Corrections for Logic for Applications  $2^{nd}$  edition April, 2023

- p. 10 -12: We begin by ...of the tree. -> We begin by defining a linear ordering  $\leq_n$  of each level n by induction on the levels. Suppose  $\sigma$  and  $\tau$  are on level n+1 and are the immediate successors of  $\sigma'$  and  $\tau'$ , respectively, of level n. If  $\sigma' <_n \tau'$  then  $\sigma <_{n+1} \tau$ . If  $\sigma' = \tau'$  then we order their immediate successors in some fixed fashion to determine the relationship between  $\sigma$  and  $\tau$ 
  - 1. -4: find the largest... T. ->

find the smallest level of T at which the predecessors x' and y' of x and y, respectively, are distinct.

- p. 11 Exercise 6: chain -> sequence
- p. 11 Exercise 7: We define the lexicographic ordering  $\langle x_1, \ldots, x_n \rangle$  of natural numbers as would be expected:  $\langle x_1, \ldots, x_n \rangle <_L \langle y_1, \ldots, y_n \rangle$  if  $x_i < y_i$  for the least i such that  $x_i \neq y_i$ .
- p. 14 Figure 2: The root here should be labeled  $((\neg(A \land B)) \to C)$  and the left node on the next level should be  $(\neg(A \land B))$ .
  - p. 17 l. 7: propositions -> propositional letters.
    - 1. 8: proposition -> propositional letter.
  - p. 21 Exercise 1: (i.e. unabbreviated -> (based on Definition 2.1).
  - p. 22 Exercise 10  $\neg \alpha \rightarrow (\neg A)$  and omit "from  $\alpha$ ".
- p. 23 Add Exercise 17: Complete the remaining cases in the proof of Theorem 2.4.
  - p. 25 l. 3 of Definition 3.8  $V \rightarrow V(\sigma)$ 
    - 1.  $-2 \pm -> \Sigma$
- p.34 l.7 of proof of 4.8 to end of proof: in the construction.... we would reduce  $E. \rightarrow$

in the construction of the CST, if E is not already reduced on P, we reduce an unreduced entry on a level  $k \leq n$ . Thus we can proceed for at most finitely many steps in this construction before we would reduce E.

- p. 35 l. 5: add at the end: This notion corresponds to the number of occurrences of connectives in the proposition.
- 1. -1 of Definition 4.10: the signed propositions -> the degrees of the signed propositions
- p. 36 4b: mismatched parentheses. should be  $((\alpha \land \beta) \to \gamma) \to ((\alpha \to (\beta \to \gamma)))$ .
  - p. 42 Last line before Theorem 6.4:  $T\alpha \rightarrow T\alpha_m$

