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Abstract

Theorems of hyperarithmetic analysis (THA) occupy an unusual neighborhood
in the realms of reverse mathematics and recursion theoretic complexity. They lie
above all the fixed (recursive) iterations of the Turing Jump but below ATR0 (and
so Π11-CA0 or the hyperjump). There is a long history of proof theoretic principles
which are THA. Until Barnes, Goh and Shore [ta] revealed an array of theorems in
graph theory living in this neighborhood, there was only one mathematical denizen.
In this paper we introduce a new neighborhood of theorems which are almost the-
orems of hyperarithmetic analysis (ATHA). When combined with ACA0 they are
THA but on their own the are very weak. We generalize several conservativity
classes (Π11, r-Π

1
1 and Tanaka) and show that all our examples (and many others)

are conservative over RCA0 in all these senses and weak in other recursion theoretic
ways as well. We provide denizens both mathematical and logical. These results
answer a question raised by Hirschfeldt and reported in Montalbán [2001] by pro-
viding a long list of pairs of principles one of which is very weak over RCA0 but
over ACA0 is equivalent to the other which may be strong (THA) or very strong
going up a standard hierarchy and at the end being stronger than full second order
arithmetic.

1 Introduction

The general project of calibrating the complexity of mathematical theorems and con-
structions has two important and interrelated classes of measuring rods. One, embodied
in what is now called reverse mathematics, is proof theoretic and attempts to determine
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what axioms are suffi cient and even necessary to prove a given theorem. The other is
recursion theoretic and attempts to determine how hard (in terms of computational com-
plexity) it is to construct a desired object or how complicated must an object be to satisfy
given specifications. Each approach has its standard yardsticks of complexity. For reverse
mathematics these are axiom systems in second order arithmetic. For the computational
approach they are ones measured by specific constructions. Most prominently, they are
calibrated in terms of the Turing jump and its iterates and generalizations. (Standard
texts are Simpson [2009] and Hirschfeldt [2014] which emphasize the first and second
approach, respectively.)
The early decades of this subject were marked by a large variety of results charac-

terizing a wide array of theorems and constructions as being one of five or so specific
levels of complexity. (These are Simpson’s “big five” axioms systems and the corre-
sponding recursion theoretic construction principles.) They begin with RCA0 which is
the standard weak base theory for reverse mathematics. It includes the usual simple first
order axioms about +,×,≤,∈, 0, 1, extensionality with respect to ∈, and induction for
sets X as a free variable. The defining additional axiom scheme is ∆0

1-CA, comprehen-
sion for sets defined by both Σ0

1 and Π0
1 formulas. This system corresponds to recursive

constructions. We assume that it is included in every theory we consider. (For formal
definitions and detailed information on all the systems see Simpson [2009].) In more re-
cent decades, there has been a proliferation of results placing theorems and constructions
outside the big five. Sometimes inserted linearly and sometimes with incomparabilities.
They are now collectively often called the “zoo”of reverse mathematics. (For pictures,
see https://rmzoo.math.uconn.edu/diagrams/.) The bulk of these interpolations have
been at the lower end of these hierarchy. (Technically, this means below ACA0, the proof
theoretic system whose defining axiom scheme is comprehension for arithmetic formula.
The recursion theoretic analog is the class of constructions which can be done effectively
in finitely many iterations of the Turing jump.)
The next systems of reverse mathematics are ATR0 and Π1

1-CA0 which are defined,
respectively, by transfinite iterations of arithmetic comprehension and comprehension for
formulas with one second order quantifier followed by an arithmetic formula. Recursion
theoretically these roughly correspond to transfinite effective iterations of the Turing
jump (hyperarithmetic sets) and Kleene’s hyperjump. A fair number of mathematical
theorems and constructions have turned up at precisely these levels but very few between
them or above them.
As in Barnes, Goh and Shore [ta] (hereafter BGS) which led to this work, our concerns

here are with a particularly unusual area of these hierarchies lying recursion theoretically
above each fixed bounded countable iteration of the Turing jump but proof theoretically
below the system ATR0. It has a precise recursion theoretic definition (2.9) but, as
the definition relies on using only the standard model of arithmetic and only true well
orderings, it lacks a good proof theoretic definition (at least in first order logic). (See Van
Wesep [1977, 2.2.2] and also Montalbán [2006, remarks after Definition 1.1].) Theorems
and theories at this level are called ones of hyperarithmetic analysis (so THA).
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There are quite a number of logical theories including ones about choice (Σ1
1-AC) and

comprehension (∆1
1-CA) that fall in this realm. Many were well studied in the 60s and

70s both before and after the introduction of the program of reverse mathematics (H.
Friedman [1971], [1975]). Up until BGS, however, there was only one mathematical but
not logical example, i.e. one not mentioning classes of first order formulas or their syn-
tactic complexity. It was a result (INDEC) about indecomposability of linear orderings
in Jullien’s [1969] thesis (see Rosenstein [1982, Lemma 10.3]). It was shown to be a THA
by Montalbán [2006] who investigated its place among the older systems as well as several
other logical ones using variations of Steel forcing. In [2008] he included Π1

1-Separation
and new forcing variations. More analysis was provided by Neeman [2009], [2011].
This situation provoked the question as to whether there are other results from the

mathematical literature that are THA. The issue was raised explicitly in Montalbán’s
“Open Questions in Reverse Mathematics” [2011, Q30]. It was answered by BGS who
provide a host of such examples and study the relations among them and to previously
known systems. (See also Goh [ta].) These were all variations and generalizations of a
classical theorem of Halin [1965] in graph theory (Definition 2.5). (See also Halin [1970]
and, for a contemporary treatment and references, Diestel [2017, Ch. 8].)
This paper grew out of a proof of what we would call a reduction (actually providing

an equivalence) between two of these principles in Bowler, Carmesin and Pott [2015]
(hereafter BCP). While BGS provides a number of such results in RCA0, the reduction
in BCP did not seem to fit the mold. While the proof sketch provided there appeared
to be elementary, a closer look showed that underneath it seemed to use methods that
were themselves THA and about as strong as the principles being proven equivalent.
Our expectation was that these methods, like most of the ones studied in BGS, would
also prove to be THA. That turned out not to be the case. Rather, the graph the-
oretic principle (Definition 3.5) that they used (that allowed one to restrict attention
to locally finite graphs) implied (over ACA0) some known THA. The unusual aspect of
the situation was that we could prove that it was not possible to show that they im-
plied any known THA in RCA0. In particular they did not even imply ACA0. We call
such principles/theorems/theories almost theorems/theories of hyperarithmetic analysis
ATHA (Definition 3).
Indeed, the one that was used in BCP and several variants are very weak over ACA0.

They are Π1
1, r-Π

1
2 (Definitions 4.8-4.10) and Tanaka (Definition 7.1) conservative over

RCA0 (and more). We extend all our conservation results to what seem to be new classes
of formulas by allowing, in addition to the basic formulas in these classes, closure under
conjunctions, disjunctions, first order quantifiers and universal second order quantifiers
(see Definitions 4.9, 4.10 and 7.1). These results also provide extended conservation
results for many previously studied theories. In addition, given any model N of RCA0,
one can construct an extensionN ′ with the same first order part satisfying these principles
which adds no branch to any tree in N not already having one there. Moreover, one can
construct such extensions N0 and N1 of N so that the intersection of their second order
parts is that part of N . Finally, given any countable collection Ci of subsets of the
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natural numbers N of a countable N �RCA0 one can construct an extension N ′ �RCA0
in which these theorems are true but which does not contain any of the Ci. (An interesting
example here is the collection of all subsets of N definable over N .)
We also show that many simple variations of known THA such as Σ1

1-AC are also
ATHAs with all these weakness properties over RCA0. We prove these results by showing
that all the principles studied here can be made true by iterating forcings from a quite
general class of forcings that can be implemented to guarantee the conservation and
branch or set omitting properties just described. On the other hand, when combined
with ACA0 each of these principles is equivalent to an already studied one known to be
a THA. We then point out various known separation results for the old principles that
also distinguishing among some of these new theories over RCA0.

Finally, we extend our methods to prove similar results for hierarchies of variations
of choice principles that are much stronger than Σ1

1-AC and so well beyond THA. At the
end of these hierarchies, we provide principles that have all the same conservation and
branch/set omitting properties over RCA0 but when combined with ACA0 are strictly
stronger than full second order arithmetic. We also discuss another type of conserva-
tion result for sentences of the form ∀X∃!Y Φ(X, Y ) conjectured by Tanaka for WKL0
and proved for it in Simpson, Tanaka and Yamazaki [2002] (hereafter STY) as well as
strengthenings to include larger classes of sentences (see Definition 7.1.)

Thus, we view this paper as not only introducing a new interesting realm of the reverse
mathematics/recursion theoretic universe but as also answering the question raised in
Montalbán [2011, 6.1.1] immediately after the one about the existence of mathematical
THA. Attributing the question to Hirschfeldt, Montalbán points out that there are very
few examples where natural equivalences are known to hold over strong theories but
not over RCA0 particularly if one excludes the cases where the only additional axioms
needed are forms of induction. Hirschfeldt asked for more. We would say that this paper
provides a whole array of pairs of principles which are equivalent over ACA0 but not over
RCA0 and so evidence that in some settings it would make sense to take ACA0 as the
base theory for reverse mathematical investigations rather than RCA0.

1.1 Outline of Paper

We provide the needed basic graph theoretic notions and principles in §2. The next
section (3) presents the principles used in BCP as mentioned above as well as some
related graph theoretic principles and analyzes their strength over ACA0. In particular,
we show that, over ACA0, each of them implies some known THA. In §4, we define a large
class of forcings that include many well known ones such as Cohen, Laver, Mathias, Sacks
and Silver forcing and many variations. We then show that generic extensions by any
such forcing have all the preservation properties suggested above. Thus any principle that
can be made true by iterating such forcings have the conservation and other weakness
properties already mentioned. In particular, if the principles are Π1

2 (see Definition 4.7),
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and for any instance of the principle there is a forcing in our class that adds a solution, a
standard ω-length iteration of such forcings guarantees the truth of the principle in the
limit model. This supplies all the conservation results for such Π1

2 principles and includes
many previously known theorems as well as strengthenings of conservation results to
larger classes of formulas.
However, the ATHA in which we are mainly interested are not Π1

2 principles so some
additional twists are needed in addition to supplying the appropriate forcing notions.
We analyze the argument of BCP mentioned above as the first (and in many ways the
most interesting) of our examples. The definition of the forcing notion and the proof that
it supplies solutions to the relevant principles are in Theorem 5.1. To get an iteration
that solves all instances of the principle and so provides the desired conservation and
weakness properties, we use one of length ω1 (Theorem 5.2). We then turn our attention
to various weaker versions or instances of Σ1

1-AC for our next source of ATHA. Some of
these (mathematical as well as logical) appeared naturally in BGS. Others are variations
of well-studied classes of choice principles weaker than Σ1

1-AC. They are all weak over
RCA0 but equivalent to one of the known THA over ACA0. Examples here include unique
and finite choice versions of Σ1

1-AC. (The former is generally known as weak Σ1
1-AC. The

latter is a consequence of the Halin type theorems studied and proven to be THA in BGS
and placed with respect to other studied versions of Σ1

1-AC in Goh [ta].)
In §6 we move beyond Σ1

1-AC and study weak version of higher order axioms of
choice. The appropriate forcing notions in our class are not hard to come by. As the
principles are of arbitrary syntactic complexity, it is not immediate, for example, that
adding something that may look like a solution during the construction will actually be a
solution at the end of even an ω1 length iteration. In the strongest case, we modify what
it means to provide solutions (Theorem 6.1). We then use the fact that there is a closed
unbounded set of ordinals α such that the models Nα are elementary submodels (in the
second order language) of our limit model Nω1 to show that it has the desired properties
(Theorem 6.2). A short argument (Theorem 6.3) shows that the whole hierarchies of
weak principles are equivalent to the standard choice axioms (Σ1

n+1-AC) over ACA0. At
the end, we have two principles with all our conservation and preservation properties
which over ACA0 are equivalent to the union of all the Σ1

n+1-AC and so strictly stronger
than full second order arithmetic.
The last section is devoted first to a description of about ten year old but unpublished

work by Tanaka, Montalbán and primarily Yamazaki getting some of our conservation
results for what they call the collection axioms Π1

n and Π1
∞ (in our terminology Σ1

n+1-
AC− and Σ1

∞-AC
−). They also extend even earlier worked on WKL0 in STY to get

Tanaka conservation (Definition 7.1) for the collection axioms and a couple of other
principles. Motivated by this work, we have proven the same and stronger conservation
results for all the ATHA principles we consider in this paper for which we use forcing
constructions to show that they are very weak over RCA0 and, in particular, do not imply
ACA0. The basic conservation result (over RCA0) they prove is for sentences of the form
∀X∃!Y Φ(X, Y ) with Φ arithmetic. We get the same results for all of our principles and
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most of theirs by what seems to be much simpler constructions. In addition, we extend
the class of sentences covered by our methods analogously to the extensions made for Π1

1

and r-Π1
2 in previous sections. While handling the basic Tanaka conservativity requires

some additional notions, the extensions are dealt with as in the Π1
1 and r-Π

1
2 conservation

results mentioned above.

2 Basic Notions

Formally, we are working in a modelN = (N,S(N ),+,×,≤,∈, 0, 1) of second order arith-
metic. (The first order quantifiers range over N . The second order ones over S(N ) which
is a collection of subset of N .) We generally abbreviate the structures as N = (N,S(N )).
We are interested in ones which are models of RCA0. When we define semantics or forc-
ing we expand the formal language to include constants for each element of N and S(N )
and possibly some recursive (∆0

1) predicates. (See Remark 4.4.) Informally, one can
think of N as the standard natural numbers N with the usual operations and relations
(and constants for every n and some class of subsets of N as well, perhaps, the predicate
representing the universal Turing machine as in Remark 4.4). We use standard recursive
codings of finite sequences, functions, relations and structures to represent all such ob-
jects as subsets of N and abuse notation by saying that such objects are in N or S(N )
to mean that the corresponding codes are in S(N ). Unless otherwise specified, all sets
and structures we consider are countable.

