
Direct and local de�nitions of the Turing jump

Richard A. Shore�

Department of Mathematics
Cornell University
Ithaca NY 14853

May 14, 2008

Abstract

We show that there are �5 formulas in the language of the Turing degrees, D,
with � ,_ and ^, that de�ne the relations x00� y00, x00 = y00 and so x 2 L2(y) =
fx � yjx00 = y00g in any jump ideal containing 0(!). There are also �6&�6 and
�8 formulas that de�ne the relations w = x00 and w = x0, respectively, in any such
ideal I. In the language with just � the quanti�er complexity of each of these
de�nitions increases by one. For a lower bound on de�nability, we show that no
�2 or �2 formula in the language with just � de�nes L2 or L2(y). Our arguments
and constructions are purely degree theoretic without any appeals to absoluteness
considerations, set theoretic methods or coding of models of arithmetic. As a
corollary, we see that every automorphism of I is �xed on every degree above 000
and every relation on I which is invariant under the double jump or under join
with 000 is de�nable over I if and only if it is de�nable in second order arithmetic
with set quanti�cation ranging over sets whose degrees are in I.

1 Introduction

The structure of relative computability as given by Turing reductions and the correspond-
ing structure, D, of the Turing degrees has been the object of extensive study over the
past sixty years. A central concern in this research over the past thirty years has been
the issue of de�nability. The general question is which (interesting, apparently external)
relations on D are actually de�nable in terms of relative computability alone. One impor-
tant line of research has produced a sequence of results of the form that all relations on
D which could possibly be de�nable, i.e. they are de�nable in arithmetic with quanti�ca-
tion over both numbers and sets, are de�nable if restricted to �su¢ ciently�large degrees

�Partially supported by NSF Grant DMS-0554855.

1

where su¢ ciently large has undergone a series of successive weakenings. The other major
line of investigation into de�nability in D has centered on proving that speci�c important
natural, but apparently external, degrees or relations on D are de�nable in D.
The �rst major results (Jockusch and Simpson [1976]) on de�nability in D were in

the structure with the Turing jump, 0, as well as �T . By classical results of Kleene
and Post, this operator (A 7�! A0) corresponds to de�nability in arithmetic (extended
by a predicate for membership in A) by formulas with only one quanti�er. Its nth
iterate A(n) corresponds to de�nability by such formulas with n quanti�ers. Thus, for
example, A = fxj9n 2 !(x �T 0(n))g are the degrees of the sets de�nable in arithmetic.
This operator has played a major role in much of the work on D over the years and
the issue of whether it is actually intrinsic to, or de�nable in, D was raised already
in the fundamental paper of Kleene and Post [1954]. This question essentially asks if
quanti�cation in arithmetic can be expressed, level by level, solely in terms of relative
computability. It became the overarching goal in the investigations of de�nability in D.
The �rst approximation to a de�nition of the Turing jump (or of any direct de�nition

of a nontrivial class of degrees in D without the jump) was the de�nition of the hyper-
artihmetical degrees and the hyperjump (Harrington and Shore [1981]). It used codings
of arithmetic and the calculation (Harrington and Kechris [1975]) that Kleene�s O is the
base of a cone of minimal covers, i.e. 8x �T O9y <T x:9z(y <T z <T x). (We say
that x is a minimal cover of y if y <T x and there is no z with y <T z <T x and that
x is a minimal cover if it is a minimal cover of some y.) Harrington and Shore [1981]
also showed that every automorphism of D is �xed on every degree above all the hyper-
arithmetic ones and that every relation on such degrees (or ones invariant under joining
with arbitrary hyperarithmetic degrees) that is de�nable in second order arithmetic is
de�nable in D. Jockusch and Shore [1984] then introduced and analyzed the notion of
pseudojumps or iterated REA operators (e.g. Je(A) = A �WA

e and then iterations of
such operators into the trans�nite). This analysis lead to a proof that 0(!) is the base of a
cone of minimal covers and it, and the !-jump (X(!) = fhx; nijx 2 X(n)g), are de�nable
in D as are all relations on degrees above the arithmetic ones (or invariant under join
with these degrees) which are de�nable in second order arithmetic. These proofs also
used codings of arithmetic but were based on one natural de�nition that did not: A is
the downward closure of C! = fcj8z(z _ c is not a minimal cover of zg.
Cooper [1990, 1993 and elsewhere] suggested an approach similar to that of Jockusch

and Shore [1984] to the problem of de�ning the jump operator. It relied on two ingre-
dients. The �rst was a version of a cone-avoiding join and completeness theorem like
ones proven in Jockusch and Shore [1984] for certain types of 2-REA operators. The
second was the existence of a speci�c such operator that would produce a degree with
an order-theoretic property that no r.e. degree could have (even relative to any degree
below it). This later claim turned out to be false as Shore and Slaman [2001] proved that
no n-REA degree for any n < ! could have the property claimed by Cooper to hold of
one 2-REA one.

