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1. Introduction

Natural sets that can be enumerated by a computable function (the recursively
enumerable or r. e. sets) always seem to be either actually computable (recursive)
or of the same complexity (with respect to Turing computability) as the Halting
Problem, the complete r. e. set K. The obvious question, first posed in Post
[1944] and since then called Post’s Problem is then just whether there are r. e.
sets which are neither computable nor complete, i. e., neither recursive nor of the
same Turing degree as K?

Let R be the r. e. degrees, i. e., the r. e. sets modulo the equivalence relation
of equicomputable with the partial order induced by Turing computability. This
structure is a partial order (indeed, an uppersemilattice or usl) with least element
0, the degree (equivalence class) of the computable sets, and greatest element 1
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or 0′, the degree of K. Post’s problem then asks if there are any other elements
of R.

The (positive) solution of Post’s problem by Friedberg [1957] and Muchnik
[1956] was followed by various algebraic or order theoretic results that were inter-
preted as saying that the structure R was in some way well behaved:

Theorem 1.1. (Embedding theorem; Muchnik [1958], Sacks [1963]) Every count-
able partial ordering or even uppersemilattice can be embedded into R.

Theorem 1.2. (Sacks Splitting Theorem [1963b]) For every nonrecursive r. e.
degree a there are r. e. degrees b, c < a such that b ∨ c = a.

Theorem 1.3. (Sacks Density Theorem [1964]) For every pair of nonrecursive r.
e. degrees a < b there is an r. e. degree c such that a < c < b.

These results led Shoenfield in 1963 to formulate the view that the structure
was “nice” as the sweeping conjecture that the r. e. degrees, R, are a “dense” (or
more formally, a countably saturated) usl with least and greatest elements:

Conjecture 1.4. (Shoenfield [1965]) For every pair P ↪→ Q of finite usls with 0, 1
and every embedding f : P → R, there is an extension g of f to an embedding of
Q into R.

If true, this conjecture would have implied that the r. e. degrees had many of
the familiar properties of structures like dense linear orderings or atomless Boolean
algebras which satisfy the corresponding property for the appropriate family of
structures (linear orderings and Boolean algebras). Such structures are countably
categorical (i. e., there is a unique such countable structure up to isomorphism)
and so (if axiomatizable) have decidable theories. They are countably homoge-
neous (every structure preserving map from one finite subset to another can be
extended to an automorphism) and so there are continuum many automorphisms
of the structure. A positive solution to Shoenfield’s conjecture would thus have
constituted an essentially complete characterization of the structure of the r. e.
degrees.

The conjecture clearly implies, for example, that for any a,b > 0 there is a
c > 0 which is below both a and b. Thus the construction of a minimal pairs of
r. e. degrees, i. e., nonzero r. e. a and b such a ∧ b = 0, refuted the conjecture.
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Theorem 1.5. (Lachlan [1966], Yates [1966]): There are nonrecursive r. e. de-
grees a and b such that a ∧ b = 0, i. e., any degree recursive in both a and b is
recursive.

Many other counterexamples followed. Nonetheless, the paradigm suggested
by Shoenfield’s conjecture continued to hold sway. Even Sacks, who had conjec-
tured in [1963] that there were minimal pairs and thatR is not a lattice, continued
to conjecture in [1966] that the theory of R is decidable and that there is a strong
sense of homogeneity for the notion of r. e. in the sense that “for each (not neces-
sarily r. e.) degree d, the ordering of degrees r. e. in d and ≥ d is order isomorphic
to the r. e. degrees”.

Both of these conjectures eventually turned out to be false (Harrington and
Shelah [1982]; Shore [1982]) and in the intervening years there continued to be a
growing list of examples of various types of degrees and examples of complexity
in the structure:

• nonzero branching degrees (nontrivial infima) and nonbranching degrees
(Lachlan [1966]);

• cappable degrees (halves of minimal pairs) and noncappable degrees (Yates
[1966]);

• all distributive finite lattices (Lachlan, Lerman, Thomason; see Soare [1987,
p. 157]) and the two basic nondistributive lattices (Lachlan [1972]) are em-
beddable in R but not all finite lattices are so embeddable (Lachlan and
Soare [1980]);

• cuppable degrees , i. e., those which join (cup) to 0′ , (by the Sacks splitting
theorem) and noncuppable degrees (Lachlan [1966a]);

• degrees which split over every smaller degree (any low degree a, i. e., a′ = 0′,
by Robinson [1971], any low 2 degree a, i. e. a′′ = 0′′, by Shore and Slaman
[1990]) and degrees which do not (Lachlan [1975]);

• degrees over which 0′ splits (any low degree by Robinson [1971]) and degrees
over which it does not (Harrington; Jockusch and Shore [1983]);

• degrees which bound particular lattices (Lachlan [1972]) and degrees that
do not (Weinstein [1988], Downey [1990]);
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• . . .