Definition 2.1. A graph H is a pair 〈V,E〉 consisting of a set V (of vertices) and a set
E of unordered pairs {u, v} with u 6= v from V (called edges). These structures are also
called undirected graphs (or here U-graphs). A structure H of the form 〈V,E〉 as above
is a directed graph (or here D-graphs) if E consists of ordered pairs 〈u, v〉 of vertices with
u 6= v. To handle both cases simultaneously, we often use X to stand for undirected (U)
or directed (D). We then use (u, v) to stand for the appropriate kind of edge, i.e. {u, v}
or 〈u.v〉. Any such H is locally finite if, for each u ∈ V , the set {v|(u, v) ∈ E∨(v, u) ∈ E}
of neighbors of u is finite.

An X-subgraph of the X-graph H is an X-graph H ′ = 〈V ′, E ′〉 such that V ′ ⊆ V
and E ′ ⊆ E.

Definition 2.2. An X-ray in H is pair consisting of an X-subgraph H ′ = 〈V ′, E ′〉 and
an isomorphism fH′ from N with edges (n, n + 1) for n ∈ N to H ′. We also describe
this situation by saying that H contains the X-ray 〈H ′, fH′〉. We use finite X-ray in
the obvious way. We sometimes abuse notation by saying that the sequence 〈f(n)〉 of
vertices is an X-ray in H.

H contains k many X-rays for k ∈ N if there is a sequence 〈Hi, fi〉i<k such that each
〈Hi, fi〉 is an X-ray in H (with Hi = 〈Vi, Ei〉).
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H contains k many disjoint (or vertex-disjoint) rays if the Vi are pairwise disjoint.
H contains k many edge-disjoint rays if the Ei are pairwise disjoint. We often use Y to
stand for either vertex (V) or edge (E) as in the following definitions.

An X-graph H contains arbitrarily many Y-disjoint X-rays if it contains k many such
rays for every k ∈ N .
An X-graph H contains infinitely many Y-disjoint rays if there is an X-subgraph

H ′ = 〈V ′, E ′〉 of H and a sequence 〈Hi, fi〉i∈N such that each 〈Hi, fi〉 is an X-ray in
H (with Hi = 〈Vi, Ei〉) such that the Vi or Ei, respectively for Y = V,E, are pairwise
disjoint and V ′ = ∪Vi and E ′ = ∪Ei. (The analog of all the rays forming a subgraph
is provable in RCA0 for the finite case but not the infinite one so here so we make it
explicit. It does follow even for the case of infinite sequences in ACA0.)

Definition 2.3. An X-path P in an X-graph H is defined similarly to single rays except
that the domain of f is a proper initial segment of N instead of N itself. Thus they are
finite sequences of distinct vertices with edges between successive vertices in the sequence.
If P = 〈x0, . . . , xn〉 is a path, we say it is a path of length n between x0 and xn.

Definition 2.4. A tree is a graph T with a designated element r called its root such that
for each vertex v 6= r there is a unique path from r to v. A branch in a tree T is a ray
in T starting at its root. the set of all branches in T is denoted by [T ]. Note, however,
we are restricting ourselves to what would (in set theory) be called countable trees with
all nodes of finite rank. Thus, we typically think of trees as subtrees of N<N, i.e. the
downward closed (under extension) sets of finite strings of numbers (as vertices) with an
edge between σ and τ if and only if they differ by one being an extension of the other by
one element, e.g. σˆk = τ and with root ∅. We call the stem of such a tree the longest
σ which is comparable (under extension) with every element of the tree.

The starting point of the work in BGS and this paper is a theorem of Halin’s [1965]
that we call the infinite ray theorem as expressed in Diestel [2017, Theorem 8.2.5 (i)].

Definition 2.5 (Halin’s Theorem). IRT, the infinite ray theorem, is the principle that
every graph H which contains arbitrarily many disjoint rays contains infinitely many.

The versions of Halin’s theorem which we consider in this paper allow for H to be an
undirected or a directed graph and for the disjointness requirement to be vertex or edge.
They are labeled along the lines of BGS as IRTXY to indicate whether the graphs are
undirected or directed (X = U or D) and whether the disjointness refers to the vertices
or edges (Y = V or E) in the obvious way. We often state a theorem for all XY and
then in the proof use “graph”, “edge”and “disjoint”unmodified with the intention that
the proof can be read for any of the four cases.

Remark 2.6. We point out that unlike BGS (except in Remark 5.11) we do not consider
the analogs of IRT for double rays (isomorphic to Z rather than N). Halin [1970] proved
the basic case here (UV) and BCP did the UE version. The other two (DE and DV)
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remain open. Some relevant results about the strength of special cases are in BGS.
However, the local finiteness property that originally motivated this paper (Definition
3.5) fails for double rays in the DE and UE cases as can be seen by considering the star
graph consisting of countably many copies of Z with one vertex common to all the copies.
Thus these versions seemed less relevant to our concerns in this paper.

We now move on to the recursion theoretic notions needed to define THA. Here we
are working with the usual set N of natural numbers and understand notions such as
well-orderings in the usual way —there simply are no descending chains. (As opposed to
thinking of some model of arithmetic N with perhaps a nonstandard first order part or
even a standard model, i.e. N = N but one in which the notion of well-foundednes for
linear orderings as no descending chain in S(N ) is the not the same as no descending
chain (possibly outside of S(N ).) A standard reference for hyperarithmetic theory is
Sacks [1990]. We give a brief list of the notions we need.

Definition 2.7. We represent ordinals α as well-ordered relations on N . Typically such
ordinal notations are endowed with various additional structure such as identifying 0,
successor and limit ordinals and specifying cofinal ω-sequences for the limit ordinals. An
ordinal is recursive (in a set X) if it has a recursive (in X) representation. For a set X
and ordinal (notation) α recursive in X, we define the transfinite iterations Xα of the
Turing jump of X by induction: X(0) = X; X(α+1) = (Xα)′ and for a limit ordinal λ,
X(λ) = ⊕{X(α)|α < λ} (or as the sum over the X(α) in the specified cofinal sequence).

Definition 2.8. HYP (X), the collection of all sets hyperarithmetic in X consists of
those sets recursive in some X(α) for α an ordinal recursive in X. These are also the sets
∆1
1 in X.

Definition 2.9. A sentence (theory) T is a theorem (theory) of hyperarithmetic analysis
(THA) if

1. For every X ⊆ N, (N, HYP (X)) � T and
2. For every S ⊆ 2N, if (N, S) � T and X ∈ S then HYP (X) ⊆ S.

Definition 2.10. A theorem or theory T is an almost theorem (theory) of hyperarithmetic
analysis (ATHA), if T 0ACA0 but T + ACA0 is a THA.

We now turn to defining and analyzing some mathematical and logical theorems that
turn out to be ATHA.

3 ATHA Principles

We wish to consider the argument in BCP [top of p. 2] that IRTUE follows from IRTUV .
We fill in their sketch to bring out the use of instances of Σ1

1-AC. They analyze only
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undirected graphs but the same arguments apply to directed ones so we present the two
cases together.

Their proof can be presented as two Lemmas:

Lemma 3.1. IRTXE restricted to locally finite graphs implies IRTXE.

Lemma 3.2. IRTXV implies IRTXE restricted to locally finite graphs. In fact, IRTXV
restricted to locally finite graphs implies IRTXE restricted to locally finite graphs.

The natural proof of Lemma 3.2 takes place in ACA0.

Proof of Lemma 3.2 (ACA0). Let G = 〈V,E〉 be a locally finite graph with arbitrarily
many E-disjoint rays. Consider the line graph L(G) of G, i.e. the graph whose vertices
are the edges of G and whose edges are the ((x, y), (y, z)) for (x, y) 6= (y, z) ∈ E. As G
is locally finite so is L(G). (The only way a given (u, v) can have an (x, y) as a neighbor
is if they have a vertex in common. So if (u, v) had infinitely many neighbors, one of u
or v would also have such in G.)

A set of k many E-disjoint rays Ri = 〈Vi, Ei〉 with isomorphisms fi in G produces
k many V-disjoint rays R̄i = with vertices (xi,n, xi,n+1) in L(G) where we write xi,n for
fi(n). Applying the hypothesis of the Lemma gives us infinitely many V -disjoint rays Ti
with vertices (xi,j, xi,j+1) in L(G).

Now we use the local finiteness of G to construct the required infinitely many E-
disjoint rays Qi in G. Fix i and T = Ti and xj = xij . By the local finiteness of G, for
every v ∈ V there are only finitely many n such that v ∈ {xn, xn+1}. (Otherwise, say v
is xn for infinitely many n and then (v, xn+1) is a vertex in the L(G) ray for all of these
n. That means, however, that these edges are all distinct and so v has infinitely many
neighbors in G for a contradiction.)

We build Q = Qi by recursion starting with a0 = x0 and let n0 be the largest n such
that a0 = xn. Let a1 = xn0+1 so (a0, a1) ∈ E. Inductively, take nk+1 (> nk) the largest n
such that ak = xn and set ak+1 = xnk+1. (We can find this n by ACA0.) This recursion
produces sequences nk, ak+1 with Q = 〈ak〉 a ray in G and (an, an+1) ∈ T for every n.
Let this Q be Qi.

Claim: The Qi are E-disjoint in G as required. If not, we have (ai,n, ai,n+1) =
(aj,m, aj,m+1) for some i 6= j and n andm. However, (ai,n, ai,n+1) ∈ Ti and (aj,m, aj,m+1) ∈
Tj contradicting the V-disjointness of the Ti in L(G).

On the other hand, while the proof of Lemma 3.1 seems to also take place in ACA0,
it, like that of IRT itself (BGS [ta, Theorem 4.1]), relies on a use of Σ1

1-AC to get started.

Proof of Lemma 3.1 (Σ1
1-AC0). We are given a graph G = 〈V,E〉 with arbitrarily many

E-disjoint rays. By Σ1
1-AC0 choose a sequence Sk = 〈Rk,1, . . . , Rk,k〉 which consists, for

each k, of k many E-disjoint rays in G. Now we construct the desired subgraph G′ of G.
It has the same set of vertices V = {vi|i ∈ N} as G. We specify its edges by providing
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a recursive construction of sets Ei of edges putting in a set of edges at each step. We
guarantee that each Ei is a union of finitely many sets of E-disjoint rays in G and that
after stage s no edge with a vertex vi for i < s is ever put into E after stage s.

Begin at stage 0 by putting all the edges in R1,1 into E1. Proceeding recursively at
stage k we have Ek and consider Sk = 〈Rk,1, . . . , Rk,k〉. Each vj for j < k appears in
Rk,i at most once for each i < k as Rk,i is a ray. As we have the whole sequence of the
Sk we can find (using only RCA0) the i, j such that vj ∈ Rk,i and the location n in the
sequence where it occurs, say as xk,i,nj . We now put into Ek+1 all the edges appearing in
any Rk,i after all the xk,i,nj for j < k which are defined. Let E ′ = ∪Ek. As, for every k,
we have put in a tail of each Rk,i for i < k into Ek we have guaranteed that G′ = 〈V,E ′〉
contains arbitrarily many E-disjoint rays.

Thus we only need to show that G′ is locally finite. Consider any vertex vk. No edge
containing vk as a vertex is put in after stage k. On the other hand, Ek is the union of
finitely many finite sets of E-disjoint rays (all of which have been computed uniformly).
Each set of E-disjoint rays in this union has vk appearing at most once in each of its
rays. Thus at most two edges containing vk appear in each of the finitely many rays in
this set. Thus there are only finitely many edges containing vk in each of the finite sets
of E-disjoint making up Ek. All in all, this makes only finitely many edges containing vk
get put into G′. (In fact, we can compute the number of such edges in N .)

Now we study the crucial Lemma 3.1 that reduces the problem to locally finite graphs.
We first prove that the IRTXY theorems for locally finite graphs are strictly weaker than
the full theorems. Indeed, they are theorems of ACA0.

Proposition 3.3 (ACA0). If G is a locally finite X-graph with arbitrarily many Y -
disjoint rays then there is a sequence 〈Hn〉 of subgraphs of G with each Hn consisting
of n many disjoint rays. (This statement is SCRXY of Definition 5.5 for locally finite
graphs.)

Proof. Let G = 〈V,E〉 and V = {vi|i ∈ N}. For each n and n-tuple
〈
vij |j < n

〉
of

distinct vertices of G consider the tree Ti,n whose nodes are n-tuples of disjoint paths
in G all of the length the height of the node in Ti,n. The root of Ti,n is

〈
vij |j < n

〉
. If

µ = 〈σj|j < n〉 ∈ Ti,n then its immediate successors are all ν = 〈τ j|j < n〉 such that for
each j, τ j is an extension of σj by one of the finitely many vertices v such that there is
an edge from the last vertex in σj to v and the τ j are disjoint rays in G. As G is locally
finite, the Ti,n are finitely branching trees (recursive in G′). Thus by ACA0 (recursively
in a few jumps of G) we can get the set of 〈i, n〉 such that Ti,n has a branch and, indeed,
a sequence Si,n each a branch in Ti,n. Every such branch provides a subgraph Gi,n of G
which consists of n disjoint rays. We can now just take the desired Hn to be Gi,n for the
least i such that Ti,n has a branch.

Indeed we now have some equivalences.
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Proposition 3.4. ACA0 is equivalent to each IRTXY for locally finite graphs.

