik, W.J. Charatonik, Comment. Math. Univ. Carolin., to appear], [D.L. Fearnley,
J.W. Lamoreaux, Proc. Amer. Math. Soc., to appear] and [L.D. Loveland, S.M. Loveland, Houston J.
Math. 23 (1997) 485-497]) there has been considerable research regafbing sets (sets which
intersect each line in exacth~points). These spaces are rim-finite (since the interior of a triangle
has its boundary contained in a union of three lines, each of which pamts of the space), and our
investigation provides a direction to generalize them. One of our main theorems seems to generalize
all known results regarding the dimensiomepoint sets (see, for example, [K. Bouhjar, J.J. Dijkstra,

J. van Mill, Topology Appl., to appear], [D.L. Fearnley, J.W. Lamoreaux, Proc. Amer. Math. Soc.,

to appear] and [J. Kulesza, Proc. Amer. Math. Soc. 116 (1992) 551-553]), and beyond that has, as
corollaries, the solutions to problems of Bouhjar and Dijkstra [Preprint], and L.D. Loveland and S.M.
Loveland [Houston J. Math. 23 (1997) 485-497]. In Bouhjar and Dijkstra [Preprint] it is asked if all
n-point sets which are arc-free must be zero-dimensional, and our result gives a positive answer.
In [L.D. Loveland, S.M. Loveland, Houston J. Math. 23 (1997) 485-497] it is asked whether a
connected 2-GM set must contain an arc, and again we give a positive answer.

Another main theorem states thaiifis a subset ofi2 such that there is a nonnegative integso
that every straight interval of length 1 has a local basis of open sets with boundaries which intersect
X in a set of cardinality less than or equaliothen eitherX is zero-dimensional oK contains an
arc. We produce an example which demonstrates that, essentially, our theorem cannot be improved.
The “straight interval of length 1” cannot be replaced by “point”, because our example has a base of
open sets whose boundaries have cardinality less than or equal to 72 and contains no arcs, yet has
dimension 1. This example seems to be the first of a positive dimensional, rim-finite and arc-free
separable metric space.
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1. Introduction

All spaces considered are separable and metrizable. Call a gjraeknite (rim-n) if
it has a basis of open sets whose boundaries are finite (have atpostts). Rim-finite
continua have been studied rather extensively; important to us is that rim-finite continua
are arcwise connected, as shown by Ward in [9]. In this paper we strdfree rim-
finite subsets ofi?, that is, rim-finite subsets which do not contain homeomorphic images
of [0, 1]. By the result of Ward, such sets cannot contain continua. In particular we are
interested in the dimension properties of such sets, which must be at most one, since the
finite boundaries have dimension at most 0.

Our motivation comes from the fact that these spaces are apparently not well understood,
and yet simultaneously generalize the classesgdoint sets sets which intersect each
straight line in exactly: points, and:-GM sets, those with the property that if straight a
lines separate two points of the set, then that line contains exagtbints from the set.
There has been recent and interesting work involving these types of subsets of the plane
in [1-4,6].

Regarding:-point sets, it is shown in [5], answering a question of Mauldin (in [7]), that
each two-point set must be zero-dimensional. A key part of the proof was showing that
a two-point set can contain no arc. More recently, in [2], it is shown that no three-point
set could contain an arc, but that fec> 4 there are:-point sets which do contain arcs.

This prompted the question, posed by Dijkstra, of whether a three-point set must be zero-
dimensional. This question was recently answered in [4], where it is shown that three-point
sets are, in fact, zero-dimensional. A natural generalization of this is posed in [1], where
it is asked if ann-point set without any arcs must be zero-dimensional. Our main result
in Section 2 has, as a corollary, that this is the case. Our result is much stronger that this
though; itimplies, for example, that if we only require tBaintersects all lines from dense
subsets of both the vertical and horizontal lines in at mgsbints, andX is arc-free, then

X is zero-dimensional. We point out that our method of proof expands, but relies on the
main idea in [4].

We also show that the main theorem from Section 2 provides a solution to a problem
from [6]: must a connected 2-GM set contain an arc? In fact, using a result from [6], we
show that a positive-dimensional 2-GM set must be a simple closed curve, and also that a
positive-dimensionat-GM set must contain an arc.

