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Abstract

We present two hierarchies of versions of Zorn’s Lemma which can be used
directly in reverse mathematical analyses just as the original is used in standard
mathematical arguments. We show that at the first two levels these versions are
reverse mathematically equivalent (over RCA0) to Π1k-CA0 for k = 1, 2 and at
higher levels to known choice axioms not provable in Z2. We gives several examples
of how they could be used in known proofs and a new reverse mathematical analysis
of some theorems about injective choice functions (matchings) for countable families
(of sets of numbers). These include a couple of unusual situations. One principle
(MCSF) can be proven in Π12-CA0 using our version of Zorn’s lemma at Π12. It is
a Π14 statement and perhaps might be equivalent to Π12-CA0. Another (MRSF) is
just a Π13 statement and so cannot imply even ∆1

2-CA0 but its known proofs all use
even more than Π12-CA0 (Π

1
2-CA

+
0 ). Both of these principles are shown to imply

Π11-CA0. These results suggest several interesting reverse mathematical questions.
We also briefly discuss some connections to similar work of Flood, Jura, Levin and
Markkanen [2022] on matchings in general graphs.

1 Introduction

Zorn’s Lemma is frequently used to prove the existence of objects with various maximality
properties in many areas of mathematics. The analysis of such arguments in reverse
mathematics has followed a variety of approaches. Early examples in algebra such as
maximal ideals and maximal independent sets of many sorts (linear, algebraic, etc.) as,
for example in Simpson [1998] were established by direct constructions in ACA0 to which
they were proven equivalent. (We refer to Simpson [1998] or [2009] for definitions of
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all the axiom systems of second order arithmetic used in reverse mathematics that we
mention but do not define.) These results often relied on special aspects of the properties
being analyzed. A common one was being of finite character (i.e. the property holds of
a set if and only if it holds for all finite subsets).

Other applications of Zorn’s Lemma often seemed more diffi cult to handle. My own
first foray into reverse mathematics was Aharoni, Magidor and Shore [1992], hereafter
AMS. It used a maximal set in a bipartite graph with some matching property whose
existence was classically proven by Zorn’s Lemma. Our substitute technique for the re-
verse mathematical analysis used the Kleene Basis Theorem and we have since used other
basis theorems in similar applications. After all, Zorn’s Lemma is famously equivalent
to the axiom of choice, indeed the full version of the mathematical result analyzed in
AMS easily proves the usual full set theoretic axiom of choice (Proposition 3.6) and basis
theorems tell us how to choose specific simple elements from certain collections of sets.
(See §4.)

Many restricted versions of the axiom of choice were introduced in reverse mathemat-
ics some of which such as Σ1

1-AC0 or the stronger Σ1
1-DC0 had previously been studied

in hyperarithmetic theory along with basis theorems. (See Simpson [1998, VIII.4].).
Simpson [1998, VII.6] deals with the analogous axioms Σ1

k-AC0 and Σ1
1-DC0 and intro-

duces and studies stronger versions, Strong Σ1
k-DC0. These last versions are shown to

be equivalent to reflection principles for formulas at the corresponding syntactic level.
Both of these last two principles (but more often the reflection version) have been used
as replacements for Zorn’s Lemma in several settings. (See §2.)

Our goal in the work presented here was to find versions of Zorn’s Lemma that
could be stated in second order arithmetic and could be used to directly carry out the
typical mathematical applications of Zorn’s Lemma in the reverse mathematical analysis
of standard theorems. We also wanted to determine the reverse mathematical strengths
of these versions and use them in new analyses of the strength of standard theorems of
combinatorics.

In §2, we provide a few of the known examples of proofs in second order arithmetic of
combinatorial theorems that use various arguments to replace Zorn’s Lemma as part of a
reverse mathematical analysis. These arguments and others, motivated our formulations
of versions Σ1

n-ZLS0 and Σ1
n-ZLC0 of Zorn’s Lemma in second order arithmetic. Our

principles can directly be applied to give maximal sets or collections of sets, respectively,
satisfying any Σ1

n definable property closed under increasing unions or a variation of
that condition. We note they supply immediate applications for the examples previously
discussed. We then analyze the reverse mathematical strength of these principles in
§3. They are equivalent (over RCA0) to Strong Σ1

n+1-DC0 and Σ1
n+1-REF0 (a scheme of

reflection axioms that in Simpson’s terminology says that for everyX there is a countably
coded βn+1-model containing X). In particular, for n = 0, 1 they are equivalent to Π1

n-
CA0. We describe some basis theorems in §4 for Σ1

k collections of sets for k = 1, 2, along
with some often unstated uniformities and note that they are provable in Π1

k-CA0. This
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supplies some recursion theoretic bounds that we use in our applications of Zorn’s Lemma
arguments in the next sections. In §5, we apply our versions of Zorn’s Lemma to give
a new reverse mathematical analysis of some standard theorems about representation
(a.k.a. matchings, injective choice functions or marriages) in families of sets of numbers.

In particular, there are two reverse mathematically unusual results from Podewski
and Steffens [1976] (hereafter, PS) which we analyze in §5. The first is the proof of
MCSF, the existence or maximal critical subfamilies (mcsf) for every family. (Definitions
are given in §5.) This is proven in Π1

2-CA0 by a straightforward application of Σ1
2-ZLS0.

Now MCSF is a Π1
4 statement and at least possibly equivalent to Π1

2-CA0 over RCA0. If
so, this would be the first example of standard theorem from the mathematical literature
with this strength. The second is a related maximality result MRSF, every family has
a maximal representable subfamily. The usual proofs in the literature derive this from
MCSF or similar principles using a recursive construction which at each stage applies
MCSF or something similar to a family that has already been constructed to extend the
representation being constructed to a larger subfamily. Because of the iteration of MCSF
(for which we only have a proof in Π1

2-CA0), the known proofs are not even in Π1
2-CA0.

Indeed, it takes some additional effort using the Σ1
2 basis theorem to carry out our proof

even in Π1
2-CA

+
0 . (This axiom says (analogously to ACA+0 ) that for every X there is a

set whose first column is X and each successive column is the complete Π1
2 set in the

previous column.) So the known proofs are reverse mathematically very complicated.
On the other hand, the principle itself is a Π1

3 statement and so by known results cannot
imply even ∆1

2-CA0. Both principles about families, however, are shown to imply at least
Π1
1-CA0 over RCA0.

After we had proven these results about families and were preparing a conference talk
about our work, we found Flood, Jura, Levin and Markkanen [2022] (hereafter FJLM).
It analyzes variations on the results about matchings in graphs in Steffens [1976]. It
has many results mathematically and reverse mathematically related to ours. In §6 we
give a brief description of those of their results that are very similar in their reverse
mathematical structure to ours. We also mention an application of Σ1

2-ZLS0 to prove a
maximality result from Steffens [1976], MISG, that is not mentioned in FJLM. However,
we show that it is equivalent to one, MIM, that they analyze using Σ1

2-Reflection and
additional arguments. Finally, we point out that their proof of another principle in Π1

2-
CA+0 by an iteration like the one we use in §5 is missing an argument like ours using the
basis theorem to carry out the iteration.

