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Abstract

Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood
in the realms of reverse mathematics and recursion-theoretic complexity. They
lie above all the fixed (recursive) iterations of the Turing jump but below ATR0

(and so Π1
1-CA0 or the hyperjump). There is a long history of proof-theoretic

principles which are THAs. Until the papers reported on in this communication,
there was only one mathematical example. Barnes, Goh and Shore [ta] analyzes
an array of ubiquity theorems in graph theory descended from Halin’s [1965] work
on rays in graphs. They seem to be typical applications of ACA0 but are actually
THAs. These results answer Question 30 of Montalbán’s Open Questions in Reverse
Mathematics [2011] and supply several other natural principles of different and
unusual levels of complexity.

This work led in Shore [ta] to a new neighborhood of the reverse mathematical
zoo: almost theorems of hyperarithmetic analysis (ATHAs). When combined with
ACA0 they are THAs but on their own are very weak. Denizens both mathematical
and logical are provided. Generalizations of several conservativity classes (Π1

1, r-
Π1

1 and Tanaka) are defined and these ATHAs as well as many other principles are
shown to be conservative over RCA0 in all these senses and weak in other recursion-
theoretic ways as well. These results answer a question raised by Hirschfeldt and

∗All the authors were partially supported by NSF Grant DMS-1161175.
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reported in Montalbán [2011] by providing a long list of pairs of principles one of
which is very weak over RCA0 but over ACA0 is equivalent to the other which may
be strong (THA) or very strong going up a standard hierarchy and at the end being
stronger than full second-order arithmetic.

1 Introduction

There are now (at least) two widespread approaches to analyzing the complexity of math-
ematical theorems and logical (axiomatic) systems. One is computational (recursion-
theoretic) and the other is proof-theoretic. They give rise to closely related measures
and hierarchies of complexity. The first grows out of recursive, computable or construc-
tive mathematics. Typically, we have a theorem asserting that for every object X of
some kind there is another Y with specified properties. In this setting, the question one
answers is how difficult (given X) is it to construct Y ? The measuring rods for difficulty
here are most often marked by levels of complexity with respect to computability in the
sense of Turing (degrees). The second, embodied in what is now known as reverse mathe-
matics, attempts to say how hard is it to prove the theorem. Here the measuring rods are
generally axiomatic subsystems of second-order arithmetic sufficient to carry out a proof.
(The standard proof-theoretically oriented text here is Simpson [2009]. Hirschfeldt [2014]
gives a good view from computability theory.)

The two approaches are closely related and roughly share five basic levels of complex-
ity that, for the first several decades of each of the two views, seemed to characterize
almost all theorems of classical mathematics. Proof-theoretically, the first is a weak sys-
tem of second-order arithmetic, RCA0 which, in addition to the basic axioms about +,
× and <, contains comprehension axioms for ∆0

1 sets and induction for Σ0
1 formulas.

Computationally, this corresponds to classical computable (recursive) mathematics. The
other four levels are determined by adding on stronger existence/comprehension axioms.
WKL0 asserts that every infinite subtree of 2<N , the tree of finite sequences of 0s and
1s, has an (infinite) branch. The next level is ACA0 which adds comprehension axioms
for arithmetic formulas or, equivalently, requires closure under (finite iterations of) the
Turing jump. The fourth level, ATR0, extends comprehension to include transfinite itera-
tions of arithmetic comprehension. This roughly corresponds to the transfinite iterations
of the Turing jump through the recursive ordinals, i.e. the hyperarithmetic sets. The
last of the basic systems is Π1

1-CA0 which includes comprehension for Π1
1 formulas. This

corresponds to Kleene’s hyperjump in terms of computational strength.

Over the past couple of decades the earlier pattern of results has been broken by a large
number of constructions/theorems which are provably different from each of these “big
five” systems and have unusual computational strength. They are now often called the
“zoo” of reverse mathematics. (For pictures, see https://rmzoo.math.uconn.edu/diagrams/.)
For ordinary theorems of classical mathematics, the large majority of these examples have
been weaker than ACA0 and so constructions recursive in a finite number of iterations

2

https://rmzoo.math.uconn.edu/diagrams/


of the Turing jump.

In this communication reporting on the results in Barnes, Goh and Shore [ta], Goh
[ta] and Shore [ta], we discuss two related classes of mathematical theorems and logical
principles that occupy neighborhoods of the reverse mathematical zoo that have had very
few other denizens. They all fall outside of the big five and none are provable from ACA0.
The first consists of what are called THAs, theorems (or theories) T of hyperarithmeti-
cal analysis (Definition 2.13). Computationally, these lie above each fixed transfinite
(recursive) iteration of arithmetic comprehension but do not (proof-theoretically) imply
ATR0. While some of the THAs we study are proof-theoretically strictly weaker than
ATR0, some are incomparable with it. Indeed, while there is a precise recursion-theoretic
characterization of THAs (Definition 2.13), there can be no proof-theoretic one at least
not in first-order logic. (See Van Wesep [1977, 2.2.2] and also Montalbán [2006, remarks
after Definition 1.1].)

The study of such systems began with the work of Kreisel [1962], H. Friedman [1967],
[1971], [1975], Steel [1978] and others in the 1960s and 1970s and continued into the
last decades (as in Montalbán [2006], [2008], Neeman [2008], [2011] and others). Several
axiomatic systems and logical theorems were found to be THAs and proven to lie in a
number of distinct classes in terms of proof-theoretic complexity. Until now, however,
there has been only one mathematical but not logical example, i.e. one not mentioning
classes of first-order formulas or their syntactic complexity. This was a result (INDEC)
about indecomposability of linear orderings in Jullien’s [1968] thesis (see Rosenstein [1982,
Lemma 10.3]). It was shown to be a THA by Montalbán [2006] and further investigated
in Neeman [2008] and [2011].

