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1 Introduction

The general enterprise of calibrating the strength of classical mathematical theorems
in terms of the axioms (typically of set existence) needed to prove them was begun
by Harvey Friedman in [1971] (see also [1967]). His goals were both philosophical and
foundational. What existence assumptions are really needed to develop classical mathe-
matics and what other axioms and methods suffice to carry out standard constructions
and proofs? In the [1971] paper, Friedman worked primarily in the set theoretic settings
of subsystems (and extensions) of ZFC. As almost all of classical mathematics can be
formalized in the language of second order arithmetic and its theorems proved there, he
moved [1975] to the setting of second order arithmetic and subsystems of its full theory
Z2 (i.e. arithmetic with the full comprehension axiom as described below). Of course, re-
stricting to second order arithmetic means restricting to essentially countable structures
in mathematics. By this we mean countable algebra and combinatorics and separable (or
otherwise countably representable) analysis and topology. Still, this somewhat restricted
area has a strong claim to embody most of what might be called classical mathematics
outside of set theory. Many researchers have since contributed to this endeavor but the
major systematic developer and expositor since Friedman has been Stephen Simpson.

To be more definite about the systems studied we give some brief descriptions. Here
and elsewhere full details can be found in Simpson [2009] which is the basic source for
both background material and extensive results.

∗This paper is essentially the author’s Gödel Lecture at the ASL Logic Colloquium ’09 in Sofia
extended and supplemented by material from some of our other papers. The work was partially supported
by NSF Grants DMS-0554855, DMS-0852811 and John Templeton Foundation Grant 13408.
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Our language is the (two sorted) language of second order arithmetic, that is, the
usual first order language of arithmetic augmented by set variables with their quantifiers
and the membership relation ∈ between numbers and sets. A structure for this language
is one of the form M = 〈M,S,+,×, <, 0, 1,∈〉 where M is a set (the set of the “numbers”
of M) over which the first order quantifiers and variables of our language range; S ⊆ 2M

is the collection of subsets of the “numbers” in M over which the second order quantifiers
and variables of our language range; + and × are binary functions on M ; < is a binary
relation on M while 0 and 1 are members of M .

In this setting, the original endeavor of reverse mathematics has proven to be a great
success in classifying the theorems of countable classical mathematics from proof theoretic
and epistemological viewpoints. Five subsystems of Z2 of strictly increasing strength
emerged as the core of the subject with the vast majority of classical mathematical
theorems being provable in one of them. Indeed, relative to the weakest of them (which
corresponds simply to computable mathematics) almost all the theorems studied turned
out to be equivalent to one of these five systems.

Here the equivalence of a theorem T to a system S means that not only is the theorem
T provable in S but that, when adjoined to a weak base theory, T proves all the axioms
of S as well. Thus the system S is precisely what is needed to establish T and gives
a characterization of the existence assumptions needed to prove it and so its (proof
theoretic) strength. It is this approach that gives the subject the name of Reverse
Mathematics. In standard mathematics one proves a theorem T from axioms S. Here
one then tries to reverse the process by proving the axioms of S from T (and a weak base
theory).

We describe these five basic systems and set out the framework for others. They
all include the standard basic axioms for +, ·, and < which say that N is an ordered
semiring. In addition, we always include a weak form of induction that applies only to
sets (that happen to exist):

(I0) (0 ∈ X ∧ ∀n (n ∈ X → n+ 1 ∈ X)) → ∀n (n ∈ X).

All the systems we consider are defined by adding various types of set existence axioms
(or at times induction axioms) to these axioms. The basic five, in ascending order of proof
theoretic strength are as follows:

(RCA0) Recursive Comprehension: This is a system just strong enough to prove the
existence of the computable sets. Its axioms include the schemes of ∆0

1 comprehension
and Σ0

1 induction:

(∆0
1-CA0) ∀n (ϕ(n) ↔ ψ(n)) → ∃X ∀n (n ∈ X ↔ ϕ(n)) for all Σ0

1 formulas
ϕ and Π0

1 formulas ψ in which X is not free.

(IΣ0
1) (ϕ(0) ∧ ∀n (ϕ(n) → ϕ(n+ 1))) → ∀nϕ(n) for all Σ0

1 formulas ϕ.
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RCA0 is the standard weak base theory for reverse mathematics and is included
in all the systems we consider.

(WKL0) Weak König’s Lemma: Every infinite subtree of 2<ω has an infinite path.

(ACA0) Arithmetic Comprehension: ∃X ∀n (n ∈ X ↔ ϕ(n)) for every arithmetic
formula (i.e. Σ0

n for some n) ϕ in which X is not free.

(ATR0) Arithmetical Transfinite Recursion: If X is a set coding a well order <X

with domain D and Y is a code for a set of arithmetic formulas ϕx(z, Z) (indexed by
x ∈ D) each with one free set variable and one free number variable, then there is a
sequence 〈Kx | x ∈ D〉 of sets such that if y is the immediate successor of x in <X , then
∀n (n ∈ Ky ↔ ϕx(n,Kx)), and if x is a limit point in <X , then Kx is

⊕
{Ky | y <X x}.

(Π1
1-CA0) Π1

1 Comprehension: ∃X ∀k (k ∈ X ↔ ϕ(k)) for every Π1
1 formula ϕ in which

X is not free.

Although they make almost no appearance in practice (but see §6), one can now climb
up the comprehension hierarchy for Π1

n sentences (Π1
n-CA0) all the way to the end.

(Z2) or (Π1
∞-CA0) Full Second Order Arithmetic: RCA0 plus the comprehension ax-

ioms: ∃X ∀k (k ∈ X ↔ ϕ(k)) for every formula ϕ of second order arithmetic in which X
is not free.

If we strengthen the basic induction axiom I0 by replacing it with induction for all
formulas ϕ of second order arithmetic we get full induction

(I) (ϕ(0) ∧ ∀n (ϕ(n) → ϕ(n + 1)) → ∀n (ϕ(n)) for every formula ϕ of second order
arithmetic.

Each of the systems above has an analog in which I0 is replaced by I. It is designated
by the same letter sequence as above but without the subscript 0, as for example, RCA
in place of RCA0. Obviously, if an ω-model M (those with M = N) is a model of one of
the systems above, such as Π1

1-CA0, then it is also a model of the analogous system, such
as Π1

1-CA. At times systems with an intermediate set of induction axioms such as for Σi
n

formulas (Σi
n-IND0) for i = 0 or 1 and n ∈ ω as well as transfinite induction axioms over

all well-orderings for Π1
n formulas, Π1

n-TI0, or Π1
∞-TI0 for all formulas of Z2.