Proof. To prove the implication from left to right, combine Proposition 3.3 and the fact
that, by BGS [ta, Theorem 8.2], its conclusion for any graph implies (in ACA0) that the
graph has infinitely many disjoint rays. The graphs used in BGS [ta, Theorems 4.1, 4.2
and 5.9] to deduce ACA0 from IRTXY are disjoint unions of trees and so locally finite.

Now we formulate a principle expressing the idea that one can reduce the problem of
finding solutions to IRT to considering only the class of locally finite graphs. Of course,
as the IRTXY are THA and their restrictions to locally finite graphs are provable in
ACA0, this reduction must be strong.

Definition 3.5. LFXY is the principle that every X-graph which contains arbitrarily
many Y -disjoint rays contains a locally finite subgraph which also contains arbitrarily
many Y -disjoint rays.

We now work towards analyzing the complexity of the LFXY .

Proposition 3.6. In ACA0, LFXY →IRTXY .

Proof. Suppose we are given a graph H with arbitrarily many disjoint rays. Let H ′ be a
locally finite subgraph with arbitrarily many rays. Again, Proposition 3.3 and Theorem
8.2 of BGS [ta] give us IRTXY .

In fact, over ACA0 we have equivalences

Proposition 3.7. IRTXY →LFXY and so they are equivalent over ACA0.

Proof. We are given a graph G with arbitrarily many disjoint rays and want to build
a locally finite subgraph with the same property. We begin with the subgraph of the
given graph consisting of infinitely many disjoint rays asserted to exist by IRTXY . As
IRTXY →ACA0 (BGS [ta, Theorem 5.1]), we can use ACA0 to thin out this subgraph
so that our new nth ray is simply the nth given ray above the last time any vertex less
than n appears in it. (Any vertex appears at most once in any ray.) Thus every vertex
less than n appears in at most n many of these new rays. In each one it has edges to
at most two other vertices. Thus it is a locally finite subgraph of the original graph and
also contains infinitely many disjoint rays. The equivalence now follows from Proposition
3.6.

Proposition 3.8. LFXY+ACA0 is a THA.

Proof. Each IRTXY is a THA by BGS [ta, Theorem 5.1] and so we have the result by
Proposition 3.7

We will see in §5 that none of the LFXY imply ACA0 and so all are ATHA.
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4 A Class of Forcings for Satisfying Π1
2 Principles

We define a class C of notions of forcing P such that forcing with any one of them over
a model N = (N,S(N )) of RCA0 has several preservation type properties. (Our forcing
language is flexible as to what else it might include for convenience but it does always
include constants (as usual denoted by) n (or A) for each element of N (or S(N )). Note
that these include class forcings in the sense that while each condition is (coded as) a set
in N , the collection of conditions need not be (coded as) a set in N nor even be definable
over N .

Definition 4.1. A notion of forcing P = 〈P,≤〉 is a tree forcing (t-forcing) if the following
hold:

1. Conditions in P are of the form 〈τ , T 〉 where T ∈ S(N) is a subtree of N<N (i.e.
a subset of N<N in N closed under initial segments with respect to ⊆) and τ is
comparable with every σ ∈ T .

2. If 〈τ ′, T ′〉 ≤ 〈τ , T 〉 then τ ′ ⊇ τ and T ′ ⊆ T ,

3. For every n ∈ N the class {〈τ , T 〉 ||τ | ≥ n} is dense in P, i.e.
(∀ 〈τ , T 〉 ∈ P)(∃ 〈τ ′, T ′〉)(〈τ ′, T ′〉 ≤ 〈τ , T 〉 & |τ ′| ≥ n).

Definition 4.2. A tree notion of forcing P is an effective tree forcing (et-forcing) if for
every 〈τ , T 〉 ∈ P the class Ext(〈τ , T 〉) = {τ ′|(∃T ′)(〈τ ′, T ′〉 ≤ 〈τ , T 〉)} is Σ0

1, i.e. there is
an A ∈ S(N) such that Ext(〈τ , T 〉) is Σ0

1(A) (over N).

Notation 4.3. If G is a filter on a t-forcing P which is generic for a class D of dense
sets containing at least the Dn = {〈τ , T 〉 ||τ | ≥ n}, then the generic function G : N→N
associated with G is ∪{τ |∃T (〈τ , T 〉 ∈ G}. We then say that G is D-generic on P. (Note
that this G is always a function from N to N by the definitions of P being a t-forcing
and of G being a D-generic filter on P.) We also say that a G : N → N is on 〈τ , T 〉 if
G ∈ [T ], i.e. ∀n(G � n ∈ T ). So if G is {Dn}-generic it is on every 〈τ , T 〉 ∈ G.
We denote by N [G] the structure for second-order arithmetic with first order part the

same as N (i.e. N) and second order part the closure of S(N ) ∪ {G} under ∆0
1-CA.

For σ ∈ T , T σ = {ρ ∈ T | σ ⊇ ρ ∨ ρ ⊇ σ} is what we call the tree T above σ.

Remark 4.4. There are a variety of ways to define forcing for models of second order
arithmetic. Until the very last section of this paper we only need to consider forcing
sentences of the form ∃kΦ(k, n̄, A,G) where Φ is formula with, if, one wants, bounded
but certainly no unbounded quantifiers, n̄ ∈ N , A ∈ S(N ) (and ∃k as its only unbounded
quantifier) and perhaps some additional fixed recursive predicates. As usual we say
〈τ , T 〉  ∃kΦ(k, n̄, A,G) if and only if there is a k < |τ | such that τ contains all the
information about G to guarantee the truth of Φ(k, n̄, A,G) (even from the viewpoint
of N ). Guarantee here means that N [G] � Φ(k, n̄, A,G) for every G ⊇ τ . Thus we
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also write this as τ  ∃kΦ(k, n̄, A,G). Note that if P is an et-forcing then {〈τ ′, n̄〉 |τ ′ ∈
EXT (〈τ , T 〉) & τ ′  ∃kΦ(k, n̄, A,G)} is Σ0

1 over N and all Σ0
1 formulas over N [G] (with

free variables) are equivalent to formulas of this form (with added free variables).

Personally, we like the recursion theoretic view that includes in the language a recur-
sive predicates (with ∆0

1 definitions independent of N ) for the pairing functions and a
coding of finite strings σ with their length, the relation σ ⊆ X and the universal Turing
functional Φ(e, σ, x, y). Intuitively Φ(e, σ, x, y) says that machine e with input x and
using as an oracle only the finite sequence σ converges with output y in at most |σ| many
steps. This, or any other similar coding procedure, provides a universal Σ0

1 predicate,
i.e. every Σ0

1 predicate with set variable X0, . . . Xk and number variables n0, . . . nl is
equivalent to ∃σ0, . . . , σk(σ0 ⊆ X0 ∧ . . . ∧ σk ⊆ Xk ∧ Φ(e, 〈σo, . . . , σk〉 , 〈n0, . . . nl〉 , 1)
where e ∈ N can be calculated recursively from the the given Σ0

1 formula. As is common
we often write this this as ΦX0,...,Xk

e (n0, . . . nl) = 1. In this notation, for example, every
set in N [G] has its characteristic function of the form ΦA,G

e for an A ∈ S(N ). Similarly,
τ forcing a Σ0

1 sentence of the forcing language (with, e.g. set parameter A ∈ S(N ) and
number parameter n ∈ N) is equivalent toN � Φ(e, A � |τ |, τ , n, 1). These are essentially
the only types of sentences we deal with until §7.

We note that many common notions of forcing used to produce reals are et-forcings
or easily seen to be equivalent to such. These include Cohen, Laver, Mathias, Sacks and
Silver forcing and many variations. In this paper we use some of these as well as more
specialized et-forcings in §5 to prove the conservation results that show, in particular,
that the principles considered in §3 do not imply ACA0.

Theorem 4.5. If P is an et-forcing over a countable model N of RCA0 there is a
countable collection D of dense sets (including the ones specified in Definition 4.1) such
that

1. If G is P-generic for D, then N [G] � RCA0.

2. If R is a subtree of N<N (not necessarily in S(N )) with no branch in S(N ), then
there is a countable collection D′ ⊇ D of dense sets such that if G is P-generic for
D′, then there is no branch of R in N [G].

3. Thus for any countable collection Ri of trees as in 2 (such as all those in S(N ))
there is a single D′ as in 2 which works for every Ri. In particular, for a set
{Ci|i ∈ ω} with Ci ⊆ N and Ci /∈ S(N ) for every i ∈ ω, there is a D′ ⊇ D such
that, for any D′-generic G, no Ci ∈ N [G].

Proof. The third clause follows immediately from the second by the countability of S(N )
and then by taking Ri = {ρ ∈ N<N |ρ ⊂ Ci}. We prove each of the first two assertions
by specifying the appropriate collections of dense sets.
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1. By a classic result of H. Friedman [1976], it suffi ces to show that for any Σ0
1 formula

∃kΦ(k,m,A,G) with A ∈ S(N ) such that N [G] � ∃kΦ(k,m,A,G) there is an N -
least m′ such that N [G] � ∃kΦ(k,m′, A,G). By the definition of G there is a
condition 〈τ , T 〉 ∈ G such that τ  ∃kΦ(k,m,A,G). We show that the conditions
that guarantee that there is an N -minimal such m are dense below 〈τ , T 〉 and
so we can extend D to guarantee that N [G] �RCA0 as there are only countably
many Σ0

1 formulas ∃kΦ(k,m,A,G) and conditions 〈τ , T 〉. As P is an et-forcing
the set {m′ ≤ m|(∃τ ′ ∈ Ext(〈τ , T 〉)(τ ′  ∃kΦ(k,m′, A,G))} is Σ01 in N and so as
N �RCA0, there is anN -least suchm′ with an associated 〈τ ′, T ′〉. If D includes the
corresponding dense set consisting of such 〈τ ′, T ′〉 for each 〈τ , T 〉, it is clear that m′
is the least m such that N [G′] � ∃kΦ(k,m,A,G′) for any D-generic G′ as desired.
(Otherwise, there would be a 〈τ ′′, T ′′〉 ≤ 〈τ ′, T ′〉 a k′ ∈ N and an m′′ <N m′ such
that τ ′′  Φ(k′,m,A,G).)

2. Consider any R as in the claim. We again want to specify the additional dense sets
needed. Consider an arbitrary function in some N [G]. By the definition of N [G]
(and basic facts of about recursive functions true in RCA0), it is of the form ΦA,G

e

for some e ∈ N and A ∈ S(N ).

If for every 〈τ , T 〉 ∈ G there is a ρ /∈ R (ρ ∈ N<N) and a τ ′ ∈ EXT (〈τ , T 〉) such
that τ ′  ΦA,G

e (l) = ρ(l) for every l < |ρ| then the set of conditions guaranteeing
that ΦA,G

e is not on R is dense. Thus we may assume that we have a 〈τ , T 〉 ∈ G
such that for every τ ′ ∈ Ext(〈τ , T 〉) and every ρ, if τ ′  ΦA,G

e (l) = ρ(l) for every
l < |ρ|, then ρ ∈ R.
Next, if there is a τ ′ ∈ Ext(〈τ , T 〉) and an l ∈ N such that there is no m ∈ N and
τ ′′ ∈ Ext(〈τ , T 〉) with τ ′′ ⊇ τ ′ such that τ ′′  ΦA,G

e (l) = m then the associated
〈τ ′, T ′〉 ≤ 〈τ , T 〉 guarantees that ΦA,G

e (l) ↑ and so ΦA,G
e is again not a branch on R.

Thus we may assume that for every l ∈ N and τ ′ ∈ Ext(〈τ , T 〉) there is an m ∈ N
and τ ′′ ∈ Ext(〈τ , T 〉) with τ ′′ ⊇ τ ′ such that τ ′′  ΦA,G

e (l) = m.

We now prove that there is a branch f on R which is in S(N ) for a contraction:
By our last assumption on 〈τ , T 〉, we can define an f : N→N by recursion in N
starting with our 〈τ , T 〉 and τ−1 = τ : We build sequences of τ l ∈ Ext(〈τ , T 〉) and
ml such that τ l  ΦA,G

e (l) = ml and τ l ⊆ τ l+1. This is a recursive procedure in N
as P is an et-forcing and so we can search for the next witnesses (and find them)
effectively in N . By our first assumption on 〈τ , T 〉, the sequence 〈ml|l < n〉 is in
R for every n ∈ N and so f is the desired branch on R in N .

Another property of extensions of theories expressing weakness is having a minimal
pair of extensions. We note that it follows from the cone avoiding property in an even
stronger form.
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Corollary 4.6. If N0 and N1 are countable models of RCA0 with the same first order
part N , P0 and P1 are et-forcings with classes D0 and D1 of dense sets as above (over
N0 and N1, respectively), then there are Gi for i = 0, 1 which are Di-generic for Pi
such that N0[G0],N1[G1] � RCA0 and N0[G0] ∩ N1[G1] = N . In fact, for any countable
models N ⊆ N0 of RCA0 with the same first order part and P an et-forcing over N
there is a countable collection D of dense sets in P such that for any D-generic G,
N1 = N [G] � RCA0 and N0 ∩ N1 = N . (Note that N0 ∩ N1 denotes the second order
structure whose first order part is N and second order part is S(N0) ∩ S(N1).)

Proof. Let Ci list the subsets of N which are in N0 but not in N . Apply Theorem 4.5.3
to get the desired collection of dense sets.

From now on, in all the cases where we establish or use the cone avoiding property
similar definitions and conclusions can be made for minimal pairs of extensions. In
particular, this applies to Definition 4.7, Theorem 4.13 and Theorem 6.2.

It is now standard to prove that any Π1
2 principle Q ≡ ∀X(Φ(X)→ ∃YΨ(X, Y ) with

Φ and Ψ arithmetic for which solutions can be provided by an et-forcing P are Π1
1 and

r-Π1
2 conservative over RCA0. We formulate some relevant notions more generally for

later use.

