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Abstract

We investigate the reverse mathematical strength of Turing determinacy up to
Σ0

5 which is itself not provable in second order arithmetic.

1 Introduction

Reverse mathematics endeavors to calibrate the complexity of mathematical theorems by
determining precisely which system P of axioms are needed to prove a given theorem Θ.
This is done in one direction in the usual way showing that P � Θ. The other direction
is a “reversal” that shows that relative to some weak base theory Θ � P . Here one
works in the setting of second order arithmetic, i.e. the usual first order language and
structure 〈M,+,×, <, 0, 1〉 supplemented by distinct variables X, Y, Z that range over
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a collection S of subsets of the domain M of the first order part and the membership
relation ∈ between elements of M and S. Most of countable or even separable classical
mathematics can be developed in this setting based on very elementary axioms about
the first order part of the model M, an induction principle for sets and various set
existence axioms. At the bottom one has the weak system of axioms called RCA0 that
correspond to recursive constructions. One typically then adds additional comprehension
(i.e. existence) axioms to get other systems P . Many of these systems are given by Γ
comprehension (Γ-CA0) which is gotten from RCA0 by adding on the axiom that all sets
defined by formulas in some class Γ exist. So one gets ACA0 for Γ the class or arithmetic
formulas and Π1

n-CA0 for Γ the class of all Π1
n formulas. (In each case the formulas may

contain set parameters.) Full second order arithmetic, Z2, is the union of all the Π1
n-

CA0. The standard text here is Simpson [2009] to which we refer the reader for general
background.

This paper is concerned with the analysis of various principles connected with axioms
of determinacy. This subject has played an important role historically as an inspiration
for increasingly strong axioms (as measured by consistency strength) both in reverse
mathematics and set theory. We have given a brief overview of this history in §1 of
Montalbán and Shore [2012] (henceforth denote by MS [2012]) and refer the reader to
that paper for more historical details and other background for both reverse mathematics
and determinacy. Here we give some basic definitions and cite a few results.

Definition 1.1 (Games and Determinacy). Our games are played by two players I and
II on {0, 1} [or ω]. They alternate playing an element of {0, 1} [or ω] with I playing first
to produce a play of the game which is a sequence f ∈ 2ω [ωω]. A game GA is specified
by a subset A of 2ω [ωω].We say that I wins a play f of the game GA specified by A if
f ∈ A. Otherwise II wins that play.

Definition 1.2. A strategy for I (II) is a function s from strings σ in 2<ω [ω<ω] of
even (odd) length into {0, 1} [ω]. It is a wining strategy if any play f following it (i.e.
f(n) = s(f � n) for every even (odd) n) is a win for for I (II). We say that the game GA

is determined if there is a winning strategy for I or II in this game. If Γ is a class of sets
A, then we say that Γ is determined if GA is determined for every A ∈ Γ. We denote the
assertion that Γ is determined by Γ determinacy or Γ-DET.

The classical reverse mathematical results are (essentially Steel [1976] see also Simp-
son [2009 V.8]) that Σ0

1-DET is equivalent to ATR0 a system asserting the existence of
transfinite iterations of arithmetic comprehension that lies strictly between ACA0 and
Π1

1-CA0; and (Tanaka [1990]) that Π1
1-CA0 is equivalent to determinacy for conjunctions

of Π0
1 and Σ0

1 sets. Results on Π0
2, Δ0

3 and Π0
3 determinacy (Tanaka [1991], MedSalem

and Tanaka [2007] and Welch [2011]) show that they are significantly stronger with the
last provable in Π1

3-CA0 but not Δ1
3-CA0. Friedman [1971] in what was really the first

foray into reverse mathematics, proved that Σ0
5-DET is not provable in full second order

arithmetic and Martin [1974a], [n.d.] improved this to Σ0
4-DET.
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In MS [2012] we delineated the limits of determinacy provable in Z2 as encompassing
each level of the finite difference hierarchy on Π0

3 sets. Indeed each level n of the this
hierarchy is provable from Π1

n+2-CA0 but not at any lower level of the comprehension
axiom hierarchy. (So the union of the hierarchy (which is far below Δ0

4) is not provable
in Z2.) Then, in Montalbán and Shore [2014] (hereafter MS [2014]) we analyzed the
consistency strength of all these statements, getting a much clearer picture. In this
paper we analyze, to the extent we can, the reverse mathematical strength of a variation
on determinacy where one is thinking of the underlying space as the Turing degrees in
place of 2ω or ωω.

Definition 1.3. AnA ⊆ 2ω[ωω] is Turing invariant or degree closed if (∀f ∈ 2ω[ωω])(∀g ∈
2ω[ωω])(f ≡T g → (f ∈ A↔ g ∈ A)). We denote by Γ Turing determinacy or Γ-TD the
assertion that every degree closed A ∈ Γ is determined.

Remark 1.4. For any reasonable Γ including each of the Σ0
n classes, it is clear that

Γ-DET is equivalent (in RCA0) to Γ̆-DET where Γ̆ = {Ā|A ∈ Γ}. So we can use these two
assertions interchangeably and similarly for Γ-TD. We also note that while it is easy to
code sets as functions recursively (and so determinacy or Turing determinacy for classes
in ωω imply the corresponding result for 2ω) the converse is not obvious at the very lowest
level. However, for any of the arithmetic classes at or above Δ0

3, it does not matter for
determinacy or Turing determinacy if we work in 2ω or ωω as we can code functions in
ωω by sets in 2ω as long as we include the Π0

2 condition that the sets are infinite. So once
we are at that level we work in whichever setting is more convenient.

It is a classical theorem of Martin that a degree closed set A is determined if and
only if it contains a cone, i.e. a set of Turing degrees of the form {x|x ≥ z} for some
degree z called the base of the cone or is disjoint from a cone. (In the first case I has
a winning strategy; in the second, II.) In the realm of set theory, this induces a 0 − 1
valued measure on sets of degrees (with measure 1 corresponding to containing a cone).
This result is the basis for many interesting set theoretic investigations. The question
of the relationship between determinacy axioms and Turing determinacy axioms is an
interesting one in the set theoretic setting. Perhaps the most striking early result is that
for Γ = Σ1

1 the two notions coincide and and are equivalent with the axiom asserting the
existence of x# for every x ∈ ωω (Martin [1970] and Harrington [1978]). At the level
of determinacy for all sets, later work by Woodin showed that for full determinacy and
Turing determinacy are not only equiconsistent but are equivalent (over DC) in L(R).
(See Koellner and Woodin [2010 and other articles in the same handbook] for this and
much more on the role of TD in set theory.) The main results for Turing determinacy at
lower levels of the arithmetic hierarchy show some differences from full determinacy at
the same levels. There are a few classical ones given in Harrington and Kechris [1975],
primarily from recursion theoretic or ZFC points of view and Martin [1974] and [n. d.]
from the viewpoint of working in ZFC without the power set axiom and replacement only
for Σ1 formulas.
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Their results either directly, or can be refined to, give ones in reverse mathematics.
In this paper we present them from the viewpoint of reverse mathematics and fill in some
of the gaps. We begin with determining how much Turing determinacy is provable in
weak systems. The base theory RCA0 proves Π0

2-TD (Theorem 2.5). The next step is, of
course, Δ0

3-TD.