These results, and the structure itself, were often viewed as chaotic and it was
not until some twenty year after the refutation of Shoenfield’s Conjecture that a
dramatically different view of the structure of the r. e. degrees (as well as of the
degrees as a whole) became the prevailing paradigm. This view starts from the
complexity of the structure but, rather than seeing this complexity as an obstacle
to characterizing the r. e. degrees, it suggests that a sufficiently strong proof of
complexity would completely characterize the structure.

Instead of expecting the structure to be decidable and homogeneous, for all
degrees to look the same and for there to be many automorphisms, one could
look to prove that the theory is as complicated as possible, there are as many
different types of degrees as possible (even that no two are alike but rather each
is definable) and that the structure has no automorphisms.

The first refutations of Sacks’s conjectures about decidability (Harrington and
Shelah [1982]) and homogeneity (Shore [1982]) introduced coding techniques into
the study of R. The first used definable representations of partial orderings and
the second embeddings of finitely generated partial lattices. It is the ultimate
expression of such coding procedures that is embodied in the conjecture that
crystallized the new paradigm of complexity as a route to characterization:

Conjecture 1.6. (Biinterpretability Conjecture for R, Harrington; Slaman and
Woodin; see Slaman [1991]): There is a definable coding of a standard model of
arithmetic, N0, in R for which the relation associating each r. e. degree d to the
(codes in the model of) sets of its degree is also definable.

(In the context of just the structureR, the definability of the relation described
is equivalent to the definability of a map taking each r. e. degree to an index
in N0 for a set of that degree or even to the definability of any one-one map
from R into N0. However, in the degrees as a whole and even in considering
relativizations of R, simple indices for sets of the degrees being considered are not
usually available and other codings for sets must be used. Thus the formulation
given is the appropriate one in general settings. This point will be discussed
further in §2.)

More than simply saying that the r. e. degrees are complicated, this conjecture
provides a strong characterization of the structure of R. If true it would give
complete information, for example, about definability in R (every degree in R
would be definable as would every relation on R which is definable in arithmetic)
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and automorphisms for R (none other than the identity would exist). (Clearly
if we can definably relate each degree to the sets of that degree, there can be
no automorphism of R. As for the definability claims, just use the definable
mapping from R to the standard model of arithmetic and translate the definitions
in arithmetic.)

2. Results and Relativizations

Cooper [1996] has announced the existence of an automorphism of R and hence
the failure of the biinterpretability conjecture (as we discuss further in §4). On
the other hand, the results we are reporting on here show how far we have come
in the direction of proving the biinterpretability conjecture. In a sense made
precise in the theorem below, our results are within two jumps of the conjecture.
The corollaries that we can derive about rigidity (Corollary 2.3) and definability
(Corollary 2.4) are then similar to those described from the full conjecture but
only “up to two jumps”:

Theorem 2.1. In R there is a definable copy N0 of the structure (N ,+×) and
a definable relation associating each degree a with codes for sets of degree a′′.
Indeed, there is a definable map f : R → N0 such that, for every a, f(a) is (the
code for) the least index of an r. e. set W for which W ′′ ∈ a′′.

The following notions help make the idea of “up to two jumps” precise.

Definition 2.2. An n-ary relation P (x1, . . . ,xn) on R is invariant under the
double jump if, wheneverR |=P (x1, . . . ,xn) and x′′1 ≡T y′′1 , . . . ,x

′′
n ≡T y′′n, it is also

true that R |=P (y1, . . . ,yn). P is invariant in R if whenever R |=P (x1, . . . ,xn)
and ϕ is an automorphism of R, R |=P (ϕ(x1), . . . , ϕ(xn)). P is definable in
arithmetic if the set of n-tuples of indices of r. e. sets whose degrees satisfy P is
definable in (N ,+,×).