Definition 4.7. Let Q ≡ ∀X(Φ(X) → ∃YΨ(X, Y ) be a principle. Instances of Q are
specified by an X such that Φ(X) holds. A set Y is a solution for the instance of Q
specified by X if Ψ(X, Y ) holds. If Φ and Ψ are arithmetic we say Q is a Π1

2 principle.

1. We say that solutions to Q can be provided by forcing if, for every countable
N�RCA0 and instance of Q specified by an X ∈ N , there is a notion of forc-
ing P over N and a countable collection D of dense subclasses of P such that for
every D-generic G for P, N [G] �RCA0 & ∃YΨ(X, Y ).

2. We say that solutions can be added without adding branches to trees if the forcing
P and dense sets D can always be chosen so that, in addition, any tree T in N that
has no branch in N has no branch in N [G].

3. We say that solutions can be added with cone avoiding if the forcing P can be
chosen such that for any {Ci|i ∈ ω} with Ci ⊆ S(N ) and Ci /∈ S(N) for each i ∈ ω,
there is a D such that for any D-generic G on P, Ci /∈ N [G] for every i ∈ ω.

One can now prove by fairly standard methods that providing solutions by the various
types of forcing insures specific conservation results and other evidences of the weakness
of the given principle. We extend the usual arguments for conservation results to cover
larger classes of formulas that we now describe.

Definition 4.8. If Γ is a class of sentences and T a theory of second order arithmetic,
we say T is Γ conservative (over RCA0), if for every Λ ∈ Γ such that T ` Λ, RCA0 ` Λ.

15



Definition 4.9. A theory T is Π1
1 conservative if it is conservative for the class of

sentences Λ of the form ∀XΦ(X) with Φ arithmetic. We extend this to G-Π1
1, generalized

Π1
1, conservative by including all sentences Λ in the G-Π1

1 class of formulas defined
by closing the quantifier free formulas under conjunction (∧), disjunction (∨), first order
quantification (∀x and ∃x for number variables) and universal second order quantification
(∀X for set variables).

Definition 4.10. Hirschfeldt and Shore [2009, Corollary 3.15] define r-Π1
2 conservativity

by the class of sentences Λ of the form ∀X(Φ(X) → ∃YΘ(X, Y ) where Φ is arithmetic
and Θ is Σ0

3. We extend this to G-r-Π
1
2 conservativity by including all sentences in the

G-r-Π1
2 class of formulas defined by closing all formulas which are either quantifier free

or of the form ∃YΘ(Y ) where Θ is Σ0
3 under the same operations as in the definition of

G− Π1
1 (∧, ∧, ∀x, ∃x and ∀X).

We introduce other classes of conservativity results related to sentences of the form
∀X∃!Y Φ(X, Y ) forΦ arithmetic in §7. They require additional uniformity type conditions
on our et-forcings.

All of our proofs of conservation results have the same general format. We have a
class Γ of formulas and a theory T of second order arithmetic. We want to prove T is
conservative (over RCA0) for sentences in Γ. For the sake of a contradiction, we assume
that there is a sentence Λ ∈ Γ such that T ` Λ and a countable model N of RCA0 such
that N � ¬Λ. We then construct, by iterated forcing, a model N∞ of T . In each case, we
have a notion of forcing that adds solutions for all the sentences of T , e.g. of Π1

2 principles
Q. We construct a limit ordinal length iteration of forcings producing witnesses for the
solutions for these principle. For Π1

2 principles these have length ω but other lengths will
be used and we denote the length ambiguously by∞. This gives us a sequence of models
Ni+i = Ni[Gi] and Nλ = (N,∪{S(Nα)|α < λ} of RCA0 (all with the same first order
part N) such that N∞ = (N,∪{S(Ni)|i <∞}) is a model of RCA0+T by arranging that
every instance of the principles Q of T specified by an X in some Ni is given a solution
Y in some later Nj.
Next, we argue that N∞ � ¬Λ as well for a contradiction. We prove that the truth of

¬Λ is preserved for all sentences Λ ∈ Γ with constants from N and S(N) by an induction
on the complexity of Λ. The argument can be seen as playing a game between the two
models to eliminate number quantifiers or universal set quantifiers as well as the positive
connectives. This will then complete each proof of conservativity that we provide.

Theorem 4.11. If solutions to a Π1
2 principle Q can be provided by forcing, then RCA0+

Q is G-Π1
1 conservative over RCA0.

Proof. We begin the plan outlined above with quantifier free G-Π1
1 sentences Λ with

constants from N and S(N ). Here the truth of both Λ and ¬Λ are preserved from N to
N∞ as N = N∞ and S(N ) ⊆ S(N∞). Suppose next that Λ = ∆0 ∧ ∆1. As N � ¬Λ,
N � ¬∆i for at least one i ∈ {0, 1}. By induction then N∞ � ¬∆i as well as required. If
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Λ = ∆0 ∨∆1 and N � ¬Λ then N � ¬∆0 ∧ ¬∆1 and so by induction N∞ � ¬∆0 ∧ ¬∆1

and N∞ � ¬(∆0 ∨ ∆1) as required. Next, suppose Λ = ∀x∆(x) and N � ¬Λ. Choose
an n ∈ N such that N � ¬∆(n). By induction, N∞ � ¬∆(n) and so N∞ � ¬∀x∆(x).
Suppose Λ = ∃x∆(x) and N � ¬Λ. If N∞ � ∃x∆(x) choose a witness n ∈ N∞ = N so
that N∞ � ∆(n). As ∆(n) is also a sentence in Γ, we have that N � ∆(n) by induction
for the desired contradiction. Finally, if Λ = ∀X∆(X) and N � ¬Λ, choose aW ∈ S(N )
such that N � ¬∆(W ). As ∆(W ) is a sentence in Γ, we again have N∞ � ¬∆(W ) as
required.

Similarly, we can prove a G-r-Π1
2 conservation result for such Q when solutions are

provided by et-forcings using Theorem 4.5.3.

Theorem 4.12. If solutions to a Π1
2 principle Q can be provided without adding branches

through trees, then RCA0 +Q is G-r-Π1
2 conservative over RCA0.

Proof. The argument for quantifier free sentences is as in Theorem 4.11 as are the in-
ductive cases for ∧, ∨, ∃x, ∀x and ∀X. Here we also have to begin with sentences Λ
of the form ∃YΘ(x̄, ȳ, Y ) with Θ a Σ0

3 formula with constants from N and S(N ) and
suppose that N � ¬Λ. As in Hirschfeldt, Shore and Slaman [2009, last paragraph of p.
5818], the point here is that for any model N of RCA0 the failure of a sentence ∃YΘ(Y )
with Θ being Σ0

3 (with set constants W̄ ) is equivalent to their being, for each k ∈ N ,
a specifically defined tree Tk (recursive in W̄ ) which has no branch in the model. Thus
none of these trees has a branch in N and so by our assumptions on the forcings none
in N∞ either. Thus Nω � ¬∃YΘ(x̄, ȳ.Y ) as required.

We next note the analog of these conservation results for cone avoiding forcings.

Theorem 4.13. If Q is a Π1
2 principle such that solutions can be added by cone avoiding

forcings, N �RCA0 is countable, {Cj|j ∈ ω} ⊆ S(N ) and ∀j ∈ ω(Cj /∈ S(N )), then
there is an extension N ′ of N with the same first order part such that N ′ � Q+RCA0
and no Cj ∈ S(N ′).

Proof. As there are here no conservation results to verify the proof is simply the basic
argument given above for the construction. Then one simply notes that by the choice
of forcings no Cj is added on at any successor step and so none enter at a limit level
either.

We now note that by interspersing the appropriate forcings in the iterations, the
class of problems described in each of the four clauses of Definition 4.7 are closed under
conjunction. Indeed, if they hold for each Qi for i ∈ ω they hold for the theory T =
{Qi|i ∈ ω}. So to then do the conservation results for each of the first two theorems
associated with each class of Qs and the cone avoiding theorem for the third. Thus we can
add on any principle with solutions give by et-forcings such as COH (Cholak, Jockusch
and Slaman [2001, Theorem 9.1] and Hirschfeldt and Shore [2007, Theorem 2.21]) —
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Mathias forcing); AMT (Hirschfeldt, Shore and Slaman [2009, Corollary 3.15]) as well
as BCT—II and RCA+0 of Brown and Simpson [1997, §4 and Corollary 6.5] and, Π0

∞G =
∪Π0

nG in the terminology of Hirschfeldt, Lange and Shore [2017, p. 89] Π0
∞ = ∪Π0

n —
Cohen forcing; the existence of minimal covers for Turing reducibility ([as mentioned in
Shore [2010, p. 395] —Sacks forcing.

Remark 4.14. Moving outside of et-forcings, we can, for example, extend the G-Π1
1

conservation results from RCA0 to WKL0 as WKL is a Π1
2 principle for which solutions

can be provided by forcing (Harrington, see Simpson [2009, IX.2]). So, in particular, if
solutions to a Π1

2 principle Q can be provided by forcing, then Q + WKL0 0 ACA0 as
ACA0 is not Π1

1 conservative over RCA0. (Indeed, Simpson [2009, VIII.1.8] shows that
ACA0 is not conservative over RCA0 even for Π0

1 sentences.) Note that as WKL is itself
an r-Π1

2 formula, it is not r-Π
1
2 conservative over RCA0 and so solutions for it cannot be

produced by et-forcings. (The are, however, produced in the usual proof by tree forcings,
just not effective ones.)

The proof in Simpson [2009, VIII.1.8] is an application of Gödel’s second incom-
pleteness theorem. A semantic and more dramatic demonstration that, in this setting,
Q+WKL0 0 ACA0 is provided by Theorem 4.5.3 when solutions for Q can be provided
by cone avoiding forcings: If N is a model of RCA0 but not ACA0, i.e. there is an
X ∈ S(N ) such that there is no Y ∈ S(N ) satisfying the definition of X ′ then there is
an extension N ′ of N with the same first order part which also has no such Y . Indeed,
we can even omit every subset of N which is definable over N but not in S(N ). These
remarks also apply when we add on WKL as the forcing that provides solutions for it
has the cone avoiding property by using the standard arguments for cone avoiding for Π0

1

forcing in recursion theory (Jockusch and Soare [1972])

We would like to apply all these results to the principles LFXY of Definition 3.5 as
well as others to show that they do not imply ACA0 and indeed are highly conservative
over RCA0. As we already showed that each LFXY becomes a THA when added to
ACA0, this will show that all of them (even when combined with each other as well as
WKL, COH and more) are ATHA. Our plan is to first show that they all have solutions
provided by et-forcings. The problem will then be that they are not Π1

2 principles and
so we will also have to extend the theorems above to a larger class of principles.

5 Extending the Class of Principles

We want to prove that the principles asserted to be ATHA in §3 do not imply ACA0
by showing that solutions can be provided by et-forcings and that we can extend the
conservation/preservation results of §4 to a wider class of principles than Π1

2 that include
all of the ones that we claimed to be ATHA and more. We begin with showing how
solutions for all of them can be provided by et-forcings. The most interesting ones are
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the ones about finding locally finite subgraphs with various properties that began our
study of ATHA: LFXY .

Theorem 5.1. Given an X-graph H in a countable N � RCA0 which contains arbitrarily
many Y -disjoint rays we can define an et-forcing P and a countable collection of dense
sets D such that any D-generic G provides a locally finite X-subgraph H ′ of H which
also contains arbitrarily many Y -disjoint rays.

Proof. The set of vertices of H ′ is just that of H which, without loss of generality, we
may take to be N . Thus we only need to specify the edges of H ′. We use a pairing
function to view the numbers n as all possible edges. We writeM(v, n) to mean that the
vertex v is an element of the edge n.

Our conditions 〈τ , T 〉 will satisfy various requirements in addition to the ones common
to all et-forcings. The first is that, the trees are binary (i.e. subsets of 2<N) and for any
σ ∈ T , if (the pair) n is not an edge in H then σ(n) = 0. Thus each generic G : N→N
can be seen as a subgraph of H in N [G]. (G supplies the characteristic function of the
set of edges. The set of vertices we have already set to be N .)

The intuition behind the rest of the definition of the notion of forcing is that we want
to be able, on one hand, to specify that the set of edges from some sequence of disjoint
rays of length m can be added to the final graph. On the other, for an arbitrary vertex v
we want to be able to specify that no additional edges containing v can be added to the
graph and to guarantee that only finitely many of the edges already guaranteed to be in
the graph have v as a vertex.

To these ends, for each potential condition 〈τ , T 〉 we first specify various sets of edges
n based on what the condition says about their membership in G. First we have the
n > |τ | such that all branches G in T have G(n) = 1. We denote the set of such n as
Y 〈τ ,T 〉 = {n > |τ ||(∀σ ∈ T )(σ(n) = 1)}. Next we have the ones with G(n) = 0 for all G
on T , N 〈τ ,T 〉 = {n > |τ ||(∀σ ∈ T )(σ(n) = 0)}. Finally, we have the n at which G can
go either way, U 〈τ ,T 〉 = {n > |τ ||(∀σ ∈ T )(|σ| = n → σˆ0 ∈ T ∧ σˆ1 ∈ T}. Note that
as T is binary all these sets are in N (even uniformly in 〈τ , T 〉). We require that every
n > |τ | is in one of these (clearly disjoint) sets.
We also impose some requirements on the nature of the first two of these three sets.

For Y 〈τ ,T 〉 there is a function f〈τ ,T 〉 = f such that ∀v(f(v) = |{n ∈ Y 〈τ ,T 〉|M(v, n)}|). So
not only are there only finitely many n ∈ Y 〈τ ,T 〉 such that v is a member of the edge
n but we know how many and so we can uniformly determine which they are. Finally,
for N 〈τ ,T 〉 there is a finite set A〈τ ,T 〉 = A such that (∀n ∈ N 〈τ ,T 〉)(∃v ∈ A)M(n, v) and
(∀n > |τ |)(∀v ∈ A)(M(n, v)→ n /∈ U 〈τ ,T 〉). We call such f and A witnesses that a 〈τ , T 〉
satisfying the other requirements on Y 〈τ ,T 〉, N 〈τ ,T 〉 and U 〈τ ,T 〉 is a condition. Note that
f is uniquely determined but A need not be.