The standard tool in analyzing the Δ0
n+1 levels is the finite level version of a classical

theorem appearing in Kuratowski [1966]. It gives a representation of Δ0
n+1 subsets of

2ω in terms of the transfinite difference hierarchy on Π0
n or Σ0

n sets. One can then use
determinacy at the lower level to bootstrap up to Δ0

n+1. There are various formulations
and we state a couple of variants. That this theorem can be proven for n ∈ ω in ACA0

with some extra recursion theoretic conclusions is due to MedSalem and Tanaka [2007].
Our notation is slightly different from theirs. It follows more closely that used by Martin
[1974, 1974a, 1974b, n. d.]. We also incorporate a few normalizations of the sequences
that appear in different presentations.

Theorem 1.5 (Kuratowski; Martin; MedSalem and Tanaka for ACA0). For any Z ∈ 2ω,
a set A ⊆ 2ω is ΔZ

n+1 if and only if there is an ordinal α recursive in Z and a sequence
of uniformly ΠZ

n sets Aξ for ξ ≤ α which are decreasing (Aη ⊇ Aξ for η < ξ), continuous
(for limit ordinals λ, Aλ = ∩{Aη|η < λ}) with A0 = 2ω and Aα = ∅ such that ∀X(X ∈
A ⇔ μβ(X /∈ Aβ is odd). Dually (by taking complements) A ∈ ΔZ

n+1if and only if there
is an ordinal α recursive in Z and a sequence of uniformly ΣZ

n sets Aξ for ξ ≤ α which
are increasing (Aη ⊆ Aξ for η < ξ), continuous (for limit ordinals λ, Aλ = ∪{Aη|η < λ})
with A0 = ∅ and Aα = 2ω such that ∀X(X ∈ A⇔ μβ(X ∈ Aβ is even).

Remark 1.6. If a Δ0
n set A is degree invariant and n ≥ 3 then, in the above Σ0

n

representation, we may take the Aξ to be degree invariant as well. The first point here is

that ≤T is a Σ0
3 relation and so if A is Σ0

n then so is its Turing closure Â = {f |∃e(Φf
e ∈

A & ∃i(ΦΦf
e

i = f)}. The second point is that Â still gives a representation of A: If ξ is
the first with X in the degree closed version Âξ of Aξ, then some Y ≡T X is in Aξ and

not in any Aη ⊆ Âη and so in A.

This theorem allows us to prove Δ0
3-TD at the expense of moving from RCA0 to ACA0

(Theorem 2.6). We point out that there can be no reversals from any Turing determinacy
assumption to any system stronger than RCA0. The key fact here is that the standard
model of RCA0 with just the recursive sets (or the sets recursive in any X) is obviously
a model of Γ-TD for any Γ. Thus we can hope for implications from any Γ-TD only over
stronger systems. In this case, we can, however, prove that Δ0

3-TD is not provable in
RCA0 (Proposition 2.8). This supplies a natural principle that lies strictly between RCA0

and ACA0 but does not imply the existence of a nonrecursive set.

We next move on to Σ0
3-TD. Combining the implication from ATR0 to Σ0

1-DET (Steel
[1976] in RCA0) and from Σ0

1-DET to Σ0
3-TD (Harrington an Kechris [1975]) we see that

ATR0 � Σ0
3-TD. In this case, we prove a reversal over ACA0 (Theorem 3.7). This supplies

an example of a natural theory strictly weaker than ATR0 (and indeed does not even
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imply the existence of a nonrecursive set) but which joins ACA0 up to it. In particular,
Σ0

1-DET is equivalent to Σ0
3-TD over ACA0.

Using the representation of Theorem 1.5, we can now hope to prove Δ0
4-TD in ATR0.

We do so in Theorem 3.3 but we need an additional induction axiom.

Definition 1.7. For S a class of formulas, S transfinite induction, S-TI, is the scheme
of axioms stating that for every well-ordering α (formally coded as a set X of ordered
pairs 〈β, γ〉 prescribing its ordering relation <X on its domain which is also a subset of
ω) and every formula ϕ ∈ S,
{(∀γ)[((∀β <X γ)ϕ(β)) → ϕ(γ))] → (∀β <X α)ϕ(β)}.

The version that we need to prove Δ0
4-TD over ACA0 in Theorem 3.3 is Π1

1-TI0. Over
ACA0 this axioms scheme is equivalent to the dependent choice axiom for Σ1

1 formulas
(Simpson [2009, VIII.5.12]) and so provable in Π1

1-CA0 but not in ATR0.

As our last stop inside Z2, we analyze Σ0
4-TD and Δ0

5-TD based on results of Harrington
and Kechris [1975], Martin [1974] and Welch [2011] to show that Π1

3-CA0 proves both.
We can have no meaningful reversal even over relatively strong systems. Even full Borel
determinacy can prove neither Δ1

2-CA0 (even with TI for all formulas) nor Π1
3-CA0 even

over Δ1
3-CA0 and TI for all formulas (MS [2012, Corollaries 6.2 and 6.6]). Still, using

methods and results of MS [2012] and Montalbán and Shore [2014] working, however,
with Σ0

4-TD in place of Σ0
3-DET, we prove that not much less than Π1

3-CA0 will suffice.
Indeed, Π1

1-CA0 + Σ0
4-TD proves the existence of a Σ2 admissible ordinal (Lemma 4.7)

and so in terms of consistency strength, Π1
1-CA0 + Σ0

4-TD is much stronger than Δ1
3-CA0

(Corollary 4.8).

Finally, we use these methods to derive Martin’s result that Σ0
5-TD implies the exis-

tence of β0 (the least ordinal α such that Lα � Z2) in Π1
1-CA0 (Lemma 4.4). Thus Π1

1-CA0

+ Σ0
5-TD implies the consistency of Z2 (and more) and so takes us well beyond the reach

of full second order arithmetic (Corollary 4.6).

We close this section with some notational conventions.

Notation 1.8. We use ω to denote the set of natural numbers. Members of 2ω are
generally called sets and symbols such as X, Y, Z are used to denote them. Members of
ωω are often called reals and we use symbols such as f, g, h to denote them. (Of course a
real may be a set when its range is contained in {0, 1}.) The (Turing) degrees of these sets
and functions are, as usual, denoted by the corresponding small boldface roman letter. So
for example f ∈ f and X ∈ x. The eth partial recursive function and r.e. set relative to
f are denoted by Φf

e and W f
e ,respectively.