We close with some open questions in §7

Before turning to our Zorn’s Lemma like principles, their strength and applications
we note a few perhaps not quite standard definitions and conventions

Remark 1.1. The syntactic classes of Σi
n, Πi

n and ∆i
n are defined as usual. (See, for

example, Simpson [2009]. We just note that in our terminology the Σ1
0 formulas (and the

Π1
0 ones) are just the arithmetic formulas, i.e. those that are Σ0

n (or Π0
n) for some n.
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Trees T are downward closed subsets of N<N (with respect to being an initial seg-
ment). A path on T is a downward closed linearly ordered subset of T . A branch on T
is an infinite path on T . [T ] is the set of branches of T . If we have specified a branch X
on a tree T and a node σ ∈ X we denote the immediate successor of σ in X by σ+.

Every axiom system, typically marked with a 0 subscript, is assumed to include RCA0

2 Versions of Zorn’s Lemma

We begin with two simple examples of mathematical theorems which are direct appli-
cation of Zorn’s Lemma that have been proven in Π1

1-CA0. The first is from Mummert
[2005, Lemma 4.1.4] .

Theorem 2.1 (MF). Π1
1-CA0 proves MF: Every filter on a partial order extends to a

maximal filter. (A filter on a partial order P is an upward closed subset F of P such that
if p, q ∈ F then the is an r ∈ F such that p, q ≤ r.)

As filters are obviously closed under increasing unions, the basic mathematical fact
here is an immediate application of Zorn’s Lemma. Mummert’s proof in Π1

1-CA0 uses Σ1
1-

Reflection (see Definition 3.3) in a direct construction and then proves that it produces
a maximal filter as required.

The second is Theorem 8.3 of a recent paper by Fiori-Carones, Marcone, Shafer and
Solda [2024], hereafter FCMSS.

Definition 2.2. A maxless chain in a partial order P is a linearly ordered subset C of
P which has no maximal element

Theorem 2.3 (MMLC). Π1
1-CA0 proves MMLC: Every partial order contains a maximal

(with respect to inclusion) maxless chain.

Again the obvious mathematical proof of MMLC applies Zorn’s Lemma to the col-
lection of maxless chains in P under inclusion. FCMSS gives a direct construction of a
particular maxless chain with special properties using Π1

1-CA0 and then prove its maxi-
mality.

We want general versions of Zorn’s Lemma that can be directly cited in proofs of the
existence of various maximal objects but are provable in Π1

1-CA0 or other appropriate
systems. We begin with a hierarchy of such principles for collections of subsets of N .

Definition 2.4 (Σ1
n-ZLS0). Zorn’s Lemma for Σ1

n collection of sets: For any nonempty
collection of sets defined by a Σ1

n formula Φ(A) (n ≥ 0) which is closed under increasing
countable unions (i.e. for every 〈Ak〉 s.t. ∀k(Ak ⊆ Ak+1 & Φ(Ak)) and A = ∪Ak, Φ(A)),
there is a maximal A (with respect to set inclusion) such that Φ(A).
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Note that In the setting of reverse mathematics where everything is countable and all
sets are subsets of N , the standard hypothesis of being closed under increasing unions in
Zorn’s Lemma is equivalent to being closed under increasing unions of order type N .

We see that Σ1
1-ZLS0 is provable in Π1

1-CA0 in Theorem 3.5. As being a filter or
maxless chain in a poset are arithmetic, Σ1

1-ZLS0 (or even Σ1
0-ZLS0) clearly suffi ces to

prove Theorems 2.1 and 2.3. Most of the applications we consider are to collections of
sets but one that applies to collections of classes (of sets) is a result from Barnes, Goh
and Shore (BGS) [2023, 2025].

Definition 2.5. A Graph G = (V,E) is a set V of vertices and a symmetric irreflexive
binary (edge) relation E on V . A ray R in G is a sequence of distinct xn, n ∈ N such
that (∀n)E(xn, xn+1). A class S is one of (pairwise) disjoint rays in G if every set in S
is a ray in G and no two of them have a vertex in common.

Theorem 2.6 (MIRT). (Halin 1965): Every graph G has a (possibly finite) class S
of disjoint rays which is maximal under inclusion, i.e., for any ray R in G, there is a
member of the class which shares a vertex with R.

As Halin points out, MIRT immediately follows from Zorn’s Lemma. BGS prove that
it is a theorem of Π1

1-CA0. Their first proof as mentioned in BGS [2023, p. 37] used
a basis theorem. (See §4.) Their second proof on the same page used Strong Σ1

1-DC0
(Definition 3.1). A referee suggested using Σ1

1-Reflection (Definition 3.2) instead (BGS
[2024, Theorem 5.14]). We want a version of Zorn’s Lemma (provable in Π1

1-CA0) that
would obviously imply MIRT and so one that applies to collections of classes.

Notation 2.7 (Classes). We represent classes by sets in a typical way: the set C repre-
sents the class {C [n]|n ∈ N} where C [n] = {x| 〈n, x〉 ∈ C}. We say A ∈ C if ∃n(C [n] = A)
and define containment for classes: C ⊆c D ⇔ ∀n∃m(C [n] = D[m]) and c-equality by
C =c D ⇔ C ⊆c D & D ⊆c C. We let ∪sc 〈Ci〉 = E, the c-union of the sequence 〈Ci〉 of
classes, be defined by (∀i, n)(E[〈i,n〉] = C

[n]
i ) and set ∪cC = {x|∃n(x ∈ C [n])}. We think

of a Σ1
n formulas Φ(C) as determining or representing the collection of classes C such

that Φ(C). We also guarantee that Φ expresses a property of the intended class and not
just the representation by requiring that (∀C,D)(C =c D ∧Φ(C)→ Φ(D)). We say that
the collection of classes C represented by Φ is closed under increasing countable unions
if ∀ 〈Ct〉 [∀t(Ct ⊆c Ct+1 & Φ(Ct))→ Φ(∪sc 〈Ci〉)

Some care is necessary in formulating a version of Zorn’s Lemma for classes as there
is no set which represents the class of all sets in any model of RCA0. So, for example,
the trivial collection of classes defined by Φ(C) ⇔ C = C which is obviously closed
under countable unions has no maximal element in any model of RCA0. We suggest one
version.

Definition 2.8 (Σ1
n-ZLC0). Zorn’s Lemma for Σ1

n collection of classes: For any non-
empty collection of classes represented by a Σ1

n formula Φ(C) which is closed under
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increasing countable unions and such that (Φ(C) & Φ(D) & C ⊆c D & ∪cD = ∪cC)
→ C =c D), ∃C(Φ(C) and C is maximal w.r.t. ⊆c among classes satisfying Φ).

The extra condition about ∪cC in Definition 2.8 means that to strictly increase the
class represented by C by a class represented by some D, some number not in ∪cC must
be put into ∪cD. We see that Σ1

k-ZLC0 is provable in Π1
k-CA0 for k = 1, 2 in Theorem

3.5. This condition will be important in that proof. Returning to MIRT, the collection of
classes of disjoint rays in the graph G is clearly Σ1

0 and closed under increasing countable
unions. It satisfies the extra condition of Definition 2.8 because the rays in each class
must be pairwise disjoint. So any new ray added to C must add new elements to ∪cC.
Thus MIRT follows immediately from Σ1

1-ZLC0.

3 The Strength of Σ1
n-ZLS0 and Σ1

n-ZLC0

Before considering applications of our versions of Zorn’s Lemma we analyze their reverse
mathematical strength over RCA0 by relating it to other systems such as Π1

n-CA0, Strong
Σ1
n-DC0 and what we call Σ1

n-REF0. We slightly modify the notation of Simpson [2009,
VI.6.1(4)] to define Strong Σ1

n-DC0.