The five basic systems correspond to well known philosophical approaches to, and
foundational systems for, mathematics. In ascending order they are essentially similar
to Bishop’s constructivism; Hilbert’s finitistic reductionism; the Predicativism of Weyl
and Feferman; the Predicative Reductionism of Friedman and Simpson and Impredica-
tivity as developed by Feferman and others. (For references and further discussion see
Simpson [2009, I.12].) These systems also correspond to classical principles in recursion
theory: the existence of recursive sets and closure under Turing reducibility and join;
the Jockusch-Soare [1972] low basis theorem; closure under the Turing jump; closure
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under hyperarithmetic reducibility (roughly); closure under the hyperjump. Indeed for
ω-models M, the basic proof theoretic systems (other than ATR0 which is a bit more
complicated) are equivalent to these recursion theoretic principles. (For notation, back-
ground and basic information about recursion theory, we refer to Rogers [1967], Odifreddi
[1989], [1999] and Soare [1987].)

We pursue three themes in the rest of this paper. First, we present an alternative
viewpoint from which one can pursue the goals of reverse mathematics. Instead of being
proof theoretic, it is recursion theoretic and based on a computational approach to the
analysis of the complexity of mathematical theorems and constructions. In addition to
having some expository advantages, this approach provides immediate generalizations to
uncountable structures and so a setting in which one can hope to pursue the goals of
reverse mathematics for intrinsically uncountable structures, constructions and theorems.

Next, we consider both techniques and theorems of various branches of logic that
provide either tools or fodder for reverse mathematical analysis. While almost all of the
mathematical theorems analyzed in the first years of the subject and the bulk of them
even to this date, turned out to be equivalent to one of the five basic systems, we now
have a fair number of theorems that are not equivalent to any of them. These outliers
fall at times below WKL0, above Π1

1-CA0 or between some of the other systems. There
are also now instances of incomparability (in the sense of reverse mathematics) among
classical theorems. As our third theme, we present and explore some examples of each of
these phenomena along with our discussions of the roles of the branches of mathematical
logic within reverse mathematics. Our choices of examples and results in each of these
themes are admittedly colored by my own views, prejudices and research (and that of
my students and coauthors). They come primarily from logic and combinatorics. Still,
we hope they convey and sufficiently exemplify our concerns.

2 A Computational Point of View

Traditionally, reverse mathematics is presented as in §1 in terms of formal logical systems
and proofs in those systems. As logicians, this seems quite natural and so a perfect way
of measuring the strength or difficulty of mathematical theorems. We suspect that most
mathematicians do not approach the issue (if they do so at all) from such a viewpoint.
While they may concern themselves with (or attempt to avoid) the axiom of choice or
transfinite recursion, they certainly do not think about (nor care), for example, how
much induction is used in any particular proof. We want to present another view of the
subject that eschews formal logic, syntax and proof systems in favor of computability. It is
actually already in widespread use in practice, if not theory, but we think is worth making
explicit for expository reasons in the countable setting and as a way of generalizing the
subject to the uncountable.

As an illustration, we begin with a personal story about how I began to work in the
area. Many years ago, I was visiting at Ben Gurion University. At the department tea,
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one of my logician colleagues came over with another mathematician and said, let me
introduce you to someone who can answer your questions. This was a bit frightening as an
introduction but I said hello and met Ron Aharoni, a combinatorist from the Technion,
who also happened to be visiting in Be’er Sheva that day. Aharoni told me that, after
many years of hard work, he had answered an old problem of Erdös by showing that
an important theorem of classical combinatorics about finite graphs could be generalized
to graphs of all cardinalities. While very pleased to have proven the theorem, Ron was
disturbed (or perhaps also pleased) that he had to use various set theoretic techniques
beyond those typical of classical combinatorics. In particular, he said that usually when a
combinatorists generalizes a result about finite graphs to infinite ones, the proof proceeds
fairly simply by a compactness argument. In this case, he had to use the axiom of choice,
transfinite recursion and more. So he was concerned, not that the problem was hard
in the sense of combinatorially intricate and complex (after all that was his bread and
butter), but that its solution required construction procedures that seemed outside the
usual bounds of the subject. His question was if there was a way to prove that no
argument by compactness would suffice and that the methods he used were actually
necessary.

My reply was that there was a subject (called reverse mathematics) that dealt with
such questions and we should talk about his theorem. I asked that he explain the theo-
rem and why he thought it was complicated. The classical result was the König Duality
Theorem (or min-max theorem). It asserts (in a common formulation) that in any bi-
partite graph the minimal size of a cover is the maximal size of a matching. (A graph
G = 〈V,E〉 is bipartite if its vertex set V can be divided into two disjoint sets A and
B such that every edge e ∈ E connects a vertex in A with one in B. A matching in G
is a set F ⊆ E of disjoint edges (no vertex in common). A subset C of the vertices V
is a cover of G if it contains a vertex from every edge.) To make proper sense of this
in the infinite setting (where simply having the same cardinality turns out not to be
particularly informative), one notes that the proof for finite graphs supplies an explicit
demonstration of the equality of cardinalities. The correct formulation of the theorem is
that there is always a particular matching F in G and a set C consisting of one vertex
from each edge in F such that C is a cover of G. As C is a cover, the matching F is
clearly maximal. We call such F and C a König matching and cover. Of course, F also
has the same size as C. It was the existence of a König matching and cover that Aharoni
had proven for bipartite graphs of all cardinalities. We denote this version of the König
duality theorem by KDT.

In answer to my question as to why he thought the problem was complicated, Aharoni
began by saying that there was (in the finite case) no greedy algorithm. This means that
there is no algorithm that goes through the graph and, as it finds each edge, decides
whether to put it into the required matching and, if so, which vertex goes into the desired
cover. He then drew some pictures to explain why there is no such algorithm. We quickly
realized the same diagonalization type proof would show that there is a recursive graph
with no recursive König cover. The next step was to code in the halting problem K in the
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sense of constructing a (recursive) graph such that any König cover for it would compute
K. This was not too difficult and seemed quite normal to Aharoni. What stopped him in
his tracks was my assertion that we had now proven that applications of the compactness
theorem would not suffice to prove KDT. This required considerably more explanation
(which we provide below). We then went on to show that the sets computable from König
covers of recursive graphs were closed under complementation, projection and effective
unions. I then asserted that we had proven that transfinite recursion was necessary to
prove KDT. Once again, much more explanation was needed (and again provided below).
In a more classical style we also proved that the axiom of choice was implied by KDT
for all bipartite graphs.

[As an aside to complete this story in the setting of reverse mathematics, we note first
that at the time all known proofs of KDT used some lemma that exploited Zorn’s Lemma
to produce König covers with a certain maximality principle. Working with Menachem
Magidor (Aharoni, Magidor and Shore [1992]), we also showed that for countable graphs,
not only that one could carry out these proofs in Π1

1-CA0 but that each of the lemmas
and the stronger form of KDT itself actually implied Π1

1-CA0. Simpson [1994] later
showed that KDT is provable in ATR0 by exploiting metamathematical arguments. These
methods allowed him to work inside substructures of arbitrary models of ATR0 that
satisfied enough choice principles to make arguments similar to the ones using Zorn’s
lemma work in the submodels. On the other hand, they were sufficiently absolute to
carry the result (for the classical version of KDT) back to the original model. Thus his
metamathematical constructions produced more effective König covers than those of the
known strictly mathematical proofs.]