Notation 1.9. Subsets of both 2ω and ωω are generally denoted by symbols such as
A,B,C. We use symbols such as σ, τ to denote strings in either 2<ω or ω<ω and rely
on the context to determine which is intended. The length of σ is denoted |σ| and
its initial segment of length n ≤ |σ| is denoted by σ � n. We use standard concate-
nation and pairing functions, conventions and notations such as σˆτ , σˆf, 〈σ, τ〉 〈σ, f〉
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〈σ,X〉 , 〈f, g〉 , 〈u, v, w〉 = 〈u, 〈v, w〉〉 in the usual way. The precise formulations do not
matter as long as they are done recursively.

We assume a basic familiarity with recursive ordinals and the hyperarithmetic hier-
archy and at times their formal development in ATR0 as in Simpson [2009, VII]. Note
also that we generally prove theorems in their lightface version and leave relativization
to the reader unless some desired uniformity is brought out by carrying along the set
parameter.

2 The trivial levels

In this section we prove Π0
2- and Δ0

3-Turing Determinacy. Only the first proof is carried
out in RCA0. It is helpful to introduce a weaker but more easily definable notion of
closure than under ≡T .

Definition 2.1. Given k ∈ ω and f ∈ ωω we define k × f ∈ ωω by (k × f)(kn) = f(n)
and (k × f)(m) = 0 for m not a multiple of k. We say that an A contained in ωω or 2ω

is sufficiently closed if (∀f ∈ A)(∀σ)(∀k)(σˆ(k × f) ∈ A). Here and elsewhere σ is in
ω<ω or 2<ω appropriate. The smallest sufficiently closed set containing f is the sufficient
closure of f . Let E be the set of even strings, i.e. those whose nonzero values occur only
at even numbers such as all initial segments of 2 × f for any f .

Remark 2.2. Note that, for every m,n, f , m× (n× f) = mn× f . It is then easy to see
that, for every f in ωω or 2ω, {σˆ(k × f)|k ∈ ω and σ a string} is the sufficient closure
of {f}.

Also, for any A ⊆ 2ω, the set Â = {X : (∀σ, k)(σˆ(k×X)) ∈ A} is sufficiently closed.
The advantage of using sufficient closure instead of Turing closure is that if A is Π0

2, then
so is Â.

Lemma 2.3 (RCA0). For every Z ∈ ωω, every ΠZ
2 set A ⊆ ωω [2ω] which is sufficiently

closed is either empty or contains an element of every Turing degree above Z.

Proof. Let A �= ∅ be such a set. There is then an r.e. operator W (given by some We)
such that f ∈ A⇔ f ∈WZ⊕f is infinite. Let

X = {σ : WZ⊕σ −WZ⊕σ− �= ∅},
(where WZ⊕σ only runs for |σ| many steps and σ− = σ � |σ|−1). So, we have that f ∈ A
if and only if f � n ∈ X for infinitely many n. Note that X ≤T Z. Say f ∈ A, then
for every σ, σˆ(2 × f) ∈ A. Thus every σ there is a τ ∈ E (e.g. some initial segment of
2 × f) such that σˆτ ∈ X.

Now, given any infinite Y ∈ 2ω with Z ≤T Y , we build an h ∈ A, with h ≡T Y . We
construct h as the union of finite initial segments ∅ = σ0 ⊆ σ1 ⊆ · · · all of even length.
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We just need to make sure that h meets X infinitely often and is of the same Turing
degree as Y . Suppose we have σs. Let τ s be the first τ ∈ E found in a standard search
recursive in Z such that σsˆτ ∈ X. Let ks be least such that |σsˆτ sˆ0ks| = 2 〈x, ys〉 + 1
for ys the sth element of Y and some x. Now set σs+1 = σsˆτ sˆ0ksˆ1. Clearly h ≤T Y
(by construction as Z ≤T Y ), h ∈ A and Y ≤T h (its members can be read off in order
from the list of odd numbers m such that h(m) = 1) as required.

As degree-invariant sets are obviously sufficiently closed we have the following corol-
laries.

Corollary 2.4. For every Z ∈ 2ω, every nonempty degree invariant ΠZ
2 set A ⊆ ωω [2ω]

contains all f ≥T Z.

Corollary 2.5. RCA0 � Π0
2-TD.

Lemma 2.6 (ACA0). For every Z ∈ 2ω, every nonempty, degree-invariant ΔZ
3 subset A

of 2ω contains all X ≥T Z.

Proof. Let A be a ΔZ
3 degree invariant subset of 2ω. By Theorem 1.5, there is a decreasing,

continuous sequence {Aξ : ξ ≤ α} of uniformly ΠZ
2 subsets of 2ω with Aα = ∅ such that

X ∈ A⇔ μξ(X �∈ Aξ) is odd.

Now, let Âξ = {X : (∀σ, k)(σˆ(k×X)) ∈ Aξ}. The Âξ are clearly ΠZ
2 and, by Remark 2.2,

sufficiently closed and so dense. By Lemma 2.3, each Âξ is either ∅ or contains a member

Y of every degree above that of Z. As Aα = ∅ = Âα, there is, by ACA0, a least ξ such
that Âξ = ∅. (By Lemma 2.3, Âξ being empty is equivalent to ¬∃X(X ≡T Z & X ∈ A).)

Note that as the Aξ are continuous, so are the Âξ: Consider any limit ordinal λ. If

X ∈ Âλ then its sufficient closure is contained in Aλ and so in every Aξ for ξ < λ and

thus in ∩{Âξ|ξ < λ}. On the other hand, if X ∈ Âξ for every ξ < λ, then its sufficient

closure is contained in each Âξ ⊆ Aξ and so in Aλ and in Âλ. Thus ξ cannot be a

limit ordinal by the Baire category theorem. (The Âξ are dense ΠZ
2 and so themselves

intersections of open (and hence dense open) sets.)

We now claim that A is either ∅ or contains every Y ≥T Z depending on the parity of
ξ (or if it is α). To see this consider any degree y ≥ z. By the leastness of ξ and Lemma
2.3, there is a Y ∈ Âξ−1 of degree y. Of course, Y /∈ Âξ = ∅ and so, by definition, there

are σ and k such that σˆ(k × Y ) /∈ Aξ. On the other hand, since Âξ−1 is sufficiently

closed, σˆ(k×Y ) ∈ Âξ−1. Thus the membership of σˆ(k×Y ) (and so of Y ≡T σˆ(k×Y ))
in A is determined by the parity of ξ as required.

Corollary 2.7. ACA0 � Δ0
3-TD.

Note that by Remark 1.4 the corollary holds in ωω as well as 2ω. From now on we
will be concerned with Turing determinacy at levels above Δ0

3 and so work in whichever
setting is more convenient.
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We conclude this section by showing that Δ0
3-TD is not provable in RCA0. If we are

looking for a standard model of RCA0 in which Δ0
3-TD fails we have serious restrictions

on the method of attack. Suppose the formulas (with parameter Z) defining a Δ0
3 set A

of reals determining a game in a standard model M actually define a Δ0
3 set of reals in

the universe or even in any extension of the sets of M to a model of ACA0. In this case,
Theorem 1.5 provides a representation of A in the extension and Lemma 2.6 applies. Its
conclusions, however, are clearly absolute downwards to M and so the given game is
determined in M. Thus the only hope of finding a standard model counter-example is
to consider formulas which define a Δ0

3 set in M but not in any extension to a model of
ACA0.