Definition 3.1. Strong Σ1
n-DC 0 is the theory containing RCA0 and the scheme

(∃W )(∀n)(∀Y )

(
Φ

(
n,
⊕
i<n

W [i], Y

)
→ Φ

(
n,
⊕
i<n

W [i],W [n]

))
,

for any Σ1
k formula Φ(n,X, Y ) (in which W does not occur).

We have used our definition of W [n] in place of Simpson’s (W )n and
⊕

i<nW
[i] for

his (W )n. We also note that he assumes ACA0 in place of RCA0 but each of the choice
principles in his definition easily imply ACA0 over RCA0. (Σ1

0-AC0, which is obviously
weaker than all the others, implies ACA0: Let ψ′(X,n) be the Σ0

1 formula which says
n ∈ X ′ and so ∀n∃Y ([Y = {1}∧ψ′(X,n)]∨ [Y = {0}∧¬ψ′(X,n)]. Applying Σ1

0-AC0 we
get a set in which X ′ is obviously recursive.) In any case, Strong Σ1

n-DC0 is often quite
cumbersome to apply and we never actually use it in this paper. It is simply the choice
axiom from the literature that we show is equivalent to our Σ1

n-ZLS0 and Σ1
n-ZLC0.

We next slightly simplify and modify Simpson’s [2009, VII.7.2 and V.II.7.5] definitions
in RCA0 of countably coded βk models and βk-model reflection. We still implicitly use
the existence of universal Π0

1 and Σ1
n formulas for n ≥ 1.

Definition 3.2. Given a set A, we say an X is a Σ1
n-submodel (countably coded βn-

submodel) containing A if A = X [0] andM(X) =
〈
N, {X [i] | i ∈ N}

〉
is a Σ1

n submodel,
i.e. for any Σ1

n formula Φ with (set) parameters from among the X [i], Φ ⇔M(X) � Φ.
Note that this is equivalent to requiring that every Σ1

n formula with parameters inM(X)
that has a witness has one inM(X).
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Definition 3.3 (Σ1
n-REF0). Σ1

n-REF 0, Σ1
n-Reflection, is the theory consisting of ACA0

and the assertion that for every A there is a Σ1
n-submodel X containing A.

We can now characterize the strength of the Σ1
n-ZLS0 and Σ1

n-ZLC0. We first introduce
a notion that is useful for some our codings.

Definition 3.4. We say B is the characteristic function of a set if for every m exactly
one of 〈m, 0〉 and 〈m, 1〉 is in B and no other numbers are in B. In this case, we naturally
say that B is the characteristic function of the set X defined by m ∈ X ⇔ 〈m, 1〉 ∈ B.
So we can just replace instances of y ∈ X in any Σ1

n formula Ψ(X, k) by 〈y, 1〉 ∈ B
without increasing the complexity of Ψ.

An obvious but crucial consequence of this definition is that if A and B are the
characteristic functions of sets and A ⊆ B, then A = B.

Theorem 3.5. For each n ≥ 0, the following implications and equivalences hold over
RCA0:

1. Σ1
n+1-ZLC0 → Σ1

n-ZLC0, Σ1
n+1-ZLS0 → Σ1

n-ZLS0.

2. Σ1
0-ZLS0 → ACA0 and Σ1

0-ZLC0 → ACA0.

3. Σ1
n-ZLC0 → Σ1

n-ZLS0.

4. Σ1
n-ZLC0 → Π1

n-CA0, Σ1
n-ZLS0 → Π1

n-CA0, Σ1
0-ZLC0 → Π1

1-CA0 and Σ1
0-ZLS0 →

Π1
1-CA0.

5. Σ1
n+1-ZLC0, Σ1

n+1-ZLS0, Σ1
n+1-REF0 and Strong Σ1

n+1-DC0 are all equivalent .

6. Σ1
0-ZLC0, Σ1

0-ZLS0, Σ1
1-ZLC0, Σ1

1-ZLS0 and Π1
1-CA0 are all equivalent as are Σ1

2-
ZLC0, Σ1

2-ZLS0 and Π1
2-CA0.

Proof. 1. These implications are all immediate from the definitions.

2. Let ψ′(X,n) be the Σ0
1 formula defining X

′ as above. For Σ1
0-ZLS0 let Φ(A) =

(∀m ∈ A)ψ′(X,n). For Σ1
0-ZLC0, let Φ(C) be a Σ1

0 formula saying that ∀k(C [k] =
∅∨∃m((C [k] = {〈m, 1〉}∧ψ′(X,m))∨(C [k] = {〈m, 0〉}∧¬ψ′(X,m))). It is clear that
these formulas satisfy the hypotheses of Σ1

0-ZLS0 and Σ1
0-ZLC0, respectively. Let A

and C be, respectively, a set and class as in their conclusion. By the maximality of
A it is clear that A = X ′. By the maximality of C, for each m either 〈m, 1〉 ∈ ∪cC
(in which case m ∈ X ′) or 〈m, 0〉 ∈ ∪cC (in which case m /∈ X ′). Thus X ′ ≤T C
as required.

3. Let Φ(A) define a Σ1
n collection of sets satisfying the hypotheses of Σ1

n-ZLS0. De-
fine a Σ1

n collection of classes by a Ψ(C) equivalent to ∀k∃x(C [k] = {x} ∨ C [k] =
∅) & Φ(∪cC). By our assumptions about Φ, it is clear that Ψ satisfies the hypothe-
ses of Σ1

n-ZLC0. Thus we have a ⊆c-maximal class C satisfying Ψ. Note that ∪cC
exists by (2). It is then clear that ∪cC is a maximal set satisfying Φ as required.
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4. By (2) and (3), it suffi ces to prove that Σ1
n+1-ZLS0 → Σ1

n+1-CA0 and Σ1
0-ZLS0 → Σ1

1-
CA0 in ACA0. Consider any Σ1

n+1 formula ∃XΨ(X, k) where Ψ is Π1
n. Let Φ(A)

be a formula saying that ∀k(A[k] is ∅ or the characteristic function of a set X such
that Ψ(X, k)). We can take Φ to be Σ1

n+1 and, if n = 0, even Π1
0 = Σ1

0. Clearly Φ
satisfies the hypotheses of Σ1

n+1-ZLS0 or even Σ1
0-ZLS0 when n = 0. Thus we have

a maximal A such that Φ(A) holds. By maximality, {k|∃XΨ(X, k)} = {k| 〈0, 1〉 ∈
A[k] ∨ 〈0, 0〉 ∈ A[k]} which is the set required by Σ1

n+1-CA0.

5. First note that, by Simpson [2009, VII.7.4] (and our remark above that even Σ1
0-

AC0 →ACA0), Σ1
n+1-REF0 ⇔ Strong Σ1

n+1-DC0. Thus, by (3) it suffi ces to prove
that Σ1

n+1-ZLS0 → Σ1
n+1-REF0 → Σ1

n+1-ZLC0.