The natural question, raised explicitly in Montalbán’s “Open Questions in Reverse
Mathematics” [2011, Q. 30], was are there any others? The answer is provided by Barnes,
Goh and Shore [ta]. There is a whole family of theorems from graph-theoretic combina-
torics that are THAs. The examples are primarily variations on some classical theorems
of Halin [1965] and [1970] and related results in what is now called ubiquity theory. (See
Diestel [2017, Ch. 8] for a contemporary treatment.)

The archetypical example here is what we call the Infinite Ray Theorem (IRT) from
Halin [1965]. In more contemporary terminology, it says that any graph G which contains,
for each n, a sequence 〈R0, . . . , Rn−1〉 of disjoint rays (a ray is a sequence 〈xi|i ∈ N〉 of
distinct vertices such that there is an edge between each xi and xi+1) also contains an
infinite such sequence of rays. On its face, this sounds like a compactness theorem
and so should be provable in WKL0 or ACA0. Indeed, the construction of Andreae in
Diestel [2017 8.2.5(i)] of the desired sequence of rays proceeds by a recursion through the
natural numbers in which each step is arithmetical and so looks like a typical application
of ACA0. We prove that it and several variations are much more complicated and indeed
THAs. One collection of variations consists of consequences of a restricted version of
Choice, Σ1

1-AC0 which is well known to be a THA (essentially Kreisel [1962]). The
proofs that they are themselves THAs is recursion-theoretic. The analysis here led us
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to some related results and even a new logical system given by a restricted version of
Σ1

1-AC0 (Definition 3.13) which is also a THA. We show by proof-theoretic arguments
that another collection of variants of a version in Halin [1965] requiring one type of
maximality of the constructed sequence which are also THAs cannot be proven in Σ1

1-
AC0 because each of them implies more induction than is available there. Indeed, some
go beyond what is provable even in ATR0. Finally we show that each of another class
of variations mentioned in Halin [1965] that requires a different type of maximality is
both proof-theoretically and computationally stronger than ATR0. Each is equivalent to
Π1

1-CA0 and so to closure under the hyperjump.

We present these results in §3 and discuss some relations among the variations from
the perspective of reverse mathematics. Almost all of these results are from Barnes, Goh
and Shore [ta]. The technically most difficult ones that use Steel forcing to place some of
these theorems (and logical systems) among the previously studied THAs with respect
to proof-theoretic strength are in Goh [ta].

The second group of mathematical theorems and logical principles T that we study
contains ones that, from the pure proof-theoretic point of view, are very weak. More
precisely they are conservative over RCA0 for a wide range of classes Γ of sentences.
(That is, for any ϕ ∈ Γ, if RCA0 + T ` ϕ then RCA0 ` ϕ.) The classes Γ that we
consider include new generalizations of the well studied one Π1

1 and of three less studied
ones, r − Π1

2 (Hirschfeldt, Shore and Slaman [2009]) and what we call Tanaka formulas
and r-Tanaka formulas after a conjecture of Tanaka’s about the conservativity of WKL0

over RCA0 proven in Simpson, Tanaka and Yamazaki [2002]. (See Definition 4.2.) So,
in particular, none of these principles prove ACA0. On the other hand, what makes
them unusual is that they each become very strong once we add ACA0. Many of them
become THAs and these we call, ATHAs, almost theorems (theories) of hyperarithmetic
analysis (Definition 2.14). These include both mathematical theorems related to the
variants of Halin’s theorem and of familiar logical systems. Another collection of them
form hierarchies whose members (over ACA0) prove Π1

n-CA0 with n running through the
natural numbers as we go up the hierarchies. At the end of these hierarchies we have
principles with all these conservation properties over RCA0 which are stronger than full
second-order arithmetic over ACA0. These results are from Shore [ta].

The proofs of all of these conservativity results proceed by defining some very general
classes of forcings and showing that any sentence of the desired class Γ that can be made
true in an extension of a given model of RCA0 by iterating forcings from these classes
must already be true in the given model. These notions of forcing include many well
known ones such as Cohen, Laver, Mathias, Sacks and Silver forcing and many varia-
tions as well as special purpose ones introduced for specific applications to mathematical
theorems related to our graph-theoretic theorems. Thus we strengthen many well known
conservativity results as well as proving new ones. The proofs (also from Shore [ta])
that many of these theorems are very strong over ACA0 are specific to the particular
results but are usually not difficult. We view these results together as answering another
question raised in Montalbán [2011, 6.1.1]. Attributing the question to Hirschfeldt, Mon-
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talbán points out that there are very few examples where natural equivalences are known
to hold over strong theories but not over RCA0 particularly if one excludes the cases
where the only additional axioms needed are forms of induction. Hirschfeldt asked for
more such examples. This work provides a whole array of pairs of distinct principles with
a wide range of strength which are pairwise equivalent over ACA0 but not over RCA0.
Thus they provide evidence that in some settings it would make sense to take ACA0 as
the base theory for reverse mathematical investigations rather than RCA0.

2 Basic Notions and Background

2.1 Subsystems of Second-Order Arithmetic

Formally, we are working in modelsN = (N,S(N ),+,×,≤,∈, 0, 1) of second-order arith-
metic. The first-order quantifiers range over N . The second-order ones over S(N ) which
is a collection of subsets of N . The function, relations and constants are taken to
have the usual basic elementary properties. We generally abbreviate these structures
as N = (N,S(N )). We are interested in ones which are models at least of RCA0. The
standard models are those where N is N (the true natural numbers) and the remain-
ing symbols have their standard interpretations. When we define semantics or forcing
we expand the formal language to include constants for each element of N and S(N )
and possibly some recursive (i.e. ∆0

1) predicates. Unless otherwise specified, all sets and
structures we consider are countable.

The standard text here is Simpson [2009] to which we refer for formal details of
syntax and terminology including the definitions of the basic axiom systems of reverse
mathematics. The major standard axiomatic principles other than the five discussed in
§1 that we need are variations on choice principles:

Definition 2.1. Σ1
n-AC is the principle ∀A[∀n∃XΦ(A, n,X) → ∃Y ∀nΦ(A, n, Y [n])] for

every Σ1
n formula Φ with free set variables A and X. In general, if Q is a principle such

as this one we denote the axiomatic system RCA0 +Q by Q0.