Proposition 2.8. RCA0 � Δ0
3-TD.

Proof. Consider an initial segment of the degrees below 0′ of order type ω given by
representatives Xn which are uniformly Δ0

2 (Lerman [1983, XII.5.1], Epstein [1983]).
Our model M of RCA0 consists of all sets recursive in some Xn. Our Δ0

3 degree invariant
class is given by two Σ0

3 formulas ϕ and ψ. The first says that there is an n such that
X ≡T X2n and the second that there is an n such that X ≡T X2n+1. These sets are
clearly complementary in M. To see that they are Σ0

3 write out the definitions, for

example, ϕ(X) ⇔ ∃n{∃e(ΦX
e is total & ∀m(ΦX

e (m) = X2n(m)) & ∃i(ΦΦX
e

i = X)} and
remember that the Xn are uniformly Δ0

2. Thus ϕ and ψ define a Δ0
3 set of reals in M

while both sets are clearly unbounded in the Turing degrees of M. Thus M � Δ0
3-TD

as required.

3 Σ0
3 and Δ0

4 sets

In this section we show that Σ0
3-TD is equivalent to ATR0 over ACA0 and that Δ0

4-TD
is provable from ATR0 + Π1

1-TI0. As mentioned in §1, Π1
1-TI0 is equivalent to Σ1

1-DC0

over ACA0 and ATR0 + Π1
1-TI0 the lies strictly between ATR0 and Π1

1-CA0. On the other
hand, we show that Δ0

4-TD is not provable from ATR0. The situation here is similar to,
but much more subtle than that for Δ0

3-TD in Proposition 2.8.

Theorem 3.1 (essentially Harrington and Kechris [1975]). ATR0 � Σ0
3-TD.

Proof. We follow the proof of Harrington and Kechris [1975, §2] but make explicit a prop-
erty of their construction that we will need in the proof of Theorem 3.3. Let a given game
be specified by a Σ0

3 degree invariant subset of ωω, B = {f |∃i∀j∃kR(i, j, f̄(k))} where R is
a recursive predicate and f̄(k) is the sequence 〈f(0), . . . , f(k − 1)〉. We define a Π0

1 set A
which has members of the same degrees as B: A = {〈i, f, g〉 |∀j(g(j) = μkR(i, j, f̄(k))}.
Clearly, if 〈i, f, g〉 ∈ A then g ≤T f and so 〈i, f, g〉 ≡T f ∈ B. Conversely, if f ∈ B then
there is an i such ∀j∃kR(i, j, f̄(k)) and so a g ≤T f such that 〈i, f, g〉 ∈ A. Thus A and
B have elements of exactly the same degrees.
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We next consider another Π0
1 set C = {〈〈i, f, g〉 , h〉 |g ∈ A & ∀n(Φg

i (n) converges in
exactly f(n) many steps) & h is II’s play when he follows the strategy given by Φg

i against
I playing 〈i, f, g〉}. Note that if 〈〈i, f, g〉 , h〉 ∈ C then 〈〈i, f, g〉 , h〉 ≡T g and g ∈ A.

Now apply Π0
1-determinacy (which follows from ATR0 as in Simpson [2009, V.8.2]),

to the game specified by C. If I has a strategy s then, we claim that every degree t ≥ s
has a representative in A: As usual, let I play s against any real t ∈ t. The resulting
play 〈s(t), t〉 has degree t and is in C and so of the form 〈〈i, f, g〉 , h〉 with g ∈ A and
〈〈i, f, g〉 , h〉 ≡T g as required. Thus, in this case, as B is degree invariant, it contains a
cone with base the strategy for I in the game specified by C. On the other hand, if II
has a strategy s for this game, we claim that B is disjoint from the cone above s. If not
then there is a ĝ ∈ B and hence one g ∈ A which computes s. Suppose Φg

i = s. Let
f(n) ≤T g be the number of steps it takes Φg

i (n) to converge and h be II’s play following
his supposedly winning strategy given by Φg

i = s against I playing 〈i, f, g〉. It is clear
from the definitions that the play of this game is 〈〈i, f, g〉 , h〉 and it is in C for the desired
contradiction.

We now calculate the complexity of the property of a Σ0
3 degree invariant subset of

ωω containing a cone. We use this calculation in the proof of Theorem 3.3.

Proposition 3.2 (ATR0). The predicate that (the formula defining) a Σ0
3 degree invari-

ant set of reals contains a cone of degrees is Σ1
1.

Proof. Let B be a degree invariant Σ0
3 set of reals. Define Π0

1 sets A and C as in the
proof of Theorem 3.1. It is easy to see that the existence of a strategy s for the closed
game given by C is a Σ1

1 property: for every σ the result of playing s against σ satisfies
the Σ0

1 predicate of not being in C. If this condition holds then the proof of Theorem
3.1 shows that A intersects every degree above that of a strategy and hence B contains
a cone. On the other hand, If there is no such strategy, then by ATR0 there is one for
II in this game and so again as in the proof of Theorem 3.1, B is disjoint from the cone
above II’s strategy.

We now give a proof of Δ0
4-TD in ATR0 + Π1

1-TI0 which, as pointed after Definition
1.7, is lies strictly between ATR0 and Π1

1-CA0. Thus Δ0
4-TD is strictly weaker than Π1

1-CA0

even over ATR0.

Theorem 3.3. ATR0 + Π1
1-TI0 � Δ0

4-TD.

Proof. Represent a given Δ0
4 degree invariant set B ⊆ 2ω using the difference hierarchy

on Σ0
3 sets as in Theorem 1.5. By Remark 1.6, we may assume that each Bξ, ξ ≤ α is

itself Turing invariant and so (by Theorem 3.1) either disjoint from a cone or contains
one. As Bα = 2ω and the Bξ are increasing, there is, by Proposition 3.2 and Π1

1-TI0, a
least γ such that Bγ contains a cone. If γ is a successor ordinal, then we have a cone
disjoint from Bγ−1 and contained in Bγ. Depending on the parity of γ, this cone is either
disjoint from, or contained in, B as required.