To prove the first implication, assume Σ1
n+1-ZLS0. Given a set Z, we want to

construct a Σ1
n+1-submodel containing Z. We list all the Σ1

n+1 formulas Φi =
∃X0Θi(X0, X1, . . . , Xfi) with Θi Π1

n which have free variables X1, . . . , Xfi . We then
interpret every number k as a pair 〈ki,kσ〉 where σ is a sequence of numbers of length
fi so as include all such pairs in some standard numbering scheme. We now define
a Σ1

n+1 collection of sets by a formula Φ(A) which says that A[0] is the characteristic
function of Z and ∀k > 0(A[k] = ∅ ∨ [A[k] is the characteristic function of a set
and for each l < fi, A[σ(l)] is the characteristic function of a set which we call Zl+1
and Θ(Z0, Z1, . . . , Zfi)]). Given Definition 3.4 and the consequence noted there, it
is easy to see that Φ(A) satisfies the hypotheses of Σ1

n+1-ZLS0 and so there is a
maximal set B such that Φ(B).

We now verify that if X is such that X [0] = Z = B[0] and the X [i] i > 0 are
the sets whose characteristic functions are the nonempty B[j] with j > 1, then
M(X) is a Σ1

n+1-submodel containing Z as required. Consider any Σ1
n+1 formula

∃X0Θ(X0, X1, . . . , Xj) and sets El, 1 ≤ l ≤ j inM(X). Let k be the pair 〈ki,kσ〉
where ki is the code for this Σ1

n+1 formula and σ is the sequence with B
σ(l) the

characteristic function of El for 1 ≤ l ≤ j. If B[k] is the characteristic function
of a set Z0 then Θ(Z0, E1, . . . , Ej) holds and Z0 ∈ M(X) as required. Otherwise
B[k] = ∅. However, if there were a witness Z0 such that Θ(Z0, E1, . . . , Ej), we could
enlarge B by making B[k] the characteristic function of Z0. This larger set would
then also satisfy Φ for a contradiction.

For the second implication assume Σ1
n+1-REF0 and consider any Σ1

n+1 property of
classes Φ(C) satisfying the hypotheses of Σ1

n+1-ZLC0. By this hypothesis we have a
class C0 such that Φ(C0). By Σ1

n+1-REF0 we have an X which is a Σ1
n+1-submodel

withM(X) containing C0 and any parameters in Φ and soM(X) � Φ(C0). Using
X andM(X) we now construct the required maximal class C for Φ by recursion.
Assume by induction that we have constructed Ck ∈ M(X) such that M(X) �
Φ(Ck). As M(X) is a Σ1

n+1 submodel there is a class D ⊇c Ck such that Φ(D)
and k ∈ ∪cD if and only if there is one inM(X) such thatM(X) � Φ(D). The
existence of such a D ∈ M(X) is arithmetic in X, indeed recursive in a fixed
number of jumps depending only on the complexity of Φ. If there is one, we can
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find one recursively in the same number of jumps of X and let it be Ck+1. If
there is no such D then we let Ck+1 = Ck and continue the recursion. So we have
constructed the sequence 〈Ck〉 such that ∀k(Φ(Ck) and Ck ⊆c Ck+1). Now consider
C = ∪sc 〈Ck〉. By the hypotheses of Σ1

n+1-ZLC0, Φ(C). We claim that C is maximal
for Φ as required by Σ1

n+1-ZLC0. If not, there would be a D ⊇c C such that Φ(D)
but (∪cD)\(∪cC) 6= ∅. Say k ∈ (∪cD)\(∪cC) and consider stage k + 1 of our
construction. D would have been a witness to the question asked at that stage and
so we would have extended Ck to some Ck+1 such that k ∈ ∪cCk+1 ⊆ ∪cC for the
desired contradiction.

6. All of these equivalences follow from (2), (4), (5) and the fact that Π1
k-CA0 →Strong

Σ1
k-DC0 for k = 1, 2 (Simpson [2009,VII.6.9]).

We note that none of the Σ1
n+3-ZLS0 or Σ1

n+3-ZLC0 are provable even in full second
order arithmetic, Z2, because, as Simpson [2009, VII.6.3] points out, Feferman and Levy
(see Levy [1970, Theorem 8]) have constructed a model of Z2 in which even Σ1

3-AC0 fails.

In the other direction, many applications of Zorn’s Lemma in the reverse mathematics
literature are done in much weaker systems, often in ACA0 or WKL0. These all rely on
special conditions for the collections defined by the Φ(A) being considered. A common
one, for example, is that it be of finite character. The version of Zorn’s Lemma for such
collections is equivalent to ACA0. This result and many others about weak versions of
Zorn’s Lemma and the Axiom of Choice can be found, for example, in Dzhafarov and
Mummert [2012] and [2013].

4 Basis Theorems and Recursion Theoretic Bounds
for ZL

In this section we provide uniform recursion theoretic bounds on the complexity of the
maximal sets and classes guaranteed by Σ1

k-ZLS0 and Σ1
k-ZLC for k = 1, 2.

For each of k = 1, 2, given a Σ1
k Φ(A,Z) defining a collection of sets or classes as in

the hypotheses of Zorn’s Lemma one can find a maximal set or class as desired uniformly
recursively in the complete Π1

k(Z) set K1
k(Z).

Theorem 4.1 (Π1
k-CA0). For k = 1, 2 and a Φ(X) with parameter Z which represents a

Σ1
k collection satisfying the hypotheses of Σ1

k-ZLS0 or Σ1
k-ZLC0, we can find a maximal X

satisfying the conclusions of Σ1
k-ZLS0 or Σ1

k-ZLC0, respectively, such that X ≤T K1
k(Z)

with the index of the reduction given uniformly in that of Φ.

The key ingredient in each of the required constructions for this theorem is the uniform
version of the standard Σ1

k basis theorems.
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Theorem 4.2 (Π1
k-CA0). For a nonempty class of sets represented by a Σ1

k formula Φ
with parameter Z, we can find, uniformly in the index for Φ, an X such that Φ(X) with
the following properties:

1. For k = 1, K1
1(X) ≤T K1

1(Z) (and so X ≤T K1
1(Z)) with the indices of the

reductions given uniformly in that of Φ.

2. For k = 2, X is ∆1
2(Z) (and so X ≤T K1

2(Z)) with the indices of the required
formulas and reductions given uniformly in that of Φ.

There has been some uncertainty in the literature about the status of these basis
theorems and their reverse mathematical strength especially for k = 1. It was often
cited as an exercise in Chong and Yu [2015 Exercise 2.5.6] albeit without an explicit
mention of the uniformity condition. Chong told me that the intended proof was by
Gandy-Harrington forcing (personal communication). Indeed the basic application of
that construction easily proves the theorem with the uniformity being obvious. One
explicit construction using Gandy-Harrington forcing (that also does something more)
which can obviously be carried out in Π1

1-CA0 and obviously proves Theorem 4.1 for
k = 1 can be found in Harrington, Shore and Slaman [2017 Theorem 2.1]. A recent paper
proving the same result (with the uniformity) by a method more like Gandy’s original
proof is Calvert, Franklin and Turetsky [2022 Lemma 2.9]. They cite the theorem as
folklore. It was only while preparing a talk about an earlier version of this paper that I
found a much earlier proof in Π1

1-CA0 with the required simplicity property in Simpson’s
own book [1998 VII.2.12] albeit with other terminology and without mentioning the
uniformity that can be extracted from his previous constructions that make no use of
Gandy-Harrington forcing. So we now have several proofs of Theorem 4.1 for k = 1 in
Π1
1-CA0.