Another version of mathematicians attempting to come to grips with reverse math-
ematical issues in this context can be seen in Lovasz and Plummer [1986] a basic book
on matching theory. They describe (p. 4) KDT “along with the equivalent versions...”
as “probably the single most important result to date in all of matching theory.” Later
(p. 6), after presenting a number of related results about matchings (or marriages) in
bipartite graphs, they remark that “the theorem of Frobenius is a special case of that
of P. Hall, which in turn may be viewed as a special case of König’s Theorem. On the
other hand, it is not difficult to derive König’s Theorem from that of Frobenius. For this
reason the Marriage Theorem is often said to be a self-refining result.” (Some, perhaps
logicians, might ask if, instead of self-refining, this is not a kind of circular argument.)
Nonetheless, they go on (p. 12) to say “One feels, however, that König’s theorem is
the deeper result. Why? These are extremely important questions. The fact that we
are now able to answer them in a mathematically precise way has altered the whole of
combinatorics.” Lovasz and Plummer then go on to give a long explanation of P vs.
NP and explain how this can be used to distinguish among the consequences of various
“equivalent” versions of the marriage theorem in such a way as to make clear why the
König version is the “good” one.

Our point here is that the computational and construction oriented arguments were
natural for Aharoni who was interested in infinite and even uncountable structures. For
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him they exhibited the complexity of solving his problem of finding König matchings
and covers. For Lovasz and Plummer they were also a welcome method to distinguish
among various versions of what seemed (in some quasiformal but not intuitive sense) to
be the same theorem and find the better or stronger one. We now want to present a
formal version of a computational approach to reverse mathematics that characterizes
construction principles such as compactness (König’s Lemma) and transfinite recursions
and allows one to determine which of them are required to prove specific mathematical
theorems.

For the practicing reverse mathematician, especially the recursion theorists among
them, these ideas are implicitly used all the time in the countable case and (for the
proof theorist) amount to nothing more than restricting attention to ω-models. One
can then replace basic systems with the recursion theoretic principles described in §1
and prove nonimplications among systems and particular mathematical theorems being
analyzed by exploiting Turing degree or other computational complexity measures to dis-
tinguish among them. Typically, to reverse mathematically compare two Π1

2 statements
∀X∃Y Φi(X, Y ), one builds a special purpose Turing ideal, i.e. a collection of sets closed
under Turing reducibility and join) C. When C is taken to be the collection S of sets for
a standard, i.e. ω-model of second order arithmetic, one has a model of one statement
but not the other: for every X ∈ C there is a Y ∈ C such that Φ1(X, Y ) but there is an
X ∈ C for which no Y ∈ C satisfies Φ2(X, Y ). One then concludes that ∀X∃Y Φ2 does
not imply ∀X∃Y Φ1 over RCA as any Turing ideal is a model of RCA.

In the special, but typical, case of Π1
2 sentences, our proposal captures this approach,

formalizes and makes explicit the intuition that “being harder to prove” means “harder
to compute”. (See Shore [2011].)

Definition 2.1. If C is a closed class of sets, i.e. closed under Turing reducibility and
join, we say that C computably satisfies Ψ (a sentence of second order arithmetic) if Ψ
is true in the standard model of arithmetic whose second order part consists of the sets
in C. We say that Ψ computably entails Φ, Ψ �c Φ, If every closed C satisfying Ψ also
satisfies Φ. We say that Ψ and Φ are computably equivalent, Ψ ≡c Φ, if each computably
entails the other.

One can now express the computable equivalence of some Ψ with, e.g. ACA, ATR or
Π1

1-CA in this way as these systems are characterized in the terms of Definition 2.1 by
closure under the recursion theoretic operations of the Turing jump, hyperarithmetic in
and the hyperjump respectively. (One needs to be careful in the case of ATR. We are
not assuming that our models are β-models for which being a well ordering is absolute.
Thus one must understand ATR as applying to iterations of arithmetic operations along
any linear ordering in which there is no descending chain in the model.) One can also
describe entailment or equivalence over one of these systems by either adding them on to
the sentences Ψ and Φ or by requiring that the classes C be closed under the appropriate
operators and reductions. For KDT, for example, coding in the halting problem (i.e.
the Turing jump) shows that it computably entails ACA. Now as WKL is simply another
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form of the compactness theorem for Cantor space (2ω) we can see that compactness
does not computably entail KDT. The Jockusch-Soare low basis theorem [1972] says
that any infinite recursive binary branching tree T has an infinite path P which is low,
i.e. P ′ ≡T 0′. Iterating this theorem and dovetailing produces a closed class C consisting
entirely of low sets such that C �cWKL but, of course, even 0′ /∈ C and so WKL does
not computably entail ACA or KDT. The other constructions described above show that
KDT does computably entail ATR and that its strong form computably entails Π1

1-CA.

More interestingly, one can directly express, in terms of computable entailment, the
relationships between two mathematical statements or construction principles without
going through or even mentioning any formal proof systems. As for the five basic sys-
tems themselves, they can be characterized based on construction principles seen in
mathematics (in addition to the recursion theoretic ones above). RCA just corresponds
to computable mathematics in the sense of algorithmic solutions to problems. WKL is
already given as a type of construction principle. ACA is equivalent to König’s Lemma
for arbitrary finitely branching trees. ATR is equivalent to transfinite recursion (indeed,
its formal version above directly says one can iterate any (arithmetic) operation over
any (computable) well-ordering) and Π1

1-CA is equivalent to a kind of uniformization or
choice principle for well founded sets.

We should note that, as the class of models considered in computable entailment (ω-
models only) is smaller than that in the usual approach to reverse mathematics, proofs of
the failure of computable entailment are stronger than the failure of (logical) implication
over RCA0 (or even RCA). On the other hand, computable entailment is weaker than
implication over RCA0.

Turning now to uncountable structures, one can simply interpret computability as
some version of generalized computability (on uncountable domains). One then imme-
diately has a notion of computable entailment for uncountable settings. For example, if
one is interested in algebraic or combinatorial structures where the usual mathematical
setting assumes that an uncountable structure is given with its cardinality, i.e. the un-
derlying set for the structure (vector space, field, graph, etc.) may as well be taken to be
a cardinal κ, then a plausible notion of computation is given by α-recursion theory. In
this setting, one carries out basic computations (including an infinitary sup operation)
for κ many steps. (Note that every infinite cardinal is admissible.)