2

The jump was then proven de�nable by Shore and Slaman [1999]. (Cooper later, as
in [2001], made other claims for a de�nition along the lines of his original proposals that
were either refuted or unsubstantiated. See Shore [2006] and Jockusch [2002] for more
details.) Again the ingredients were a new cone-avoiding join and completeness theorem
but now for all n-REA operators and a speci�c 2-REA one with the required properties.
A remarkable feature of the proof was the speci�c operator used and the proof that it
was de�nable in D. The operator was the double jump and the proof of its de�nability
followed from much earlier work of Slaman and Woodin. Although not included in the
announcement of their work in Slaman [1991], their metamathematical arguments that
gave many other results such as the de�nability of all relations on degrees above 000

that are de�nable in second order arithmetic and that all such degrees are �xed under
every automorphism of D, also proved that the double jump was de�nable in D. The
de�nition requires their entire machinery to internalize their analysis of automorphisms
of D within D itself. It relies on set theoretic forcing to collapse the continuum and
absoluteness arguments to capture full automorphisms of D by countable approximations
that can then be de�ned within the structure. The full proof appears in Slaman and
Woodin [2008]. The join theorem for n-REA operators of Shore and Slaman [1999]
then de�nes the Turing jump from that of the double jump: For any degree x, x0 =
maxfz �Txj(8g �Tx)(z _ g 6= g

00)g, i.e. x0 is the greatest degree z such that there is no
g greater than or equal to x such that z _ g is equal to g00.
Our goal in this paper is to give a direct de�nition of the jump operator that uses no

metamathematical or set theoretic methods such as absoluteness or forcing over models
of (large fragments of) ZFC. We also avoid coding models of arithmetic and using de�n-
ability in them on the road to our de�nition. We do begin with the de�nition given above
of A from Jockusch and Shore [1984] and at the end apply the de�nition above of the
jump from the double jump of Shore and Slaman [1999]. In between, we de�ne another
class C (and its upward closure ~C) that is a version of a generalization of classes from the
familiar generalized high/low hierarchy: C = fxj(8k)(x(3) � (x _ 0(k))(2)g (De�nitions
2.5 and 2.6). This class is de�ned within D by an analysis of the �nitely generated par-
tial lattices of a speci�ed form that can be embedded below a degree x. (These lattices
are ones whose complexity we can limit and control. They were �rst introduced and
exploited for the analysis of the degrees below 00 in Shore [1981].) The crucial additional
ingredient from the literature is Slaman and Woodin�s [1986] coding of countable sets of
pairwise incomparable degrees by �nitely many parameters. We also need two new tech-
nical lemmas. One, Theorem 4.1, embeds certain �X3 partial lattices below any ANR
degree x. (A degree a is ANR if, for any function f �wtt 00, there is a g �T a such
that there are in�nitely many n with g(n) > f(n).) The other, Theorem 5.1, calculates
the in�mum of the double jumps of degrees in C that are above any given x to be x00.
Together these allow us to go from a de�nition of C (or ~C) to one of the double jump and
thence to one of the jump.

In addition to avoiding the set theoretic and metamathematical techniques of Slaman
and Woodin, our approach provides de�nitions that de�ne the double jump and jump

3

inside any jump ideal of D that contains 0(!) (Theorem 6.1). (A jump ideal is a subset
of D closed downward and under join and jump.) Because of the global nature of the
arguments of Slaman and Woodin [2008], their methods give no hint as to how to de�ne
these operators in small substructures of D. Even within all of D, our de�nitions seem
signi�cantly simpler both conceptually and in terms of quanti�er complexity. (We give
speci�c quanti�er complexity bounds for our de�nitions in Theorems 6.2 and 6.15. In the
language with _ and ^, L2(y) = fx � yjx00 = y00g has a �5 de�nition as do x00� y00and
x00 = y00 in any jump ideal containing 0(!). There are ones for w = x00 and w = x0 that
are �6&�6 and �8, respectively. In the language without _ and ^ the de�nitions are one
level higher up.) As a beginning of the investigation of lower bounds for the complexity
of such de�nitions, we show in Proposition 7.6 that there is no de�nition of L2 or L2(y)
which is either �2 or �2 in the language with just �.
Once we have an independent de�nition of the (double) jump we can also directly and

simply derive the results of Slaman and Woodin [2008] on �xed points of automorphisms
and de�nability (Theorem 2.10) and extend them to all jump ideals containing 0(!): If
I is any jump ideal with 0(!) 2 I and ' is any automorphism of I then '(x) = x for
every x � 000. Moreover, any relation on I invariant under the double jump or under
joining with 000 is de�nable over I if and only if it is de�nable in the structure of second
order arithmetic with set quanti�cation ranging over sets with degrees in I. Thus our
approach presents the general results on �xed points and de�nability for su¢ ciently large
degrees as direct consequences of a proof of the de�nability of natural classes and the
jump operator.

In the next section, we make explicit the few properties of our coding/embedding
results that are needed and present an overview of our proof that relies only on those
properties. Section 3 is devoted to making these notions explicit. In §4 we provide the
technical result needed about embedding partial lattices below ANR degrees. Section
5 contains the proof that the in�mum of the double jumps of degrees y 2C or ~C with
y � x is x00. Section 6 further analyses all the previous constructions to see that we
have de�nitions that work in any jump ideal containing 0(!) and calculates the quanti�er
complexity of these de�nitions. The �nal section suggests some open questions as well
as indicating possible routes to partial progress on some of them.