Given this set of conditions, the forcing partial order is just the one defined by the
basic requirement for et-forcings in Definition 4.1.2.
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Note that if 〈τ , T 〉 is a condition with witnesses f and A and σ ∈ T with |σ| > |τ | then
〈σ, T σ〉 (as defined in Notation 4.3) is also a condition with the same A and a slightly
modified f ′ as witnesses: let f ′(v) = f(v) − |{n ∈ Y 〈τ ,T 〉| |τ | ≤ n < |σ| ∧M(v, n)}|.
Thus we have defined an et-forcing.

We now argue that we can describe a collection D of dense sets that guarantee that
any D-generic G determines (as described above) a locally finite subgraph H ′ of H which
contains arbitrarily many disjoint rays.

First, we claim that for each vertex v and condition 〈τ , T 〉 with witnesses A and f as
above there is a 〈τ ′, T ′〉 ≤ 〈τ , T 〉 with witnesses f ′ and A′ such that v ∈ A′. In fact, it is
easy to see from the definition of the allowed conditions that for any v /∈ A〈τ ,T 〉, there is
a T ′ ⊆ T such that 〈τ , T ′〉 is a condition with witness f and A′ = A ∪ {v}. We refine T
by removing any σ ⊃ τ such that there is an n ≥ |τ | which is an edge containing v as a
vertex such that both σ � nˆ0 and σ � nˆ1 are in T and σ(n) = 1. This moves n from
U 〈τ ,T 〉 to N 〈τ ,T 〉 and so does not affect the calculation of the required f .

So by genericity (for these dense sets) for any vertex v there is a condition 〈τ , T 〉 in
the generic filter such that it has a witness A〈τ ,T 〉 containing v.

As for this enforcing local finiteness, consider any condition 〈τ , T 〉 with witnesses
such that v ∈ A〈τ ,T 〉. We claim that for any G on T there are only finitely many n with
G(n) = 1 and M(v, n) Of course, there are at most |τ | many edges n < |τ | such that
M(v, n). There are only f(v) many n ∈ Y 〈τ ,T 〉 = Y 〈τ ,T

′〉 such that M(v, n) and by our
second condition about v ∈ A there are no n ∈ U 〈τ ,T 〉 such that M(v, n). Of course,
there are no n ∈ N 〈τ ,T ′〉 such that G(n) = 1. (We have, in fact, uniformly over all G on
T calculated the number of n such that M(v, n).)

Finally, we show that for each m ∈ N and condition 〈τ , T 〉 with witnesses as above,
there is an extension 〈τ , T ′〉 such that for any G on 〈τ , T ′〉 the associated graph contains
m many disjoint rays.

By assumption there is a sequence 〈Vi, Ei, fi〉i<m+|τ | of disjoint rays in H. Obviously,
there are at most |τ | many n such that τ(n) = 0. As each edge n can appear in at most
one Ei we can thin out the given sequence to one 〈V ′i , E ′i, f ′i〉i<m of disjoint rays none of
which contains an edge n for which τ(n) = 0.

Next we deal with the conditions imposed by A〈τ ,T 〉. For each i < m we let g(i) = 0 if
no v ∈ A〈τ ,T 〉 is in V ′i . Otherwise we let g(i) = max{n|f ′i(n) ∈ A〈τ ,T 〉 and f ′i(n) ∈ V ′i }+1.
Our construction so far guarantees that g : m → N is a member of N . Thus we can
thin out 〈V ′i , E ′i, f ′i〉i<m by taking the tail of each V ′i beyond g(i) to get V ′′i = V ′i −
{f ′i(n)|n < g(i)}, E ′′i = E ′i − {〈f ′i(n), f ′i(n+ 1)〉 |n < g(i)} and f ′′i (n) = f ′i(n+ g(i)). Let
E ′′ = ∪{E ′′i |i < m}. This sequence clearly provides m many disjoint rays in H. Thus
(by genericity) it suffi ces to define a condition 〈τ , T ′〉 ≤ 〈τ , T 〉 such that E ′′ ⊆ Y 〈τ ,T

′〉

as then for any G on 〈τ , T ′〉, G(n) = 1 for all the edges n ∈ E ′′i for every i < m and
so 〈V ′′i , E ′′i , f ′′i 〉i<m shows in N [G] that the subgraph H ′ of H associated with G has m
many disjoint rays.

The crucial point is that we have designed
〈
V ′′i , E

′′
i , f

′′
i

〉
i<m

so that E ′′ ∩N 〈τ ,T 〉 = ∅.
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Thus we may define a tree T ′ ⊆ T by simply removing all σ such that σ(n) = 0 for
some n ∈ E ′′. This change at most moves some edges n ∈ U 〈τ ,T 〉 to Y 〈τ ,T ′〉 and makes
Y 〈τ ,T

′〉 = Y = Y 〈τ ,T 〉 ∪ E ′′ as desired while keeping N 〈τ ,T ′〉 = N 〈τ ,T 〉. If 〈τ , T ′〉 is a
condition, it clearly extends 〈τ , T 〉 and so we only have to verify that it is one. As we
already have the required facts about Y 〈τ ,T

′〉, N 〈τ ,T 〉 and U 〈τ ,T
′〉, we only need to supply

witnesses f ′ and A′. As we have the witness f for 〈τ , T 〉, to get f ′ it clearly suffi ces to
compute for each v the number of n > |τ | such that n ∈ E ′′ − Y 〈τ ,T 〉 and M(v, n). We
begin with the sequence

〈
V ′′i , E

′′
i , f

′′
i

〉
i<m

of disjoint rays such that E ′′ = ∪{E ′′
i |i < m}.

We first determine those i for which v ∈ V ′′i . (For the other j there are no n ∈ E ′′j
with M(v, n).) As v appears in each of these V ′′i only once, there are at most two such
edges in each of these E ′′i . Using this information we can determine for which edges
n ∈ E ′′

i − Y 〈τ ,T 〉 we have M(v, n). As the E ′′i are disjoint, we can now simply add up the
contributions (of one or two) from each E ′′i − Y 〈τ ,T 〉 with v ∈ V ′′i to get amount we need
to add to f(v) to get the desired f ′(v). Finally, as N 〈τ ,T 〉 = N 〈τ ,T

′〉 and U 〈τ ,T
′〉 ⊆ U 〈τ ,T 〉,

we can take the witness A for 〈τ , T 〉 to also be the desired witness A′ for 〈τ , T ′〉.

So solutions to all the LF principles can be provided by et-forcings. We would like
to draw the conclusions that give the conservation and preservation results of Theorems
4.11-4.13 for all the LF principles. The problem is that they are not Π1

2-principles. We
actually needed two properties of principles to get the applications we proved for Π1

2

principles.

One was that once a solution was provided in N [G] by forcing, it remained a solution
in each later extension and so at the end. This was immediate from the fact that the
properties of interest were arithmetic and that the extensions preserved the first order
part of the model. This property still holds for the conclusions of the LF principles as
the conditions required of the constructed subgraph H ′ (local finiteness) and the finite
sequences 〈Vi, Ei, fi〉i<m (they are finite sequences of rays) are also arithmetic.
The other property was that every instance of the problem that is in the final limit

model already appears in one of the models along the way. (This allows us to handle
all the instances that there are at end as we go along.) This property is not obvious
for the LF principles as the condition for H to be an instance is that H is a graph that
contains arbitrarily many rays and so of the form ∀m∃W (

〈
W [i]|i < m

〉
is a sequence ofm

many disjoint rays in H). It could be that for some graph H constructed along the way
the required W s for each m ∈ N get constructed cofinally in the sequence of extensions
and so are instances in the limit model never solved along the way. (There are special
situations for which this cannot happen. One, in particular, is that the failure of X to
be an instance is equivalent to some trees T in the model with H do not have branches
in the model. Examples of this is situation is TAC and its variants in Proposition 5.13
and Definition 5.15. As et-forcings preserve this fact, H would not be an instance in the
limit stage model.) Here we provide a simpler more generally applicable solution: extend
the iteration to ω1. (One can also get by with a countable iteration albeit longer than ω
by a look ahead procedure to make sure possible instances with parameters that we have
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now but witnesses that may occur later are handled now. The ω1 iteration is, however,
simpler and useful later.)

Theorem 5.2. The conclusions of Theorems 4.11-4.13 hold for each the LFXY principles
as Q.

Proof. Continue the iteration by the et-forcings that provide solutions to an instance
of one of the LFXY principles through ω1 many steps in such a way that every H that
appears as an instance at any Nα gets a solution in some Nβ+1 for β ≥ α. At limit
levels we still act continuously: Nλ is the union of the Nα for α < λ. Now if H ∈ Nω1
is an instance of the LFXY principle then, not only does H appear in some Nα, but so
do all the witnesses for H containing m many disjoint rays for every m as there are only
countably many m ∈ N and the full sequence is of length ω1.

Theorem 5.3. All of the LFXY principles are ATHA. Indeed, all of them together are
ATHA. Moreover, one can add on all the other et-forcings mentioned here as well as WKL
while maintaining the preservation and conservation theorems and so still not proving
ACA0 and being and ATHA.

Proof. Each of these four principles together with ACA0 is a THA by Proposition 3.6.
By Theorem 5.2, none of them imply ACA0. Combining them and any other principles
for which solutions can be added by et-forcings and even WKL by ω1 iterations is routine
following the route indicated in Remark 4.14 and the comments proceeding it for ω length
iterations.

We now turn to other examples from the work on Halin type theorems as well as
direct variations of choice principles. The guiding idea here is that when a principle calls
for a solution which is a sequence Xi of sets each satisfying some property Ψ(i,X) we
are willing to accept some variations. One is that we accept a sequence Yi such that each
Yi differs from an Xi as required by a finite set. The other basic variation is that we
allow the desired witnesses to be arbitrarily distributed among the Yi. That is for each i
there is a j such that Ψ(i, Yj). We designate these modifications of a principle P by P ∗

and P−, respectively. Of course, we could also consider allowing both changes: the list
contains a finite variant of each Xi. The proof of the following implication shows that
nothing new appears with this combination.

Proposition 5.4 (RCA0). For any principle P whose conclusion asks for a sequence Xi

such that ∀iΨ(i,Xi), P ∗ → P−.

Proof. Take the solutions Yi given by P ∗ and construct the sequence Yi,σ for each finite
(binary) string σ with Yi,σ(n) = σ(n) for n < |σ| and Yi,σ(n) = Yi(n) for n ≥ |σ|.

We begin with a principle from BGS [ta] that we examined for locally finite graphs in
Proposition 3.3. It extracts the use of Σ1

1-AC needed to prove the Halin-type theorems
IRTXY in ACA0 as in BGS [ta, Theorem 8.2].
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Definition 5.5. (SCRXY ): If an X-graph G has arbitrarily many Y -disjoint X-rays then
there is a Z such that, for each k, Z [k] is a sequence 〈Zk,i|1 ≤ i ≤ k〉 of pairwise Y -disjoint
X-rays in G.

We note a couple of facts about SCRXY from BGS [ta, Proposition 7.3 and Corollary
7.4] that include its being a THA and then a couple of variations along the lines described
above that produce ATHAs.

Proposition 5.6. (RCA0) SCRXY → ACA0.

Corollary 5.7. (RCA0) SCRXY ⇔ IRTXY .

Definition 5.8. A sequence 〈xn〉 of vertices in an X-graph G is almost an X-ray in G if,
for some k, 〈xk+n〉 is an X-ray in G. A sequence 〈Xn〉 of almost X-rays 〈xn.i〉 is almost
Y -disjoint if for every n 6= m the there are only finitely many i, j such that xn,i = xm,j
(for Y = V ). For Y = E we require that there are only finitely many i, j such that
(xn,i, xn,i+1) = (xm,j, xm,j+1).

Definition 5.9. (SCR∗XY ): If an X-graph G has arbitrarily many pairwise almost Y -
disjoint almost X-rays then there is a Z such that, for each k, Z [k] is a sequence
〈Zk,i|1 ≤ i ≤ k〉 of pairwise almost Y -disjoint almost X-rays in G. (Note the use of
∗ here and in later such principles is suggested by the common usage of =∗ to mean
equal up to finite difference and is not related to the induction axioms characterizing,
e.g. ACA∗0 and related principles in [BGS].)

Definition 5.10. (SCR−XY ): If an X-graph G has arbitrarily many pairwise almost Y -
disjoint almost X-rays then there is a Z such that, for each k, there is an l such that Z [l]

is a sequence 〈Zk,i|1 ≤ i ≤ k〉 of pairwise almost Y -disjoint almost X-rays in G.

Clearly each of ACA0+SCR∗XY and ACA0+SCR
−
XY imply SCRXY , a THA. Thus to

show that SCR∗XY and SCR
−
XY are ATHA, we only have to show that they do not imply

ACA0. As should be expected, all eight variants have solutions provided by et-forcings
and so satisfy all the conclusions of Theorems 4.11-4.13. However, instead of presenting
specific forcing notions for them we turn to Σ1

1-AC. It is clear that it implies SCRXY .
The ∗ and − analogs for it also imply those of SCRXY and we provide the notions of
forcing for them instead. This then shows that all of these principles are ATHA. We will
then consider other well studied weakenings of Σ1

1-AC which are THA but whose
∗ and

− analogs will also be ATHA. In the next section we turn to stronger versions of choice
which are too strong to be THA but whose ∗ and − variants also have all of the same
weakness properties over RCA0.