The basic classical proof of the Σ1
2-Basis theorem (as in Moschovakis. [1980, 4E.5]

is a simple elementary application of the Novikov-Kondo-Addison Π1
1-Uniformization

Theorem. Simpson [1998, VII.6.7] proves it in Π1
1-CA0 as the Σ1

2-Uniformization Theorem
based on either his earlier proofs of the Kondo Π1

1-Uniformization Theorem or of the
Shoenfield. Absoluteness Theorem in Π1

1-CA0. The required uniformity follows perhaps
more directly from the second proof.

Now we can prove our recursion theoretically bounded versions of Σ1
k-ZLS0 and Σ1

k-
ZLC for k = 1, 2.

Proof of Theorem 4.1. Fix Φ as in the theorem. We begin with an X0 as given by the Σ1
k

basis theorem applied to Φ and construct an increasing sequenceXm recursively inK1
k(Z)

with the properties (and indices) specified in the basis theorems such that ∀mΦ(Xm). At
stepm+1 askK1

k if there is a Y ⊇ Xm such thatm ∈ Y (for Σ1
k-ZLS0) or a Y ⊇c Xn with

m ∈ ∪cY (for Σ1
k-ZLC0) and Φ(Y ). If so choose the Y given by the basis theorem withXm

as an additional parameter. Then set Xm+1 = Y . (Note that if Xm is simple relative to Z
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in the sense of the basis theorem then so is Y and the indices are all computed recursively
in K1

k by uniformity: For k = 1 and Xm as given by an application of Theorem 4.2(1)
the question is if there is a Y satisfying a Σ1

1(Xm) property. As K1
1(Xm) =T K

1
1(Z) by

induction, the answer is recursive in K1
1(Z). If the answer is yes then that basis theorem

applied (relative to Xm) gives a Y with K1
1(Y ) =T K1

1(Xm) =T K1
1(Z) uniformly. For

k = 2 and an Xm as given by an application of Theorem 4.2(2), the question is if there
is a Y satisfying a property which is a conjunction of a formula arithmetic in Xm and
one that is Σ1

2. Now formulas arithmetic in ∆1
2(Z) sets are ∆1

2(Z) by the usual quantifier
manipulation rules since Σ1

2-AC0 follows from Π1
2-CA0. Thus the whole property is Σ1

2(Z)
and whether there is such a Y is recursive in K1

2(Z). If there is one, Theorem 4.2(2),
supplies one which is itself ∆1

2(Z) uniformly.) Otherwise, let Xm+1 = Xm. Let X = ∪Xm

for Σ1
k-ZLS0 and X = ∪sc 〈Xm〉 for Σ1

k-ZLC0. This X is clearly recursive in K1
k(Z). (For

k = 1, we have decided if m ∈ X by step m+ 1 of the construction. For k = 2, we have
decided all of X [〈m,j〉] for every j by stage m+ 1 of the construction.)

By the assumptions of Σ1
k-ZLS0 and Σ1

k-ZLC0, Φ(X). For any m, if m /∈ Xm+1

(m /∈ ∪cXm+1) then no Y ⊇ Xm (Y ⊇c Xm) (and so none properly extending X) can
satisfy Φ. Thus X is maximal as required.

As we mentioned above, Theorem 2.6 was first proved in Π1
1-CA0 by the use of the

Σ1
1 basis theorem. That proof required the uniform version. Another maximality result
in matching theory proved in Π1

1-CA0 using a simpler version of this basis theorem is
in Aharoni, Magidor and Shore [1992], hereafter AMS, in the “Proof of Lemma 3.2 in
Π1
1-CA0" on p. 276. We will see an application that uses the uniformity in the Σ1

2 case
in the proof of Theorem 5.7 and in Remark 6.7 where we point to one for the Σ1

1 case as
well.

5 Representable and Critical Families

We now turn to a new reverse mathematical analysis of other combinatorial applications
of Zorn’s Lemma with a couple of unusual features. We essentially follow Podewski and
Steffens [1976] which we denote by PS.

Definition 5.1. A family is a function F with domain some I ⊆ N such that ∀i ∈
I(∅ 6= F (i) ⊆ N). A subfamily of F is the family F � S for some S ⊆ I. We may abuse
notation and denote F � S by S when the intended F is clear from context. A family
F is representable if there is an injective choice function, i.e. a one-one f : I → N such
that ∀i ∈ I(f(i) ∈ F (i)). Any such f is a representation of F . Note that as being a
representation is arithmetic, S ⊆ I being a representable subfamily (rsf) is Σ1

1 (in F ).
Hereafter in this section, F will always denote a family.

Theorem 5.2 (MRSF). (PS, Corollary 9): Every countable family has a maximal rep-
resentable subfamily (mrsf).
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AMS proves (Theorem 4.26) that Theorem 5.2 implies Π1
1-CA0 (by a much more

circuitous route than we do in Theorem 5.18 below). It then should look like a candidate
for an application of the Kleene-Gandy basis theorem (or now Σ1

1-ZLS0) to prove the
theorem in Π1

1-CA0 and complete the equivalence. After all, being representable is a Σ1
1

property. The problem is that representability is not closed under unions of chains (see
the comments after Theorem 5.7). So how does PS prove MRSF? Well, they do prove it
by Zorn’s Lemma but by applying it to another property of subfamilies.

Definition 5.3. A family F is critical if it is representable and for every representation
f , rg(f) = ∪rg(F ). Note that F being critical is a Σ1

2 (indeed a Σ1
1 ∧ Π1

1) property and
G = ∅ is always a csf.

Theorem 5.4 (MCSF). (PS) Every family has a maximal critical subfamily (mcsf).
Indeed, every critical subfamily (csf) can be extended to a mcsf.

PS (Lemma 1) proves that critical subfamilies are closed under unions and so the
theorem follows by Zorn’s Lemma. It is clear that being a critical family is a Σ1

2 property
and so we can apply Σ1

2-ZLS0 to get a mcsf as long as we can prove closure under countable
unions in Π1

2-CA0. Their proof of closure is by transfinite recursion. As we only need the
countable case we can simplify their proof and see that it works in Π1

2-CA0.

Theorem 5.5 (Π1
2-CA0). Every family has a mcsf. Indeed, every csf can be extended to

a mcsf.

Proof. Given a csf G, we show that being a csf extending G is closed under increasing
countable unions. Let 〈Ai〉 be an increasing sequence of subsets of N such that each
is a csf of a given family F with A0 = G. By Σ1

1-AC0 we have 〈fi〉 with each fi a
representation of Ai. We now construct a representation f of A = ∪Ai Let f(k) = fi(k)
where i is least such that k ∈ Ai. We claim f � Ai is a representation of Ai for every i
and so for A. If not, let k + 1 be the least counterexample, i.e. for some l ∈ Ak+1\Ak,
fk+1(l) = fk(m) for some m ∈ Ak. Now fk+1 � Ak is a representation of Ak and so by
criticality its range is ∪{F (i)|i ∈ Ak} which contains fk(m) = fk+1(l) contradicting the
fact that fk+1 is a representation of Ak+1. Now argue that A is critical. If f represents
A then f � Ai represents Ai. By the criticality of Ai, rg(f � Ai) = ∪rg(F � Ai) and so,
as the Ai are nested, rg(f) = ∪rg(F �A). We are now done by Σ1

2-ZLS0.

