Corrections for Logic for Applications $2^{\text {nd }}$ edition
April, 2023
p. $10-12$: We begin by ...of the tree. $->$ We begin by defining a linear ordering \leq_{n} of each level n by induction on the levels. Suppose σ and τ are on level $n+1$ and are the immediate successors of σ^{\prime} and τ^{\prime}, respectively, of level n. If $\sigma^{\prime}<_{n} \tau^{\prime}$ then $\sigma<_{n+1} \tau$. If $\sigma^{\prime}=\tau^{\prime}$ then we order their immediate successors in some fixed fashion to determine the relationship between σ and τ.
l. -4 : find the largest... T. ->
find the smallest level of T at which the predecessors x^{\prime} and y^{\prime} of x and y, respectively, are distinct.
p. 11 Exercise 6: chain $->$ sequence
p. 11 Exercise 7: We define the lexicographic ordering $<_{L}$ on n-tuples $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ of natural numbers as would be expected: $\left\langle x_{1}, \ldots, x_{n}\right\rangle<_{L}\left\langle y_{1}, \ldots, y_{n}\right\rangle$ if $x_{i}<y_{i}$ for the least i such that $x_{i} \neq y_{i}$.
p. 14 Figure 2: The root here should be labeled $((\neg(A \wedge B)) \rightarrow C)$ and the left node on the next level should be $(\neg(A \wedge B))$.
p. 17 l. 7: propositions $->$ propositional letters.
l. 8: proposition $->$ propositional letter.
p. 21 Exercise 1: (i.e. unabbreviated $->$ (based on Definition 2.1).
p. 22 Exercise $10 \neg \alpha \rightarrow>(\neg A)$ and omit "from α ".
p. 23 Add Exercise 17: Complete the remaining cases in the proof of Theorem 2.4.
p. 25 l. 3 of Definition $3.8 \mathcal{V} \rightarrow \mathcal{V}(\sigma)$ l. $-2 \pm->\Sigma$
p. 34 l. 7 of proof of 4.8 to end of proof: in the construction.... we would reduce E. ->
in the construction of the CST, if E is not already reduced on P, we reduce an unreduced entry on a level $k \leq n$. Thus we can proceed for at most finitely many steps in this construction before we would reduce E.
p. 35 l .5 : add at the end: This notion corresponds to the number of occurrences of connectives in the proposition.
l. -1 of Definition 4.10: the signed propositions $->$ the degrees of the signed propositions
p. 364 b: mismatched parentheses. should be $((\alpha \wedge \beta) \rightarrow \gamma) \rightarrow((\alpha \rightarrow$ $(\beta \rightarrow \gamma))$).
p. 42 Last line before Theorem 6.4: $T \alpha->T \alpha_{m}$
p. 44 l. -4 At end of this paragraph add: Note that if $\sigma \subseteq \tau \in T$ then $\sigma \in T$ and so T is binary branching.
p. 46 Exercise 7 line before Note: omit "; the order has width three"
p. 51 l. 3: the propositional $->$ the negations of propositional

1. -2: parent $->$ parents
p. 52 Definition 8.6: a labeled binary tree $->$ a finite labeled binary tree
p. 55 l. -4 of Proof of Lemma 8.14: $\ell->\ell$ or $\bar{\ell}$
p. 62 Exercise 14: add the hypothesis that S is satisfiable.
p. 64 l. 2: $\mathcal{R}^{\mathcal{A}} \rightarrow \mathcal{R}^{\mathcal{A}}(S)$
p. 68 l. 10: proof is an ordinary \rightarrow proof can easily be made into an ordinary
(i) of Definition 10.4: is a clause $->$ is a nonempty clause
p. 76 l. -4 above Example 10.18: it is clear that $->$ it is clear (for finite programs P) that
p. 78 Exercise 4 l. 3 of second paragraph: If Patterson comes....Jones is ill. -> If Patterson comes, he will force Robinson back to his senses and Patterson will come if Jones is ill.
p. 87 l. -2 of Proof of Theorem 2.12: $s=t->s_{1}=t_{1}$
l. -1 of Proof of Theorem 2.13: Exercise 9. $->$ Exercises 8 and 9.
p. 91 l. 1 of Definitions 3.8(i)(2): $\sigma \wedge 0->\sigma^{\wedge} 0$