The following corollaries about definability (except for the last one) all follow
immediately from the theorem by simply translating the appropriate definitions
in arithmetic (on indices) to ones in N0 and then using the definable function
f given by the theorem to associate the indices with the corresponding degrees.
(The first one, although also formally a consequence of the Theorem, is actually
an ingredient in its proof.)
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Corollary 2.3. Any relation on R which is invariant under the double jump is
invariant in R.

Corollary 2.4. Any relation on R which is definable in arithmetic and invariant
under the double jump is definable in R.

Corollary 2.5. For each k ≥ 2 the relation x ∼ky defined by x(k) ≡T y(k) is
definable in R.

Corollary 2.6. For each c r. e. in and above 0′′, the set of r. e. degrees a with
double jump c is definable in R.

Corollary 2.7. The jump classes Ln = {a| a(n+1) = 0(n+1)} (the lown+1degrees)

and Hn = {a| a(n) = 0(n+1)}, (the highn degrees) are definable in R for n ≥ 2.

Corollary 2.8. The jump class H1 = {a| a′ = 0′′} (the high degrees) is definable
in R.

Proof(of Corollary 2.8): It follows from the Robinson Jump Interpolation The-
orem [1971] that, for x r. e., x′ = 0′′ if and only if for every c r. e. in and above
0′′ there is a b < x with b′′ = c. As every such c is a′′ for some r. e. a by the
Sacks Jump Theorem [1963a], H1 = {x|(∀a)(∃b < x)(a ∼2b)} while this class is
clearly definable by Corollary 2.5. �

Before describing the proof of Theorem 2.1, we want to discuss the issue of
relativization. If z is an arbitrary degree, we denote the relativization of the r. e.
degrees, the structure of degrees r. e. in and above z, byRz. Now almost all results
about degrees relativize. Indeed all the structural results about R mentioned in
§1 are true in every structure Rz. On the other hand, we have learned from the
various refutations of such homogeneity principles for the degrees as a whole in
Shore [1979], [1982a] and the degrees below 0′ in Shore [1981] that it is precisely
the types of results that we have established that lead to counterexamples to
homogeneity. In the r. e. degrees, codings and embeddings of partial lattices were
used in Shore [1982] to show that, in general, R is not isomorphic to Rz. We can
relativize most, but not all, of our results to every Rz. Indeed, we can use the
relativizations that are possible to show thatR is not even elementarily equivalent
to Rz for most degrees z.
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All the technical lemmas discussed in §3 leading up to and including the proof
of Corollary 2.3 relativize and so then does the first version of Theorem 2.1 and
almost all the Corollaries mentioned. The notions of invariant and invariant under
the double jump are the same for Rz as for R. However, as we mentioned before,
the notion of a code for a set can no longer be viewed as simply an index. The
precise method used to interpret pairs of degrees as codes for sets in N0 or N z

0 is
prescribed by Theorem 3.7. Thus we must adjust our definition of “definable in
arithmetic” accordingly. We now allow free set variables in our formulas ψ and
the usual binary relation symbol ∈ for membership (i. e., the membership of a
degree coding a natural number in these coded sets). An n-ary relation P on
degrees is then said to be definable in arithmetic if there is such a formula ψ such
that P = {〈deg(X1), . . . , deg(Xn)〉|N |= ψ(X1, . . . , Xn)}. (Of course, this agrees
with the previous definition when all the sets Xi are r. e.)

Theorem 2.9. For every degree z, there is a definable copy N z
0 of the structure

(N ,+×) in Rzand a definable relation associating each degree a r. e. in and above
z with codes for sets of degree a′′.

Corollary 2.10. For every degree z, any relation on Rz which is invariant under
the double jump is invariant in Rz.

Corollary 2.11. For every degree z, any relation on Rz which is definable in
arithmetic (as redefined above) and invariant under the double jump is definable
in R.

Corollary 2.12. For every degree z, and for each k ≥ 2 the relation x ∼ky
defined by x(k) ≡T y(k) is definable in Rz.

Corollary 2.13. For every degree z, the jump classes Lz
n = {a| a(n+1) = z(n+1)}

and Hz
n = {a| a(n) = 0(n+1)} are definable in Rz for n ≥ 2.

Corollary 2.14. For every degree z, the jump class Hz
1 = {a| a′ = 0′′} is defin-

able in Rz.