In Section 3, we prove a theorem based on the main result of Section 2, which states
that if X c %2 is arc-free and rime at each straight arc of length one, meaning that each
arc of length one has a local base with at megioints of X on the boundaries of the
base sets, thek is zero-dimensional. If the “straight arc” could be replaced by “point” in
this theorem, then every arc-free, rimsubset ofit?2 would be zero-dimensional. However
this is not the case, as is shown in Section 4, where an arc-free, rim-72 planar example
with positive dimension is given. Thus the theorem of Section 3, in some sense, isolates
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the weakest set of requirements to guarantee an arc-free rim-finite planar set is zero-
dimensional. We remark that, by Proposition 25 in [1], this example cannot be totally
disconnected.

2. Positive-dimensional r-point setsall contain arcs

We call X € 92 ann-point setif for all lines ¢ € %2, |¢ N X| = n. We call X apartial
n-point set if for all linest € %2, |¢ N X| < n. We callX € %2 ann-GM-setif for all lines
¢ C %2 separating two points af, [¢ N X| = n. It is easy to check that partial-point
sets (and thus-point sets) are rim+3, if X is a partialn-point set, the open sets whose
boundaries are triangles have at most®undary points irX. To see that a partial-GM
setX is rim-3n, fix p € X, and consider that if there are points X¥fto the right of p,
then there is a vertical line close o and to its right with at most points. Repeating
this reasoning, using the half planes determined by the lines parajletto andy = —x
which containp, the result is clear.

Let H andV be sets of horizontal and vertical lines, respectivelyiifn Call H' € H
densdf for all €1, ¢, € H there is¢ € H' such that is betweer?; and¢,. Similarly, call
V' C V densefforall £1, £, € V thereist € V' such that is betweer?; and .

This is the main theorem of the section, which gives a large class of arc-free rim-finite
sets which must be zero-dimensional.

Theorem 2.1. Let H and V be countable dense sets of horizontal and vertical lines,
respectively, and lek C 92 such thatX contains no arcs and for every compact, convex
D C R2thereis amip with [ X N DN ¢| <np foralllines¢ € HU V. Thendim(X) = 0.

The method of proof we use makes extensive use of the technique used in [4]. We break
the theorem down into several lemmas. For the remainder of the sectidraihetB be two
horizontal line segments withy (A) = 71(B), let D C %2 be a compact, convex set whose
interior contains the compact rectangular region specified layd B, and leth = np as
defined in the theorem. Fare A, let S(x) denote the vertical line segment startingdat
and ending aB, with S(x) N A = {x}.

Letx € A and lety € S(x). Generalizing the notion from [4], cajl avoidableif there
exist two horizontal line segments(y) and¢2(y) such that the following properties hold:

(1) Each ofty1(y) and£2(y) ends onS(x);

(2) ¢1(y) is abovey andfx(y) is belowy;

(3) (L1 (y)) = m1(£2(y));

(4) L1(y)NX C S(x) andl2(y) N X € S(x);

(5) Foralle > 0thereis a continuur@ suchtha N X =@, C N S(x) =¥, C connects

£1(y) and€z(y), andr1(C) C (w1(x) — &, w1(x) + €).

More specifically, call left-avoidablédf £1(y) and¢x(y) lie on the left side of(x), and
call it right-avoidableif ¢1(y) and¢2(y) lie on the right side of(x). Call y unavoidable
if it is not avoidable. Note that does not necessarily have to beXrto be unavoidable.
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Lemma 2.2. Letx € A and lety € S(x) be left-avoidable. Let € D be a horizontal
line segment withr1(£) = [r1(x) — €, m1(x)] for somes > 0 andy ¢ £ such thatra(£) €
[2(€2(¥)), m2(€1(y))]. Then we can find a continuu@ with C N X C {y} such thatC
connectg andy, 71(C) C w1(£), andC N S(x) = {y}.

Proof. Without loss of generality, assume that(¢) < 72(y). Choose a sequen€g: i €

N} C S(x) between? N S(x) andy converging toy such that{zo(y;): i € N} is strictly
increasing, and such that for all positive integerst,, is a horizontal line segment with

Ym € L, 1) C [w1(x) — &/m, w1(x)], and £, N X C {y,}. Let £o = £. Notice that

the construction of such a sequence is possible by choosing line segments that are subsets
of lines in H, the countable dense set of horizontal lines. The last property is given by
the fact that for allt/ ¢ HU V, | X N ¢ N D| < n, so we may find some interval on
these lines disjoint fronX. Now we use the avoidability of to construct a continuum
with the desired properties. For eagh, find a continuumC,, connectingt,, to £,,+1,

with 71(Cp,) C m1(€,,), and withC,, N X = @. Notice that this is possible, sindg, and

{m+1 lie betweené1(y) and £2(y), so we may find continua arbitrarily close 8ix).
Furthermore, for each nonnegative integeret K,,, C ¢, be a closed sub-arc containing
CuN4&y andCy—1 N €y With K, N S(x) = @. Therefore, eaclk,, is disjoint from X.