Remark 5.11. We make an brief exception to Remark 2.6 to sketch one consideration
of double rays in directed graphs because we can get ATHAs which yield equivalences
with a standard theory. We say a sequence 〈xn|n ∈ Z〉 of vertices in a D-graph G is
almost a double directed ray in G if changing finitely many of the xn to a different vertex
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or removing it from the list (and reindexing) produces a double directed ray. From
the natural analogs SCRDYD for double Y -disjoint directed rays we form the analogous
SCR∗DYD and SCR

−
DYD where, as we have allowed removing vertices in the definition of

almost rays, we use full Y -disjointness. As for SCRXY , these are also consequences of
Σ1
1-AC

∗
0 and Σ1

1-AC
−
0 , respectively and so weak over RCA0. On the other hand, it is easy

to see from the proof of BGS [Theorem 6.13] that, as for SCRXY , SCR∗DYD and SCR
−
DYD

restricted to directed forests (i.e. directed graphs whose underlying graph gotten by
symmetrizing the edge relation is a disjoint union of trees) plus ACA0 is equivalent to
Σ1
1-AC0 over IΣ

1
1. Thus we have two mathematical ATHAs which with the addition of

ACA0 are equivalent to Σ1
1-AC0 over IΣ

1
1.

As there is some variation in the formulations of these principles in the literature, we
want to make the versions and the relations among them explicit. We begin with Σ1

1-AC
itself which is a THA.

Definition 5.12. Σ1
1-AC is the principle ∀A[∀n∃XΦ(n,X)→ ∃Y ∀nΦ(n, Y [n])]. Here Φ

is an arithmetic formula possibly with free set variables A and X but not Y . (We take
these restrictions on the free set variables for granted in all future similar situations.)
Equivalently (over RCA0), we may allow Φ to be Σ1

1.

One direction of this equivalence in RCA0 is immediate as all arithmetic formulas are
trivially equivalent to Σ1

1 formulas. For the other direction consider Φ = ∃ZΨ(A, n,X,Z)
(Ψ arithmetic). One simply considers the instance ∀n∃XΨ(A, n,X [0], X [1]). Clearly
one can recursively recover the Y required for Φ from the one given by Σ1

1-AC for
Ψ(A, n,X [0], X [1]). We choose the version with Φ arithmetic to match the common termi-
nology for weak Σ1

1-AC (U-Σ
1
1-AC below). On the other hand, there is another common

a priori weaker version for which the proof of the equivalence uses ACA0. This is not an
issue for Σ1

1-AC as even this “weaker”version implies ACA0. This will no longer be true
of our ∗ and − variants.

Proposition 5.13. Σ1
1-AC is equivalent to the principle TAC: For every sequence Ti of

trees, if ∀n∃f(f ∈ [Ti]), then ∃f∀n(f [n] ∈ [Tn]).

This Proposition is well known and follows easily from the normal form theorem
proved in ACA0 as Lemma V.5.4 of Simpson [2009].

We now define our variants of Σ1
1-AC.

Notation 5.14. For a function f , finite string µ (or set X) and σ a finite (binary) string
we write fσ, µσ (or Xσ) to mean the function, finite string (or set) gotten by using σ to
define its initial segment of length |σ|: fσ(i) = σ(i) for i < |σ|, fσ(i) = f(i) for i ≥ |σ|
and similarly for µσ and Xσ. We write f

[n]
σ for (f [n])σ and X

[n]
σ for (X [n])σ. Similarly,

for a tree T we write Tσ = {µσ|µ ∈ T}. We write T σρ for (T σ)ρ where T σ is defined in
Notation 4.3.
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Definition 5.15. For Φ arithmetic

Σ1
1-AC

∗: ∀A[∀n∃XΦ(A, n,X)→ ∃Y ∀n∃σΦ(A, n, Y
[n]
σ )] and

Σ1
1-AC

−: ∀A[∀n∃XΦ(A, n,X)→ ∃Y ∀n∃mΦ(A, n, Y [m])].

TAC∗: For every sequence 〈Tn〉 of trees, if ∀n∃f(f ∈ [Tn]) then ∃f∀n∃σ(f
[n]
σ ∈ [Tn].

TAC−: For every sequence 〈Tn〉 of trees, if ∀n∃f(f ∈ [Tn]) then ∃f∀n∃m(f [m] ∈ [Tn]).

As with Σ1
1-AC, Σ1

1-AC
∗ and Σ1

1-AC
− are each equivalent (over RCA0) to the analo-

gous principle with Φ being Σ1
1.

Proposition 5.16. In RCA0, Σ1
1-AC→ Σ1

1-AC
∗ → Σ1

1-AC
− & TAC∗; Σ1

1-AC
− → TAC−;

TAC∗ →TAC− and TAC− →TAC∗. In ACA0 all of these principles are equivalent to Σ1
1-

AC.

Proof. The implication Σ1
1-AC→ Σ1

1-AC
∗ is immediate as solutions to instances of the

former are also solutions to the same instance of the latter. The implications from a
∗ version to the corresponding − one in RCA0 are essentially instances of Proposition
5.4. Of course, the versions of TAC are simply special cases of the corresponding one for
Σ1
1-AC (The 〈Ti〉 is absorbed into the set parameters.). For the equivalences in ACA0 it
thus suffi ces to show that TAC− → Σ1

1-AC0. Given an instance of Σ1
1-AC specified by A

and Φ, construct the trees Tn such that ∀n∃XΦ(A, n,X) if and only if Tn has a branch
and any such branch uniformly computes a witness X such that Φ(A, n,X). (This is
again essentially Lemma V.5.4 of Simpson [2009] and the previously mentioned remarks
on Π0

2 formulas and branches through trees.) Now apply TAC
− to get its sequence f .

As the question of whether f [m] is a branch on Tn is arithmetic (Π0
1), we have by ACA0

a function g such that f [g(n)] uniformly computes an X such that Φ(A, n,X). Thus we
have an X such that ∀nΦ(A, n,X [n]) as required.

Finally that RCA0 ` TAC− →TAC∗ requires an argument that does not work for
the Σ1

1-AC analogs. We are given a sequence 〈Tn〉 of trees such that ∀n∃f(f ∈ [Tn]) and
an f such that ∀n∃m(f [m] ∈ [Tn]) and must produce a g such that ∀n∃σ(g

[n]
σ ∈ [Tn]. To

construct g[n] we start by copying f [0] until we have an s0 such that f [0] � s0 + 1 /∈ Tn. If
we never find such an s we have computed a branch on Tn and so g[n] = g

[n]
∅ is as required.

If we find such an s0 we switch to copying f [1] for inputs from s0 onward. We continue
until we once again fall off Tn, i.e. f [1] � s1 + 1 /∈ Tn. By the conclusion of TAC− from
some point onward there is a fixed m such that we are copying f [m] and f [m] ∈ [Tn]. We
have thus constructed a g such that gσ ∈ [Tn] with σ = f [m] � sm−1.

We do not know if RCA0 ` Σ1
1-AC

− → Σ1
1-AC

∗. We also note other views of Σ1
1-AC

∗

and Σ1
1-AC

−.

Proposition 5.17. In RCA0, Σ1
1-AC

∗ is equivalent to Σ1
1-AC restricted to predicates

Φ(A, n,X) that are invariant under finite changes in X, i.e. ∀A∀n∀X∀σ(Φ(A, n,X)⇔
Φ(A, n,Xσ)).

25



Proof. If a given instance Φ(A, n,X) of Σ1
1-AC is invariant under finite changes then a

solution for the same instance of Σ1
1-AC

∗ is also one for Σ1
1-AC. In the other direction,

given an instance Φ(A, n,X) of Σ1
1-AC

∗, consider the one Ψ(A, n,X) ≡ ∃σΦ(A, n,Xσ)
for Σ1

1-AC. Clearly Ψ(A, n,X) is closed under finite changes and any Σ1
1-AC solution for

Ψ is also a Σ1
1-AC

∗ solution for the Σ1
1-AC

∗ instance Φ(A, n,X).

As for Σ1
1-AC

−, when we told some people about some of the results in this paper
both Antonio Montalbán and Keita Yokoyama informed us of some early work by Tanaka,
Yamazaki andMontalbán on variations of choice principles. In particular, they considered
Σ1
1-AC

− under the natural name Σ1
1-collection as well as the natural generalizations we

call Σ1
n-AC

− and Σ1
∞-AC

− under the names Π1
n-collection and Π1

∞-collection and proved
several conservation results. We discuss those results in §7.

Theorem 5.18. For each of the ∗ and − versions of Σ1
1-AC in Definition 5.15 solutions

can be provided by et-forcings. Thus the conclusions of Theorems 4.11-4.13 hold for each
of them as well.

Proof. By Proposition 5.16 it suffi ces to prove the Theorem for Σ1
1-AC

∗. Given a count-
able model N of RCA0 and an arithmetic Φ such that N � ∀n∃XΦ(A, n,X) we define
a forcing with conditions 〈τ , T 〉 such that, in N , there is a finite set F and a sequence
〈Xi|i ∈ F 〉 such that ∀i ∈ FΦ(A, i,Xi) and for all σ ∈ T , |σ| > n ≥ |τ | with n = 〈i,m〉
for some i ∈ F , σ(n) = Xi(m). (Otherwise there are no restrictions on σ.)

It is now easy to see that the associated notion of forcing is et: If 〈τ , T 〉 is a condition
and σ ∈ T then 〈σ, T σ〉 is a condition with the same F and Xi which extends 〈τ , T 〉. It
is also clear the the sets Di of conditions such that i is a member of the associated F are
dense. (Just thin out a given 〈τ , T 〉 by choosing an Xi such that Φ(A, i,Xi) and keeping
only those σ ∈ T which satisfy the condition that σ(〈i,m〉) = Xi(m) for 〈i,m〉 ≥ |τ |.)
Moreover, for any G on this thinned out tree, G[i] =∗ Xi. Thus for any G generic for
these Di, G is the desired witness for this instance of Σ1

1-AC
∗.

The argument in the proof of Theorem 5.2 now shows that the conclusions of Theorems
4.11-4.13 hold for all of these choice principles as well.

We now turn to Σ1
1-AC itself and some of its choice like consequences. Each of them

has versions with the property Ψ(i, Y ) required of the Xi being arithmetic or equivalently
Σ1
1 and versions with it being Π0

2 or equivalently asking for a branch on a tree Ti in a
uniform sequence of trees. These are easily seen to be equivalent over ACA0 but not over
RCA0. In particular, we want to consider the versions where we restrict the principles to
Φ such that, for each n, there are only finitely many X for which Φ(A, n,X) holds (F-
Σ1
1-AC) or exactly one such X (U-Σ1

1-AC) which is generally called weak Σ1
1-AC. These

can also be phrased in terms of sequences 〈Ti〉 of trees as in TAC by restricting to Ti
with only finitely many or exactly one branch. We will explicitly just consider the Σ1

1-AC
versions. We are here interested in the ∗ and − versions.
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Theorem 5.19. RCA0 ` Σ1
1-AC

∗ →F-Σ1
1-AC

∗:→U-Σ1
1-AC

∗. None of these implications
can be reversed and all of these principles are ATHA. The same holds for the − versions.

Proof. We consider the ∗ versions but all the arguments apply to the − ones as well.

It is obvious that Σ1
1-AC0 → Σ1

1-AC
∗ →F-Σ1

1-AC
∗ →U-Σ1

1-AC
∗ in RCA0. As in

Proposition 5.16, it is easy to see that with the addition of ACA0 each of the ∗ principles
is equivalent to the standard unstarred version. Each of the standard principles are THA
(see Montalbán [2008, p. 564], the references there and Goh [ta].). Theorem 5.18 shows
that none of them imply ACA0 (over RCA0) and so are all ATHA. The known separations
of all of the unstarred versions provide witnesses that are even standard models of much
more than ACA0 (see Steel [1978], Van Wesep [1977] and Goh [ta]). They then are also
witnesses for the nonimplications among the ∗ versions.

6 Higher Choice Principles

In this section we want to study the ∗ and − variations choice principles that replace the
arithmetic formulas Φ and Ψ in Σ1

1-AC by arbitrary formulas. The usual terminology has
Σ1
n+1-AC being the principle ∀A[∀n∃XΦ(A, n,X)→ ∃Y ∀nΦ(A, n, Y [n])] for Φ Σ1

n+1. As
with Σ1

1 these and their
∗ and − versions are equivalent to the ones with Φ being Π1

n. We
take the Π1

n versions to be our offi cial definitions for notational convenience. As usual
Σ1
∞-AC is the union of all the Σ1

n+1-AC and so for the
∗ and − versions. The variations

on these principles supply us with another collection of principles that are very weak over
RCA0 but very strong over ACA0. At the end we have Σ1

∞-AC
∗ (and so Σ1

∞-AC
−) which

have solutions produced (in a new sense) by et-forcings and for which we argue for all
the properties guaranteed for Π1

2 principles by Theorems 4.11-4.13. The forcing notions
are quite straightforward. The argument that the property holds at the limit of even an
ω1 length iteration, however, needs a new twist.

For Σ1
∞-AC

− actually, there is a very simple known et-forcing that does more and
requires no new ideas. The small trick is that one adds to a given countable N �RCA0
a generic G such that ∀A ∈ S(N )(∃i)(A = G[i]). The conditions are just 〈τ , T 〉 with
T a binary tree such that, in N , there is a finite set F and a sequence 〈Ai|i ∈ F 〉 such
that for σ ∈ T with |σ| > 〈i, n〉 ≥ |τ | (i ∈ F and n ∈ N), σ(〈i, n〉) = Ai(n). Otherwise
for σ ⊇ τ there are no restrictions on σ ∈ T . Clearly this forcing adds a G as required.
Iterating this forcing ω1 many times gives a model Nω1 of Σ1

∞-AC
−: For any instance

specified by ∀n∃XΦ(A, n,X) with A ∈ Nω1 and so A ∈ Nα for α countable, witness Xn

that ∃XΦ(n,X) for each n appear in some Nβ for a countable β. Thus each is a G[k]β+1
for some k as required by Σ1

∞-AC
−.