On the other hand, the proofs of the last part of Theorem 2.1 and of Corollary
2.6 do not relativize. Indeed, any attempt at talking about maps from degrees
to indices or even any form of unique codes for sets of given degrees is doomed
to failure as any function definable in Rz (and so arithmetic) taking degrees d to
(unique) representatives of d would contradict arithmetic determinacy. The same
is true even if we try to associate degrees (r. e. in and above z) with integers (in
the standard model of arithmetic defined in Rz) up to any jump:
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Theorem 2.15. There are degrees z such that there is no k ∈ ω and no map f
from Rz to N z

0 , the isomorphic copy of N definable in Rz, which is definable in
Rzsuch that ak ≡T bk implies that f(a) = f(b).

Thus, in general, no analog of the second part of Theorem 2.1 is possible for
Rz. The proof again involves determinacy considerations. A similar argument
shows that the analog of Corollary 2.6 also fails:

Theorem 2.16. There are degrees z and c with c r. e. in and above z′′, such that
the set of degrees in Rz with double jump c is not definable in Rz.

We can, in fact, use the relativized results above that do hold to show that
for most z and w the structures Rz and Rw are not isomorphic and are not
elementarily equivalent to R.

Theorem 2.17. If z′′ 6≡ w′′ then Rz 6∼= Rw.

Theorem 2.18. If z′′ 6≡ 0′′ then Rz 6≡ R.

As usual, the properties (sentences) demonstrating nonisomorphism (nonele-
mentary equivalence) involve coding sets in N z

0 within Rz that cannot be coded
in Nw

0 (N0) within Rw(R) or vice versa.
We also note that the coding structures used for the above results on R can

be combined with the methods of Shore [1988] to improve the invariance and
definability results established there for D(≤ 0′) by one jump (from triple to
double) and so derive similar results for D(≤ 0′). The invariance of the double
jump in D(≤ 0′) can then be used to give a new proof of Slaman and Woodin’s
result that every degree above 0′′ is fixed under every automorphism of D.

3. Lemmas and Proofs

We will now outline the proof of these results and state the technical lemmas
needed along the way. Since Theorem 2.1 includes the definability of a stan-
dard model of arithmetic, it immediately gives an interpretation of true arith-
metic, Th(N ,+,×), in R. Thus, the theory of R is at least as complicated as
Th(N ,+,×). (Indeed, as the structure R is obviously definable in arithmetic,
the two theories have the precisely same degree.) It is not surprising then that
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some of the first steps along the road indicated by the biinterpretability conjec-
ture and actually leading to our result were the coding of arithmetic into R used
to prove its undecidability (Harrington and Shelah [1982]; Slaman and Woodin;
Ambos-Spies and Shore [1993]). It was even known that the theories of R and N
were biinterpretable:

Theorem 3.1. (Harrington and Slaman; Slaman and Woodin) There are recur-
sive translations S(T ) taking sentences φ(ψ) of arithmetic (partial orderings) to
sentences φS, ψT of partial orderings (arithmetic) such that N |= φ ↔ R |= φS

and R |= ψ ↔ N |= ψT .

Each proof of this theorem (including our new one) begins with one of the
codings of partial orderings in R developed to prove its undecidability. They each
provide a translation of the theory of partial orderings into R. As the theory of
partial orderings is rich enough to code all of predicate logic, we can view the
codings as providing us with models of some finite axiomatization of arithmetic.
The real problem, now, is to definably determine the (translations of) sentences
true in those models which are isomorphic copies of N , the standard models of
arithmetic. The most natural approach to this problem would to be to define a
standard model or at least a class of models all of which are standard. One would
then simply say that a sentence of arithmetic is true (in N ) iff the appropriate
translation is true in (any of) the definable standard model(s). The proofs of
this theorem by Harrington and Slaman and later by Slaman and Woodin did not
manage to define standard models and took much more indirect approaches to the
theorem. Thus they interpreted the theory of N but not the structure itself as we
do. Our approach begins with Slaman and Woodin’s coding of partial orderings:

Theorem 3.2. (Slaman and Woodin): Given any recursive partial ordering P =
〈ω,�〉 there are r. e. degrees p,q, r, l and gi (for i ∈ ω) such that

1. the gi are the minimal degrees x ≤ r such that q ≤ x ∨ p;

2. for i, j ∈ ω, i � j if and only if gi ⊕ l ≤T gj;

3. r⊕ p⊕ q is low, i. e. (r⊕ p⊕ q)′ = 0′

4. If a > 0 is any given r. e. degree, we can also make r < a.
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(Parts 3 and 4 are relatively straightforward technical improvements of Slaman
and Woodin’s work that we need later.)