Example 3.9: The formulas on the second level down should be $((\exists x) R(c, f(x, y), g(a, z, w)))$ and $((\forall y) R(c, f(x, y), g(a, z, w)))$. The top level formula should be $(((\exists x) R(c, f(x, y), g(a, z, w))) \wedge((\forall y) R(c, f(x, y), g(a, z, w))))$.
p. 119 figure 34: the remark (suppose $t_{0}=c_{0}$) can be omitted or put one line higher up and the left path should end with the entry $T\left(\neg R\left(c_{0}, c_{0}\right)\right)$.
p. 125 problem 2: infinite model but no finite ones $->$ a model with an infinite domain but none with a finite domain.
p. 127 8.1 Axioms (iii) should be as on p. 47 7.1 Axioms (iii):
$(\neg \beta \rightarrow \neg \alpha) \rightarrow((\neg \beta \rightarrow \alpha) \rightarrow \beta)$
p. 127 l. -1: From $\forall x \alpha$ infer $\alpha . ~->$ From α infer $\forall x \alpha$ for any formula α.
p. 133 Exercise 5a: It is better to write $(\exists y(\forall x R(x, y) \vee Q(x, y))$ for the formula after the \wedge,
p. 137 problem 3 (indeed least) $->$ (indeed least), in the sense of set containment,
p. 140 l. 5: $v(\psi(\theta \sigma))-.>v(\psi(\theta \sigma))$.
p. 142 l. 7: $\{x / h(z)\}$ is our $\rightarrow\{x / h(z), y / z\}$ is our
l. 3 of next paragraph: If it does not contain $->$ If if contains
p. 144 problem 2: $h f(w) \rightarrow h(f(w))$ and $h f(a)->h(f(a))$ (in both parts)
p. 147 Example 13.4: Next to last line of tableaux switch the underline from $\neg P(u, v)$ to $P(v, u)$ in the left hand clause and change $P(z, x)->P(x, z)$ in the right hand one.
p. 1511. 6: T_{1} and $T_{2} . \rightarrow T_{1}$ and T_{2} with one more resolution giving C from C_{1} and C_{2}.
p. 152-3 problem 6: At beginning change six sentences $->$ seven sentences and at the end of the list add (vii) there is a bank.
p. 155 Definition 14.3 l. 1: We say that $->$ In this situation, we say that
p. 160 l. 1: linear resolution $->$ linear input resolution
p. 162 l.2 of proof of Theorem 1.8: I.10.9 -> I.10.11
p. 163 l. 2 of Theorem 1.10: $G=\left\{A_{1}, \ldots, A_{n}\right\} \rightarrow G=\left\{\neg A_{1}, \ldots, \neg A_{n}\right\}$
p. 174 problem 11 after the program: The goal ? $-t c(a, b)$ will succeed exactly $->$ The fact $t c(a, b)$ is a logical consequence of this program and the edge database exactly
p. 181 problem 4: II.7-8 and III.11-12 -> II.5.7-8 and III.2.12-14
p. 189 l. 7: After (Exercise 4). Add: Note that this does not imply that $=$ is true identity.
p. 230 Definition 3.2(ii) l. -1: of the form $T q \Vdash \psi->$ of the form $T p \Vdash \psi$, $F p \Vdash \psi, T q \Vdash \psi$
p. 242 line 1 of Definition 4.6(i)(2)(a): about a possible world $q->$ about p or a possible world q

243 l. 2 of Definition 4.7(i): about a possible world $q->$ about p or a possible world q
p. 244 l. -2 of (iv):, where $->$, as the second entry of the appended atomic tableau, where
p. 259 l. -7 : an open formula $->$ a formula with free variables
l. -5 : open $\alpha->\alpha$ with free variables
p. 323 definition of $a(S \times R): a R c \rightarrow a S c$
p. 351 l. -3: If A and $A \rightarrow$ If A and B
p. 364 problem 8: $\alpha(\beta * \gamma) \rightarrow \alpha *(\beta * \gamma)-$
p. 378 Exercise 1. 1: Reconstruct the syllogisms \rightarrow To the extent you can (there is some ambiguity) reconstruct the syllogisms