For settings such as analysis where the basic underlying set is the reals R or the
complex numbers C, it seems less natural to assume that one has a well-ordering of
the structure and one wants a different model of computation. Natural possibilities
include Kleene recursion in higher types, E-recursion (of Normann and Moschovakis)
and Blum-Shub-Smale computability. (See for example Sacks [1990] or Chong [1984]
for α-recursion theory; Sacks [1990], Moldestad [1977] or Fenstad [1980[ for the various
versions of recursion in higher types or E-recursion and Blum et al. [1988] for the Blum-
Shub-Smale model.)

The general program that we are suggesting consists of the following:
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Problem 2.2. Develop a computability theoretic type of reverse mathematical analyses
of mathematical theorems on uncountable structures using whichever generalized notion
of computability seems appropriate to the subject being analyzed.

Some surprises lie in store along this road. For example, WKL is no longer a plausible
basic system. For uncountable cardinals it is equivalent to the large cardinal notion of
weak compactness. There is, however, another new tree property for κ that is computably
equivalent to compactness for propositional or predicate logic for languages of size κ as
well as the existence of prime ideals for every ring of size κ. See Shore [2011] for more
details and examples.

Another “application” for our approach to reverse mathematics in the uncountable is
that it provides a testing ground for notions of computation in the uncountable. For the
countable setting, the widely accepted “correct” notion of computation is that of Turing
and it rightfully serves as the basic ingredient of our models and approach for countable
mathematics. In the uncountable setting there are many competing notions (including
those mentioned above) and no consensus or even many credible claims as to one being
the “right” one. We suggest that if a theory of computability for uncountable domains
provides a satisfying analysis of mathematical theorems and constructions in the reverse
mathematical sense based on the approach of Definition 2.1, then it has a strong claim
to being a good notion of computation in the uncountable. It may well be that there
is no single “right” one but that certain ones may be better than others for different
branches of mathematics. These are certainly reasonable questions for the foundations
of mathematics.

We now turn to the various branches of mathematical logic to see what tools they
provide and what grist (theorems) for the mill of reverse mathematics. In particular,
following our personal inclinations, we focus on theorems chosen from logic and combi-
natorics that are not equivalent to any of the four basic systems. (We exclude RCA0 as
we continue to view it as our base theory.) Some will be below WKL0, some incomparable
with it, some between two of the four systems and, finally, some beyond them all.

3 Proof theory

Now, in some sense, classical reverse mathematics is simply a part of proof theory. After
all, it deals with formal proof systems and the theorems that can be proved in them.
(Of course, some might say that this is all of mathematics.) Nonetheless, in the hands
of some (or even most) of its practitioners (myself included), it often looks like various
other branches of mathematical logic. Nonetheless, there are a number of classically proof
theoretic notions and methods that play a central role in its development. We briefly
describe a couple of them.

The first is the notion of conservativity. We say that a theory T is conservative over
one S (typically contained in T ) if any theorem ϕ of T (in the language of S) is (already)
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a theorem of S. If the theorems under consideration are restricted to some (usually
syntactic) class Γ then we say that T is Γ conservative over S.

Perhaps the first use of conservation results in reverse mathematics that come to mind
is the obvious one of providing a wholesale method of showing that various reversals that
one might be hoping for are, in fact, not possible. If S and T are two successive theories
from among the five basic ones and ϕ is provable in T but not in S, one hopes to get
a reversal by showing that S + ϕ ` T . If, however, one shows (as is common) that
S + ϕ is Π1

1 conservative over S then no such reversal is possible. The point here is that
each of the basic theories proves the consistency of its predecessor. Thus if S + ϕ ` T
then it would also prove the consistency of S, a Π0

2 sentence, that is not provable in S
by Gödel’s second incompleteness theorem. So, by the conservation result, there is no
reversal, S + ϕ 0 T . Various examples, albeit not proven by proof theoretic methods,
are given in the following sections. References to ones derived proof theoretically can be
found in Simpson [2009].

This approach extends to a philosophical “application” central to the foundational
concerns of reverse mathematics. If S and T represent philosophical approaches to (or
schools of) what is acceptable mathematics then proving that T is Γ conservative over S
shows that the theorems of T lying in Γ are actually acceptable to the school represented
by S. As an example, we cite the fact that WKL0 is Π1

1 conservative over RCA0 and Π0
2

conservative over an even weaker theory of primitive recursive arithmetic. This means
that any sentence of arithmetic that can be proven using any of the many methods
of analysis or algebra that are derivable in WKL0 are already effectively (computably,
constructively) true. Moreover, if they are Π0

2 sentences such as ones asserting the totality
of some implicitly given function, ∀x∃yψ(x, y) where ψ is Σ0

1 then the function is, in fact,
primitive recursive and so acceptable in the finitistic systems following Hilbert. More on
this example and others can be found in Simpson [2009].

In the other (mathematical) direction of proving theorems, conservation results are
also frequently very useful. If one proves that S + ϕ is Γ conservative over S and one
wants to prove a theorem ψ ∈ Γ in S then one is allowed to use ϕ in the proof even
though it is not itself provable in S. As an example, we cite the fact that Σ1

k+3-AC0 is
Π1

4 conservative over Π1
k+2-CA0 (although not provable in it). This allows one to use

these choice principles to prove theorems in such systems even though they are not
themselves provable in the systems being used. One example is Theorem 6.1 below from
Montalbán and Shore [2011] where a strong choice principle not provable in Π1

m+2-CA0

but conservative over it for sentences of the desired form (by Simpson [2009, VII.6.20])
is used to prove a determinacy theorem in Π1

m+2-CA0.

Perhaps the archetypical method of classical proof theory is ordinal analysis. Here one
wants to determine the (minimal) ordinal γ (and some effective presentation of it) such
that an induction of length γ suffices to prove the consistency of a given system T . From
the viewpoint of reverse mathematics, such results are also limiting. The most famous
examples are Friedman’s early results (see Simpson [1985] or Schwichtenberg and Wainer

10



[2011]) that various versions of Kruskal’s theorem and then later of the Graph Minor
theorem (Friedman, Robertson and Seymour [1987]) are not provable in strong systems
including ATR0 and Π1

1-CA0. Basically one proves that the combinatorial theorems in
question establish the well foundedness of systems of ordinal notations larger than the
ordinal needed to prove the consistency of the system in question. So again by Gödel’s
second incompleteness theorem, they cannot be proven in it. More recently Marcone and
Montalbán are using ordinal notation systems to analyze the strength of weak versions of
Fraisse’s conjecture [2009] and [2011] with a more proof theoretic approach in Afshari and
Rathjen [2009]. Rathjen and Weiermann [2011] have analyzed maximal well orderings of
various types to better understand the strength of several Kruskal-like theorems.