9



To finish the proof we show that γ cannot be a limit. For each ξ < γ, let Aξ

be a Π0
1 set reals with members of the same Turing degrees as Bξ and Cξ the as-

sociated Π0
1 set as defined in Theorem 3.1. Consider the Π0

1 game specified by C =
{〈〈〈ξ, i〉 , f, g〉 , h〉 | 〈〈i, f, g〉 , h〉 ∈ Cξ}, i.e. I first chooses a ξ and then plays the game
determined by Cξ. If I has a winning strategy in this game, say his first move is to play
〈ξ, i〉. The rest of his strategy then gives him a wining strategy in Cξ which (by the proof
of Theorem 3.1) would be the base of cone in Bξ contrary to the assumption that it is
disjoint from a cone. Thus (by Π0

1-DET), II has a strategy s for the game specified by
C. Restricting I to play a given ξ < γ as the first part of his first move gives a strategy
sξ for II in Cξ uniformly recursive in s. As, by the proof of Theorem 3.1, each sξ is the
base of a cone disjoint from Bξ, s is the base of a cone disjoint from all the Bξ for ξ < γ
and so disjoint from Bγ = ∪ξ<γBξ for the desired contradiction.

We now prove that one cannot get Δ0
4-TD from ATR0 alone. A crucial ingredient is

H. Friedman’s [1967, II] ω-incompleteness theorem (see Simpson [2009, VIII.5.6]). Note
that a countable coded ω model specified by a set M is a structure for second order
arithmetic in which the numbers are the numbers (in the ambient universe) and its sets
are the columns (M)n = {x| 〈x, n〉 ∈ M}.
Theorem 3.4 (H. Friedman). Let S be a recursive set of sentences of second order
arithmetic which includes ACA0. If there exists a countable coded ω-model of S, then
there exists a countable coded ω-model of S ∪ {¬∃countable coded ω-model of S}.
Theorem 3.5. ATR0 � Δ0

4-TD.

Proof. For convenience we work in the real world although certainly Π1
1-CA0 suffices.

All models M or Mn in our proof, beginning with M0 � T0, will be countable coded ω-
models of T0 = ATR0. By Theorem 3.4, there is an M1 � S1 where S1 = T0 & ¬∃M � T0.
As M1 is a coded ω-model there is an M̂1 containing it such that M̂1 � T1 where
T1 = T0 & ∃M � S1. Applying Theorem 3.4 again, we get an M2 � S2 where S2 =
T1 & ¬∃M � T1. We now set T2 = T0 & ∃M � S2 and continue similarly to get
M̂2 � T2 and M3 � S3 with S3 = T2 & ¬∃M � T2 and M̂3 � T0 & ∃M � S3. Then we
proceed similarly by induction to get Mn+1 � Sn+1 with Sn+1 = Tn & ¬∃M � Tn and
M̂n+1 � Tn+1 with Tn+1 = T0 & ∃M � Sn+1.

We now let T be the theory containing T0 with new constants Mn and assertions
saying that for all n, the Mn are countable coded ω-models of Sn and that Mn is a
member of Mn+1 (in the sense that as a set it is coded in Mn+1 by being one of the
columns of Mn+1). Any finite subset of T is satisfied by one of the Mn just constructed.
(Unravelling the definitions of Tn and Sn shows that any model Mn+1 of Sn+1 contains
an Mn � Sn and so by induction a sequence of Mi for i < n as required in T .) Thus
there is a model N̂ of T . (Note that this model is only given by a compactness argument
so is expected to be nonstandard.)

10



We now consider the ω-submodel N of N̂ specified by taking as its second order part
all sets coded in any of the Mn in N̂ . First note that N � ATR0: If there is a well-
ordering α in N then it is a member of some Mn ⊂ N and so also well-ordered in Mn.
If we have any arithmetic predicate S for which we want a hierarchy to witness ATR0 in
N , consider the same formula interpreted in Mn (which we may assume contains the set
parameters in S as well as α). As Mn � ATR0, the desired hierarchy of sets exists in Mn.
As the properties required of it are arithmetic they hold in N as well.

We now define, in N , degree invariant classes A,B ⊂ N : A = {X| the least n, such
that X does not compute both an M � Sn and its satisfaction predicate, is even} and
B = {X| the least n, such that X does not compute both an M � Sn and its satisfaction
predicate, is odd}. Clearly A and B are disjoint. We claim that A ∪ B = N . Consider
any X ∈ N so X ∈ Mi for some i. We see, by the definition of the Mn, that no
member of Mi can be an M � Si and so no such is computable from X. (If M ∈ Mi

and M � Si then, by the definition of Si, M � Ti−1 but , again by the definition of
Si, Mi � ¬∃M � Ti−1 for the desired contradiction.) Thus there is some n ∈ ω and so
a least one such that no M computable from X can be a model of Sn. (Notice that if
X ∈ Mi computes a model M then, as Mi is a model of ATR0, the satisfaction predicate
for M is also in Mi.) Thus X ∈ A ∪ B as required. Next, we claim that both A and B
are unbounded in the Turing degrees of N . The point here is that Mn � Sn but it and
every model M computable from it together with its satisfaction predicate is in Mn+1

and so M � Sn+1. Thus Mn ⊕ Sat(Mn) ∈ A for n odd and Mn ⊕ Sat(Mn) ∈ B for
n even where Sat(M) is the full satisfaction predicate (elementary diagram) for M. Of
course, the degrees of the Mn are cofinal in those of N for both the even and odd n.

All that remains to see that A is a counterexample to Δ4-TD in N is to show that
it (and analogously B) is Σ0

4. To this end we write out the definition of A: X ∈ A ⇔
∃n(∃m(n = 2m) & (∀Y,W ≤T X(Y is not a countable coded ω-model of Sn with W
its satisfaction predicate) & (∃Z, V ≤T X)(Z is a countable coded ω-model of Sn−1

with satisfaction predicate V ). As usual, we represent a set Z ≤T X by an index of a
characteristic function ΦX

e computable from X. Thus to say (∃Z, V ≤T X)Θ(Z, V ) is to
say ∃e, i(ΦX

e and ΦX
i are total characteristic functions & Θ(ΦX

e ,Φ
X
i )). Now being total

is a ΠX
2 property. Once we have guaranteed totality for ΦX

e and ΦX
i , the substitution of

ΦX
e and ΦX

i for Z and V can be done at no additional quantifier costs since quantifier
free formulas in Z, V and X now have ΔX

1 equivalents. Thus if Θ is ΣX,Z,V
3 , (∃Z, V ≤T

X)Θ(Z, V ) is equivalent to a ΣX
3 formula. Similarly, (∀Y,W ≤T X)Ψ(Y,W ) is equivalent

to a ΠX
3 formula if Ψ is ΠX,Z,V

3 . Thus we are left with analyzing the rest of the relations
in the formula.

Any set Z can be effectively viewed as a sequence of its columns 〈(Z)n〉 and the associ-
ated structure for second order arithmetic is given by specifying the (Z)n = {m| 〈n,m〉 ∈
X} as its second order part. The first order part remains the same as in the ambient
universe. So each Z is, in this way, recursively interpreted as an ω-model. That V is the
satisfaction predicate for the model coded in this way by Z is then a Π0

2 relation. (See
Simpson [2009, V.2] for these definitions.) Once we have the satisfaction set V for Z, to

11



say that a formula is true in Z is then, of course, a Δ0
1 relation. Thus the whole formula

is of the form ∃(∃ & Π3 & Σ3) and so Σ0
4 as required.