2 Overview of the Proof

In this section we will give an overview of a general plan to de�ne the jump operator from
classes C of degrees and the properties required of C to be able to carry out this plan. Our
penultimate goal is to de�ne the relation x00 � y00 from C. Let L2(x) = fy � xjy00 � x00g.
By Selman [1972], x00 = _L2(x) and indeed there are y1;y2 2 L2(x) such that y1_y2= x00.
Thus a de�nition of the relation x00 � y00 and so of x 2 L2(y) would su¢ ce to de�ne the
double jump operator from C. We then appeal to the direct de�nition of the jump from
the double jump (Slaman and Shore [1999]): x0 = maxfz �Txj(8g �Tx)(z _ g 6= g

00)g.

4

In fact, what is shown there is that if w � x0 then there is a g � x such that w _ z = g00.
Thus x0 = maxfz �Txj(8g �Tx)(z _ g � g

00
)g as obviously z _ g � g00 for any z � x0

and g � x.
To begin, we note that x00 is determined by the collection of sets �X

3 which is, of
course, independent of the choice of X 2 x. We thus want to provide a de�nable (in C)
coding procedure (with free variable x and additional parameters) that (as the parameters
vary) codes precisely the sets �X

3 . Given such a coding procedure, we then want to have
a de�nable comparison relation (with free variables just x and y) which allows us to say
that the sets coded by the speci�ed procedure with x as the special parameter are also
coded with y as the special parameter. This will then say that �X

3 � �Y
3 and so x

00 � y00
as desired.

There are two main tools needed to carry out this plan. The �rst is the coding
of sets in e¤ective successor models of N introduced in Shore [1981] with the use of
initial segments to analyze the theory of the degrees below 00. Variations of this coding
mechanism have since been used in a number of other settings and especially in Nies,
Shore and Slaman [1998]. In each one, the crucial idea is to make the procedure used
to recover the coded set from the parameters as simple as possible: positively �1 in the
ordering relation and join operator on the degrees involved. By positively we mean that
�;= and _ can be used but not � or 6= (or ^) so that, in the setting of the Turing
degrees below x, the set coded must be �X3 as �T restricted to the (indices of) degrees
below x is itself �X3 and join operates recursively on the indices. The previous version of
this coding procedure most closely resembling the one we use in this paper is that used
in Shore [2008] to prove the rigidity of the hyperdegrees and their biinterpretability with
true second order arithmetic. We spell out the precise procedure we need that de�nes our
notion of a set S being coded below a degree x in §3. For now, all we need to know is that
any set S coded (by parameters) below x is �X3 . Thus, if both S and its complement, �S,
are coded below x, then S 2 �X

3 , i.e. S �T x00.
The second tool that we need is the method of coding countable sets and relations onD

by �nitely many parameters uniformly de�nably as given by Slaman and Woodin [1986].
(The uniformity here means that there is, for each n, a single formula �(x1; : : : ; xn; ~p)
such that, as the parameters ~p vary, the formula de�nes all countable n-ary relations on
D.) Given such a way of coding arbitrary countable relations on D and so quantifying
over them, it is clear that, in principle, we will be able to de�ne the needed comparison
relations between parameters below x and ones below y that say that they code the same
set. The details are again provided in §3. In particular, as Slaman and Woodin describe
in general, and we will illustrate in the detailed analysis of our speci�c case, one really
needs only the simplest instance of their results, the coding of countable sets of pairwise
incomparable degrees.

Given these two ingredients of (e¤ective) coding and comparison, our plan is to (de-
�nably in C) capture �X

3 as follows:

�X
3 = S(x) �fSjS and �S are coded below every z 2C with x �T zg.

5

In order for this description to actually capture the sets �X
3 , we want the class C to have

two properties:

� Property 1: x 2C) Every S 2 �X
3 is coded below x.

� Property 2: 8x(^fz00jz 2C & x �T zg = x00).

Property 1 insures that �X
3 � S(x). In our applications we will typically show that

every S 2 �X3 is coded below x. On the other hand, as any set S such that S and �S are
coded below every z 2C with x �T z is �Z

3 for every such Z, Property 2 guarantees that
S �T x00. Thus S(x) � �X

3 and we have that �
X
3 = S(x) as required.

Remark 2.1. Note that Property 1 is obviously closed downward, i.e. if C � B and C
has Property 1 then so does B. Similarly, Property 2 is closed upward.

We now describe some well known degree classes that have one or the other of these
Properties. The �rst isANR, the array nonrecursive degrees �rst introduced and studied
in the setting of D by Downey, Jockusch and Stob [1990]: a 2 ANR, no f �wtt 00
dominates every g �T A, i.e. if a function f is wtt reducible to 00 then there is a function
g recursive in a such that there are in�nitely many n with g(n) > f(n). In §4, we prove
the following:

Theorem 2.2. ANR has Property 1. In fact, every S 2 �X3 is coded below x for every
x 2 ANR.

As our �nal de�nable classes C and ~C will be contained in ANR, they too will have
this Property. Similarly, any other class contained in ANR such as GL2 has Property 1
as well. (Recall that a 2GL2 , a00 6= (a _ 00)0 , a00 > (a _ 00)0. By Downey, Jockusch
and Stob [1990], GL2 � ANR.)
As an initial attempt at the other direction of our plan to capture the sets �X

3 , we
show that many familiar degree classes have Property 2.