Proof theoretic methods also contribute to more constructive approaches to many
theorems in other settings as in the newly revived area of proof mining (see for exam-
ple Kohlenbach [2008]). They also have appeared (for higher type systems) as another
method for extending reverse mathematics to the uncountable, especially in the study
of analysis (Kohlenbach [2005]). More could be said but the natural direction of proof
theory is to study consistency strength rather than strength as measured in terms of
provability as in reverse mathematics. It is a finer measure but one that goes in a direc-
tion opposite to the one we are expositing (and espousing) here of restricting attention
to ω-models and computability.

4 Recursion theory and intermediate systems

Clearly the most common application of recursion theory in reverse mathematics is to
the separation of systems and theorems. As mentioned in §2.1, given two Π1

2 theorems
∀X∃Y Φ and ∀X∃YΨ one builds a Turing ideal C in which the first but not the second
is true. Thus Φ does not computably entail Ψ and so does not imply Ψ over RCA. If
one wants the nonimplication to hold over ACA or Π1

1-CA one makes C closed under
the Turing or hyperjump, respectively. One builds these ideals by first producing a
construction that, given any X adds a solution to Φ, i.e. a Y such that Φ(X, Y ) holds,
but such that there is no solution for Ψ recursive (or arithmetic if working, say, over ACA)
in Y . One then iterates this construction dovetailing over all instances of Φ produced
along the way (i.e. sets X recursive in the finite joins of Y ’s so produced) to construct a
Turing ideal satisfying Φ but not Ψ.

The basic constructions in this process are often (recursion theoretic) forcing argu-
ments. They also at times use priority arguments and many other standard recursion
theoretic techniques. Cone avoiding has an obvious role to play. If, for example, one can
add on solutions for Φ always avoiding the cone above 0′ (i.e. no set computing 0′ is
introduced) then one proves that Φ does not imply ACA0. More delicate examples often
involve guaranteeing that the solution Y to Φ constructed is low or low2 (i.e. Y ′ ≡T 0′

or Y ′′ ≡T 0′′). One example already mentioned is the Jockush-Soare low basis theorem
which constructs a low solution to any recursive instance of WKL0 and so proves that
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WKL0 does not computably entail (nor then imply) ACA0 (over RCA0). This construction
can be combined with cone avoiding and other properties to provide many examples of
nonimplications.

To be more specific, we give some of the combinatorial theorems that appear in these
sorts of applications and the relations among them. (Some model theoretic ones are in
§5.) They provide several examples of construction principles or axiomatic systems that
are not captured by any of the five basic systems of reverse mathematics. The extent
to which these systems are outside the scope of the five basic ones and even provide
examples of incomparable principles in the sense of reverse mathematics is illustrated in
Diagram 1 below. Note that Ramsey’s Theorem for pairs, RT2

2, is strictly weaker than
ACA0. Single arrows are implications; double arrows are strict implications and negated
arrows represent known nonimplications (all over RCA0). The nonimplications are es-
sentially all proved by recursion theoretic techniques showing the failure of computable
entailment. (See Hirschfeldt and Shore [2007, §3] for attributions and references for the
implications and nonimplications.) The picture alone conveys the essence of our claims
but for completeness we provide the formal definitions of the systems as well.

(RT2
2) Ramsey’s Theorem for pairs: Every 2-coloring of [N]2 (the unordered pairs

of natural numbers) has a homogeneous set, i.e. for every f : [N]2 → {0, 1} there is an
infinite H such that |f“[H]k| = 1.

(SRT2
2) Stable Ramsey’s Theorem for pairs: Every stable coloring of [N]2 (i.e.

(∀x)(∃y)(∀z > y)[f(x, y) = f(x, z)]) has a homogeneous set.

(COH) Cohesive Principle: For every sequence of sets R = 〈Ri | i ∈ N〉 there is an
R-cohesive set S (i.e. (∀i)(∃s)[(∀j > s)(j ∈ S → j ∈ Ri) ∨ (∀j > s)(j ∈ S → j /∈ Ri)]).

(CAC) Chain-AntiChain: Every infinite partial order (P,≤P ) has an infinite subset
S that is either a chain, i.e. (∀x, y ∈ S)(x ≤P y ∨ y ≤P x), or an antichain, i.e.
(∀x, y ∈ S)(x 6= y → (x �P y ∧ y �P x)).

(ADS) Ascending or Descending Sequence: Every infinite linear order (L,≤L) has
an infinite subset S that is either an ascending sequence, i.e. (∀s < t)(s, t ∈ S → s <L t),
and so of order type ω, or a descending sequence, i.e. (∀s < t)(s, t ∈ S → t <L s), and
so of order type ω∗.

(SADS) Stable ADS: Every linear order of type ω+ ω∗ has a subset of order type ω
or ω∗.

(CADS) Cohesive ADS: Every linear order has a subset S of order type ω, ω∗, or
ω + ω∗.

(SCAC) Stable CAC: Every infinite stable partial order has an infinite chain or
antichain. A partial order P is stable if either

(∀i ∈ P )(∃s)[(∀j > s)(j ∈ P → i <P j) ∨ (∀j > s)(j ∈ P → i |P j)]
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or
(∀i ∈ P )(∃s)[(∀j > s)(j ∈ P → i >P j) ∨ (∀j > s)(j ∈ P → i |P j)].

(CCAC) Cohesive CAC: Every partial order has a stable suborder.

(DNR) Diagonally Nonrecursive Principle: For every set A there is a function f that
is diagonally nonrecursive relative to A, i.e. ∀n¬(f(n) = ΦA

n (n)).

RT2
2
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Diagram 1

Recursion theoretic techniques have also been used to reduce the reverse mathematical
strength of the systems needed to prove various theorems. Of course, there are examples
for recursion theoretic results. The most dramatic is for the definability of the Turing
jump. The original proof of Shore and Slaman [1999] used metamathematical arguments
of Slaman and Woodin (see Slaman [1991] or [2008]) that included set theoretic forcing to
collapse the continuum to a countable set as well as absoluteness arguments. A new proof
(Shore [2007]) eliminates all of these arguments in favor of purely recursion theoretic ones
and provides a proof of the definability of the Turing jump in the Turing degrees with
≤T that can be carried out in ACA0 + (0ω exists) (more than ACA0 but less than ACA+

0

which is equivalent to closure under the arithmetic jump). This is a major reduction in
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proof theoretic strength. It is an important open question as to whether the definability
can be proved in ACA0 (and so, as would be hoped, the definition would work inside
every Turing jump ideal, not just those containing 0ω).

Perhaps more surprisingly, the technique now called Shore blocking that was originally
developed in my thesis (Shore [1972]) for α-recursion theory has been used with priority
arguments to eliminate extra induction assumptions and prove theorems of combinatorics
and model theory in RCA0 as well as some reversals. (See §5, [Hirschfeldt, Shore and
Slaman [2009] and Hirschfeldt, Lange and Shore [2012].)