Let C' = (IJ Km) U (JCw). Now, by constructionC” intersect<. If we let C = CI(C"),
thenC intersectsl as well. Furthermore, it is clear thatnN C’ N S(x) = {y}, since any
other point onS(x) different fromy cannot be captured by the closure, as it cannot be a
limit point of the sequencéy;: i € N}, and therefore cannot be a limit of the continua
connecting them. Similarly, it is clear thate C by the same reasoning. Therefo€gjs

our desired continuum.

Notice that Lemma 2.2 is symmetric, and also works with points that are right-avoidable.

Lemma 2.3. Letx € A, let £1 and £2 be horizontal line segments strictly in betweén
and B with 1 (1) = m1(€2) such thatr1(x) € Int(r1(£1)), and suppose that ajl € S(x)
between the two line segments are avoidable. Then there is a contwith CNX =@
such thatC connectg1 and¢; andz1(C) C m1(£1).

Proof. Let § C S(x) be the closed interval in betwedn and ¢2. For eachy € S, let
U, C S(x) be the open (ir§(x)) interval indicated by the intersections&f(y) and{z(y)
with S(x). Now since the sefU,: y € S} coversS, which is compact, we can find a
minimal finite set{ys, yo, ..., y} such thaf{U,,: 1 <r <t} coversS. For eachy,, let§,
be the length of the line segment(y), and lets = min{s,: 1 <r <t¢}. Notice thats > 0.
Assume thatmy(x) — 8, m1(x) + 8) C w1(£1) = w1(£2). If not we can pick a new, smaller,
8 such that this holds. Now for eagh, make the rectangular regi@(r) as follows: Trim
each ofé1(y,) andZ2(y,) so that they each still end o$(x) but now each has length
Next, union each of the two line segments with its reflection acsgss. These two line
segments we have just obtained make up one pair of sid®&§r9f The other sides are
obtained from connecting the line segments to each other vertically. Now it is clear that
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the set{Int(B(r)): 1< r <t} coversS. For eachB(r), we can find a continuund (r)
connecting the top and bottom &f(r), and in the side oB(r) that the line segments for

v, started on, such that () N X = ¢ and C(r) € B(r). Notice that no more than two

of these rectangles can overlap in one place, since that would contradict our choice of a
minimal covering set. Now for eachands wherer # s and B(r) N B(s) # @, find a point

i(r,s) € Int(B(r) N B(s)) N S such thati(r,s) ¢ X. This is possible because otherwise
Int(B(r) N B(s)) N S C X, contradicting our assumption th&tdoes not contain an arc.
Suppose thaB(s) is aboveB(r). Now suppose thaf (r) lies in the left side ofB(r).

Using Lemma 2.2, connect the left half of the line segment that is the tap(of to

i(r,s) with a continuumC(r, s) such thailC(r,s) N X =@, C(r,s) € B(r). Do the obvious
parallel construction for the bottom @&f(r), connecting the left half of the line segment
that is the bottom ofB(r) to i(r, t) with a continuumC(r, t) such thatC(r,z1) N X = @,

C(r,t) C B(r), and whereB(r) is the box that overlapB8(r) on the bottom. Repeat this
process for allB(r), remembering to find continua on the same sid®0f) thatC(r) is

on. Once this process is done, simply connect the different continua to each other using
segments from the top and bottom sides of eA¢h but disjoint from the intersection of

the sides withS. Doing this clearly gives us a continuuéhthat connect$; and ¢z, by

taking the union of all the constructed continua. To see that this continuum is close enough
to S, notice thatr1(C) C m1(B(r)) for any p, and that for any, 71(B(r)) C (r1(£1)). To

see thaC N X = ¢, notice that each continuum we found was disjoint frEmand that the

only parts used from the horizontal line segments were used to co@inecdio C(r, s) for

somer ands, and so were disjoint fron§(x). However, this means the pieces were also
disjoint from X, and soC N X = @.