Theorem 2.3. GH3 = fxjx(3) = (x _ 00)(3)g = fxjx(3) � (x _ 00)(3)g has Property 2.

Proof. Consider any degree x. By Lachlan [1966] there is a minimal pair c0 and c1 of high
r.e. degrees relative to x00, i.e. c0 ^ c1 = x00, c0i = x(4) and the ci are REA in (recursively
enumerable in and above) x00. Apply the Sacks jump inversion theorem (Sacks [1963])
twice to ci to get yi REA in x with y00i = ci. Thus y

00
0 ^y001 = x00 as required for Property

2.

To see that yi2 GH3 note that y000i = c
0
i = x

(4). As yi is REA in x, yi_00 �T x0 and
so (yi_00)000 �T x(4) = y000i as required.

6

Thus the Turing jump is directly de�nable from every jump class from GL2 to GH3

as well as from ANR. However, it is an open question if there are natural or even simple
direct de�nitions (not using a de�nition of the Turing jump) of any of these jump classes
or any de�nition at all of ANR. We want a class that is directly de�nable and also
has Properties 1 and 2. Our desired classes C and ~C were suggested by the following
argument that directly de�nes the jump operator from a single instance.

Proposition 2.4. The jump operator can be directly de�ned from the single degree 00.

Proof. We de�ne GL3 from 00 and apply the previous results. We claim that x 2GL3 ,
(9S)(S is coded below x but not both S and �S are coded below x _ 00g.
For one direction, note that if x 2GL3, S = x(3) is coded below x by Theorem 2.2

but if S and �S are coded below x _ 00 then S = x(3) �T (x _ 00)00 for a contradiction.
For the other containment, consider any S coded below x. By the e¤ectiveness of our
coding apparatus, S 2 �X3 . If not both S and �S are coded below x _ 00 then S =2 �X_00

3

as every set �X_0
0

3 is coded below x _ 00 by Theorem 2.2 since 00 2 ANR and ANR is
closed upward. (Both of these facts are immediate from the de�nition of ANR.)

Now we do not have a direct de�nition of even the single degree 00 but we do have
a natural de�nition of the arithmetic degrees and we can use them instead to de�ne a
more generalized jump class C that will still have Properties 1 and 2. The membership
of a degree x in the standard (generalized) jump classes GLn and GHn is de�ned by
the lowness or highness, respectively, of the nth jump relative to the appropriate jump of
x _ 00. If we replace 00 by 0(k) we get a more generalized notion.

De�nition 2.5. GLn;k = fxjx(n) � (x _ 0(k))(n�1)g. GHn;k = fxjx(n) � (x _ 0(k))(n)g.

Of course, GLn = GLn;1 and GHn;1 = GHn. The �rst class we want is the comple-
ment of the union of the GL3;k.

De�nition 2.6. C = fxj(8k)(x(3) � (x _ 0(k))(2)g. ~C is the upward closure of C, i.e.
~C = fxj(9z 2C)(x � z)g.

By considering just the case that k = 1 in the de�nition of C it is clear that C � GL3
and so C � ANR and has Property 1. As ANR is closed upward it also contains ~C.
We prove in §5 that both C and ~C have Property 2. Thus the Turing jump is de�nable
from C or ~C. On one hand, the de�nition of C seems to be simpler than that of ~C: On
the other hand, the de�nition in terms of ~C will work in any jump ideal containing 0(!)
while that using C requires closure under the !-jump.
To get our direct de�nition of the jump operator we need to give one of C. We do

so in terms of the class C! = fxj(8z)(z _ x is not a minimal cover of zg. (We say that
m is a minimal cover of z if m < z and there is no degree strictly between m and z.)
Jockusch and Soare [1970] show that 0(n) 2 C! for every n while Jockusch and Shore
[1984] prove that C! � A = fxj9n(x � 0(n))g. (So Jockusch and Shore [1984] provide

7

a natural de�nition of A, the degrees of the arithmetic sets, as the downward closure of
C!.) We use C! and our coding and comparison procedures to give a direct de�nition of
C and so of ~C as well.

Theorem 2.7. C = fxj(9S)(S is coded below x but not both S and �S are coded below
x _ z for any z 2C!g.

Proof. For one direction suppose x 2C. Thus in particular x 2GL3 � ANR and so by
Theorem 2.2 the set S = X(3) is coded below x. If S and �S were both coded below some
x _ z with z 2C!, then by taking n such that z � 0(n) we see that both are coded below
x _ 0(n) and so both are �X_0(n)3 , i.e. X(3) 2 �X_0(n)

3 contrary to the de�nition of C.
For the other direction, suppose we have an S coded below x such that not both S

and �S are coded below x _ z for any z 2C!. As 0(n) 2 C for every n, they are not both
coded below x _ 0(n) for any n. As each of these degrees is in ANR (by being above 00),
the sets T such that both T and �T are coded below them are (by Theorem 2.2 and the
e¤ectiveness of our coding) precisely the sets �X_0(n)

3 for some n. Thus S = X(3) is not
�X_0(n)
3 for any n, i.e. (8n)(x(3) � (x _ 0(n))(2) as required.