5 Model theory and weak systems

From the beginning model theoretic techniques (especially those devoted to models of
arithmetic) played (and continue to play) an important role in distinguishing between
different systems particularly weak ones and those involving low levels of induction as
in the basic results of Kirby and Paris [1978] (see also Hajek and Pudlak [1998, IV].
Perhaps more surprisingly they (along with both recursion and set theoretic methods)
play a role in the proof theoretic endeavor of establishing conservation results. (See, for
example, Simpson [2009, IX.4] for uses of (recursive) saturation in the study of strong
choice principles.)

More recently, the methods and approaches of nonstandard analysis have been used
to attack the basic problem of reverse mathematics of describing systems that capture
the strength of ordinary mathematical theorems. We point to Keisler [2006], [2011] and
Yokoyama [2007], [2009] as examples.

A particularly striking recent example of the study of the structure of nonstandard
models of arithmetic leading to the solution of reverse mathematical problems that seem
to be of a purely combinatorial nature is Chong, Lempp and Yang [2010]. They build on
a series of papers investigating cuts in models of arithmetic and their recursion theoretic
properties (by Chong, Slaman, Yang and others). In particular, they apply recursion
theoretic restrictions on such cuts that are based on the notions of tameness introduced by
Lerman [1972] in α-recursion. These notions enable them to solve several open problems
from Cholak, Jockusch and Slaman [2001], Hirschfeldt and Shore [2007] and Dzhafarov
and Hirst [2009] about the reverse mathematical relationships among various purely
combinatorial principles related to Ramsey theory and its weak variants.

Following the “grist for the mill” theme, we note that classical (Robinson style) model
theory has recently (Hirschfeldt, Shore and Slaman [2009] and Hirschfeldt, Lange and
Shore [2012]) provided an unexpectedly rich source of construction type principles that
are very weak from the viewpoint of reverse mathematics. Even ones lying below all the
combinatorial principles mentioned in §4.

Before stating the principles we recall the definitions of some basic model theoretic
notions.
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Definition 5.1. A partial type of a (countable, deductively closed, complete and consis-
tent) theory T is a set of formulas in a fixed number of free variables that is consistent
with T . A type is a complete type, i.e. a maximal partial type. A partial type Γ is
realized in a model A of T if there is an ā such that A � φ(ā) for every φ ∈ Γ. Otherwise,
Γ is omitted in A.

A formula ϕ(x1, . . . , xn) of T is an atom of T if for each formula ψ(x1, . . . , xn) we
have T ` ϕ→ ψ or T ` ϕ→ ¬ψ but not both. A partial type Γ is principal if there is a
formula ϕ consistent with T such that T ` ϕ → ψ for all ψ ∈ Γ. Thus a complete type
is principal if and only if it contains an atom of T .

The theory T is atomic if, for every formula ψ(x1, . . . , xn) consistent with T , there is
an atom ϕ(x1, . . . , xn) of T such that T ` ϕ → ψ. A model A of T is atomic if every
n-tuple from A satisfies an atom of T , that is, every type realized in A is principal.

Now for our model theoretic principles:

(AMT): Every complete atomic theory has an atomic model.

(OPT): If S is a set of partial types of T , there is a model of T that omits all
nonprincipal partial types in S.

(AST): If T is an atomic theory whose types are subenumerable, i.e. there is a set
S such that (∀Γ a type of T )(∃i)({φ | 〈i, φ〉 ∈ S} implies the same formulas over T as
Γ), then T has an atomic model.

(HMT): If X is a set of types over T satisfying some necessary closure conditions
then there is a homogeneous model of T realizing exactly the types in X. [A model M
of T is homogeneous, if for all ā and b̄ from M satisfying the same type and all c̄ ⊂ M ,
there exists an M -tuple d̄ such that (ā, c̄) satisfies the same type as (b̄, d̄). The closure
conditions on an X containing T are as follows: (1) X is closed under permuting variables
and subtypes. (2) If p(x̄) ∈ X and φ(x̄, ȳ) are consistent, ∃q ∈ X(p ∪ {φ} ⊆ q). (3) If
p(x̄), q0(ȳ0), . . . qn(ȳn) ∈ X and x̄ includes the variables shared between any qi 6= qj, then
∃q ∈ X(q ⊇ p, q0, . . . , qn)).]

The first (and strongest) of these principles, AMT, is a standard result of classical
model theory. Surprisingly, it is strictly weaker (in the sense of reverse mathematics)
than even SADS, itself a minimal principle among the combinatorial ones considered in
§4. Now every atomic model is homogeneous but not the reverse. Indeed classically it
seems in various ways much easier to construct homogenous models than atomic ones.
Nonetheless, the construction principles (as formalized above) are computationally and
reverse mathematically equivalent, i.e. AMT and HMT are equivalent over RCA0. The
other two principles turn out to be reverse mathematically equivalent to two standard
recursion theoretic constructions. OPT is equivalent (over RCA0) to the existence (for
each set X) of a function f (computing X) which is not dominated by any recursive
(in X) function. The last, AST, is equivalent (over RCA0) to what might naturally be
regarded as the weakest possible principle (above RCA0): the existence (for each X) of a
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set not recursive (in X). We find it quite surprising but very pleasing that a simple model
theoretic principle making no mention of any notions of computability turns out to have
the same computational and proof theoretic strength as the existence of a nonrecursive
set. These results are also quite interesting from the methodological point of view. The
techniques used to establish this last equivalence (over RCA0) as well as that of AMT and
HMT (Hirschfeldt, Lange and Shore [2012]) include both Shore blocking and priority
arguments.

We close this section with a Diagram illustrating the relations among the model
theoretic principles discussed in this section with the combinatorial ones from the last
section. (Augmented by one new combinatorial one that is of independent interest in
analyzing the relations among weak versions of induction: (Π0

1G) For any uniformly Π0
1

collection of setsDi each of which is dense in 2<N there is a G such that ∀i∃s(G � s ∈ Di).)
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Diagram 2

6 Set theory and strong systems

The set theoretic technique most widely used in reverse mathematics is certainly forcing
in its recursion theoretic setting of forcing in arithmetic. The nature of forcing, after all,
is to add a set with tightly controlled properties while preserving the base theory. Thus,
given a particular mathematical construction problem as expressed by a Π1

2 sentence
Φ(X, Y ), one looks for a notion of forcing that adds a solution Y for a given input X
and preserves RCA0. Iteration (and dovetailing) produces a model for the given sentence.
As in set theory, one produces independence results by adding in a solution to Φ that
does not add a solution to some other problem Ψ. Typically, one works over a standard
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(ω-) model of arithmetic and proves that Φ does not computably entail Ψ. Perhaps more
surprisingly, one can often use forcing over nonstandard models to derive nonimplication
results over RCA0. Taken to its natural conclusion, such methods are even used to produce
conservation theorems. Essentially every forcing argument that works over arbitrary
models of a system T proves a Π1