2.2 Graph-Theoretic Notions

We take Diestel [2017] as our basic reference for graph theory but at times provide
versions of definitions which are clearly classically equivalent to the standard ones but
are better suited to reverse mathematics or complexity calculations.

Definition 2.2. A graph H is a pair 〈V,E〉 consisting of a set V (of vertices) and a set
E of unordered pairs {u, v} with u 6= v from V (called edges). These structures are also
called undirected graphs (or here U-graphs). A structure H of the form 〈V,E〉 as above
is a directed graph (or here D-graph) if E consists of ordered pairs 〈u, v〉 of vertices with
u 6= v. To handle both cases simultaneously, we often use X to stand for undirected (U)
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or directed (D). We then use (u, v) to stand for the appropriate kind of edge, i.e. {u, v}
or 〈u, v〉.

Definition 2.3. An X-subgraph of the X-graph H is an X-graph H ′ = 〈V ′, E ′〉 such that
V ′ ⊆ V and E ′ ⊆ E.

Definition 2.4. An X-ray in H is a pair consisting of an X-subgraph H ′ = 〈V ′, E ′〉 of H
and an isomorphism fH′ from N with edges (n, n+ 1) for n ∈ N to H ′. We say that the
ray begins at f(0). We also describe this situation by saying that H contains the X-ray
〈H ′, fH′〉. We sometimes abuse notation by saying that the sequence 〈f(n)〉 of vertices
is an X-ray in H. Similarly we consider double X-rays where the isomorphism fH′ is
from the graph on {〈n, 0〉 , 〈n, 1〉 |n ∈ N} with edges (〈0, 0〉 , 〈1, 0〉), (〈n+ 1, 0〉 , 〈n, 0〉)
and (〈n, 1〉 , 〈n+ 1, 1〉) for n ∈ N , i.e. up to isomorphism the graph of the usual order
relation on the integers. We use Z-ray to stand for either a (single) ray (Z = S) or double
ray (Z = D) and so we have, in general, Z-X-rays or just Z-rays if the type of graph (U
or D) is already established.

An X-path P in an X-graph H is defined similarly to single rays except that the
domain of fP is a proper initial segment of N instead of N itself.

Definition 2.5. H contains k many Z-X-rays for k ∈ N if there is a sequence 〈Hi, fi〉i<k
such that each 〈Hi, fi〉 is a Z-X-ray in H (with Hi = 〈Vi, Ei〉).

H contains k many disjoint (or vertex-disjoint) Z-X-rays if the Vi are pairwise dis-
joint. H contains k many edge-disjoint Z-X-rays if the Ei are pairwise disjoint. We
often use Y to stand for either vertex (V) or edge (E) as in the following definitions.

An X-graph H contains arbitrarily many Y-disjoint Z-X-rays if it contains k many
such rays for every k ∈ N .

An X-graph H contains infinitely many Y-disjoint Z-X-rays if there is an X-subgraph
H ′ = 〈V ′, E ′〉 of H and a sequence 〈Hi, fi〉i∈N such that each 〈Hi, fi〉 is a Z-X-ray in H
(with Hi = 〈Vi, Ei〉) such that the Vi or Ei, respectively for Y = V,E, are pairwise disjoint
and V ′ = ∪Vi and E ′ = ∪Ei.

The starting point of the work in Barnes, Goh and Shore [ta] is a theorem of Halin
[1965] that we call the infinite ray theorem as expressed in Diestel [2017].

Definition 2.6 (Halin’s Theorem). IRT, the infinite ray theorem: Every graph H which
contains arbitrarily many disjoint rays contains infinitely many.

We consider versions IRTXYZ of this theorem which allow H to be an undirected
(X = U) or a directed (X = D) graph and for the disjointness requirement to be vertex
(Y = V) or edge (Y = E). We also allow the rays to be single (Z = S) or double (Z = D)
and consider restrictions of some of these theorems to specific families of graphs. In
particular, we begin with trees. Note that we define trees as a class of graphs and so use
in our basic language for our definitions the edge relation but not the induced partial
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order. This causes some conflict between the standard graph-theoretic terminology above
and some common set-theoretic terminology. For example, a path in a tree (viewed as a
graph) need not start at the root of the tree or be linearly ordered in the induced partial
order on the tree. We define the branches of a tree so that they are actually the maximal
linearly ordered sets in the tree with respect to the usual induced ordering as is fairly
common in set-theoretic terminology.

Definition 2.7. A tree is a graph T with a designated element r called its root such
that for each vertex v 6= r there is a unique path from r to v. A branch in T is a ray that
begins at its root. We denote the set of its branches by [T ] and say that T is well-founded
if [T ] = ∅ and otherwise it is ill-founded. A forest is an effective disjoint union of trees,
or more formally, a graph with a designated set R (of vertices called roots) such that
for each vertex v there is a unique r ∈ R such that there is a path from r to v and,
moreover, there is only one such path. In general, the effectiveness we assume when we
take disjoint unions of graphs means that we can effectively (i.e. computably) identify
each vertex in the union with the original vertex (and the graph to which it belongs)
which it represents in the disjoint union.

Definition 2.8. A directed tree is a directed graph T = 〈V,E〉 such that its underlying
graph T̂ = 〈V, Ê〉 where Ê = {{u, v}|〈u, v〉 ∈ E ∨ 〈v, u〉 ∈ E} is a tree. A directed forest
is a directed graph whose underlying graph is a forest.

Definition 2.9. An X-graph H is locally finite if, for each u ∈ V , the set {v ∈ E|(u, v) ∈
E ∨ (v, u) ∈ E} of neighbors of u is finite.