It might be tempting to think that one could weaken the theory needed in Theorem
5.5 by exploiting the fact that the definition of critical family is only Σ1

1∧Π1
1 rather than

Σ1
2. No such improvement is possible in general, however, as it is easy to see that ZLS0
for even just Π1

1 formulas Φ already implies Σ1
2-CA0 and so Σ1

2-ZLS0.

The route from this theorem to the proof of the one for representable subfamilies
(Theorem 5.2) is, however, nontrivial. PS uses several other notions and at the end
provides a construction by recursion applying MCSF at each step. This argument uses
an iteration of applications of MCSF and so of Π1

2-CA0 in a way that goes even beyond
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Π1
2-CA0. Note that our proof even in this stronger theory uses the uniform complexity
bounded version of Σ1

2-ZLS0 of Theorem 4.1.

Definition 5.6 (Π1
n-CA

+
0 ). For n ≥ 1, Π1

n-CA
+
0 is the theory containing RCA0 and the

axioms asserting that for every Z there is a set X such that X [0] = Z and for every m,
X [m+1] is K1

n(X [m]), the complete Π1
n set in X

[m].

Theorem 5.7 (Π1
2-CA

+
0 ). Every family has a maximal representable subfamily.

As in PS, it suffi ces to prove the next two Lemmas. The first is elementary and
provable in RCA0. The second uses Π1

2-CA
+
0 and Theorem 4.1. PS (p. 44, Remark)

shows that not every representable subfamily can be extended to a mrsf by providing an
example in a countable family. That example also shows that representable subfamilies
are not closed under increasing unions of countable chains.

Notation 5.8. If F is a family, j ∈ dom(F ), a ∈ F (j) and for no k 6= j does F (k) = {a},
then F (j, a) is the family with domain dom(F )\{j} defined by F (j, a)(i) = F (i)\{a}. For
G a subfamily of F , FG is the family with domain {i ∈ dom(F )|F (i) " ∪rg(G)} defined
by FG(i) = F (i)\ ∪ rg(G)}.

Lemma 5.9. If G is a mcsf of F and FG is representable, then G ∪ dom(FG) is a mrsf
of F .

Proof. Let g and h represent G and FG, respectively. First note that, by the definition
of FG, no h(i) ∈ ∪rgG and, by the criticality of G, dom(G) ∩ dom(FG) = ∅. Thus
g ∪ h represents G ∪ FG. If there were an i ∈ dom(F )\(dom(G) ∪ dom(FG)) and an
h representing dom(G) ∪ dom(FG) ∪ {i} then h(i) /∈ ∪rg(G) as, by the criticality of G,
h[dom(G)] = ∪rg(G). Then, by the definition of FG, i ∈ dom(FG) for a contradiction.

Lemma 5.10. If G is a mcsf of F then FG is representable.

Proof. We construct a sequence of families F l with domains contained in that of FG = F 0

and compatible representations for subfamilies by a recursion up to some k ≤ ω so that
their domains eventually cover all of dom(FG). Each step of the recursion uses the
operations of Notation 5.8 to get the next family. The first operation produces a family
H l uniformly recursive in F l. The second operation is applied to H l and a mcsf of H l to
get a family uniformly recursive in Π1

2(F
l) by Theorem 4.1. Choosing the representations

being constructed will be simpler (recursive or recursive in the complete Π1
1 set of what

we have already constructed by Theorem 4.2(1)). Thus the whole construction will be
recursive in the set supplied by Π1

2-CA
+
0 applied to F ⊕ FG.

Given F l, l ≥ 0, if F l = ∅ we terminate the recursion and set k = l. Otherwise, we
let il = µn(n ∈ dom(F l)), choose any al ∈ F l(il), set H l = F l(il, al) and choose Gl+1 as
a mcsf of H l with a representation gl+1. We now let F l+1 = H l

Gl+1
. If we never reach an l

with F l = ∅, we set k = ω. In any case we want to show that ∪{gl|l < k} ∪ {〈il, al〉 |l < k}
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is the desired representation of FG. We want to verify by induction that for, l < k, H l is
a family as defined above; dom(H l) = dom(F l)\{il}; dom(F l+1) = dom(H l)\dom(Gl+1)
and that making the choices (al and gl+1) as specified for il and dom(Gl+1) maintains
∪{gl|l < k} ∪ {〈il, al〉 |l < k} as an injective function whose domain is that of FG at the
end. These verifications follow from a series of lemmas in PS that we now describe to
finish this proof.

We have to eliminate the explicit use of some named classes of functions or sets (e.g.
IA(F ) the collection of representations of F and GF the collection of critical subfamilies
of F ) that may not exist in all models of Π1

2-CA0. This amounts only in notational
variations such as IA(F ) 6= ∅ means that F is representable and noticing that other sets
that we do define provably exist in Π1

2-CA0 (e.g. ker(F ) is Σ1
2). We state the relevant

Lemmas from PS in a suitable terminology and point out why the proofs there work in
(mostly much less than) Π1

2-CA0.

Definition 5.11. The kernel of F, ker(F ) = {i|∃G(G is a csf of F and i ∈ dom(G)}.
(In PS ker(F ) is defined as ∪GF .)

Lemma 5.12 (PS Lemma 2). If F is representable then {n|∀f ′(f ′ represents F →
∃i(f ′(i) = n))} = {n|∃G(G is a csf of F and ∃i(i ∈ dom(G) and n ∈ F (i)}.

The sets in the statement of the Lemma exist by Π1
2-CA0. The proof of equality in

PS which is really all that is needed only uses a recursion with arithmetical steps and
more elementary procedures. They next give the property of families that allows us to
continue the induction for Lemma 5.10 without loosing any elements of dom(F ) as we
define the F l and gl

Definition 5.13. F is a K-family if there is no i ∈ dom(F ) and G a csf of F such that
i /∈ dom(G) but F (i) ⊆ ∪rg(G).

PS then states a few Lemmas without proof about K-families that can easily be
verified from the definitions.

Lemma 5.14 (PS Lemma 3). If ker(F ) = ∅ then F is a K-family.

Lemma 5.15 (PS Lemma 4). If G is a mcsf of F , then ker(FG) = ∅ and so F is a
K-family.

Lemma 5.16 (PS Lemma 5). If G is a mcsf of a K-family F , then dom(FG) =
dom(F )\dom(G).

This last Lemma lets us verify that we don’t miss elements of dom(F ) in the con-
struction for Lemma 5.10 when we define F l+1. The final lemma from PS needed to carry
out the verifications for Lemma 5.10 when we define H l is the following one.
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Lemma 5.17 (PS Lemma 6). If ker(F ) = ∅, j ∈ dom(F ) and a ∈ F (j), then F (j, a) is
a K-family.

The proof of this Lemma in PS relies Lemma 5.12 (Lemma 2 of PS) and is otherwise
elementary. This completes the proof of Lemma 5.10 and so Theorem 5.7 in Π1

2-CA
+
0 .

If we are looking for reversals for Theorems 5.7 or 5.5, MRSF cannot imply even
∆1
2-CA0 even over Π1

1-CA0 as its quantifier complexity (Π
1
3) is too low (Montalbán and

Shore [2012, §6 and especially 6.2]). On the other hand, MCSF is a Π1
4 sentence so could,

in theory, imply and hence be equivalent to Π1
2-CA0 even over RCA0.