1 conservation result over T since it does not change the
natural numbers. Thus arithmetic formulas (even with set parameters) are absolute to
the generic extension. In some cases, one can analyze the notion of forcing to show that
no solutions are added to any problem (Π1

2 formula) of some specified syntactic form to
prove stronger conservation results and wholesale nonimplications from the given problem
Φ to a class of other problems. For example, Hirschfeldt and Shore [2007] introduce the
notion of conservativity for Φ of the form ∀A(θ(A) → ∃Bψ(A,B) , θ arithmetic and
ψ ∈ Σ0

3 which are called r-Π1
2 for restricted Π1

2. Cohen, Mathias and Sacks forcing are
all r-Π1

2 conservative over RCA0 and so none of AMT (or a fortiori, OPT or AST)
(Hirschfeldt, Shore and Slaman [2007]), COH, CADS (Hirschfeldt and Shore [2007])
or the existence of minimal covers (or even all of them together) imply any of RT2

2,
SRT2

2, WKL0, DNR, CAC, ADS or SADS (over RCA0). This, for example, shows
that CADS and SADS (which together imply ADS) are incomparable over RCA0 and
so each is strictly weaker than ADS.

A very recent, quite remarkable application of techniques from set theory appear in
Neeman [2011], [2012]. Montalbán [2006] showed that a purely mathematical theorem of
Jullien [1969] (see Rosenstein [1982], Lemma 10.3) about indecomposable linear orderings
was a theorem of hyperarithmetic analysis, i.e. true in the standard models whose sets are
precisely the hyperarithmetic ones in someX, but implies closure under “hyperarithmetic
in” for ω-models. Indeed, he also showed that it was a consequence of ∆1

1-CA0. This was
the first “natural” mathematical theorem with these properties. Neeman [2011] shows
that this theorem implies, but is not implied by, a weak version of Σ1

1 choice and also
does not imply ∆1

1-CA. All of these results assume Σ1
1-IND0. The techniques here include

forcing (with Steel’s tagged trees [1977], [1978]) and inner models of the generic extensions
similar to those used by Steel and others. Quite surprisingly, Neeman [2012] shows that
Σ1

1-IND0 is necessary for the reversal from the theorem to the choice principle. As far as
we know, this is the first proof of the necessity of a strong induction axiom for a reversal.
Indeed, Neeman builds a (necessarily) nonstandard model of RCA0 + ∆1

1-IND0 + the
theorem of Jullien in which the relevant weak version of Σ1

1 choice fails. He here uses not
only Steel’s forcing but an elementary embedding of the standard model produced into
a nonstandard extension to define the desired model witnessing the nonimplication.

Not surprisingly, in the “grist for the mill” direction set theory supplies a fertile
ground for the higher ends of our basic systems. The analysis of (countable) ordinal
arithmetic is naturally situated at the level of ATR0 where most of the usual theorems
can be proved. In the reverse direction, the comparability of well orderings (and even
apparently weaker principles) imply ATR0 (over RCA0) (See Simpson [2009, V.6 and the
notes there for examples and references.) Some theorems require Π1

1-CA0 and versions
of the Cantor-Bendixson analysis, the perfect set theorem and other basic facts about

17



descriptive set theory are equivalent to it (See Simpson [2009, VI]. At these levels one
can also translate second order arithmetic into a set theoretic language that allows one
to mimic the construction of Gödel’s L and use the machinery of L (such as Jensen’s fine
structure analysis of Σn and ∆n projecta) to analyze and apply theorems and principles
such as the Shoenfield absoluteness theorem and strong versions of choice going beyond
Π1

1-CA0 (Simpson [2009, VII]).

Up until quite recently almost no mathematical theorems expressible in second order
arithmetic were know to require much more than Π1

1-CA0. A combinatorial result or
two such as the graph minor theorem (Friedman, Robertson and Seymour [1987] were
long known to be beyond it and Laver’s theorem (Fräıssé’s conjecture) has long been a
candidate for not being provable in ATR0 or perhaps even Π1

1-CA0. (See Shore [1993]
for a proof that it implies ATR0 and Marcone and Montalbán [2009] for the beginnings
of a program to show it goes beyond ATR0 and perhaps eventually Π1

1-CA.) Still these
sorts of results are generally known to be provable in Π1

2-CA0. Remarkably, Mumert and
Simpson [2005] have found some theorems of topology equivalent to Π1

2-CA0 but that has
been about the limit of our examples.

To reach the heights of second order arithmetic, Z2, we return to the roots of reverse
mathematics: the Axiom of Determinacy and Friedman [1971]. In his first foray into
the area that grew into reverse mathematics, Friedman [1971] famously proved that
Borel determinacy is not provable in either ZC (ZFC without the replacement axiom) or
ZFC− (ZFC without the power set axiom). (We say that a set A ⊆ 2ω is determined if
there is a function f : 2<ω → 2 (called a strategy) such that either every g ∈ 2ω such
that ∀n(g(2n) = f(g � 2n)) is in A (player I wins the game) or no g ∈ 2ω such that
∀n(g(2n+ 1) = f(g � 2n+ 1)) is in A (player II wins the game). For a class of sets Γ, Γ
determinacy says that every A ∈ Γ is determined.)

Indeed, Friedman showed that one needs ℵ1 many iterations of the power set to prove
Borel determinacy. Martin [1975], then showed that it is provable in ZFC and provided a
level by level analysis of the Borel hierarchy and the number of iterations of the power set
needed to establish determinacy at those levels. Moving from set theory to second order
arithmetic and so reverse mathematics, Friedman [1971] also showed that Σ0

5 determinacy
is not provable in full second order arithmetic. Martin [1974a], [n.d., Ch. 1] improved
this to Σ0

4 determinacy. He also presented [1974], [n.d., Ch. 1] a proof of ∆0
4 determinacy

that he said could be carried out in Z2. This seemed to fully determine the boundary of
determinacy that is provable in second order arithmetic and to leave only the first few
levels of the Borel hierarchy to be analyzed from the viewpoint of reverse mathematics.