To summarize our discussion so far, we give the crucial de�nitions in terms of our as
yet unspeci�ed but de�nable coding and comparison procedures.

Theorem 2.8. x00 � y00 , every set S coded below every z such that x � z and z 2C is
coded below every w such that y � w and w 2C. Of course, x00 = y00 , x00 � y00 & y00 �
x00. And so we have our direct de�nition of the jump:
x0 = w, w =maxfz �Txj(8g �Tx)(z _ g � g

00
)g.

The formal versions of these de�nitions are given in Theorem 3.6. We will also see in
§6 that a �ner analysis using ~C in place of C provides local version of this theorem, i.e.
a single formula �(x;w) such that for any jump ideal I (i.e. I is a subset of D closed
downward and under jump and join) that contains the degree 0(!), � de�nes the jump
operator.

Theorem 2.9. If I is any jump ideal with 0(!) 2 I and x;y 2I then x00 � y00 if and
only if I satis�es the formula of degree theory expressing, as above, that every set S coded
below z for every z 2 ~C with z � x is coded below w for every w 2 ~C with w � y. Thus for
x;w2I, x0 = w, I j= w =maxfz �Txj(8g �Tx)(z _ g � g

00
)g where we understand

the double jump relation to be de�ned as just speci�ed.

The rest of the paper is devoted to the explication and proofs of the required notions
and theorems. We close this section by noting that the local de�nition of the jump
operator allows us to prove local results about automorphisms of jump ideals containing
0(!) and de�nability in such ideals.

8

Theorem 2.10. If I is any jump ideal with 0(!) 2 I and ' is any automorphism of I
then '(x) = x for every x � 000. Moreover, any relation on I invariant under the double
jump or under joining with 000 is de�nable over I if and only if it is de�nable in the
structure of second order arithmetic with set quanti�cation ranging over sets with degrees
in I.

Proof. These consequences are pretty standard once one has the information about au-
tomorphisms being �xed on the jump or even on particular instances. The ideas go back
to Jockusch and Solovay [1977] who show that all degrees above 0(4) are �xed under
all automorphisms of D that preserve the jump operator. Transferring such �xed point
theorems to de�nability ones have roots at least as far back as Simpson [1977]. Since
these proofs, there have been many versions and improvements along with various new
methods of coding. In our setting, for the �rst claim about �xed points, we can simply
point out that if x � 000 then x is uniquely determined as the degree z above 000 such
that there is a w � z with w00 = z with X; �X coded below w and such that every set S
with S and �S coded below any y with y00 = z is recursive in X.

The �rst condition guarantees that z = w00 � x for this w. It is satis�ed by x because
there is an ANR degree w with w00 = x. (We can easily construct such a degree directly
or appeal to Downey, Jockusch and Stob [1990] who show that there is a low degree in
ANR and relativize this to a degree with double jump x.)

The second condition then guarantees that z � x as W 00 and W 00 are coded below a
degree which is ANR and low relative to a w with w00 = z.

For the second claim about de�nability, we note that, as usual, using the coding of
Slaman and Woodin [1986] we can, in I, de�nably pick out standard models of arithmetic
and quantify over all subsets with degrees in I. (The point to make here is that, as Slaman
and Woodin [1986] show, their coding for a set X in such a model is done well within the
jump ideal containing x. In the other direction, any reasonably e¤ective procedure for
coding sets in models of arithmetic by their methods codes only sets arithmetic in the
parameters used. So within I, only sets with degrees in I are coded and all such are,
in fact, coded.) The comparison machinery discussed above then allows us to de�nably
move from a set X �T 000 coded in such a model to the degree x � 000 satisfying the
property described in the �rst paragraph of this proof for the speci�ed X. Given such
a map between coded sets and their degrees, we can translate any property de�nable in
second order arithmetic with set quanti�cation over the sets with degrees in I which is
invariant under double jump or joining with 000 to one de�nable in I.

3 Coding and Comparison

Our e¤ective coding of a set S is given by an embedding of a particular partial lattice
with 0 in D. (A partial lattice is a partial ordering on which the operations _ and
^ may be only partial but, when de�ned, they obey the usual de�nitions in terms of

9

the ordering.) The crucial backbone of the partial lattices we want to consider is an
!-sequence of pairwise incomparable elements dn generated by �ve elements d0; e0; e1; f0
and f1 satisfying the the following recursion relations for n � 0:

(�) (d2n _ e0) ^ f1 = d2n+1 and

(��) (d2n+1 _ e1) ^ f0 = d2n+2.