As explained above, we are thinking of the partial ordering P as coding a
model of (a finitely axiomatized version of) arithmetic. (We refer the reader to
Hodges [1993, 5.3] for precise definitions of what it means to definably code (or as
he says, interpret) one structure or theory in another. Roughly speaking, it means
to give a sequence of formulas which define first the domain of the coded structure
and then the various relations and functions on it that provide the “copy” of the
structure being coded.) The key we use to definably select a set of such models
that are all standard is the ability to uniformly define comparison maps between
(finite) initial segments of certain such models. (The idea here is that the standard
models are the modelsM such that each initial segment ofM can be mapped into
an initial segment of every model.) The crucial technical lemma needed to define
such maps is one that combines Slaman and Woodin coding with cone avoiding
and permitting:

Theorem 3.3. Given any recursive partial ordering P = 〈ω,�〉 and low r. e.
degrees q0, . . . ,qm, r0, r1 there are r. e. degrees p,q, r, l and gi (for i ∈ ω) as in
Theorem 3.2 such that if gf(i) is the degree corresponding to the natural number
i in the model coded by P , then gf(i) ≤T qi and qi 6≤T qj ⇒ gf(i) 6≤T qj for
i, j < m while gf(k) 6≤T r0, r1 for k > m.

Given two coded low modelsM1,M2, i. e., all the degrees in the domain of the
models are low, we use this theorem to interpolate a third model M so that we
can define isomorphisms between the first n numbers ofM1 and those ofM and
between the first n numbers of M2 and the second n numbers of M. Together
with the structure inherent in M, these maps define the desired isomorphism
between the first n elements of M1 and those of M2.

We now give a sufficient condition for a model to be standard and indicate
how to get a definable scheme for maps between initial segments of such models.
Thus we can define a class of models which are all standard and such that there
are definable isomorphisms between the natural numbers of any two models in
the class:

Definition 3.4. A model M of arithmetic (coded by parameters p,q, r, l) with
elements all below some c is good with respect to c if M can be embedded into an
initial segment of every model whose elements are below c by the scheme described
above.
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Now, every model all of whose elements are low is good and every good model
is standard (as it can be mapped into some standard model). Moreover, given any
two good models we can define an isomorphism between them by interpolating two
other low models. Thus we can define an equivalence relation on the (codes for)
natural numbers in these models and interpretations of the language of arithmetic
on these equivalence classes that make the structure so defined a standard model
of arithmetic.

Theorem 3.5. There is a coding scheme interpreting arithmetic in R such that
all the models so defined are standard. Moreover, there is a definable equivalence
relation on the parameters coding these models and the degrees coding the natural
numbers in these models such that the coding scheme defines a standard model
N0 of arithmetic on the equivalence classes.

We now have the definable copyN0 ofN inR required by the biinterpretability
conjecture. We next want to come as close as we can to associating each degree a
with some kind of code (or even a standard r. e. index) for sets of that degree. The
idea is to first characterize, to the extent possible, a degree a by the isomorphism
type of R(≤ a) (the ordering of r. e. degrees below a) relative to certain other
parameters and then translate this characterization of isomorphism type into our
model of arithmetic.

The first ingredient is a coding scheme for a copy of N which efficiently codes
the successor function so that it is Σ3 in the sense that the (codes for) the nat-
ural numbers can be enumerated recursively in 0′′. The particular method of
generating such structures is taken from Shore [1981].

Theorem 3.6. Given any a > 0 and any noncappable u, there are degrees b, e0,
e1, f0, f1, p, q, r, l and uniformly r. e. degrees gi (for i ∈ ω) with p,q < u and
all the other degrees below both a and u such that

• the minimal degrees x, b < x < r such that q ≤ x ∨ p together with
the partial ordering on them defined by x � y⇔ x⊕ l ≤ y define a
standard model of arithmetic as described above with the gi as the
elements i;

• for each i ∈ ω, (g2i ∨ e1) ∧ f1 = g2i+1 and (g2i+1 ∨ e0) ∧ f0 = g2i+2.