2.3 The Hyperarithmetic Hierarchy

We assume familiarity with the basic notion of relative complexity of sets and functions
as given by Turing reducibility, X ≤T Y , and the Turing jump operator, X ′, and refer to
any standard text such as Rogers [1987]. Iterating the jump into the transfinite brings
us to hyperarithmetic theory. Here, the now standard text is Sacks [1990].

Definition 2.10. We represent ordinals α as well-ordered relations on N . Typically
such ordinal notations are endowed with various additional structure such as identifying
0, successor and limit ordinals and specifying cofinal ω-sequences for the limit ordinals.
An ordinal is recursive (in a set X) if it has a recursive (in X) representation. For a set
X and ordinal (notation) α recursive in X, we define the transfinite iterations X(α) of
the Turing jump of X by induction: X(0) = X; X(α+1) = (Xα)′ and for a limit ordinal λ,
X(λ) = ⊕{X(α)|α < λ} (or as the sum over the X(α) in the specified cofinal sequence).

Definition 2.11. HYP (X), the collection of all sets hyperarithmetic in X consists of
those sets recursive in some X(α) for α an ordinal recursive in X. These are also the sets
∆1

1 in X.
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Above all the sets hyperarithmetic in X lies its hyperjump.

Definition 2.12. The hyperjump of X, OX , is the set {e|ΦX
e is (the characteristic

function of) a well-founded subtree of N<N}.

We can now define the primary objects of our analysis. Note that the definitions only
refer to standard models.

Definition 2.13. A sentence (theory) T is a theorem (theory) of hyperarithmetic analysis
(THA) if

1. For every X ⊆ N, (N, HYP (X)) � T and

2. For every S ⊆ 2N, if (N, S) � T and X ∈ S then HYP (X) ⊆ S.

Definition 2.14. A theorem or theory T is an almost theorem (theory) of hyperarithmetic
analysis (ATHA), if T 0 ACA0 but T + ACA0 is a THA.

3 IRTXYZ and Hyperarithmetic Analysis

We analyze the strength of the variations IRTXYZ of Halin’s theorem. Classically, IRTUVS

and IRTUVD were proved by Halin [1965] and [1970]. IRTUES is an exercise in Diestel
[2017, 8.2.5(ii)] while IRTDVS and IRTDES may be folklore. We prove that all of these
are THAs. Of the other three variants, IRTDED and IRTDVD are open problems of graph
theory (Bowler, Carmesin and Pott [2015] and Bowler [personal communication]). We
do, however, have interesting and unusual results about these principles when restricted
to directed forests. The remaining variant, IRTUED, was proved by Bowler, Carmesin
and Pott [2015] using structural results about the topological notion of ends in graphs.
All the results in this section not otherwise attributed are from Barnes, Goh and Shore
[ta].

We first note some reverse mathematical relations among these principles.

Theorem 3.1 (RCA0). i) IRTDED → IRTDVD, IRTUED, IRTDES.
ii) IRTDVD → IRTUVD, IRTDVS.
iii) IRTDES → IRTDVS, IRTUES.
iv) IRTDVS → IRTUVS.

The proofs of these implications are purely combinatorial and all follow the same
basic plan. To deduce IRTXYZ from IRTX′Y′Z′ we provide computable maps g, h and k
which take X-graphs G to X′-graphs G′, Y-disjoint Z-rays or sets of Y-disjoint Z-rays
in G to Y′-disjoint Z′-rays or sets of Y′-disjoint Z′-rays in G′, and Y′-disjoint Z′-rays or
sets of Y′-disjoint Z′-rays in G′ to Y-disjoint Z-rays or sets of Y-disjoint Z-rays in G,
respectively. These functions are designed to take witnesses of the hypothesis of IRTXYZ

in G to witnesses of the hypothesis of IRTX′Y′Z′ in G′ and witnesses to the conclusion
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of IRTX′Y′Z′ in G′ to witnesses to the conclusion of IRTXYZ in G. Clearly it suffices to
provide such computable maps to establish the desired reduction in RCA0. We use these
reductions to prove one of our major results: all of the IRTXYZ have strength at least
that of some THAs and that most are, in fact, themselves THAs. We discuss two other
reductions not in RCA0 in Theorem 3.10 and §4.

Theorem 3.2. All single-ray variants of IRT (i.e. IRTXYS) and IRTUVD are theorems
of hyperarithmetic analysis.

The proofs have two parts. One is recursion-theoretic. It first provides a coding into
computable graphs that have arbitrarily many disjoint rays such that any sequence of
infinitely many disjoint rays computes 0′. Thus each of the principles imply ACA0. Then
we prove that, if 0(α) exists for each α < λ (recursive ordinals), then 0(λ) exists. The
method here is to use known facts of hyperarithmetic theory to construct a sequence
of trees each of which has exactly one branch uniformly of degree 0(α) (or variations
appropriate to the version of IRT being considered) and apply the version of IRT to get
a sequence of these branches cofinal in λ and so construct 0(λ). This guarantees that the
second clause of the definition of THA (2.13) is satisfied.

The second part consists of showing that each of these versions of IRT are provable
from the THA Σ1

1-AC0. Thus the IRT variants satisfy the first clause as well. The proofs
of the variants in Σ1

1-AC0 are mostly careful analyses of standard proofs or variations
on such. The basic constructions are recursions which at each step perform arithmetic
operations on given or constructed graphs and apply Menger’s theorem for finite graphs.
The construction for IRTDES requires some additional ideas that include using line graphs
to move from edge disjointness to vertex disjointness and a reduction to locally finite
graphs similar to an analysis in Bowler, Carmesin and Pott [2015] that we discuss in §4.

What prevents the construction from being one in ACA0 is the need to apply the
hypothesis of IRT at step n to be able to use a sequence Rn = 〈Rn

i |i < f(n)〉 of disjoint
rays of length f(n) for some specified recursive function f . While the hypothesis tells
us there is such a sequence for each n, producing the whole sequence 〈Rn〉 to start the
constructions formally seems to use some form of choice (Σ1

1-AC clearly suffices). This
preliminary step is the essential source of the complexity of the IRTXYZ. Indeed, we
show that, each IRTXYS and IRTUVD is equivalent (over RCA0) to the principle that its
hypothesis implies the existence of a sequence 〈Rn〉 as just described.