Lemma 24. Let x € A, let y € S(x), and let{x;: i € N} C A\ {x} be a sequence
converging tox such that{m1(x;): i € N} is a strictly increasing sequence. Lgt> 0
and suppose that, for all positive integérsS(x;) N N,, (y) contains only avoidable points.
Theny itself is avoidable.

Proof. Let ¢ > 0. Choose horizontal line segmertsand ¢, as in the definition of left
avoidability for y so that each lies withiwv, (y). Once again, this is possible by picking
line segments that are subsets of linegfinNow find subsets of; and¢z, £; and¢’, such
that each is still a horizontal line segment ending@t) with 71(¢7) = w1(¢5), but now
each has length less thanNow choosex; € {x;: i € N} so thatd(x;, x) < &. Now since
S(x;) NN, (y) contains only avoidable points, we may find, by Lemma 2.3, a contindum
connectingj and¢’, such thatry (C) € m1(¢7) andC N X = @. But thenC is our required
continuum fore, and soy is avoidable.

Since this proof is perfectly symmetric, it also works with sequences that are strictly
decreasing. Since from any sequeneg i € N} € A which both converges te and
has infinitely many distinct terms we can pick out either a strictly increasing or strictly
decreasing subsequence converging,tave have the following:
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Corollary 25. Letx € A and lety € S(x). Let {x;: i € N} C A be a sequence, with
infinitely many distinct points, converging.to and lety > 0 be such thalS(x;) N N, (y)
contains only avoidable points for all positive integér3heny is avoidable.

Lemma 2.6. There is a continuunC connectingA and B such thatC N X = ¢ and
m1(C) S m1(A).

Proof. If there is somer € Int(A) with S(x) containing only avoidable points, then by
Lemma 2.3 we can find a continuum with the desired properties by choosing horizontal
line segmentst’ and B’ with 71(A") = m1(B’) = m1(A) = m1(B) strictly above and below

A and B, respectively. The result is obtained by takiAg= 41 and B = hy as in the
hypotheses of the lemma. So assume that fox alint(A), S(x) contains at least one
unavoidable point. LeV’ = {x € A: thereis a lineZ € V with x € £}. Notice that, for all

x eV, |S(x) N X| < n. For each integer with 1 <t <n, let W, = {x € V': S(x) has
exactlys unavoidable poinis Note that

vi= | w.
1<t<n

Now sinceV’ is dense in4, there is some minimak such thatW,, is somewhere dense.
Let J' C A be an interval in whict¥,, is dense. Now since for each< m W; is nowhere
dense, we can find a subintervalc J’ such that, for alt < m, W; N J = @. We now
show that for allx € J, S(x) cannot have more than unavoidable points. Suppose that
x € J andS(x) hasm + 1 unavoidable points. Choose a sequefagei e N} C J NW,
converging tox such that{z1(x;): i € N} is strictly increasing. Now for eack; in the
sequence§(x;) has onlym unavoidable points. Therefore, there is some unavoidable point
y € S(x) and some/ > 0 such that there are infinitely many pointsn the sequence with
S(x;) N N, (y) containing only avoidable points. However, these infinitely many points
can be formed into a subsequence satisfying the hypotheses of Lemma 2.4, sl so
avoidable, a contradiction. Therefore, unlessm, W, N J = .

Now for each integerwith 1 <t < m, letY; = {x € J\ W,,: x has exactly unavoidable
points. LetY = (J;, <, ¥:- Now sinceV’ is countable and¥,, < V', there is some least
k such thatl; is somewhere dense ih. Let I’ C J be an interval in whicty; is dense.
Now since eachY;, with ¢ < k, is nowhere dense, we can find an interyat I’ € J
disjoint from allY; wherer < k. Now we already know thdt < m. We want to show that
k=m.If k <m, pick anx € W,, N I, and choose a strictly increasing sequencenYj
converging tax. But duplicating the argument used earlier, we see that this would mean
that one of the unavoidable pointsSiiv) is actually avoidable, a contradiction. Therefore,
k =m. Now sincel = W,,, U Y, andk =m, we have that for alk € I S(x) has exactlyn
unavoidable points.

We now define a functiorf : I +— X. For allx € I, let f(x) be the highest unavoidable
point onS(x). Clearly, f is 1-1. Now, to showf is continuous, fixx € I ande > 0; we
may assume that is less than half the distance between each pair of unavoidable points
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on S(x). Sincef (x) is unavoidable, there iséa> 0 such that it € I andd(x, z) < §, then
there is an unavoidable point 8tz) within ¢ of each unavoidable point ¢f(x), including
f(x). Itis easy to see that this point must |f€). Thus f is continuous, an& contains
an arc, a contradiction.