The first very early result (essentially Steel [1976] see also Simpson [2009 V.8]) was
that Σ0

1 determinacy is equivalent (over RCA0) to ATR0. Tanaka [1990] then showed that
Π1

1-CA0 is equivalent to Σ0
1 ∧ Π0

1 determinacy. Moving on to Σ0
2 determinacy, Tanaka

[1991] showed that it is equivalent to an unusual system based on closure under monotonic
Σ1

1 definitions. At the level of ∆0
3 determinacy, MedSalem and Tanaka [2007] showed

that each of Π1
2-CA0 + Π1

3-TI0 and ∆1
3-CA0 + Σ1

3-IND0 prove ∆0
3 determinacy but ∆1

3-CA0
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alone does not. They improve these results in [2008] by showing that ∆0
3 determinacy

is equivalent (over Π1
3-TI0) to another system based on transfinite combinations of Σ1

1

inductive definitions. Finally, Welch [2009] has shown that Π1
3-CA0 proves not only Π0

3

determinacy but even that there is a β-model of ∆1
3-CA0 +Π0

3 determinacy. In the other
direction, he has also shown that, even augmented by an axiom about the convergence
of arithmetical quasi-inductive definitions, ∆1

3-CA0 does not prove Π0
3 determinacy. The

next level of determinacy is then ∆0
4.

Upon examining Martin’s proof of ∆0
4 determinacy as sketched in [1974] and then later

as fully written out in [n.d., Ch. 1] with Montalbán, it seemed to us that one cannot
actually carry out his proof in Z2. Essentially, the problem is that the proof proceeds
by a complicated induction argument over an ordering whose definition seems to require
the full satisfaction relation for second order arithmetic This realization opened up anew
the question of determining the boundary line for determinacy provable in second order
arithmetic.

In Montalbán and Shore [2011], we answer that question by analyzing the strength
of determinacy for the finite levels of the difference hierarchy on Π0

3 sets, the m-Π0
3 sets.

(These are the sets of the form A0 −A1 ∪A2 −A3 ∪A4 − . . . Am for Ai ∈ Π0
3, a natural

hierarchy for the finite Boolean combinations of Π0
3 sets.) In the positive direction, we

produce a variant of Martin’s proof specialized and simplified to the finite levels of the
difference hierarchy on Π0

3 along with the analysis needed to determine the amount of
comprehension used in the proof for each level of the hierarchy.

Theorem 6.1. For each m ≥ 1, Π1
m+2-CA0 ` m-Π0

3 determinacy.

In the other direction, we prove that this upper bound is sharp in terms of the standard
subsystems of second order arithmetic thus climbing up the comprehension hierarchy to
full Z2 with mathematical theorems provable precisely at each level.

Theorem 6.2. For every m ≥ 1, ∆1
m+2-CA does not prove m-Π0

3 determinacy.

As any proof in Z2 uses only finitely many instances of comprehension axioms, de-
terminacy for the union of all of these classes lies beyond the scope of full second order
arithmetic and gives us the precise boundary for its strength.

Corollary 6.3. Determinacy for the class of all finite Boolean combinations of Π0
3 classes

of reals (ω-Π0
3 determinacy) cannot be proved in second order arithmetic. As these classes

are all (well) inside ∆0
4, Z2 does not prove ∆0

4 determinacy.

Note that by Theorem 6.1, any model of second order arithmetic in which the nat-
ural numbers are the standard ones (i.e. N) does satisfy ω-Π0

3 determinacy and so the
counterexample for its failure to be a theorem of Z2 must be nonstandard. In contrast,
the counterexamples from Friedman [1971] and Martin [1974a], [n.d., Ch. 1] are all even
β-models, so not only with its numbers standard but all its “ordinals” (well orderings)
are true ordinals (well orderings) as well.
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If one wants to return to the set theoretic setting, we can reformulate this limitative
result by noting the following conservation result (Montalbán and Shore [2011]).

Proposition 6.4. ZFC−, even with a definable well ordering of the universe assumed as
well, is a Π1

4 conservative extension of Z2.

Corollary 6.5. Determinacy for the class of all finite Boolean combinations of Π0
3 classes

(ω-Π0
3 determinacy) and so, a fortiori, ∆0

4 determinacy cannot be proved in ZFC−.

The techniques used to prove Theorem 6.2 include some elementary fine structure
and admissibility theory to show that the first Σm admissible ordinal α, while a model
of ∆1

m+2-CA (even a β-model), is not a model of m−Π0
n determinacy.

In fact, the counterexamples that establish Theorem 6.2 are all given by effective
versions of the m-Π0

3 sets where the initial Π0
3 sets are effectively defined, i.e. without

set parameters. This gives rise to a Gödel like phenomena for second order arithmetic
with natural mathematical Σ1

2 statements saying that specific games have strategies and
containing no references to provability.

Theorem 6.6. There is a Σ1
2 formula ϕ(x) with one free number variable x, such that,

for each n ∈ ω, Z2 ` ϕ(n) but Z2 0 ∀nϕ(n).

Of course, on their face, Theorems 6.1 and 6.2 along with Corollary 6.3 produce a
sequence of Π1

3 formulas ψ(n) that have the same proof theoretic properties as those in
Theorem 6.6 while eliminating the references to syntax and recursion theory present in
the ϕ of Theorem 6.6. They simply state the purely mathematical propositions that all
n-Π0

3 games are determined. (Here we are thinking of the Π0
3 sets as being the Fσδ ones,

i.e. countable intersections of countable unions of closed subsets of 2ω.)

The natural question now is what about reversals, i.e. what can these determinacy
results prove? The answer is nothing more than the Π1

1-CA0 already derivable from
Σ0

1∧Π0
1 determinacy. MedSalem and Tanaka [2007] have shown (using coded models and

an appeal to Gödel’s second incompleteness theorem) that even full Borel determinacy
does not imply ∆1

2-CA0. We (Montalbán and Shore [2011]) provide a different route
finding β-model counterexamples in L or L(X) that apply to a wide class of sentences.

Theorem 6.7. If T is a true Σ1
4 sentence (e.g. a theorem of ZFC) then T + Π1

1-
CA + Π1

∞-TI 0 ∆1
2-CA0.

Corollary 6.8. Borel determinacy + Π1
1-CA + Π1

∞-TI 0 ∆1
2-CA0.

We can say even more. Not only are there no reversals over RCA0 but even assuming
∆1

n+2-CA does not help.

Theorem 6.9. If T is a true Σ1
4 formula then, for n ≥ 2, ∆1

n-CA +T+ Π1
∞-TI 0 Π1

n-CA0.

Corollary 6.10. For n ≥ 0, ∆1
n+2-CA + n-Π0

3 determinacy + Π1
∞-TI 0 Π1

n+2-CA0.

Thus ∆1
n+2-CA0 + n-Π0

3 determinacy is strictly between ∆1
n+2-CA0 and Π1

n+2-CA0.
Again the results follow from more general ones for Π1

n-CA0 that are proved by working
in L(X).
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6.1 Conclusions

We have tried to paint a picture of reverse mathematics as intimately involved with all
the classical fields of mathematical logic. Of course, by the nature of its subject matter,
it also deals with most areas of classical mathematics. As a playground then, its playing
fields are large, there are many kinds of games to play and a wide variety of equipment.
I urge you to come on in and join the fun.
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