Next we prove a reversal of Theorem 3.1 over ACA0. We begin by pointing out that
a standard fact on iterations of the Turing jump holds in ACA0.

Lemma 3.6 (ACA0). Let α be a well-ordering. If 0η ≤T X for every η < α, i.e. there
is an e such that ΦX

e is a total characteristic function for a set satisfying the Π0
2 formula

determining 0η, then 0α exists and indeed 0α ≤T X
′′.

Proof. If α is a successor ordinal, the result follows immediately from ACA0. Otherwise,
say α is a limit ordinal. The function f taking η < α to the least e satisfying the
conditions of the Lemma is total by hypothesis and exists by ACA0. Indeed, f ≤T X ′′.
The set {〈n, η〉 |ΦX

f(e)(n) = 1} then also exists, satisfies the definition of 0α and is recursive
in X ′′.

Theorem 3.7. ACA0 + Σ0
3-TD �ATR0.

Proof. Let α be a well-ordering. We want to prove that 0α exists. Let W be a low
nonrecursive REA operator, i.e. ∀X(X <T W

X & X ′ ≡T (WX)′) and the indices for the
required Turing reductions are the same for all X. (The standard construction for such
an operator clearly works in ACA0.)

Consider the set P = {X|(∃β < α)(0β ⊕ X ≡T WX)}. To see that this set is Σ0
3

rewrite its defining condition by saying that there is a β < α and an e such that ΦW X

e

is a total characteristic function for a set that satisfies the Π0
2 defining condition for 0β

and WX ≡T ΦW X

e ⊕X. As (WX)′ is uniformly recursive in X ′, totality of ΦW X

e is ΠX
2 as

is every ΠW X

2 predicate (uniformly). Thus the condition defining P is Σ0
3. Let P̂ be the

Turing closure of P , i.e. P̂ = {X|∃Y (Y ∈ P & X ≡T Y ). Similarly, P̂ ∈ Σ0
3.

By Σ0
3-TD there is a cone of degrees in P̂ or its complement. Let X̂ be a set in the

base of such a cone. If X̂ ∈ P̂ let X ≡T X̂ be in P . If not, let X = X̂. By Lemma 3.6,
it suffices to prove that 0η ≤T X for every η < α to get that 0α exists. If not, then, by
ACA0, there is a least γ < α such that 0γ �T X. Note that, again by Lemma 3.6, 0γ

exists. We now work toward a contradiction.

If X ∈ P , let β < α be as required in the definition of P and so by the leastness
of γ, γ ≤ β (and 0γ ≤T 0β) as 0β ⊕ X ≡T WX >T X. Now we have X <T X ⊕
0γ ≤T X ⊕ 0β ≡T WX <T (WX)′ ≡T X ′. By Posner and Robinson [1981, Theorem 3
relativized to X], which can easily be proven in ACA0, there is a Ŷ such that X <T Ŷ

and X ′ ≡T Ŷ
′ ≡T Ŷ ⊕X⊕0γ. By our choice of W , Ŷ <T W

Ŷ <T Ŷ
′. On the other hand,

our assumptions guarantee that Ŷ ∈ P̂ and so that there is a Y ∈ P with Y ≡T Ŷ . Let
δ be the witness for Y being in P , i.e. Y ⊕ 0δ ≡T W Y . If δ < γ, 0δ ≤T X ≤T Y which
contradicts Y <T W

Y . On the other hand, if δ ≥ γ, 0γ ≤T 0δ and so 0δ⊕Y ≥T Y
′ >T W

Y

for another contradiction.
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Finally, suppose X /∈ P . As 0γ �T X, we have, again by Posner and Robinson, a
Y >T X with Y ′ ≡T Y ⊕0γ ≡T Y ⊕0γ⊕X ′. By pseudojump inversion for REA operators
(Jockusch and Shore [1984]), which can also easily be proven in ACA0, there is an Z with
Z >T Y such that WZ ≡T Y

′. Now, as Z ⊕ 0γ ≡T Y ⊕ 0γ ≡T Y
′ ≡T W

Z , γ is a witness
that Z ∈ P ⊆ P̂ . This is the desired final contradiction to X̂ being the base of a cone
outside of P̂ and so to the existence of γ as required.

4 Σ0
4, Δ0

5 and Σ0
5 sets

We now prove generalizations to all levels of the arithmetic hierarchy of weaker ver-
sions of Theorems 3.1 and 3.3 due to Harrington and Kechris [1975] and Martin [1974],
respectively. We prove the first in RCA0 and the second in Π1

1-CA0.

Lemma 4.1 (essentially Harrington and Kechris). RCA0 � Σ0
n-Determinacy → Σ0

n+1-TD.

Proof. We follow the proof of Theorem 3.1. Given a Σ0
n+1 degree invariant set B =

{f |∃nQ(n, f)} with Q ∈ Π0
n, set A = {〈n, f〉 |Q(n, f)}. Clearly, A is Π0

n and has elements
of exactly the same degrees as B. Now as in Theorem 3.1 let C = {〈〈i, f, g〉 , h〉 |g ∈
A & ∀n(Φg

i (n) converges in exactly f(n) many steps) & h is II’s play when he follows the
strategy given by Φg

i against I playing 〈i, f, g〉}. Note that C ∈ Π0
n and if 〈〈i, f, g〉 , h〉 ∈ C

then 〈〈i, f, g〉 , h〉 ≡T g and g ∈ A. By Σ0
n-Determinacy, C is determined. The analysis

to show that B contains or is disjoint from a cone is now exactly as in Theorem 3.1.

Lemma 4.2 (essentially Martin). Π1
1-CA0 � Σ0

n-TD ↔ Δ0
n+1-TD.

Proof. As Δ0
n+1-TD is a Π1

3 sentence, we can use Δ1
2-CA0 and its equivalent Σ1

2-AC0 to
prove it as Δ1

2-CA is Π1
3-conservative over Π1

1-CA0. (See Simpson [2009, VII.6.9.1 and
IX.4.9].) Let a game be specified by a degree invariant Δ0

n+1 set A ⊆ 2ω. Apply the
Kuratowski analysis (Theorem 1.5 and Remark 1.6) to represent A by a sequence Aξ of
degree invariant uniformly Σ0

n sets. By Σ0
n-TD each of these sets either contains or is

disjoint from a cone. By Δ1
2-CA0 we have the sequence telling us which is the case. We

may then take the least γ such that Aγ contains a cone (Aα = 2ω if no other). Now by
Σ1

2-AC0 we have a sequence sη of bases of cones disjoint from Aη for η < γ. The degree
of this sequence is then the base of a cone disjoint from all the Aη for η < γ. Its join
with the base of a cone contained in Aγ is then the base of a cone contained in or disjoint
from A depending on the parity of γ.

As Π1
3-CA0 proves Σ0

3-Determinacy (Welch [2011]), we now have a bound on what is
needed to prove Σ0

4 and so Δ0
5 Turing determinacy.