- p. 44 l. -4 At end of this paragraph add: Note that if  $\sigma \subseteq \tau \in T$  then  $\sigma \in T$  and so T is binary branching.
  - p. 46 Exercise 7 line before **Note**: omit "; the order has width three"
  - p. 51 l. 3: the propositional -> the negations of propositional l. -2: parent -> parents
  - p. 52 Definition 8.6: a labeled binary tree -> a finite labeled binary tree
  - p. 55 l. -4 of Proof of Lemma 8.14:  $\ell \rightarrow \ell$  or  $\bar{\ell}$
  - p. 62 Exercise 14: add the hypothesis that S is satisfiable.
  - p. 64 l. 2:  $\mathcal{R}^{\mathcal{A}} \to \mathcal{R}^{\mathcal{A}}(S)$
- p. 68 l. 10: proof is an ordinary -> proof can easily be made into an ordinary
  - (i) of Definition 10.4: is a clause -> is a nonempty clause
- p. 76 l. -4 above Example 10.18: it is clear that -> it is clear (for finite programs P) that
- p. 78 Exercise 4 l. 3 of second paragraph: If Patterson comes....Jones is ill. -> If Patterson comes, he will force Robinson back to his senses and Patterson will come if Jones is ill.
  - p. 87 l. -2 of Proof of Theorem 2.12:  $s = t -> s_1 = t_1$ 
    - 1. -1 of Proof of Theorem 2.13: Exercise 9. -> Exercises 8 and 9.
  - p. 91 l. 1 of Definitions 3.8(i)(2):  $\sigma \wedge 0 \rightarrow \sigma^0$
- Example 3.9: The formulas on the second level down should be  $((\exists x)R(c, f(x, y), g(a, z, w)))$  and  $((\forall y)R(c, f(x, y), g(a, z, w)))$ . The top level formula should be  $(((\exists x)R(c, f(x, y), g(a, z, w))) \land ((\forall y)R(c, f(x, y), g(a, z, w))))$ .
- p. 119 figure 34: the remark (suppose  $t_0 = c_0$ ) can be omitted or put one line higher up and the left path should end with the entry  $T(\neg R(c_0, c_0))$ .
- p. 125 problem 2: infinite model but no finite ones -> a model with an infinite domain but none with a finite domain.
- p. 127 8.1 Axioms (iii) should be as on p. 47 7.1 Axioms (iii):  $(\neg \beta \rightarrow \neg \alpha) \rightarrow ((\neg \beta \rightarrow \alpha) \rightarrow \beta)$ 
  - p. 127 l. -1: From  $\forall x\alpha$  infer  $\alpha$ . -> From  $\alpha$  infer  $\forall x\alpha$  for any formula  $\alpha$ .
- p. 133 Exercise 5a: It is better to write  $(\exists y(\forall x R(x,y) \lor Q(x,y)))$  for the formula after the  $\land$ ,
- p. 137 problem 3 (indeed least) -> (indeed least), in the sense of set containment,
  - p. 140 l. 5:  $v(\psi(\theta\sigma)) \rightarrow v(\psi(\theta\sigma))$ .
  - p. 142 l. 7:  $\{x/h(z)\}$  is our  $->\{x/h(z),y/z\}$  is our
    - 1. 3 of next paragraph: If it does not contain -> If if contains

- p. 144 problem 2:  $hf(w) \rightarrow h(f(w))$  and  $hf(a) \rightarrow h(f(a))$  (in both parts)
- p. 147 Example 13.4: Next to last line of tableaux switch the underline from  $\neg P(u, v)$  to P(v, u) in the left hand clause and change  $P(z, x) \rightarrow P(x, z)$  in the right hand one.
- p. 151l. 6:  $T_1$  and  $T_2$ .  $\rightarrow T_1$  and  $T_2$  with one more resolution giving C from  $C_1$  and  $C_2$ .
- p. 152-3 problem 6: At beginning change six sentences -> seven sentences and at the end of the list add (vii) there is a bank.
  - p. 155 Definition 14.3 l. 1: We say that -> In this situation, we say that
  - p. 160 l. 1: linear resolution -> linear input resolution
  - p. 162 l.2 of proof of Theorem 1.8: I.10.9 -> I.10.11
  - p. 163 l. 2 of Theorem 1.10:  $G = \{A_1, ..., A_n\} -> G = \{\neg A_1, ..., \neg A_n\}$
- p. 174 problem 11 after the program: The goal ? -tc(a, b) will succeed exactly -> The fact tc(a, b) is a logical consequence of this program and the edge database exactly
  - p. 181 problem 4: II.7-8 and III.11-12 -> II.5.7-8 and III.2.12-14
- p. 189 l. 7: After (Exercise 4). Add: Note that this does not imply that = is true identity.
- p. 230 Definition 3.2(ii) l. -1: of the form  $Tq \Vdash \psi \rightarrow$  of the form  $Tp \Vdash \psi$ ,  $Fp \Vdash \psi$ ,  $Tq \Vdash \psi$
- p. 242 line 1 of Definition 4.6(i)(2)(a): about a possible world  $q \rightarrow$  about p or a possible world q
- . 243 l. 2 of Definition 4.7(i): about a possible world  $q \rightarrow$  about p or a possible world q
- p. 244 l. -2 of (iv): , where -> , as the second entry of the appended atomic tableau, where
  - p. 259 l. -7: an open formula -> a formula with free variables
    - l. -5: open  $\alpha \rightarrow \alpha$  with free variables
  - p. 323 definition of  $a(S \times R)$ :  $aRc \rightarrow aSc$
  - p. 351 l. -3: If A and  $A \rightarrow$  If A and B
  - p. 364 problem 8:  $\alpha(\beta * \gamma) \rightarrow \alpha * (\beta * \gamma) -$
- p. 378 Exercise l. 1: Reconstruct the syllogisms -> To the extent you can (there is some ambiguity) reconstruct the syllogisms