These conditions clearly guarantee that we can enumerate the dn recursively in the
lattice structure and write a recursive list of quanti�er free formulas in this language
which de�ne each of them. Following Shore [2008], we wish to convert this procedure
and these formulas into ones that are positive in the language with just � and _ at least
to the extent that we can use them to code S (with the aid of other parameters g0 and
g1). One crucial ingredient is being able to say that the (indices generated as candidates
for being some) dn are strictly above 0. We do this by adding two other parameters p
and q and require of our lattice that p � q and p _ dn � q for each n. We can now
recursively generate positive existential formulas �n(x) using just � , _ and parameters
for the named elements such that, in any lattice LX with elements d0; e0; e1;f0; f1; p and
q as described, �n(x) holds of x if and only 0 < x � dn and the same will be true in D
of any degree x when the parameters are interpreted as their images under any (partial)
lattice embedding of L into D:
We begin with x = d0 as �0. Recursively, we let �2n+1(x) be 9z(�2n(z) & x �

z_e0; f1 & q � x_p) and �2n+2(x) be 9z(�2n+1(z) & x � z_e1; f0 & q � x_p). Consider
any x such that �2n+1(x) holds. We then have a z as described such that, by induction,
0 < z � d2n. Thus z _ e0 � d2n _ e0 and so x � d2n _ e0; f1. As d2n+1 = (d2n _ e0) ^ f1,
x � d2n+1 as required. Of course, q � x_ p guarantees that x > 0 as well. The argument
for �2n+2 is essentially the same.

We will use exact pairs for ideals to code our given set S as in Shore [1981]. The idea
is to have g0 and g1 such that S = fnjdn � g0; g1g as opposed to simply upper bounds
on the dn with n 2 S and the dn with n =2 S as in Shore [2008]. (Recall that g0 and g1
form an exact pair for the ideal generated by the degrees dn for n 2 S if x � g0;g1 ,
x � di0 _ � � � _ dim for some di0 ; : : :dim with i0; : : : ; im 2 S.) The reason for this choice
is to keep the ability to make S, and not �S, positively �1 in the ordering and join. The
next point is, as we will only generate (indices for) elements x 2 (0; dn) that are below
both g0 and g1, we need to make sure that if we have such an x it can only be associated
with a single dn. We thus wish to ensure that if there is a nonzero x below some dn; g0
and g1 then dn is itself below g0 and g1. This suggests that we also require of our lattice
that, for n 6= m, dn ^ dm = 0. Because, however, we are only determining the ideal
generated by the dn with n 2 S by our codes g0 and g1, we must also guarantee that no
nonzero x � dm with m =2 S is in this ideal. The easiest way to guarantee this in general
is to assure that the dn form an independent set by, for example, requiring that there be
an element ~dn of our lattice that is above all dm for m 6= n such that dn ^ ~dn = 0. (This

10

then also implies the previous requirement that the dn pairwise inf to 0 as well as the
basic desideratum that 9x(0 < x � dn; g0; g1)! dn � g0; g1.)
If we have a partial lattice L with all these properties and an embedding of the lattice

into the degrees below x it is not hard to see that the set S = fnjdn � g0; g1g coded by
this lattice or, as we shall say by the degrees d0; e0; e1; f0; f1;p;q;g0;g1 below x which are
the images of the corresponding elements of L, is �X3 : n 2 S , 9x(�n(x) & x � g0;g1).
(We boldface the variables and formulas to indicate that we are interpreting them in D
about the images of elements of L.) As the formulas �n are all positive �1 formulas in
� and _ which are �X3 on the indices for sets recursive in X, the claimed equivalent
de�nition of S is clearly �X3 . As �n(dn) holds, the claimed equivalent de�nition holds
for every n 2 S. For the other direction we rely on the prescribed properties of L. We
already know that if �n(x) holds then 0 < x � dn. Our assumptions then imply that
dn � g0;g1 as required. In fact, as the g0 and g1 form an exact pair for the ideal
generated by the dn with n 2 S, if x � dn;g0;g1 and n =2 S, then x = 0. The point
here is that x � di0 _ � � � _ dim with i0; : : : ; im 2 S and so x � di0 _ � � � _ dim � ~dn
while dn ^ ~dn = 0. The crucial property needed here is that if 9x(0 < x � dn;g0;g1)
then dn� g0;g1. Thus, for an exact pair g0;g1 for the ideal generated by dn for n 2 S,
S = fnj9x(�n(x) & x � g0;g1)g.
We note that any sequence of degrees d0; e0; e1; f0; f1;p;q;g0;g1 � x can be viewed

as coding the set S = fnj9x(�n(x) & x � g0;g1)g which is always �X3 . When we want to
claim that (for certain degrees x) every �X3 set is coded by such a sequence, we have to
guarantee all these properties of the required (embedding of) L. We do this in Theorem
4.1 for x 2 ANR. What remains for us to do now is to explain how we can assert, in a
�rst order way in D, that two such sequences code the same set or complementary sets.
For this we need to guarantee some of the structural properties of L already discussed
as well as a comparison procedure. The crucial ingredient is the coding of Slaman and
Woodin [1986]:

Theorem 3.1. (Slaman and Woodin [1986]): For any set fcng of pairwise incompa-
rable degrees uniformly recursive in u there are degrees h0 and h1 below u00 such that
y 2 fcng , y � u & 9w(w � h0_y;h1_y & w � y) & (8u < y):9w(w � h0_u;h1_
u & w � u). We will denote this relation by y 2Kd(u;h0;h1) and the set of such y by
Kd(u;h0;h1).

Notation 3.2. For notational convenience we will use a to stand for the sequence
d0; e0; e1; f0; f1;p;q;g0;g1 (to code one set) and decorated variants such as â for the corre-
spondingly decorated sequence. We thus write, for example, a � x to mean d0; e0; e1; f0; f1;
p;q;g0;g1 � x. We use b and its decorated variants to stand for an additional pair of
degrees g2;g3 which we add on to a to code a second set in the obvious way. We use c
and its variants to stand for sequences of the form u;h0;h1 as used in Theorem 3.1 and
so, for example, write y 2Kd(c) for y 2Kd(u;h0;h1).