Corollary 4.3. Π1
3-CA0 � Σ0

4-TD & Δ0
5-TD.
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4.1 A lower bound for Σ0
5-TD

As mentioned in §1, there can be no reversals here. While we have seen that Δ0
5-TD is

provable already in Π1
3-CA0 (Corollary 4.3), this is the end of provable Turing determinacy

in full second order arithmetic, Z2. Martin ([1974] and [1974a]; see [n.d.]) has shown
that Σ0

5-TD implies the existence of β0, the least ordinal γ such that Lγ is a model of
Z2. None of these results have been published so we indicate how to modify arguments
of Martin’s and ours from MS [2014] to give a slightly different proof of this result in
Π1

1-CA0.

Lemma 4.4 (Martin). Π1
1-CA0 + Σ0

5-TD � β0 exists.

Proof. Here we work in Π1
1-CA0 + Σ0

5-TD but assume β0 does not exist and consider the
same theory as in MS [2014]:

T = KP + “V = L” + ∀γ(Lγ is countable inside Lγ+1)

which implies that β0 does not exist.

We first note that as in MS [2014, Lemma 2.1] the set

A = {α |Lα � T and every member of Lα is definable in Lα}

is unbounded in the ordinals: If not, let δ = supA, and let α be the least admissible
ordinal greater than δ. (Note that Π1

1-CA0 implies that for every X the least ordinal
admissible in X exists.) Let M be the elementary submodel of Lα consisting of all its
definable elements. Then δ ∈ M. Since β0 does not exist, every ordinal is countable,
and hence there is a bijection between ω and δ and the <L-least such bijection belongs to
M. Thus δ ⊆ M, indeed δ + 1 ⊆ M. Since the Mostowski collapse of M is admissible
and contains δ + 1, it must be Lα. It follows that every member of Lα is definable in Lα

and hence that α ∈ A for the desired contradiction.

We now define a Σ0
5 set and so a game Q using the same r.e. operator W as in the

proof of Theorem 3.7 as well as some notions from MS [2014]. As there, we consider
complete extensions of T defined from the play of the game whose term models are ω-
models (albeit in ways more complicated than simply being the plays of the two players).
(The term model of such an extension is the structure whose members are (equivalence
classes) of formulas ϕ(x) which, in the appropriate theory, define unique elements. It is
an ω-model if its natural numbers are the terms x = 1 + 1 + . . .+ 1.)

The idea of the following definition is that Q is the set of all X such that there is
a completion of T with degree WX which is “better” than all completions of degree X.
Here, the “better” of two completions is the one whose term model is either well-founded
or has a larger well-founded part than the other.

Q = {X | ∃T̂ [T̂ ≡T W
X & T̂ is a complete extension of T

whose term model MI is an ω-model &
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∀T̃ (T̃ ≡T X & T̃ is a complete extension of T
whose term model MII is an ω-model →

OnMI\OnAI is either empty or has a least element)]}.
We need some terminology from MS [2014] to explain the notation in this definition.

Here AI is the image inside MI of the “intersection” of MI and MII, i.e. the union of
all the Lβ in MI which can be coded by reals that belong to both MI and MII. (Recall
that since every set in these models is countable, every such Lβ can be coded by a real
in MI.) Note that by MS [2014, Claim 2.6] AI is Σ0

2. We use OnMI to denote the set of
ordinals in MI.

To see that Q is Σ0
5, we rewrite the definition in terms of indices of reductions (from

WX and X) as in Theorem 3.7 and use the quantifier counting from MS [2014]. To say
that some Z is a complete (consistent) extension of T is Π0

1 and that its term model is
an ω-model is Π0

2 (MS [2014, Claim 2.4]). The term model of such a theory is obviously
recursive in the theory as is its satisfaction relation. Since AI is Σ0

2, saying that OnMI \
OnAI is empty is Π0

3 and that it has no least element is Π0
4. Using these calculations the

defintiion of Q has the form ∃[Σ3 & Π1 & Π2 & ∀(Σ3 & Π1 & Π2 → Π3 ∨ Π4)]. The
set Q is thus Σ0

5, and so is its closure Q̂ under Turing degree.

By Σ0
5-TD, Q̂ contains or is disjoint, from a cone. By Shoenfield’s absoluteness the-

orem (which is provable in Π1
1-CA0 (Simpson [2009, VII.4.14]), the base z of the cone

can be taken to be in L. Let α be an admissible ordinal such that Lα |= T and every
element of Lα is definable in Lα and such that Z ∈ Lα. (Such an ordinal exists by the
unboundedness result at the beginning of this proof.) Let Thα be the theory of Lα. So,
in particular Z,Z ′ ≤T Thα.

We first claim that Thα �∈ Q̂. Take Y ≡T Thα; we will show that Y �∈ Q. To see this,
consider any T̂ ≡T W

Y with term model MI as in the definition of Q. Let T̃ = Thα with
term model MII= Lα. So, we have that MI �= Lα because their theories have different
Turing degrees, and we have that (Th(MI))

′ ≡T (Thα)′ because W Y is low over Y .

Claim 4.5. If MI �= Lα, MI |= T and (Th(MI))
′ ≡T (Thα)′, then MI is ill-founded

and its well-founded part is at most Lα.

Let Lβ be the well-founded part of MI. We cannot have β > α because we would then
have (Thα)′ ≤T (Th(MI)). If β = α, then MI must be ill-founded because MI �= Lα. If
β < α, then MI must be ill-founded because otherwise (Th(MI))

′ = (Th(Lβ))′ ≤T Thα

contradicting our assumption that (Th(MI))
′ ≡T (Thα)′. This proves the claim.

It follows that AI = Lβ and that OnMI\OnAI is nonempty and has no least element,
showing that Y �∈ Q.

Second, we find another degree X ≥T Z which is in Q and hence in Q̂. As Z ′ ≤T Thα,
there is (by pseudojump inversion) an X >T Z such WX ≡T Thα. Let T̂ = Thα and its
term model MI= Lα. Since MI is well-founded, whatever AI is, OnMI\OnAI is always
either empty or has a least element.
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Thus, we have Thα /∈ Q̂ and X ∈ Q̂ with both above z, the supposed base of a cone
inside or disjoint from Q̂, for the final contradiction.

Corollary 4.6 (Martin). Z2 does not prove Σ0
5-TD. Indeed, Π1

1-CA0 + Σ0
5-TD proves that

for every set Y there is a β-model of Z2 containing Y and hence much more than the
consistency of Z2.

Proof. Recall that Lβ0
∩R is a model of Z2 and indeed a β-model. Thus Π1

1-CA0 + Σ0
5-TD

proves the consistency of Z2. As the Lemma relativizes to any Y , Π1
1-CA0 + Σ0

5-TD proves
that, for every set Y , there is a β-model of Z2 containing Y .