We know of very few theorems that follow from, and seem to need, Π1
2-CA0. These

include some about determinacy and almost none that also imply it. One older equiv-
alence involving topological spaces is given by Mummert and Simpson [2005] but their
proof of Π1

2-CA0 is only over Π1
1-CA0 which is needed to even make sense of the notions

involved. A recent one about minimal bad arrays in bqo theory by Freund, Phakhamov
and Solda [2024] is done over ATR0 and is known to be weak over ACA0 (Freund, Mar-
cone, Pakhomov and Solda [ta]). So we know of no equivalences to Π1

2-CA0 over RCA0.
MCSF seems like a good candidate.

We have two partial results in terms of reversals. Both principles imply Π1
1-CA0 over

RCA0.

Theorem 5.18. Each of MRSF and MCSF imply Π1
1-CA0 over RCA0.

As an ingredient for the proof of Theorem 5.18, we prove ACA0

Lemma 5.19. Each of MRSF and MCSF imply ACA0 over RCA0.

Proof. Define a family F with domain {〈n, i〉 |n ∈ N ∧ i ∈ {0, 1}} by F (〈n, 0〉) = {〈n〉}
and F (〈n, 1〉) = {〈n〉} ∪ {〈n, s〉 |n is enumerated in a one-one enumeration of 0′ at stage
s}. Let S be a mrsf or a mcsf for F with a representing function f . Clearly, for n /∈ 0′,
not both of 〈n, 0〉 and 〈n, 1〉 can be in S (as f is injective). If n ∈ 0′ and not both 〈n, 0〉
and 〈n, 1〉 are in S then we could properly extend S to S ′ by making sure both are in
S ′. We could then replace f by g where g(〈n, 0〉) = 〈n〉 and g(〈n, 1〉) = 〈n, s〉 for the
required s and other wise g(x) = f(x). This would show that S ′ is representable and also
critical if S were. Thus, if S is maximal, n ∈ 0′ ⇔ 〈n, 0〉 and 〈n, 1〉 are in S. So 0′ ≤T S
as required.

We now define a kind of coding of trees as families and some Lemmas about it.

Notation 5.20. Given a tree T define a family FT with domain T : FT (∅) = {σ ∈ T ||σ| =
1}; for ∅ 6= σ ∈ T , F (σ) = {σ} ∪ {τ ∈ T |∃n(τ = σˆn)}.

Lemma 5.21. For any tree T , [T ] 6= ∅ ⇔ FT is representable.
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Proof. If f represents FT then {fn(∅)|n ∈ N} ∈ [T ]. If X ∈ [T ] and σ ∈ X we let σ+ be
the immediate successor of σ in X. We define a representing function f by letting f(σ)
be σ+ for σ ∈ X and f(σ) = σ otherwise.

Lemma 5.22. If [T ] = ∅ the mcsfs of FT are precisely the T − {σ} for σ ∈ T .

Proof. First consider any σ ∈ T . We can define a representing function f for T − {σ}
by f(ρ) = σ � |ρ|+ 1 for ρ $ σ and f(ρ) = ρ for ρ " σ. This function is clearly injective
and total. We next claim that T − {σ} is critical. So suppose that f represents it. If
f(ρ) 6= ρ for some ρ " σ, then as f � T ρ where T ρ = {τ ∈ T |τ ⊇ ρ} (properly relabelled
so as to identify ρ with ∅) is a representing function for T ρ. Lemma 5.21 applied to
T ρ provides a branch in T ρ and so one in T contradicting our hypothesis. If σ = ∅
we are done as for every ρ 6= ∅ on T , f(ρ) = ρ and these are precisely the elements of
T − {∅} = ∪rg(FT � (T − {∅}). If σ 6= ∅, consider {fn(∅)|n ∈ N}. As in the proof of
Lemma 5.21, this is a path in T starting at ∅ as long as it is defined. As [T ] = ∅ by
hypothesis, this path must reach σ. So we have determined the values of f(ρ) for ρ $ σ
in addition to the previously determined f(ρ) = ρ for ρ " σ. Together they include all of
T − {σ} which is then critical. As by Lemma 5.21 FT is not representable, the T − {σ}
are mcsfs and so the T − {σ} for σ ∈ T are precisely its mcsfs.

Lemma 5.23. If [T ] 6= ∅ no T − {σ} for σ ∈ T is critical.

Proof. Suppose we have an X ∈ [T ] and σ ∈ T . We will define a representation f of
T − {σ} omitting a node from T − {∅} = ∪rg(F � (T − {σ})) from its range for a
contradiction. If σ ∈ X we define f as follows: For τ ∈ X − {σ}, f(τ) = τ+. For τ /∈ X
(so τ 6= ∅), f(τ) = τ . Now σ+ /∈ rg(f) as desired. If σ /∈ X (so σ 6= ∅), we define f
as follows: For τ $ σ, f(τ) = τ+ (⊆ σ). For σ $ τ , f(τ) = τ (which is not in X). For
τ ∈ X and τ " σ, f(τ) = τ+. Otherwise, f(τ) = τ . This f represents T −{σ} but omits
the least τ ∈ X with τ " σ.

Proof of Theorem 5.18. By Lemma 5.19 we may assume ACA0. So we have a list Te of
all the recursive trees. Let F be the disjoint union of the FTe.. Suppose S is a mrsf of F .
By Lemma 5.21, [Te] = ∅ if and only if S contains the copy of FTe in F , an arithmetic
property of S. As the question of which [Te] = ∅ is complete Π1

1, we have Π1
1-CA0. If S

is a mcsf of F, then Lemmas 5.22 and 5.23 show that [Te] = ∅ if and only if the part of
S in the copy of FTe in F is one of the (copies of) Te − {σ} for σ ∈ Te. As this is also an
arithmetic question, we again derive Π1

1-CA0.

6 Matchings

An important topic in combinatorics related to families and representations with inter-
esting reverse mathematical problems similar to those in the last section is matchings
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in graphs. When restricted to bipartite graphs as studied in AMS, this topic is espe-
cially close to §5. As we were preparing a conference talk about our work in this paper,
we found Flood, Jura, Levin and Markkanen [2022] (hereafter FJLM), that has many
reverse mathematical related results about matchings in graphs. Their work includes
several principles about matchings in arbitrary graphs with reverse mathematical prop-
erties similar the ones we have discussed above. We omit most of the definitions but
attempt to give a view of the approaches and results there that are parallel to ours in §5.
In addition they have an extensive reverse mathematical analysis of restrictions of the
results of Steffens [1976] to locally finite or bounded graphs. We expect that a similar
analysis can be done for the work on families considered in §5.

Steffens [1976] deals with matchings in arbitrary graphs. Its final result (Corollary 8)
is what FJLM calls MM.

Definition 6.1. A matching in a graph G = (V,E) is a set M of edges in G such that
no two edges in M have a vertex in common. A perfect matching of V ′ ⊆ V is a set M ′

of edges of G such that every vertex in V ′ is in exactly one edge in M ′.

Notation 6.2. MM, the Maximal Matching Theorem is the assertion that for each
countable graph G = (V,E) there is a maximal V ′ ⊆ V that has a perfect matching.

One of Steffens [1997] basic results (Lemma 3) which is crucial in his proof of MM as
well as a characterization result about graphs with perfect matchings, is proved by a use
of Zorn’s Lemma. It can be proved directly in Π1

2-CA0 using Σ1
2-ZLS0:

Theorem 6.3 (Π1
2-CA0). MISG: Every graph has a maximal independent subgraph.

