Corrections for Logic for Applications 2nd edition
April, 2023

p. 10 -12: We begin by ...of the tree. –> We begin by defining a linear ordering \(\leq_n \) of each level \(n \) by induction on the levels. Suppose \(\sigma \) and \(\tau \) are on level \(n+1 \) and are the immediate successors of \(\sigma' \) and \(\tau' \), respectively, of level \(n \). If \(\sigma' <_n \tau' \) then \(\sigma <_{n+1} \tau \). If \(\sigma' = \tau' \) then we order their immediate successors in some fixed fashion to determine the relationship between \(\sigma \) and \(\tau \).

1. -4: find the largest... \(T \). –>
find the smallest level of \(T \) at which the predecessors \(x' \) and \(y' \) of \(x \) and \(y \), respectively, are distinct.

p. 11 Exercise 6: chain –> sequence
p. 11 Exercise 7: We define the lexicographic ordering \(<_L \) on \(n \)-tuples \(\langle x_1, \ldots, x_n \rangle \) of natural numbers as would be expected: \(\langle x_1, \ldots, x_n \rangle <_L \langle y_1, \ldots, y_n \rangle \) if \(x_i < y_i \) for the least \(i \) such that \(x_i \neq y_i \).

p. 14 Figure 2: The root here should be labeled \((\neg(A \land B)) \to C \) and the left node on the next level should be \((\neg(A \land B)) \).

p. 17 l. 7: propositions –> propositional letters.

1. 8: proposition –> propositional letter.

p. 21 Exercise 1: (i.e. unabbreviated –> (based on Definition 2.1).

p. 22 Exercise 10 \(\neg \alpha \to (\neg A) \) and omit "from \(\alpha \".

p. 23 Add Exercise 17: Complete the remaining cases in the proof of Theorem 2.4.

p. 25 l. 3 of Definition 3.8 \(\forall \to V(\sigma) \)

1. -2 \(\pm \to \Sigma \)

p.34 l.7 of proof of 4.8 to end of proof: in the construction.... we would reduce \(E \). –>
in the construction of the \(\text{cst} \), if \(E \) is not already reduced on \(P \), we reduce an unreduced entry on a level \(k \leq n \). Thus we can proceed for at most finitely many steps in this construction before we would reduce \(E \).

p. 35 l. 5: add at the end: This notion corresponds to the number of occurrences of connectives in the proposition.

1. -1 of Definition 4.10: the signed propositions –> the degrees of the signed propositions

p. 36 4b: mismatched parentheses. should be \(((\alpha \land \beta) \to \gamma) \to ((\alpha \to (\beta \to \gamma))) \).

p. 42 Last line before Theorem 6.4: \(T\alpha \to T\alpha_m \)
At end of this paragraph add: Note that if $\sigma \subseteq \tau \in T$ then $\sigma \in T$ and so T is binary branching.

Exercise 7 line before Note: omit "; the order has width three"

The propositional \rightarrow the negations of propositional

-2: parent \rightarrow parents

Definition 8.6: a labeled binary tree \rightarrow a finite labeled binary tree

-4 of Proof of Lemma 8.14: $\ell \rightarrow \ell$ or $\bar{\ell}$

Exercise 14: add the hypothesis that S is satisfiable.

De...nition 8.6: a labeled binary tree \rightarrow a ...nite labeled binary tree

Proof of Lemma 8.14: ` \rightarrow or \rightarrow

Exercise 14: add the hypothesis that S is satisfiable.

De...nition 10.4: is a clause \rightarrow is a nonempty clause

Exercise 4 l. 3 of second paragraph: If Patterson comes....Jones is ill. \rightarrow If Patterson comes, he will force Robinson back to his senses and Patterson will come if Jones is ill.

Problem 2: in...nite model but no ...nite ones \rightarrow a model with an ...nite domain but none with a ...nite domain.

8.1 Axioms (iii) should be as on p. 47 7.1 Axioms (iii):

$\neg \beta \rightarrow \neg \alpha \rightarrow ((\neg \beta \rightarrow \alpha) \rightarrow \beta)$

From $\forall x \alpha$ infer α. \rightarrow From α infer $\forall x \alpha$ for any formula α.

Exercise 5a: It is better to write $(\exists y (\forall x R(x,y) \lor Q(x,y)))$ for the formula after the \land,

Problem 3 (indeed least) \rightarrow (indeed least), in the sense of set containment,

5: $v(\psi(\theta \sigma). \rightarrow v(\psi(\theta \sigma))$.

7: $\{x/h(z)\}$ is our \rightarrow $\{x/h(z), y/z\}$ is our

3 of next paragraph: If it does not contain \rightarrow If it contains
p. 144 problem 2: $hf(w) \rightarrow h(f(w))$ and $hf(a) \rightarrow h(f(a))$ (in both parts)

p. 147 Example 13.4: Next to last line of tableaux switch the underline from $\neg P(u, v)$ to $P(v, u)$ in the left hand clause and change $P(z, x) \rightarrow P(x, z)$ in the right hand one.

p. 151 l. 6: T_1 and $T_2. \rightarrow T_1$ and T_2 with one more resolution giving C from C_1 and C_2.

p. 152-3 problem 6: At beginning change six sentences \rightarrow seven sentences and at the end of the list add (vii) there is a bank.

p. 155 Definition 14.3 l. 1: We say that \rightarrow In this situation, we say that

p. 160 l. 1: linear resolution \rightarrow linear input resolution

p. 162 l. 2 of proof of Theorem 1.8: $I.10.9 \rightarrow I.10.11$

p. 163 l. 2 of Theorem 1.10: $G = \{A_1, \ldots, A_n\} \rightarrow G = \{\neg A_1, \ldots, \neg A_n\}$

p. 174 problem 11 after the program: The goal $? - tc(a, b)$ will succeed exactly \rightarrow The fact $tc(a, b)$ is a logical consequence of this program and the edge database exactly

p. 181 problem 4: II.7-8 and III.11-12 \rightarrow II.5.7-8 and III.2.12-14

p. 189 l. 7: After (Exercise 4). Add: Note that this does not imply that

$p = \text{true identity}$.

p. 230 Definition 3.2(ii) l. -1: of the form $Tq \vDash \psi \rightarrow$ of the form $Tp \vDash \psi$, $Fp \vDash \psi$, $Tq \vDash \psi$

p. 242 line 1 of Definition 4.6(i)(2)(a): about a possible world $q \rightarrow$ about p or a possible world q

p. 243 l. 2 of Definition 4.7(i): about a possible world $q \rightarrow$ about p or a possible world q

p. 244 l. -2 of (iv): , where \rightarrow , as the second entry of the appended atomic tableau, where

p. 259 l. -7: an open formula \rightarrow a formula with free variables

1. -5: open $\alpha \rightarrow \alpha$ with free variables

p. 323 definition of $a(S \times R)$: $aRc \rightarrow aSc$

p. 351 l. -3: If A and $A \rightarrow$ If A and B

p. 364 problem 8: $\alpha(\beta \ast \gamma) \rightarrow \alpha \ast (\beta \ast \gamma)$

p. 378 Exercise l. 1: Reconstruct the syllogisms \rightarrow To the extent you can (there is some ambiguity) reconstruct the syllogisms