Definition 3.3. SCRXYZ: For every X-graph G with arbitrarily many Y-disjoint Z-rays,
there is a sequence 〈Rn〉 such that each Rn is a sequence of n many Y-disjoint Z-rays.

We now turn to two other types of variations on IRT that involve notions of maxi-
mality. The first actually follows the original formulation of IRT in Halin [1965].

Definition 3.4. IRT∗XYZ: Every X-graph G has a set of Y-disjoint Z-rays of maximum
cardinality.
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It is easy to see that the difference between IRT∗XYZ and IRTXYZ is just an induction
argument. It suffices to have IΣ1

1, induction for Σ1
1 (rather than Σ0

1) formulas.

Proposition 3.5. For each choice of XYZ, IRT∗XYZ implies IRTXYZ over RCA0 and
IRTXYZ implies IRT∗XYZ over RCA0 + IΣ1

1. Therefore IRTXYZ and IRT∗XYZ are equivalent
over RCA0 + IΣ1

1.

As a theory being a THA depends only on its standard models (in which full induction
holds), we see that we have another collection of THAs from the literature.

Theorem 3.6. For all the IRTXYS and IRTUVD (which are THAs by Theorem 3.2), the
IRT∗XYZ are also THAs.

Moreover, we can show that these IRT∗XYZ are proof-theoretically strictly stronger
than the corresponding IRTXYZ and indeed not even provable from Σ1

1-AC0.

Theorem 3.7. For each choice of XYZ, IRT∗XYZ implies ACA∗0 and so proves the consis-
tency of Σ1

1-AC0. Thus none is provable in Σ1
1-AC0. In particular IRTXYS and IRTUVD

are each strictly weaker than the corresponding IRT∗XYZ.

Here ACA∗0 is the known principle adding the instance of induction giving all finite
iterations of the jump: (∀A)(∀n)(∃W )(W [0] = A ∧ (∀i < n)(W [i+1] = W [i]′)). The proof
of Theorem 3.7 shows first that ACA∗0 follows from each IRT∗XYZ by using Simpson [2009,
V.5.4] and then examines his argument for IX.4.6 to get the consistency result.

We can do more for special cases of the open questions IRTDED and IRTDVD. Indeed,
we have that restricting these principles to various classes of graphs supply new THAs
which are strictly stronger than Σ1

1-AC0 and not provable even in ATR0.

Theorem 3.8. Each of IRT∗DYD restricted to directed forests is a THA which strictly
implies Σ1

1-AC0 over RCA0 but is not provable in ATR0.

More generally, we can precisely characterize the reverse mathematical strength of all
these variants.

Theorem 3.9. The following are equivalent (over RCA0):
1. Σ1

1-AC0 + IΣ1
1.

2. IRTDED for directed forests + IΣ1
1.

3. IRT∗DED for directed forests.
4. IRT∗DVD for directed forests.
5. IRTDVD for directed forests + IΣ1

1.

The proofs here use a new combinatorial argument to show that Σ1
1-AC0 implies

IRTDED for directed forests, a short coding to derive Σ1
1-AC from IRT∗DVD and another

one to show that IRT∗DVD implies IΣ1
1 as well as several previously established implications.
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As IΣ1
1 is not provable in ATR0 by Simpson [2009, IX.4.7], we have a lower bound for

IRT∗DYD.

More difficult combinatorial arguments show that if we consider IRT∗UVD over RCA0

and so IRTUVD over RCA0 + IΣ1
1 we can derive a reduction not implied by those of

Theorem 3.1 and the immediate ones of Proposition 3.5.

Theorem 3.10. IRT∗UVD implies IRTUVS over RCA0. Therefore (1) IRTUVD implies
IRTUVS over RCA0 + IΣ1

1; and (2) if any standard model of RCA0 satisfies IRTUVD, then
it satisfies IRTUVS as well.

We now turn to the second notion of maximality for IRT variants. Instead of asking
for sets of disjoint rays of maximal cardinality we ask for ones that are maximal in the
sense of containment. Of course, the existence of such sets follows immediately from
Zorn’s Lemma and was so noted in Halin [1965]. In terms of computational and reverse
mathematical strength, they are much stronger than the IRT or IRT∗ versions.

Definition 3.11. MIRTXYZ: Every X-graph G has a (possibly finite) sequence (Ri)i of
Y-disjoint Z-rays which is maximal, i.e. for any Z-ray R in G, there is some i such that
R and Ri are not Y-disjoint.

Theorem 3.12. Each MIRTXYZ is equivalent to Π1
1-CA0 over RCA0.

We close this section with a summary of the relations between the THAs introduced
here along with another new one that they suggested and others already studied in the
literature. Many of our results are displayed in Figure 1.

As mentioned in §1, the only previously known purely mathematical THA was IN-
DEC. There were also one or two quasi-mathematical ones which, like ABW, are versions
of standard principles such as the Bolzano-Weierstrass theorem but restricted to arith-
metic sets of reals. (See Friedman [1975] and Conidis [2012].) All the others were typical
logical axioms or theorems. The standard examples include Σ1

1-DC0, Σ1
1-AC0, ∆1

1-CA0 as
well as Π1

1-SEP and weak-Σ1
1-AC0. The known relationships among these systems were

as follows: Σ1
1-DC0 ⇒ Σ1

1-AC0 ⇒ Π1
1-SEP ⇒ ∆1

1-CA0 ⇒ INDEC0; ∆1
1-CA0 ⇒ weak-Σ1

1-
AC0; INDEC0+IΣ1

1 ⇒ weak-Σ1
1-AC0; Σ1

1-AC0+IΣ1
1 ⇒ ABW0+IΣ1

1 ⇒ weak-Σ1
1-AC0 and

∆1
1-CA0 0 ABW0 0 INDEC0. We use ⇒ to denote strict implication between theories.