Proof. Being an independent subgraph is a Σ1
2 property so just follow Steffens’s proof of

closure under unions (for the countable case) and then apply Σ1
2- ZLS0.

FJLM does not state or prove MISG but derives MM (Theorem 4.12) by a different
argument. It first proves inΠ1

2-CA0 (Theorem 4.7) a maximality principle for independent
matchings (MIM). That proof involves both a very clever use of Σ1

2 Reflection and a couple
of applications of absoluteness. It then proves (Theorem 8) PM a kind of characterization
theorem for the existence of perfect matchings. That proof uses something called Π1

2-
CA+0 . (This principle is not precisely defined but Definition 5.6 is what was intended
(personal communication).) It includes an iterated use of MIM similar to the proof of
MRSF fromMCSF in §5. It also shows that MM implies both MIM and PM (Propositions
1.5 and 4.14). Then it shows that MIM implies Π1

1-CA0 (over RCA0) but that MM and
so neither MIM nor PM implies Π1

2-CA0 because MM is a Π1
3 statement.

We point out that MISG (proved above in Π1
2-CA0 directly by Σ1

2-ZLS) is essentially
equivalent to MIM and that MM even restricted to bipartite graphs easily implies MSRF
(over RCA0) which is known to imply Π1

1-CA0 by AMS (Theorem 4.26) and is also
reproved more simply in Theorem 5.18 above. Moreover, as MM is Π1

3 it cannot imply
even ∆1

2-CA0 by using Montalbán and Shore [2012] as we did for MSRF after Lemma
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5.17. Indeed, all the principles studied in FJLM are consequences of MM and so none of
them can imply ∆1

2-CA0.

Lemma 6.4. A subgraph G′ of G is independent if and only if there is an independent
perfect matching of G′.

This is Lemma 2 of Steffens [1977] where the proof is left to the reader. FJLM
(Lemma 4.6) notes that is provable in RCA0.

Proposition 6.5 (RCA0). MISG↔MIM. In fact, every independent perfect matching of
a misg is a mim and the subgraph specified by the vertices of any mim is an misg.

Proof. Given a graph G first consider any misg G′ with a perfect matching M ′ indepen-
dent in G. We claim that M ′ is a mim. If not, there is an independent matching M ′′

with V (M ′′) ⊃ V (M ′). Then by Lemma 6.4, the subgraph G′′ with vertices V (M ′′) is
independent in G, contradicting the maximality of G′. For the other direction, suppose
thatM ′ is a mim in G. Again by Lemma 6.4, the subgraph G′ with vertices those ofM ′ is
independent. If there were an independent subgraph G′′ ⊃ G′ then it has an independent
perfect matching which would contradict the maximality of M .

Proposition 6.6 (RCA0). MM for bipartite graphs→MSRF.

Proof. Given a family F for which we can assume wlog that ∪rgF ∩ I = ∅, consider
the associated bipartite graph G with vertices divided into the sides I and ∪rgF and
edges {(i, x)|x ∈ F (i)}. Let V ′ be as in MM and M a perfect matching of V ′. Let
S = V ′ ∩ I. Clearly, the matching M gives a representation f of S. Assume, for the sake
of a contradiction, that S is not a mrsf. Then, there is an i0 ∈ I\S and a representation
g of S ∪ {i0}. We now show that V ′ is not maximal for a contradiction. If g(i0) /∈ rg(f),
then we can add the edge (i0, g(i0)) toM to get a perfect matching of V ′∪{i0, g(i0)} = V ′

0

as desired. If not, g(i0) = f(i1) for some i1 ∈ S. If g(i1) /∈ rg(f), we can get a perfect
matching of V ′

1 = V ′
0 ∪{g(i1)} by matching i0 with f(i1) and i1 with g(i1). Otherwise, we

continue the recursion to get f(i2) = g(i1) and check to see if g(i2) /∈ rg(f). If so, we can
again define a perfect matching of V ′

0 ∪ {g(i2)} matching i2 with g(i2). If not, we have i3
with g(i2) = f(i3). We continue this recursive procedure until we reach an ik such that
g(ik) /∈ rg(f) and so the desired extension of V ′ or we define ij for every j. In this last
case, we can define the desired perfect matching of V ′

0 ⊃ V ′ by matching ij with f(ij+1)
for j ≥ 0.

Remark 6.7. We also want to point out a lacuna in the proof in FJLM of PM from
Π1
2-CA

+
0 (Theorems 4.8) that can be remedied by using Theorem 4.1 as we did in the

proof of Lemma 5.10. On its own Π1
2-CA

+
0 is not enough to do arbitrary recursions finding

and using some set whose existence is guaranteed by Π1
2-CA0 to produce new sets at each

step. It needs an argument that shows that each set constructed is uniformly recursive in
some (truly finite) iteration of taking the complete Π1

2 set relative to the set constructed
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at the previous stage of the recursion. We do such a recursion in Π1
2-CA

+
0 using a basis

theorem to get a bound on complexity of a witness in the proof of Theorem 5.7. One can
see that something is need by looking at the naive “proof" of Σ1

n-ZLS using a recursion
where each step is guaranteed to exist even in RCA0 (and induction). Start with any C0
satisfying Φ by assumption. At step i + 1 consider the set Ai which is {1} if there is a
C ⊇ Ci such that i ∈ C and {0} otherwise. This set exists and then let Ci+1 be such a set
if Ai = {1} and Ci if Ai = {0}. This sequence and so its union would then be “proven"
to exist but this cannot be proven even in Z2 for n > 2 as mentioned above after the
proof of Theorem 3.5. Of course, it is easy to see that, for every n, Z2 ` Π1

n-CA
+
0 .

It seems that a similar lacuna and correction using theΣ1
1-basis theorem apply to the proof

of Finite Path PM from Π1
1-CA

+
0 suggested for Corollary 6.2 of FJLM. Alternatively, for

both results, one can go through the relevant proofs of Theorems VII.6.9 and VII.7.4 of
Simpson [2009] used in FJLM to verify that the needed Turing reductions and uniformities
hold.

7 Questions

The most appealing question about MCSF and MRSF is the possible reversal to Π1
2-CA0:

Question 7.1. Does MCSF→ Π1
2-CA0? (Over RCA0 but by Theorem 5.18 we can

assume Π1
1-CA0.)

As we mentioned above, MRSF9 ∆1
2-CA0. So if one could prove the weaker result

that MCSF→ ∆1
2-CA0, that would suffi ce to show that MRSF9MCSF. Thus, it is worth

considering the weaker result.

Question 7.2. Does MCSF→ ∆1
2-CA0? (Over RCA0 but by Theorem 5.18 we can

assume Π1
1-CA0)?

As for the status of MRSF itself the main question is what is suffi cient to prove it?

Question 7.3. Does Π1
1-CA0 → MRSF (and so is equivalent to it)?

If not, MRSF would be strictly above Π1
1-CA0 but, as above, it cannot imply even

∆1
2-CA0. Thus such a result would provide an example of an an interesting phenomena.

Clearly more can be asked about matchings in general graphs and the relationships
among various principles in FJLM and their extensive work on the reverse mathematical
properties of those principles. Many interesting questions are explicitly raised in FJLM.
In addition, we can now add questions about the relationships between the principles
studied there and here in §5.

Question 7.4. What reverse mathematical relations (other than Proposition 6.6) hold
between MRSF, MCSF and each of MIM (MSIG), MM and PM?
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