Our proof for Σ1
∞-AC

∗ requires more interesting twists and we present it in detail.
As Σ1

∞-AC
∗ implies all of the other principles in RCA0, proving the conservation results

for it implies them for the others. Thus we need not expand on the sketch just given for
Σ1
∞-AC

−.
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Theorem 6.1. For N a countable model of RCA0, any any second order Φ such that
N � ∀k∃XΦ(A, k,X) and N ′ a countable extension of N satisfying RCA0 with the same
first order part as N , there is an et-forcing P with an appropriate collection D of dense
sets such that for any D-generic G over N ′, G[k] ∈ S(N ) for every k ∈ N and for every
k ∈ N , N � ∃σΦ(A, k,G

[k]
σ ).

Proof. Forcing conditions are like those described above for Σ1
1-AC

−but tied to Φ and
A: 〈τ , T 〉 with T a binary tree such that there is, in N , a finite set F and a sequence
〈Xi|i ∈ F 〉 such N �Φ(A, i,Xi) for every i ∈ F and for σ ⊇ τ and |σ| = 〈i, n〉 ≥ |τ |, if
i ∈ F , σˆj ∈ T ⇔ j = Xi(n). For other 〈i, n〉, both σˆ0 and σˆ1 are in T . While this
forcing is not in general definable over N ′ as it refers to membership in N , is is clearly
an et-forcing over N ′ as each condition is in N ⊆ N ′ and σ ∈ Ext(〈τ , T 〉) ⇔ σ ∈ T as
then 〈σ, Tσ〉 ≤ 〈τ , T 〉. Moreover, the sets {〈τ , T 〉 |i ∈ F〈τ ,T 〉} are clearly dense for each i
(again even if not definable over N ′). Thus, for any D-generic G where D includes these
sets, it is clear that G[i] =∗ X for some X such that N � Φ(A, i,X) as required for G to
satisfy the desired property.

All we need to do now is prove that Nω1 � ∃Y ∀nΦ(A, n, Y [n]).

Theorem 6.2. If N is a countable model of RCA0 then there are extensions Nα for
α < ω1 with the same first order part a N such that ∪{Nα|α < ω1} = Nω1 �RCA0+Σ1

∞-
AC∗ and these extensions have all the properties needed to guarantee the conclusions of
Theorems 4.11-4.13.

Proof. We define a sequence Nα, α < ω1 of countable models of RCA0 with the same first
order part. We begin withN0 = N . GivenNα we list the countably many instances given
by Aj and Φj for j ∈ ω such that Nα � ∀k∃XΦj(Aj, k,X). We then define an ω length
iteration to construct Nα,l starting at Na,0 = Nα and taking Nα,l+1 to be an extension of
Nα,l by a generic for the forcing described above for the lth instance of ∀n∃XΦ(A, n,X)
in Nα. We set Nα+1 = ∪{Nα,l|l ∈ ω}. As we use et-forcings, all the conditions needed
for Theorems 4.11-4.13 are met along the way and at Nω1 = ∪{Nα|α < ω1}.
All that needs to be verified here beyond what was done for Σ1

1-AC
∗ is thatNω1 � Σ1

∞-
AC∗. The crucial fact here is that the α such that Nα is an elementary submodel of
Nω1 (in the full second order language) include a closed unbounded set. With this in
mind, consider any A ∈ Nω1 and Φ(A, n,X) such that Nω1 � ∀n∃XΦ(A, n,X). Take
an α such that A ∈ Nα which is an elementary submodel of Nω1 and so also satisfies
∀n∃XΦ(A, n,X). Our construction therefore guarantees that there is an l and a Z ∈ Nα,l
so that for every n ∈ N , Z [n] ∈ Nα and Nα � ∃σΦ(A, n, Z

[n]
σ ). As A,Z ∈ Nω1 which is

an elementary extension of Nα, we now have that Nω1 � ∃σΦ(A, n, Z
[n]
σ ) for every n ∈ N

and so Nω1 � ∃Z∀n∃σΦ(A, n, Z
[n]
σ ) as required.

Theorem 6.3. For each n ∈ ω, ACA0 ` Σ1
n+2-AC

∗ → Σ1
n+2-AC

− → Σ1
n+1-CA0 and so

ACA0 ` Σ1
∞-AC

∗ → Σ1
∞-AC

− → Σ1
n+1-CA0.
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Proof. The implication Σ1
n+2-AC

∗ → Σ1
n+2-AC

− is Proposition 5.4. We prove Σ1
n+2-

AC− → Σ1
n+1-CA0 in ACA0 by induction on n. Consider ∃XΨ(k,X) for a Π1

n formula
Ψ (Π1

0 is arithmetic). We want to prove that there is a set R = {k|∃XΨ(k,X)}. Define
Φ(k,X) as Ψ(k,X) ∨ (X = ∅ ∧ ¬∃Y ψ(k, Y )). Clearly Φ is Π1

n+1 and ∀k∃XΦ(k,X).
Thus we may apply Σ1

n+2-AC
− to get a set Z such that ∀k∃mΦ(k, Z [m]). Thus k ∈

R ⇔ ∃XΨ(k,X)⇔ ∃mΨ(k, Z [m]). Now S = {〈k,m〉 |Ψ(k, Z [m])} is Π1
n and so exists by

induction. (For n = 0 this is ACA0.) and so R = {k|∃m(〈k,m〉 ∈ S} exists by ACA0.

Thus we have whole hierarchies of principles that are very weak over RCA0 but very
strong and indeed equivalent to a hierarchy of standard systems. At the end, Σ1

∞−AC∗
and Σ1

∞-AC
− satisfy all the conservation and preservation principles of Theorems 4.11-

4.13 over RCA0 but, over ACA0, are both equivalent to Σ1
∞ − AC∞ and so strictly

stronger than full second order arithmetic (Feferman and Levy; see Simpson [2009, Re-
mark VII.6.3]). We view these results and the ones on ATHA that are equivalent to
known THA over ACA0 as supplying answers to the question raised by Hirschfeldt and
repeated in Montalbán [2011] by providing an ample list of many pairs of principles that
are very different over RCA0 but equivalent over ACA0. It could well be argued that
these weak ones should really be seen as the same as their strong counterparts in an
analysis that works over ACA0 rather than RCA0.

7 Tanaka Conservativity

We close with some words about earlier work on the collection axioms (Σ1
n-AC

− and
Σ1
∞-AC

− ) and another type of conservation result that was brought to our attention by
this work which applies to all the principles we have investigated here.

The work by Tanaka, Montalbán and Yamazaki on conservativity of Σ1
∞-AC

− (or
as they call it, Π1

∞ collection) over RCA0 has, far as we have determined, never been
published. The only source I have access to is a set of slides from a talk by Yamazaki
[2009] sent to me by Keita Yokoyama, Based on those slides, the methods used seem
considerably more complicated than the ones presented here. In particular, to prove Π1

1

conservativity they seem to restrict attention to principle models of RCA0 (ones with a
single set such that every set in the model is recursive in it) and use both Π0

1 forcing (i.e.
infinite binary trees recursive in a single set) and forcing with uniformly pointed perfect
trees along with ω1 iterations. (Of course, the slides just outline proofs at best.)

Our proofs, certainly for Σ1
∞-AC

− and, I would say, even for Σ1
∞-AC

∗, are much
simpler. Yamazaki does get more by including WKL0 as well (and so the use of Π0

1 forcing
makes sense). We have already pointed out that for Π1

1 conservativity, we can easily add
WKL0 to our constructions with its own forcing notion to get this Π1

1 conservativity result
and the same one for Σ1

∞-AC
∗. Yamakazi does not consider r-Π1

2 conservativity although
he does present an analog of minimal pairs for models of WKL0 from Simpson, Tanaka
and Yamakazi [2002]. They are are used in STY even in their proof of Π1

1 conservativity.
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I expect this analysis was motivated in the same way as in STY by the desire to prove a
different kind of conservativity over RCA0 conjectured for WKL0 by Tanaka and proved
in STY. We establish this conservation result for Σ1

1-AC
∗ and indeed for all principles

we have analyzed using forcing. Moreover, we prove both a generalization of Tanaka
conservativity analogous to our generalization for Π1

1 conservativity (Definition 4.9 and
Theorem 4.11) and a more inclusive variation analogous to our generalization of r-Π1

2

conservativity (Definition 4.10 and Theorem 4.12). (This one fails for WKL as for the
previously mentioned r-Π1

2 conservativity as it is more general.)

Definition 7.1. Tanaka conservativity means conservativity for all sentences of the form
∀X∃!Y Φ(X, Y ) for arithmetic Φ. We define G-Tanaka conservativity to be conservativity
for sentences in the class of G-Tanaka formulas defined by closing the quantifier free
formulas and those of the form ∃!Y Φ(Y ) for arithmetic Φ under the same operations as
for G−Π1

1 in Definition 4.9 (∧, ∧, ∀x, ∃x and ∀X). We define G-r-Tanaka formulas and
conservativity by adding in to the base case of the previous definition formulas of the
form ∃!Y ∃ZΨ(x̄, Y, Z) with Ψ a Σ0

3 formula.

Remark 7.2. Tanaka conservativity was called Uniq conservativity in Yokoyama [2009].
He studied it primarily for Π1

2 theories including WKL, COH, RCA
+ (or Π1

∞G) over
RCA0 + IΣ0

n and he cites earlier work of Kihara [2009] on COH and Yamazaki [2009] on
RCA+ and unpublished work on COH. We thank Yokoyama for these references as well.

It is clear that G-r-Tanaka conservativity includes all the other versions defined here as
well as those in §4. We prove these conservativity results by isolating one extra property
of et-forcings needed to carry out the proof and note that the et-forcings used for our
Σ1
∞ − AC∗ results as well as all the others in this paper have this property. The idea is
that for any condition 〈τ , T 〉 the subtrees above any two ρ, σ ∈ T of the same length look
the same. Although stronger or simpler restrictions can be given that fit most of our
examples, we formulate “look the same”in a fairly general way that matches our overall
approach to et-forcings yet is strong enough to eliminate some technical problems.

Definition 7.3. An et-forcing P is uniform (a uet-forcing) if, for every condition 〈τ , T 〉,
every ρ, σ ∈ Ext(〈τ , T 〉) with |ρ| = |σ|, and every 〈ρ′′, R′′〉 ≤ 〈ρ′, R′〉 ≤ 〈τ , T 〉 with ρ ⊆ ρ′,
〈ρ′′σ, R′′σ〉 ≤ 〈ρ′σ, R′σ〉 ≤ 〈τ , T 〉. (Of course, then σ ⊆ ρ′σ.) As a technical convenience we
add on another condition that clearly cannot change the results of a forcing construction:
If 〈τ , T 〉 ∈ P and the stem of T is some σ ⊃ τ then 〈ρ, T 〉 ≤ 〈τ , T 〉 whenever σ ⊇ ρ ⊇ τ .

The crucial Lemma that we need about uet-forcings is the following:

Lemma 7.4. Suppose P is a uet-forcing (over a countable N �RCA0) and D is a count-
able collection of dense sets. We can extend D to another countable collection of dense
sets D′ such that for any 〈τ , T 〉 ∈ P, ρ, σ ∈ Ext(〈τ , T 〉) of the same length and D′-generic
G ⊇ ρ whose generic filter contains 〈τ , T 〉, Gσ is D-generic.
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Proof. We want to guarantee that for any G ⊇ ρ with a D′-generic sequence 〈ρi, Ri〉 (i.e.
for each D′ ∈ D′, there is an i such that 〈ρi, Ri〉 ∈ D′) all extending 〈τ , T 〉 and wlog
ρi ⊇ ρ, 〈ρiσ, Ri

σ〉 is a D-generic sequence. It is a decreasing sequence of conditions all
extending 〈τ , T 〉 by uniformity. Of course, its generic (∪ρiσ) is Gσ as required. Consider
then any D ∈ D. We want an m such that 〈ρmσ , Rm

σ 〉 ∈ D. We define a D′ by removing
all 〈τ ′, T ′〉 ≤ 〈ρ0, R0〉 from D and adding in

〈
τ ′ρ, T

′
ρ

〉
for each 〈τ ′, T ′〉 ≤ 〈ρ0σ, R0σ〉 in D.

Now if D′ is dense we can put it into D′. On this assumption, we have an m such that
〈ρm, Rm〉 =

〈
τ ′ρ, T

′
ρ

〉
for some 〈τ ′, T ′〉 ≤ 〈ρ0σ, R0σ〉 in D. Now 〈ρmσ , Rm

σ 〉 =
〈
(τ ′ρ)σ, (T

′
ρ)σ
〉

=
〈τ ′, T ′〉 ∈ D as required. (Note that τ ′ ⊇ ρ0σ ⊇ σ so (τ ′ρ)σ = τ ′ as |σ| = |ρ|.)
All that remains is to prove that each such D′ is dense. Consider any 〈τ , T 〉. If it

is incompatible with 〈ρ0, R0〉 then any extension in D is in D′. Otherwise we have a
〈τ ′, T ′〉 extending both. By uniformity, 〈τ ′σ, T ′σ〉 ≤ 〈ρ0σ, R0σ〉. By the density of D we have
a 〈τ ′′, T ′′〉 ≤ 〈τ ′σ, T ′σ〉 in D. So by uniformity again,

〈
τ ′′ρ, T

′′
ρ

〉
≤ 〈(τ ′σ)ρ, (T

′
σ)ρ〉 = 〈τ ′, T ′〉

as required.