Note that everything we have done up to Lemma 2.6 could have been done to obtain
horizontal continua instead of vertical continua, by doing everything with the plane rotated
by /2.

Proof of Theorem 2.1. Let p € X, let ¢ be the vertical line throughp, and lete > 0. Let

D C %2 be compact and convex, with (p) € D, and letn = np. Choose two horizontal

line segmentg1 and £, above and below, respectively, such that each is contained in
Ne(p), m1(€1) = m1(€2), 1N X C €, L2 N X C ¢, andmwy(€) € Int(;r1(£1)). This choice

is possible, once again, by choosing line segments that are subsets of liHes\iow,

by Lemma 2.6, we can connect each side of the line segments with continua that are
disjoint from X. Taking the union of the two horizontal line segments, we have a set
whose intersection witlx is at most the two points whefg and{; intersect!. However,

by the nature of Lemma 2.6, we can find two continua above and bgjaoespectively,

that connect the first two continua. This is by the fact that Lemma 2.6 can be applied to
obtain continua connecting vertical lines rather than horizontal lines. Therefore, the union
of the four continua (two from the first application of Lemma 2.6 and two from the second
application) gives us the boundary of a set, closed and opeéh mroundp, and inside
N:(p), proving the theorem.

Corollary 2.7. If X is an n-point set, partial n-point set, or n-GM set containing no arcs,
thendim(X) =0.

Proof. The proof for thez-point set and partial-point set is immediate. Now suppoXe

is ann-GM set. There are at most two horizontal lines thathibut do not separate two
points of it. Therefore, the set of horizontal lines hittikigin n or fewer places is dense.
Similarly, the set of vertical lines hitting in n or fewer places is dense, and we can now
apply the theorem.

This also gives us the answer to a question of L.D. Loveland and S.M. Loveland in
[6], namely must a connected 2-GM set contain an arc? (If a 2-GM set contains an arc,
it must be a simple closed curve, by a result in [6].) We therefore have a result, that any
positive-dimensional 2-GM set is a simple closed curve.

3. A similar result for setsforming finite bases around arcs of length 1
Notice that our hypotheses for Theorem 2.1 could be changed to: Sugpo$#? and

H andV are dense sets of horizontal and vertical lines, respectively. Suppose further that
for any compact, convex sé C 9i? there is a positive integerp such that, for any line
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£e HUV,¢N XN D contains at mosip unavoidable points. The proof of the theorem
would then be virtually unchanged, as the reader can verify.

Let U € P(%?) be a set of open sets. Céllanarc-basisif for any A € %2 whereA is
an arc of length 1 and for any closed getc %2 with C N A = ¢ there is aV € U such
thatACVandClV)NnC =4¢.

For any positive integet, call X C 92 ann-arc-finite sefif there is some arc-basig
such thatforallv € U |Bd(V) N X| < n.

Theorem 3.1. Letn be a positive integer, and et C 932 be ann-arc-finite set with the
associated arc-basi§. Then eitherX contains an arc, odim(X) = 0.

Proof. We give only an outline, as this proof mirrors the proof of Theorem 2.1. First, pick
two horizontal line segment$ and B with 71(A) = w1(B) andn2(A) — m2(B) = 1. Now

look at all the vertical line segments of length 1 connecting B. Let C be one of these
segments. LefV; € U: i € N} be a sequence of open sets arognduch that for all € N,
Cl(V;+1) C V;. This is possible because of the basis property. Now this means that, since
IBd(V;) N X| < n, for all i, C cannot have more thanunavoidable points, since if it has

n + 1, one of these points must have a sequence of continua disjoint¥fraach a part

of the boundary for som#&;, converging to it, meaning it is avoidable. Therefore, each
vertical line segment connecting and B has at most unavoidable points, and we can
apply the proof of Theorem 2.1.

From [1], a subseX of %72 is called almost an n-point sef there is a nowhere dense
subsetZ of the angles if0, =] such that every line with angle of inclination notinmeets
X in exactlyn points. It is clear that an almostpoint set is 3-arc-finite, using triangles
with sides whose angles of inclination are no#ZinTherefore we have:

Corollary 3.2. Each arc-free, almost-point set is zero-dimensional.