4.2 A lower bound for Σ0
4-TD

As mentioned before we cannot find reversals from Σ0
4-TD. Relying on several notions and

results of MS [2012] and [2014], we do, however, show that we cannot get by with much
less than Corollary 4.3. The following proof is somewhat complicated and builds on the
proof of Lemma 4.4. Recall that α2 is the least 2-admissible ordinal, and equivalently,
the least ordinal such that Lα2 ∩ R |= Δ1

3-CA0.

Lemma 4.7. Π1
1-CA0 + Σ0

4-TD � α2 exists.

Proof. We assume, for the sake of a contradiction, that α2 does not exist. We extend the
theory T of MS [2014, §2] by setting

T = KP + “V = L” + ∀γ(Lγ is countable inside Lγ+1) + no ordinal is Σ2-admissible.

By the same proof as in the second paragraph of the proof of Lemma 2.1 of MS [2014]
(or at the beginning of the proof of Lemma 4.4 above), if α2 does not exist then

A = {α |Lα � T and every member of Lα is definable in Lα}

is unbounded in the ordinals.

We now define a set P which plays the role of Q in the previous proof. Again, P is
the set of all X such that there is a model of T of degree WX which is better than any
of degree X, but this time we need P to be Σ0

4.

P = {X | ∃T̂ [T̂ ≡T W
X & T̂ is a complete extension of T

whose term model MI is an ω-model &
∀T̃ (T̃ ≡T X & T̃ is a complete extension of T

whose term model MII is an ω-model →
conditions RInew or RI3 hold)]}.

The conditions RInew and RI3 are defined in Section 2 of MS [2014]. Instead of
repeating the whole background developed there, we just use a few lemmas from that
section to prove below the few properties we need. Before doing that, let us notice that
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since every element of MI and MII is definable by a real (because T says that every set
is countable), we can compare their elements by looking at the reals coding them. Thus,
when we say MI ⊆ MII, we mean that every element of MI is coded by a real in MI

which also belongs to MII. (As both models are standard, we can confidently talk about
reals, i.e. subsets of ω, being in one or both of them.) The main properties about RInew,
RI3, and RII3 are the following:

1. If one of MI and MII is well-founded, then RInew holds if and only if MI is
isomorphic to the well-founded part of MII.

2. If MI and MII are incomparable, then either RI3 or RII3 holds.

3. If RI3 holds, then MII is ill-founded, and if If RII3 holds then MI is ill-founded.

4. The conditions RInew and RI3 are Π0
3.

The first property is proved in Lemma 2.9 of MS [2014] with the fact that the definition
of RInew implies that MI ⊆ MII. For the second, we have, by MS [2014, Lemma 2.17],
that if neither of RI3 and RII3 hold, then there are ordinals β1 and β2 such that �1(β1, β2)
holds, which by MS [2014, Lemma 2.18(b)] implies that α is 2-admissible, where α is such
that A = Lα. But since α2 doesn’t exists, there are no 2-admissible ordinals, and hence
this is a contradiction. The third property follows from the definition of RI3, MS [2014,
Definition 2.16] which asserts that a subset of the ordinals in MII has no least element.
Finally, the fourth property follows from MS [2014, Claim 2.7] for RInew and from MS
[2014, Definition 2.16 and Claim 2.11] for RI3.

The rest of the proof is similar to that of the previous lemma. To see that P is Σ0
4,

we again rewrite the definition in terms of indices of reductions (from WX and X). The
conditions RInew and RI3 are Π0

3. As remarked above, ΠW X

2 relations are uniformly ΠX
2

and, of course, the relation Z ≤T Y is Σ0
3. It is then routine to calculate that P is Σ0

4.

The closure P̂ of P under ≡T is then also a Σ0
4 set. By Σ0

4-TD, P̂ contains or is disjoint,
from a cone. By Shoenfield’s absoluteness theorem, the base z of the cone can be taken
to be in L. Let α be an admissible ordinal such that Lα |= T and every element of Lα

is definable in Lα and such that Z ∈ Lα. (Such an ordinal exists by the unboundedness
result at the beginning of this proof.) Let Thα be the theory of Lα. So, in particular
Z,Z ′ ≤T Thα.

We first claim that Thα �∈ P̂ . Take Y ≡T Thα; we will show that Y �∈ P . To see this,
consider any T̂ ≡T W

Y with term model MI as in the definition of P . Let T̃ = Thα with
term model MII= Lα. So, we have that MI �= Lα because their theories have different
Turing degrees. Thus, MI cannot be the well-founded part of MII, and hence RInew
cannot hold. Since MII is well-founded, RI3 cannot hold either. So Y �∈ P .

Second, we find a degree X ≥T Z which is in P , and hence in P̂ . As Z ′ ≤T Thα,
there is (by pseudojump inversion) an X >T Z such WX ≡T Thα. We claim that X ∈ P .
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Let T̂ = Thα with term model MI= Lα. Consider any T̃ ≡T X with term model MII as
in the definition of P . So, we have that MII �= Lα because their theories have different
Turing degrees, and we have that (Th(MII))

′ ≡T (Thα)′ because WX is low over X. By
Claim 4.5, MII is ill-founded and its well-founded part is at most Lα. If AII = Lα, then
MI is isomorphic to the well-founded part of MII, and hence RInew holds. Otherwise,
MI and MII are incomparable. Since RII3 does not hold (because MII is well-founded)
RI3 must hold, proving that X ∈ P .

As Thα, X ≥T Z, we see that z is not the base of a cone for P̂ for the final contradiction
and so α2 exists as required.

Corollary 4.8. Δ1
3-CA0 does not prove Σ0

4-TD. Indeed, Π1
1-CA0 + Σ0

4-TD proves that for
every set Z there is a β-model of Δ1

3-CA0 containing Z and hence much more than the
consistency of Δ1

3-CA0.

Proof. By Simpson [2009, VII.5.17 and the notes thereafter], Lα2 ∩ R is a model of Δ1
3-

CA0 and indeed a β-model. Thus Π1
1-CA0 + Σ0

4-TD proves the consistency of Δ1
3-CA0. As

the Lemma relativizes to any Z, Π1
1-CA0 + Σ0

4-TD proves that, for every set Z, there is
a β-model of Δ1

3-CA0 containing Z.

5 Questions

There are several natural questions left open here. We first point to two for which we
expect that answers should require some new interesting models of fragments of Z2.

Question 5.1. Does WKL0 or some other known principle strictly between RCA0 and
ACA0 prove Δ0

3-TD?

Question 5.2. Does Δ0
3-TD (or some stronger version) prove ACA0 over WKL0?

Question 5.3. Clarify the status of Δ0
4-TD over ACA0. In particular does ATR0 + Σ1

1-TI0
(or equivalently Σ1

1-IND) or ATR0 with full induction prove Δ0
4-TD? If not, does ACA0 +

Δ0
4-TD prove Π1

1-TI0?

Question 5.4. Does Δ0
4-TD (or some stronger version) prove Π1

1-CA0 over ATR0?
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