Up until now we have not needed more about forcing than the starting level for Σ0
1

sentences. For Theorem 7.5 we need to be able to handle all arithmetic sentences. Rather
than try to give formal definitions for models N of RCA0 (of which there are several in
the literature of reverse mathematics) we just note the relevant properties. Typically one
considers forcings which are at least definable. While most of the ones we have used are
definable, the one for Σ1

1-AC
∗ was not. Now one can make due with definable forcings

there by at every even stage or limit stage λ first using the forcing defined for Σ1
1-AC

−

that makes every A ∈ Nλ a column of Gλ+1. Then one can define the forcing we wanted
to use at each successor stage for Σ1

1-AC
∗ for the Gλ+n+2 and defining the forcing over

Nλ+n+1 where one can quantify over sets in Nλ by using Gλ+1 as a parameter. However,
we do claim that this is not really necessary to get the required properties of forcing.
What we want to know is that we can define the forcing relation 〈τ , T 〉  Θ starting at
the Σ0

1 level as before so that there it depends only on the τ in our conditions 〈τ , T 〉 in
N and implies truth for all extensions of τ . (This level includes what we have already
assumed about members of N [G] being of a form that we think of as ΦA,G

e for e ∈ N
and A ∈ S(N ) in a way that only relies on the initial segments τ of G in the conditions
in the generic filter.) We can then continue on up the arithmetic hierarchy so as to
guarantee the density of conditions deciding each sentence and forcing equals truth for
all suffi ciently generic sets. (So for G generic, N [G] � Θ if and only if there is a condition
〈τ , T 〉 in the generic filter such that 〈τ , T 〉  Θ.) We are not concerned with the level of
the definability of the forcing relation (or even with the notions being definable over N
at all).

If one wanted to be more specific, we would deal only with prenex normal sentences
and take negation to be a shorthand for the prenex normal equivalent of the negation of
the given sentence. At the Π0

1 level we explicitly define 〈τ , T 〉  ∀xΦ(x,G) as there being
no σ ∈ Ext(〈τ , T 〉) and no n such that σ  ¬Φ(n,G). We then proceed by induction
on the number of quantifiers in our prenex normal Φ as usual: 〈τ , T 〉  ∃xΨ(x,G) if
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〈τ , T 〉  Ψ(n,G) for some n; 〈τ , T 〉  ∀xΨ(x,G) if there is no 〈τ ′, T ′〉 ≤ 〈τ , T 〉 and no n
such that 〈τ ′, T ′〉  ¬Ψ(n,G).
We can now state the main property need for our conservation results.

Theorem 7.5. For any countable model N of RCA0 and any extension N∞ constructed
via forcings from any class C of uet-forcings P (defined uniformly over any N ′ extending
N with the same first order part) and any G-r-Tanaka sentence Λ, if N � ¬Λ then
N∞ � ¬Λ.

Proof. The argument for quantifier free sentences is as in Theorem 4.11 as are the induc-
tive cases for ∧, ∨, ∃x, ∀x and ∀X. We need to verify the claim for sentences of the form
∃!Y Φ(Y ) for arithmetic Φ and ∃!Y ∃ZΨ(Y, Z) with Ψ a Σ0

3 formula (each with constants
for elements of N and S(N )).
Consider first one of the form ∃!Y Φ(Y ) for arithmetic Φ. If there are two Y in N

such that N � Φ(Y ) then they also satisfy the same sentence in N∞ for the desired
contradiction. So we assume there is no such Y in N while there is (exactly) one, say
V , in N∞. So there is a least α such that V ∈ Nα+1 = Nα[G]. (We write G for Gα for
notational convenience.) Let V = ΦA,G

e for some A ∈ S(Nα) and vn = V (n).
If Φ is arithmetic, we take a 〈τ , T 〉 in the generic filter for G (for the forcing used

over Nα) such that 〈τ , T 〉  ∀x(ΦA,G
e (x) = 0 ∨ ΦA,G

e (x) = 1) ∧ Φ(ΦA,G
e ). For each n

we have a 〈τn, Tn〉 in the generic filter for G (and so wlog extending 〈τ , T 〉) such that
τn  ΦA,G

e (n) = vn. Much as in the proof of Theorem 4.5, if there is no τ ′ ∈ Ext(〈τ , T 〉)
and n such that τ ′  ΦA,G

e (n) = 1 − vn then V = ΦA,G
e ∈ Nα for a contradiction. By

the definition of uet-forcings we may choose 〈τ ′, T ′〉 ≤ 〈τ , T 〉 and m ≥ n such that
|τm| = |τ ′| = k > |τ |. As G ⊇ τm is generic, Gτ ′ is generic for the dense sets deciding all
arithmetic formulas and so as 〈τ , T 〉 is also in the filter for Gτ ′ , Nα[Gτ ′ ] � ∀x(Φ

A,Gτ ′
e (x) =

0 ∨ Φ
A,Gτ ′
e (x) = 1) ∧ Φ(Φ

A,Gτ ′
e ). As Gτ ′ differs from G by a finite set, it is also in

Nα[G] = Nα[Gτ ′ ] = Nα+1. Thus in Nα+1, Φ
A,Gτ ′
e = V ′ and ΦA,G

e = V both exist,
are different at n and are witnesses for Φ(Y ). Thus they remain such in N∞ for a
contradiction.
We now turn to the case for Λ of the form ∃!Y ∃ZΨ(Y, Z) for a Σ0

3 formula Ψ. As in
the previous case we have a least α such that there is witness V for Y in Nα+1. If there
is also a witness U for Z in Nα+1 then essentially the same argument as above (writing
U as ΦB,G

i ) shows that there are two distinct witnesses V and V ′ in Nα+1 which have
witness U and U ′ such that Nα+1 � Ψ(X, V, U) ∧ Ψ(X, V ′, U ′) which again provides the
contradiction to there being only one witness for Y in N∞. On the other hand, as in the
proof of Theorem 4.12, if there is no such U in Nα+1 then, for every k, the tree in Nα+1
(recursive in V ) associated with k being a witness for the Σ0

3 formula Ψ has no branch in
Nα+1. By Theorem 4.5.3 the nonexistence of a branch in any of these trees is propagated
through the iteration and so V has no witness for Z in N∞ for another contradiction.

By our usual arguments, this Theorem provides the further conservation results for
all our principles as well as many others as Corollaries.
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Corollary 7.6. The following principles are all G-r-Tanaka (and hence G-Tanaka, G-
r-Π1

2 and G-Π
1
1) conservative over RCA0: Σ1

∞ − AC∗ (and all its consequences such as
Σ1
∞−AC−, Σ1

n−AC∗ and Σ1
n−AC−, SCR∗XY and SCR−XY ), LFXY , COH, AMT, Π0

∞G
(RCA+0 ), the existence of minimal covers for Turing reducibility and related theorems.

Proof. We need only check that the et-forcings used or mentioned so far are actually uet-
forcings. These checks are basically straightforward except for Sacks forcing. The version
of Sacks forcing typically used to construct, for example, minimal covers is not uniform
in our sense. This application as well as other similar results can, as is well known, be
proven using uniform recursive (in a specific A) trees as conditions (as in Lerman [1983,
Ch. VI]. That construction is then easily seen to be one with a uet-forcing.

The proof of the case for ∃!Y Φ(Y ) in Theorem 7.5 essentially shows that if there is a
Y ∈ S(N [G])−S(N ) for a suffi ciently genericG over a uet-forcing such thatN [G] � Φ(Y )
then there are at least two Z ∈ S(N [G]) such that N [G] � Φ(Z). We improve this to
there being infinitely many. We then mention some applications of this improvement as
well as that of going to G-Tanaka formulas that do not seem to follow from standard
Tanaka conservativity.

Proposition 7.7. If N � RCA0 is countable, P is a uet-forcing over N , Θ(Y ) is
arithmetic, G is suffi ciently generic over P, Θ(Y ) an arithmetic formula over N such
that there is a Y ∈ S(N [G]) − S(N ) for which N [G] � Θ(Y ) then there is a sequence
〈Yi|i ∈ N〉 ∈ S(N [G]) with the Yi pairwise distinct such that N [G] � (∀i)(Θ(Yi)). (Actu-
ally if one defines the forcing relation for all second order sentences, essentially the same
argument will work for arbitrary Θ.)

Proof. Suppose that the Y given by the Proposition is ΦA⊕G
e for some e ∈ N and A ∈

S(N ) and 〈τ , T 〉  Θ(Y ). The argument in the proof of Theorem 7.5 shows that for
any σ ⊆ G (and so σ ∈ Ext(〈τ , T 〉) there are σ′, τ ′ ⊇ σ in Ext(〈τ , T 〉), j 6= k and
x such that σ′ ⊆ G, σ′  ΦA⊕G

e (x) = j and τ ′  ΦA⊕G
e (x) = k. In N [G] we can

then recursively in G construct sequences σi, τ i, xi, ji and ki such that σi ⊆ σi+1 ⊆ G,
σi ⊆ τ i ∈ Ext(〈τ , T 〉), σi  ΦA⊕G

e (xi) = ji and τ i  ΦA⊕G
e (xi) = ki. We now claim

that the sequence Φ
A⊕Gτi
e is as desired. The argument in Theorem 7.5 shows that each

of these is in N [G] and satisfies Θ there. The construction guarantees that, for each i,
Φ
A⊕Gτi
e (xi) = ki 6= ji = Φ

A⊕Gσi
e (xi) = ΦA⊕G

e (xi) = Φ
A⊕Gτl
e (xi) for every l > i. Thus the

Φ
A⊕Gτi
e are pairwise distinct.

We now consider some generalizations of unique existence assertions to other cardi-
nality quantifiers and applications to show that for such assertions we can also derive
information about the existence of recursive solutions. (This is done in [STY, Theorem
4.18] for unique existence for WKL0.)

We begin by formalizing the notions of “there are exactly”, “at least”or “at most”
m many Y such that Φ(Y ) holds. In general, Φ can be arbitrary but we will restrict our
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attention to the arithmetic case for our applications. We are formalizing the definition
of cardinality m that asserts the existence of a one-one correspondence with the natural
numbers less than m in a way that works well in RCA0.

Definition 7.8. We say that there are exactly m many Y such that Φ(Y ), (∃=mY )Φ(Y ) if
there is a pairwise distinct sequence 〈Yi|i < m〉 such that (∀i < m)Φ(Y ) and ∀W (Φ(W )→
∃i < m)((W = Yi)). Note that, in RCA0, this is equivalent to the existence of a unique
such sequence where the Yi are in strict ascending lexicographic order. It is also worth
pointing out that for m ∈ N we can express this by a single formula not mentioning m.
On the other, hand we can view m as a variable over the numbers N in any model of
RCA0. This allows to to express the quantifier there are finitely many Y such that Φ(Y )
as ∃m(∃=mY )(Φ(Y )) which we write as (∃FinY )(Φ(Y )). Similarly, we say (∃≥mY )Φ(Y ) or
(∃≤mY )(φ(Y )), if there is a pairwise distinct sequence 〈Yi|i < m〉 such that (∀i < m)Φ(Y )
or, respectively, if there is a pairwise distinct sequence 〈Yi|i < m〉 such that ∀W (Φ(W )→
∃i < m)((W = Yi)). Of course, (∃=mY )Φ(Y )⇔ (∃≥mY )Φ(Y ) & (∃≤mY )(φ(Y )).

We now give some applications.

Theorem 7.9. Let Q be any of the theories mentioned this section (or combinations of
them) which can be guaranteed to hold by iterating uet-forcings over any countable model
N of RCA0 to produce a model N∞ of Q with the same first order part as N . Let Φ(Y )
be any arithmetic formula with its only free variable being Y and k ∈ N be a standard
number.

1. If Q ` (∃FinY )Φ(Y ) then RCA0 ` (∃FinY )Φ(Y ).

2. If Q ` (∃FinY )Φ(Y ) & (∃≥kY Φ(Y ) then RCA0 ` (∃FinY )Φ(Y ) & (∃≥kY )(Y is
recursive and Φ(Y )).

3. If Q ` (∃≤kY )Φ(Y ) then RCA0 ` (∃≤kY )Φ(Y ).

4. If Q ` (∃=kY )Φ(Y ) then RCA0 ` (∃=kY )Φ(Y ) & (∀Y )(Φ(Y )→ Y is recursive).

Proof. For each assertion, suppose we have a countable N � RCA0 which provides a
counterexample to the desired conclusion. We argue for a contradiction to the associated
hypothesis.

1. Note that (∃FinY )Φ(Y ) is equivalent (in RCA0) to ∃m∃!Z(Z is a sequence of sets
〈Zi|i < m〉 in strictly ascending lexicographical order such that (∀i < m)(Φ(Zi)).
As the formula in parentheses here is arithmetical (inm and Z), the whole assertion
is a G-Tanaka sentence. Theorem 7.5 then guarantees that it and so (∃FinY )Φ(Y )
is a theorem of RCA0 as desired.
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2. We already have that RCA0 ` (∃FinY )Φ(Y ) and so we assume that we have a
countable model N of RCA0 not containing k many recursive solutions to Φ. Let
N ′ have the same first order part as N and second order part R(N ) the collection
of subsets of N which are recursive in N . Of course, N ′ � RCA0 as well but
N ′ � ¬∃≥kY (Φ(Y )) as every set in it is recursive in it and in N . Now construct
N ′∞ � Q by an iteration beginning with N ′. By our assumption there are at least
k many solutions Y for Φ in N ′∞ and so one not in N ′ must appear for the first
time at some Nα+1. Proposition 7.7 then guarantees that there is, in Nα+1 and so
in N∞, an infinite sequence 〈Zi〉 of solutions to Φ for the desired contradiction to
the assumption that Q ` (∃FinY )Φ(Y ).

3. This one is simple. If we have a countable model N of RCA0 with more than k
many solutions Y for Φ then all of them are solutions in N∞ for a contradiction.

4. This follows directly from the previous cases.

If in the previous theorem and proof we consider formulas Φ(X, Y ) with a free set
variable X and assume that the hypotheses hold for the universal closure with respect
to X, then so do the conclusions where we replace recursive by recursive in X.
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