4. A positive-dimensional rim-72 set with no arcs

With Theorem 3.1 in place, one may conjecture a positive answer to the following
question:

If X C M2, nis a positive integer, ant!l is a basis for the plane (in the usual sense) such
thatforallV e U, |Bd(V) N X| < n, does diniX) > 0 imply thatX contains an arc?

Itturns out that the answer to this question is “no”, and we now turn to giving an example
which illustrates this.

Example. There is a rim-72 subsef of %2 which contains no arcs but which satisfies
dim(X) = 1.

Construction. We call a number iff0, 1] triadic if it can be written in the forma /3
for some integen satisfying 0< n < 3, and triadic of orderk if the denominator is 3
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when it is written in lowest terms. We 1&t(k) and H (k) denote the vertical and horizontal
lines, respectively, whose fixed coordinate is triadic of ofdeand letV =,y V (k),

H =,y H(k),andL =V U H, with L(k) defined in the obvious fashion. The example

X will be a subset 0f0, 1]2. Let F = [0, 1] N (V U H); when we refer to a line, we

will actually mean its intersection witf0, 1]2. By a k-squarewe mean the square whose
sides come from four lines, two lines i determined by fixed coordinates3* and
(n+1)/3* for some 0< n < 3%, and two lines inV determined by fixed coordinates/ 3
and (m + 1)/3* for some 0< m < 3X. It is clear that a basis fok can be obtained by
using the sets which are, for sorhgeither interiors ok-squares, or are squares formed by
starting with fourk-squares which intersect at a common point, and taking the interior of
their union (this needs to be adjusted slightly in an obvious way at points of the boundary
of [0, 1]%). The boundaries of these basis elements are clearly containeéd@ur goal

is to constructX so thatX N bd(S) C F, for everyk-squares, is a boundedly finite set.

To this end, letP denote the set of points i which are the intersections of lines of
the forml, € V (k) andl, € H(m) wherelk —m| < 2. P is a countable set. Notice that

if S is ak-square for any, then P contains at most 10 points of any side &ifhence

| bd(S) N P| < 40 (in fact one can see thabd(S) N P| < 36 since either a corner of a
square is inP and thus counted twice in this, or there are at most 9 points on the sides
containing that corner). We will, in fact, constru€tso thatX N F = P; thus, from the
above discussion, we will be sure that the basis elements which are interiors of squares are
at most rim-36, and the basis elements which are interiors of unions of four intersecting
squares are at most rim-72.

The procedure will now be described. First, we need:

Lemma 4.1. If K is a continuum in(0, 1]2 from [0, 1] x {0} to [0, 1] x {1}, then either
KNP+@or|KN[0, 112\ F|=c.

This lemma and transfinite induction will be used to find a subsetof [0, 112\ F
which intersects every continuum of the type mentioned in the lemma. This guarantees
that X = X* U P satisfies dingX) > 1. Also, the construction is done in such a way that
[0, 1]\ X intersects each arc ¢, 1]°. It is then clear thaX is as desired.

Assuming the lemma, we construkt. Enumerate by{A,: « < c} the collection of
arcs in[0, 112, and by{K,: o < c} the collection of continua ifi0, 1]2 from the top to the
bottom. By transfinite induction, for eagh< c, we find pointsx, andy, (with x,’s not
necessarily distinct). Defining,, = {xg: g <y} andY, = {yg: B < v}, we will require
thaty, € Aa\((Uﬂm Xo) U P) andx, € Ko \(F U Yy). It follows that X* = |, _; X«
intersects each member ¢K,: o < c} and does not intersedt* = | J,_. Y«, Which
intersects each member{f,: « < c}. ThusX™ will be as required above.

Assume, for allg < o pointsxg andyg have been found appropriately. Observe that
PU (Uﬂ<a Xp) has fewer that points and so we can choogge A\ (P U (Uﬂ<a Xp)).
Then if K, N P =@, by Lemma 4.1, there are enough points K{\F to choose
Xq € K\ (FUY,).
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Before proving Lemma 4.1, we introduce some more notation and concepts. For each
linel e L, \P is a collection of open intervals. L&t(k) denote the set of such intervals
arising fromL (k) lines, and letS =  J, .y S(k). Most elements of (k) can be seen to have
length 1/3¥+2, except where they have lengti3ft1 due to crossings with lines in(r)
for somer < k — 2. Fors € S, by the chain component of we mean J{r € S: there is
a sequence = sp, 1, ..., s, =t of elements ofS with s; Ns;11# @, for0<i <r}. The
collection of chain components partitio#®\ P into countably many set§C;: i € N},
since there are only countably many intervalsSinand the chaining process gives an
equivalence relation. The intervals frasiwhich make up a chain component will be called
its links.