(See Simpson [2009], Montalbán [2006], [2008], Neeman [2008], [2011] and Conidis [2012]
for definitions, proofs and references.)

We have already provided many relations between Σ1
1-AC0 and IRT∗XYZ and IRTXYZ.

Our first step in providing consequences of the IRT∗XYZ or IRTXYZ which we know are
implied by Σ1

1-AC0 + IΣ1
1 or Σ1

1-AC0, respectively was that weak-Σ1
1-AC0 follows from

IRT + IΣ1
1. This proof led us to an apparent strengthening of weak-Σ1

1-AC0 which was
also a consequence of each IRT∗XYZ.

Definition 3.13. The principle finite-Σ1
1-AC asserts that, for every arithmetic Φ(A, n,X),

∀A[(∀n)(∃ nonzero finitely many X)Φ(A, n,X)→ ∃Y ∀nΦ(A, n, Y [n])].
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Π1
1-CA0MIRT

ATR0

Σ1
1-AC0

∆1
1-CA0

w-Σ1
1-AC0

ACA0

finite-Σ1
1-AC0

IRTDES

IRTUVD

IRTUVS

IRT∗UVS

IRT∗DES

IRT∗UVD

Σ1
1-AC0 + IΣ1

1

IRT∗DED,DF

(6)

(7)

(1)

(1)

(3)

(2)

(3)

(2)

(4)

(5)

(5)

(1)

|

|

Figure 1: Partial zoo involving known axiom systems and some IRT variants. Single
arrows denote implication over RCA0 while double arrows denote strict implication over
RCA0. All theories are THA except for MIRT, Π1

1-CA0, ATR0 and ACA0: For the IRT
variants see Theorems 3.2, 3.6; otherwise see Montalbán [2006]. For readability we have
not displayed all variants of IRT and IRT∗. Most of the results in the figure are proved
for some other IRTXYZ as well (or IRT∗XYZ, as appropriate) except for (4). The unlabeled
implications and nonimplications along and to the right of the vertical axis from Π1

1-CA0

to ACA0 are well-known (see Simpson [2009], in particular Corollary IX.4.7.) (1): These
are proved in Goh [ta]. The implications from Σ1

1-AC0 to IRTDES and IRTUVD follow from
our proof of Theorem 3.2 (see the second paragraph after Theorem 3.2). The implications
from Σ1

1-AC0 + IΣ1
1 to IRT∗DES and IRT∗UVD follow from the above and Proposition 3.5.

The strict implications from IRT∗XYZ to IRTXYZ hold by Proposition 3.5 and Theorem
3.7. (2): Theorems 3.14 and 3.7. (3): Theorem 3.1. (4): Theorem 3.10; strictness follows
from Theorem 3.7. The strict implications (5) follow from our proof of Theorem 3.2
(see the first paragraph after Theorem 3.2.) (6): Theorem 3.12. (7): Theorem 3.9 (the
subscript DF indicates that we restrict IRT∗DED to directed forests.)
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Here we have weakened the usual hypothesis of weak-Σ1
1-AC0 from asserting that

for each n there is precisely one X such that A(n,X) to there being a finite sequence
containing all such X. So, of course, finite-Σ1

1-AC0 implies weak-Σ1
1-AC0. We provide

many other relations as well.

Theorem 3.14. IRT∗XYZ implies finite-Σ1
1-AC0 over RCA0. So IRTXYZ implies finite-

Σ1
1-AC0 over RCA0 + IΣ1

1.

Theorem 3.15. IRT∗XYZ implies ABW0 over RCA0. Therefore IRTXYZ implies ABW0

over RCA0 + IΣ1
1.

Theorem 3.16. ∆1
1-CA0 0 IRTXYZ, IRT∗XYZ.

Theorem 3.17. ABW0 0 IRTXYZ, IRT∗XYZ.

These nonimplication results use previously known models. Goh [ta] proves an addi-
tional implication and uses a technically difficult new argument based on a variation of
Steel forcing to provide new separations.

Theorem 3.18 (Goh [ta]). ABW0 + IΣ1
1 is strictly stronger than finite-Σ1

1-AC0.

Theorem 3.19 (Goh [ta]). ∆1
1-CA0 0 finite-Σ1

1-AC0 and so, as ∆1
1-CA0 ` weak-Σ1

1-AC0

(Simpson [2009, Ex. VIII.4.14]), finite-Σ1
1-AC0 is strictly stronger than weak-Σ1

1-AC0.

4 Almost Theorems of Hyperarithmetic Analysis

Bowler, Carmesin and Pott [2015, top of p. 2] sketch a reduction of IRTUES to IRTUVS.
While the proof sketch appears to be elementary, a closer look shows that underneath
it seems to use principles that are THAs and about as strong as the ones being proven
equivalent. Our expectation was that these principles, like the IRTXYS, themselves would
also prove to be THAs. That turned out not to be the case. Rather, the graph-theoretic
principle that they used (about being able to restrict attention to locally finite graphs)
implied (over ACA0) some known THA. The unusual aspect of the situation was that we
could prove that it was not possible to show that they implied any known THA in RCA0.
In particular they did not even imply ACA0. This led to the definition and analysis
of ATHAs in Shore [ta] on which we report in this section. For various reasons we do
not consider double rays in this section and so use only the subscripts X and Y when
appropriate. For these cases, our variants of the principle they use (with UV for XY) are
as follows:

Definition 4.1. LFXY: Every X-graph which contains arbitrarily many Y-disjoint rays
contains a locally finite subgraph which also contains arbitrarily many Y-disjoint rays.
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The starting point of our analysis is that, for each choice of X and Y, LFXY + ACA0

is equivalent to IRTXY over RCA0 and so is a THA. To see that the LFXY are all ATHAs
we need to prove that none imply ACA0. We actually prove much more.