(In addition to the construction obviously need to prove this theorem, we use
the characterization of the noncuppable degrees as the promptly simple degrees
(Ambos-Spies et al. [1984]).)
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Given these properties, each gi can be defined by an existential formula us-
ing the first eight degrees and g0 as parameters. For example, g1 = (g0 ∨
e1) ∧ f1 and so g1 is the only degree x such that φ1(x) holds where φ1(x) says
x ≤ g0 ∨ e1 & x ≤ f1 & q ≤ x ∨ p. Next, g2 is the only degree y such that
∃x(φ1(x) & y ≤ x ∨ e0 & y ≤ f0 & q ≤ y ∨ p). Similarly, we can define each gi
by such a formula. As the ordering of Turing reducibility to any set B is ΣB

3 and
join is recursive on indices we can make this generating procedure recursive in 0′′

by choosing u to be low.
The next ingredient in the desired coding is a procedure that shows that every

ΣA
3 set can be coded on such a set of degrees gi in a positive way using ≤ and ∨

by degrees below a. Its proof uses methods from Nies [1992]. As the ordering on
degrees below a is ΣA

3 (and join is recursive on indices) this would make the set
coded ΣA

3 as well (and nothing better is possible).

Theorem 3.7. If 〈gi|i ∈ ω〉 is a uniformly r. e. antichain in R, ⊕gi is low,
a = deg(A) and a 6≤T gi for each i ∈ ω, then, for each ΣA

3 set S, there are
c,d ≤ a such that S = {i|c ≤T gi ∨ d}.

Together, these results show that precisely the ΣA
3 sets can be coded in this

way. As this class of sets determines a′′, we have shown that the isomorphism
type of a in R determines a′′. This proves Corollary 2.3. As the coding scheme is
amenable to the comparisons described above between our models of arithmetic,
we can translate the codings into codings in our definable standard model and so
convert this characterization of a′′ to a formula defining from the degree a a (code
for a) set of degree a′′ in our standard model and so an i such that W ′′

i ∈ a′′. This
proves Theorem 2.1 and so also Corollaries 2.4–2.8.

4. Problems and Conjectures

At various earlier points in our work we had schemes for defining first the quadru-
ple and then triple jump classes and hopes of characterizing much more. However,
even before we got as far down as the double jump classes, Cooper announced
(see Cooper [1966]) that he had constructed an automorphism of R and indeed
one that moves a low degree to a nonlow degree so that the class of low degrees is
not definable in R. Clearly, the existence of such an automorphism implies that
our definability result is the best possible. Given such results, it is easy to list the
next questions along these lines. Here are a few possibilities:
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• Perhaps no individual degree is definable in R (and one could construct
automorphisms to prove this).

• Perhaps (indeed, presumably) there are only countably many automor-
phisms of R.

• Perhaps each automorphism is definable in some nice way.

Of course, the existence of automorphisms of R and the nondefinability of
even one individual degree each contradicts the biinterpretability conjecture and
so suggests that it is time for a new paradigm. While individual problems are
easy to formulate, it is not at all clear yet what new vision we might adopt. One
appealing conjecture is to weaken the biinterpretability conjecture by allowing
parameters.

Conjecture 4.1. (Biinterpretability for R with parameters): The relation asso-
ciating each r. e. degree d to the (codes in N of) sets of its degree is definable in
R from parameters.

Again, in the unrelativized setting, this conjecture is equivalent to the defin-
ability from parameters of any one-one map from R into N or of the specific map
that takes each r. e. degree a to the (least) index of an r. e. set of that degree.
Even this weakened form of the conjecture has important implications for auto-
morphisms and definability in R. For example, it obviously implies that there are
at most countably many automorphisms of R as each would be determined by the
image of the parameters defining the required relation or map. It also implies that
each type is principle in the structure of R extended by constant symbols naming
these parameters and so that R is the prime model of its theory (without the
parameters). (See Hodges [1993, p. 336].) Finally, it characterizes the definable
relations on R as those that are definable in arithmetic and invariant in R. We
should also point out that Slaman and Woodin (see Slaman [1991]) have shown
that N is biinterpretable with parameters in the structure of all degrees below 0′

as well as in the degrees as a whole (with an appropriate second order version of
biinterpretability).

Remark: It is obvious that definability in R implies both definability in
arithmetic and invariance in R. Cooper’s claim that L1 is not invariant implies
that the first does not imply the second. The second does not imply the first by
our results. Corollary 2.3 easily implies that there are continuum many invariant
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subsets of R and so not all of them are definable. More specifically, we note that
the classes Lω = ∪Ln and Hω = ∪Hn are invariant by Corollary 2.3 but are not
definable in arithmetic as Solovay has shown that they are both Σω+1 complete
(see Soare [1987, p. 265]). This answers two questions raised in Cooper [1996].
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