The next lemma illustrates the critical relationship between pairs of chain components:

Lemma 4.2. For any two distinct chain component$ and C;, cl(C;) N cl(C;) =9, or
else the points of intersection are endpoints of links of lagtand C; (and are thus inP).

If s is a closed side of &-squareB, the quadrant ofs in B is the union ofs with the
open triangular region which hagfor one side, and the other two sides, whose union we
call D(s, B), are the segments from the endpoints ¢d the center oB.

This lemma which is needed to prove Lemma 4.2, indicates how limited chains are, in
terms of length:

Lemma4.3. If s is a closed side of &-squareB, the intersection, witlB, of the closure
of the union of all chain components which intersed$ contained in the quadrant of
in B.

Proof. If an elements; of S(r1) intersectss at a pointpy, thenry > k + 1 ands; is
perpendicular ta. The distance fronp; to any other point of1 N B is less than 13172,
while the distance fromp; to D(s, B) is at least(+v/2/2)(1/31). Now, if an element,

of S(rp) intersectss1 at a pointp, of B, thenrz > r1 + 3 and the distance op, to
any other point ofs, is at most }32t2 < 1/31+5, Continuing in this fashion, we see
that if s = so, 51, 52, ..., s, IS @ chain fromp1 into B, then the maximum distance from
p1 to a point on the chain is bounded by the sup®1+2(1+ 1/27+ 1/272 + ---) =
(1/3112)(27/26) < 1/2(+/2/2)(1/31). Thus the distance from the point of intersection
of a chain component int® with s to any point of that chain component his less than
half the distance of that point of intersection to the B¢t, B). The lemma follows.

Proof of Lemma 4.2. SupposeC1 and Cz are distinct chain components, apdis not
an endpoint of a link of eacls;. We must show thap is not in ﬂie{l,z} cl(C;). First,
consider the case whegeis in the interior of somé&-squareB such that the complement
of B contains points of botld’;'s. Then bothC;’s intersect the boundary @, or elsep
is not in the closure o€; N B, for bothi € {1, 2}. But p is in only one quadrant oB,
(by Lemma 4.3p is not on a diagonal; otherwige cannot be in the closure of eith€f
which must intersect sides &). If the C;’s do not intersect a common side Bfthen by
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Lemma 4.3 we are done. But even if they do, we can subdivide along that side and apply
Lemma 4.3 to the smaller boxes to see thatan only be in the closure of one of thg’s.

The case thap is not in the interior of somé-square requirep being either on one or

two lines in L. Then we can take& to be, for small enough, the union of allk-squares
containingp (there are either two or four of these), so that b6ihandC2 contain points
outside the union of these boxes, and also small enough so that for at ledst §he?},

the L lines throughp when intersected wittB contain no points of”;. Then applying
Lemma 4.3 to each of the sides of theaquares which are in the boundary®fit is clear

that p cannot be in the closure @f;, sinceC;’s chains can only enter through these sides.

Proof of Lemma 4.1. Fix K a continuum from the top to the bottom [, 1]2. By the
methods from the proof of Lemma 4.3, one can easily check that no chain component
has diameter greater than3lL Thus K is not contained in a chain component. Either
the sets of the fornkK N cl(C;) are pairwise disjoint, or els& contains a point ofP,

by Lemma 4.2. Assumin N P = @, then K is partitioned into closed sets by the
collection{K Ncl(C;): i e N} U {{x}: x € K\ |,y cl(Ci)}. By the Sierpinski Theorem

[8, Exercise 4.6.1] no continuum can be partitioned by countably many closed sets, so
{{x}: x € K\ |J;cy CI(C;)} must be uncountable. Its cardinalitydbecause this set i5;

in K, and cannot be countable.

Remark. Since bothV andH are dense in the sets of vertical and horizontal lines which
intersectX, and X intersects each such line in a finite set, this means the boundedness
conditions in Theorems 2.1 and 3.1 cannot be relaxed to just finite. Thus the condition
| XN DN{l <np in Theorem 2.1, and the-arc-finite condition of Theorem 3.1 seem to

be necessary.
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