We now give the formal de�nition in D of various degrees coding a set below x.
For ease of reading (to the extent possible) we expand our language by adding on the

11

de�nable (partial) operations _ and ^ as well as a constant symbol for 0. Our intention
is that whenever a term of the form x ^ y occurs we intend to assert the existence of
an in�mum for x and y. The formal version for the sentences that we use will be made
precise near the end of §6 where we explain how to eliminate these symbols.

De�nition 3.3. Two sequences of degrees a and c code a set below x if the following
conditions hold:

1. a � x.

2. q � p.

3. d0 2 Kd(c).

4. 8d(d 2Kd(c)! (d _ e0) ^ f1 2 Kd(c) & (d _ e1) ^ f0 2 Kd(c)).

5. 8d; d̂(d 6= d̂ & d; d̂ 2Kd(c) ! d ^ d̂ = 0 & q � d _ p & 9x(0 < x � d;g0;g1)!
d � g0;g1).

We denote the conjunction of these properties by Cd(x; a; c) and, if we omit (1)
and so x, by Cd(a; c) . We then say that the set S coded by the degrees a and c is
fnjdn � g0;g1g where the dn are de�ned by the recursions (�) and (��) at the beginning
of this section. Similarly, we use Cd(x; a;b; c) to say that, in addition to Cd(x; a; c) we
have coded a second set S 0 = fnjdn � g2;g3g with the additional parameters g2;g3. As
written, this de�nition only guarantees that each dn 2 Kd(c). We can require that the
set Kd(c) consists precisely of the dn which we designate as PrCd by adding on the
condition

6 Kd(c) is the smallest set satisfying (3) and (4), i.e. 8ĉ([d0 2 Kd(ĉ) & 8d(d 2Kd(ĉ)
! (d _ e0)^f1 2 Kd(ĉ) & (d _ e1)^f0 2 Kd(ĉ))]! 8d(d 2Kd(c)! d 2Kd(ĉ))).

It may be easier to see that our de�nitions have the desired properties with the
precise coding clause but it will not be really necessary to include it. Even without it,
we have speci�ed enough properties of the partial lattice involving a to guarantee that
S = fnj9x(�n(x) & x � g0;g1)g and so S is �X3 (and so also for S 0). We can then
guarantee that �S = S 0 by saying, in addition to Cd(x; a;b; c), that (8d 2Kd(c))(d �
g0;g1 $ d �g2;g3). We denote this relation by Compl(x; a;b; c). To compare the
sets S and ~S coded by a; c and ~a;~c, respectively, we need to know a bit more about
Slaman-Woodin coding.

Given any two sets such as fdng and f~dng each consisting of pairwise incompara-
ble degrees with Kd(c) = fdng and Kd(~c) = f~dng there are �c; _c;�c and ĉ such that,
for any z 2Kd(c) and ~z 2Kd(~c), (9w; ~w 2Kd(�c))(z _w 2Kd(_c) & ~z _ ~w 2Kd(�c) &
(z _w _ ~z _ ~w) 2Kd(ĉ)) $ (9n)(z = dn & ~z = ~dn). As pointed out in Slaman and

12

Woodin [1986], one can see this directly from Theorem 3.1 by taking a set hi of mutually
1-generic degrees relative to any degree above all the dn and ~dn and let �c code fhig. Next
let _c code the set fdn _ h2ng of pairwise incomparable degrees and �c code f~dn _ h2n+1g.
Finally let ĉ code fdn _ h2n _ ~dn _ h2n+1g which is also pairwise incomparable. We
abbreviate (9w; ~w 2Kd(�c))(z _w 2Kd(_c) & ~z _ ~w 2Kd(�c) & (z _w _ ~z _ ~w) 2Kd(ĉ))
as Mp(�c; _c;�c; ĉ; z;~z). We can now de�nably say that the sets S and ~S coded by a; c and
~a;~c, respectively, are the same.

Proposition 3.4. If a; c and ~a;~c code the sets S and ~S, respectively, then S = ~S
if and only if (9�c; _c;�c; ĉ)[(8x;y; z)(Mp(�c; _c;�c; ĉ;x;y) &Mp(�c; _c;�c; ĉ;x; z) ! y = z) &
Mp(�c; _c;�c; ĉ;d0; ~d0) & (8d 2Kd(c))(8~d 2Kd(~c))(Mp(�c; _c;�c; ĉ;d; ~d)!Mp(�c; _c;�c; ĉ; (d_
e0)^f1; (~d_~e0)^~f1) &Mp(�c; _c;�c; ĉ; (d_e1)^f0; (~d_~e1)^~f0) & (d � g0;g1 $ ~d � ~g0; ~g1)].
We denote this relation by Eq(a; c;~a;~c).