We also prove by the same methods that many other principles are ATHA. Indeed,
we prove not only that they do not imply ACA0 but that they are very weak over RCA0.
To be specific, we show that they can each be forced by a notion of forcing from a general
class of tree forcings without adding branches to trees lacking them or any (of countably
many specified) new sets. Moreover, any such principle is highly conservative over RCA0.

Definition 4.2. Each of our classes of formulas consists of a base class which includes
the quantifier free formulas and is then closed under conjunction (∧), disjunction (∨),
first-order quantification (∀x and ∃x for number variables) and universal second-order
quantification (∀X for set variables). The G-Π1

1 class of formulas has only the quantifier
free ones in its base. The G-r-Π1

2 class of formulas also has in its base all formulas which
are of the form ∃YΘ(Y ) where Θ is Σ0

3. The G-Tanaka class of formulas instead adds to
the base class all formulas of the form ∃!Y Φ(Y ) for arithmetic Φ. The G-r-Tanaka class
also includes in its base all formulas of the form ∃!Y ∃ZΨ(x̄, Y, Z) with Ψ a Σ0

3 formula.
For a class Γ of formulas, a theory T is Γ-conservative over one S if, for every sentence
ϕ ∈ Γ, T ` ϕ→ S ` ϕ. If S is RCA0 we omit mentioning it.

We assume a basic familiarity with forcing. This can be carried over to forcing over
models of second-order arithmetic satisfying RCA0 without too much trouble. Our basic
class of tree forcings have many familiar examples even with the effectiveness notion we
require. The definition of the uniform version is more technical but most of the familiar
examples are also uniform or can be made so.

Definition 4.3. A notion of forcing P = 〈P,≤〉 is a tree forcing (t-forcing) if the following
hold:

1. Conditions in P are of the form 〈τ, T 〉 where T ∈ S(N ) is a subtree of N<N (i.e.
a subset of N<N in N closed under initial segments with respect to ⊆) and τ is
comparable with every σ ∈ T . The root of T is taken to be the empty string. The
stem of T is defined to be the longest string comparable with every element of T .

2. If 〈τ ′, T ′〉 ≤ 〈τ, T 〉 then τ ′ ⊇ τ and T ′ ⊆ T .

3. For every n ∈ N the class {〈τ, T 〉 ||τ | ≥ n} is dense in P , i.e.
(∀ 〈τ, T 〉 ∈ P)(∃ 〈τ ′, T ′〉)(〈τ ′, T ′〉 ≤ 〈τ, T 〉 & |τ ′| ≥ n).

Definition 4.4. A tree notion of forcing P is an effective tree forcing (et-forcing) if, for
every 〈τ, T 〉 ∈ P , the class Ext(〈τ, T 〉) = {τ ′|(∃T ′)(〈τ ′, T ′〉 ≤ 〈τ, T 〉)} is Σ0

1, i.e. there is
an A ∈ S(N ) such that Ext(〈τ, T 〉) is Σ0

1(A) (over N).
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Definition 4.5. An et-forcing P is uniform (a uet-forcing) if, for every condition 〈τ, T 〉,
every ρ, σ ∈ Ext(〈τ, T 〉) with |ρ| = |σ|, and every 〈ρ′′, R′′〉 ≤ 〈ρ′, R′〉 ≤ 〈τ, T 〉 with ρ ⊆ ρ′,
〈ρ′′σ, R′′σ〉 ≤ 〈ρ′σ, R′σ〉 ≤ 〈τ, T 〉. For technical convenience we also require that if 〈τ, T 〉 ∈ P
and the stem of T is some σ ⊃ τ then 〈ρ, T 〉 ≤ 〈τ, T 〉 whenever σ ⊇ ρ ⊇ τ . Note: For
σ ∈ T , Tσ = {µσ|µ ∈ T} where µσ(i) = σ(i) for i < |σ| and µσ(i) = µ(i) for i ≥ |σ|.

Common examples of uet-forcings are Cohen, Mathias and Silver forcings and many
variations. The usual versions of Laver and Sacks forcings are et but not uniform. Sacks
forcing can be made so by using “uniform” trees as in Lerman [1983, VI.2.3]. A similar
variation can be applied to Laver forcing. We now want to know that these notions of
forcing have various preservation properties.

Theorem 4.6. If P is an et-forcing over a countable model N of RCA0, there is a
countable collection D of dense sets (including the ones specified in Definition 4.3) such
that

1. If G is P-generic for D, then N [G] � RCA0.

2. If R is a subtree of N<N (not necessarily in S(N )) with no branch in S(N ), then
there is a countable collection D′ ⊇ D of dense sets such that if G is P-generic for
D′, then there is no branch of R in N [G].

3. Thus for any countable collection Ri of trees as in 2 (such as all those in S(N ))
there is a single D′ as in 2 which works for every Ri. In particular, for a set
{Ci|i ∈ ω} with Ci ⊆ N and Ci /∈ S(N ) for every i ∈ ω, there is a D′ ⊇ D such
that, for any D′-generic G, no Ci ∈ N [G].

It is now easy to see that if, for any theory T and countable model N of RCA0, we
can iterate et-forcings to produce an extension N∞ � T , T 0 ACA0. (Start with the
recursive sets as N and iterate the forcings without adding the set 0′.) So no such T can
be a THA.

We want to prove that we can also use these notions of forcing to derive the Γ-
conservativity of theories T for the classes Γ of Definition 4.2. All of our proofs have the
same general format. For the sake of a contradiction, we assume that there is a sentence
Λ ∈ Γ such that T ` Λ and a countable model N � ¬Λ of RCA0. We then construct,
by iterated forcing, a model N∞ of T . If we can also guarantee that N∞ � ¬Λ, we have
proven Γ-conservativity.

Typical arguments of this sort deal with T whose axioms (other than RCA0) are Π1
2

principles, i.e. sentences of the form ∀X(Φ(X)→ ∃YΨ(X, Y )) with Φ and Ψ arithmetic.
One shows that for each such axiom Q and countable modelM of RCA0 and instance of
Q given by some X withM � Φ(X), one has a notion of forcing and a collection of dense
sets such that, for any generic G, M[G] � ∃YΨ(X, Y ). (We say that the forcing adds a
solution for the instance of Q given by X.) One can then perform an ω length iteration
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to construct M∞ such that each instance of each Q ∈ Y in M∞ gets a witness there as
well. As M and M∞ have the same first-order part, it is easy to see that M∞ � T and
any Π1

1 sentence Λ false in M remains false in M∞. The crucial point here is that as Φ
and Ψ are arithmetic, truth and falsity of all instances of Q are preserved upward in the
iteration. We prove that the truth of negations of G-Π1

1 sentences are also preserved by
an induction argument. If the forcings needed are et then we get G-r-Π1

2 conservativity.
If the forcings are uet, we get G-Tanaka and G-r-Tanaka conservativity. These results
strengthen many known conservation theorems.

In terms of ATHAs and various stronger principles, however, we are interested in
situations where the axioms of T are more complicated. Our starting examples are the
LFXY (Definition 4.1). Here the axioms/principles Q are as above but Φ and Ψ are of
the form ∀n∃ZΘ with Θ arithmetic (saying Z is a sequence of disjoint rays of length
n). We prove that for any graph which is an instance of an LFXY there is an et (indeed
uet) forcing that adds a solution, i.e. a locally finite subgraph with the desired sequences
of disjoint rays. While the added solutions remain solutions in N∞, we may have new
instances that did not seem to be instances at any point along the way: The required
witnesses Z for some X may appear cofinally in the iteration. So N∞ may not be a
model of LFXY. The natural plan here is to continue the iteration to length ω1 as any
assumed witnesses for an X appearing in N∞ must then also all appear at some stage of
the length ω1 iteration and so have a solution added at some point as well.

Theorem 4.7. For each of the LFXY there are uet-forcings that add solutions for any
instance. Thus all of them together are G-r-Tanaka (and so G-Tanaka, G-r-Π1

2 and G-
Π1

1) conservative over RCA0. As over ACA0 each implies IRTXY which is a THA, each
of them is an ATHA.

The SCRXY are equivalents of the corresponding IRTXY. We can adjust them slightly
to get other ATHAs which are equivalent to IRTXY only over ACA0. One example is
that we just require that the sequence 〈Rn〉 has each Rn being a sequence of almost (i.e.
up to finite difference) disjoint rays of length n. We also consider variations of an array
of known strong principles that provide versions that are Γ-conservative for all the class
of Definition 4.2 but very strong over ACA0.

Definition 4.8. Σ1
n+1-AC∗: ∀A[∀n∃XΦ(A, n,X)→ ∃Y ∀n∃σΦ(A, n, Y

[n]
σ )], for Φ Π1

n.
(Note: For Y ∈ NN and σ ∈ N<N , we define Yσ by Yσ(i) = σ(i) for i < |σ| and
Yσ(i) = Y (i) for i ≥ |σ|.)
Σ1
n+1-AC−: ∀A[∀n∃XΦ(A, n,X)→ ∃Y ∀n∃mΦ(A, n, Y [m])] for Φ Π1

n.
Σ1
∞-AC∗ and Σ1

∞-AC− assert, respectively, that Σ1
n-AC∗ and Σ1

n-AC− hold for all n ∈ ω.

Theorem 4.9. For each n ∈ ω, RCA0 ` Σ1
n+1-AC → Σ1

n+1-AC∗ → Σ1
n+1-AC− and

ACA0 ` Σ1
n+1-AC− → Σ1

n+1-CA. So over ACA0, all of Σ1
∞-AC∗, Σ1

∞-AC− and Σ1
∞-CA

are equivalent as are Σ1
n+1-AC, Σ1

n+1-AC∗ and Σ1
n+1-AC− for each n.

Theorem 4.10. Σ1
∞-AC∗0 is Γ-conservative for all the classes Γ of Definition 4.2 and so

are all the Σ1
n+1-AC∗0 and Σ1

n+1-AC−0 by the previous theorem.
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So, in particular, Σ1
1-AC∗0, Σ1

1-AC−0 , Σ1
∞-AC∗0 and Σ1

∞-AC−0 are highly conservative over
RCA0 but over ACA0 each of the first pair are equivalent to Σ1

1-AC0 (and so are ATHAs)
and each of the second pair are equivalent to Σ1

∞-AC0 and so stronger than full second-
order arithmetic. (See Simpson [2009, Remark VII.6.3].) Some earlier conservation
results for some of the theories covered here are in Yamazaki [2000], Kihara [2008] and
in Yokoyama [2009] as well as in work of Tanaka, Montalbán and Yamazaki as reported
in Yamazaki [2009] .

The proof of Theorem 4.9 is combinatorial and proceeds by induction on n. Theorem
4.10 is proven by providing et- or even uet-forcings that add solutions for Σ1

∞-AC∗.
Now Σ1

∞-AC∗ has both hypotheses/instances Φ(X) and conclusions/solutions Ψ(X, Y )
of arbitrary complexity. Thus we need another idea to guarantee that adding what looks
like a solution stays a solution in N∞ as well as a procedure that makes sure we handle
everything that is an instance in N∞ along the way. The crucial idea here is to use the
fact that if we do an ω1 iteration to produce models Nα for α < ω1 then, for a closed
unbounded set of λ < ω1, Nλ will be an elementary submodel ofN∞. Thus, if we carefully
handle everything that looks like an instance in such an Nλ and supply something that
looks like a solution, all will be well at the end.

We view these results and the previous ones on ATHAs that are equivalent to known
THAs over ACA0 as supplying answers to the question raised by Hirschfeldt and repeated
in Montalbán [2011] by providing an ample list of many pairs of principles that are very
different over RCA0 but equivalent over ACA0. It could well be argued that these weak
ones should really be seen as the same as their strong counterparts in an analysis that
works over ACA0 rather than RCA0.
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