Proof. The formula given says that Mp de�nes a one-one relation that takes d0 to ~d0
and, by induction, dn to ~dn. It then guarantees that dn� g0;g1, i.e. n 2 S, if and only
if ~dn� ~g0; ~g1, i.e. n 2 ~S. (Note that for d = dn one of (d _ e0) ^ f1 and (d _ e1) ^ f0 is
dn+1 and the other is dn.) We also point out that even without the added condition for
precisely coding sets, this relation has the correct meaning since if S = ~S we can choose
the parameters to de�ne Mp only on the degrees dn.

We now have our formal version of the de�nition of C in D given in Theorem 2.7. In
our current style of abbreviations we use z 2 C! to abbreviate the formula 8z(z � x or
9w(x < w < x _ z).

Theorem 3.5. C = fxj9a; c(Cd(x; a; c) & (8~a; ~b;~c; z)(z 2C! & Compl(x _ z;~a; ~b;~c)!
:Eq(a; c;~a;~c))g.

Using the notation x 2C in the obvious way, we now have our formal analog of the
de�nition of x00 � y00 given in Theorem 2.8 and so of jump operation.

Theorem 3.6. 1. x00 � y00 , (8a; c)[Cd(a; c) & (8z)(z 2C & x � z!
(9~a;~c)(Cd(z;~a;~c) & Eq(a; c;~a;~c))! (8w)(w 2C & y � w!

(9â; ĉ)(Cd(w;â; ĉ) & Eq(a; c; â; ĉ))].

2. x0 = w, w = maxfz �Txj(8g �Tx)(z _ g � g
00
), 8g(g � x! (w _ g) 6= g00) &

8v(8g(g � x! (v _ g) 6= g00! v � w).

To see that these de�nitions have the intended meaning, we must prove Theorems 2.2
and 5.1. After we prove these theorems we will be able to see in §6 (Theorem 6.1) that
the same de�nitions using ~C in place of C have their intended meaning in every jump
ideal containing 0(!):

Theorem 3.7. The equivalences for x00 � y00 and x0 = w given in Theorem 3.6 are valid
in every jump ideal containing 0(!) if we replace C by ~C.

13

4 Coding Below an ANR Degree

In this section we prove that ANR and so C and ~C have Property 1. There is clearly
a recursive (partial) lattice L with the properties described in §3: There are elements
d0; e0; e1; f0 and f1 that generate a !-sequence of pairwise incomparable elements dn by
the recursion formulas (�) and (��) of §3. There are elements p � q such that p_ dn � q

for each n. For every dn there is an element ~dn such that ~dn � dm for m 6= n and
dn ^ ~dn = 0. Let us �x such a (partial) lattice L. Given any x 2 ANR and any S 2 �X3
it clearly su¢ ces to embed L in the degrees below x and to simultaneously construct
degrees g0;g1 �T x such that g0 and g1 are a minimal pair for the ideal generated by
fdnjn 2 Sg. We prove a more general result.

Theorem 4.1. If L is a recursive (partial) lattice with a recursive list di of elements
forming an independent set (no join of a �nite subset is above any one not in the given
�nite set), X 2 x 2 ANR and S is �X3 , then there is an embedding of L into the degrees
below x (taking di to di) and degrees g0;g1 �T x such that g0 and g1 are a minimal
pair for the ideal generated by fdnjn 2 Sg. Indeed, given another ~S 2 �X3 we can
also simultaneously get g2;g2 �T x that form a minimal pair for the ideal generated by
fdnjn 2 ~Sg.

The basis for our construction is the method of embedding (partial) lattices in D by
Cohen type forcing (i.e. �nite conditions) introduced in Shore [1982]. It begins with
standard lattice representation results (originally from Jonsson [1953] but translated into
the language of Lerman [1971] or [1983]:

Theorem 4.2. Let L be a recursively presentable partial lattice with 0 its least element.
There is a uniformly recursive array � of functions �n : L ! ! such that for all p; q; r 2 L
and n;m 2 !:

0. �n(0) = 0,

1. p � q) �n(q) = �m(q)! �n(p) = �m(p) and
p � q) 9k; l(�k(q) = �l(q) & �k(p) 6= �l(p)),

2. p _ q = r) [�n(p) = �m(p) & �n(q) = �m(q) ! �n(r) = �m(r)],

3. p ^ q = r & �n(r) = �m(r)) 9n1; n2; n3[�n(p) = �n1(p) & �n1(q) = �n2(q)
& �n2(p) = �n3(p) & �n3(q) = �m(q)]. The �ni here are called interpolants for

(or between) �n and �m.

(A simple proof without the requirement for 0 is in Shore [1982]. Adding the require-
ment that the value of each function in the representation is 0 at 0 at the beginning
presents no di¢ culties. A proof in this case (even with the additional assumption that

14

the lattice has a greatest element as well as a least) can be found in Greenberg and
Montalbán [2004].)

Standard arguments as in Shore [1982] show that we can de�ne an embedding of P
into D from any su¢ ciently generic function h : N!� by letting the image of p 2 L be
the degree of the function hp de�ned by hp(n) = h(n)(p). In our setting, we proceed more
cautiously so as to be able to do the embedding and simultaneously build the desired gi
all below x when x 2 ANR. We consider the case with only one set S as a second set
simply adds extra notation with no change in the types of requirements or strategies.

Let S be de�ned by n 2 S , 9u8v9wR(n; u; v; w;X) where R is recursive (in X).
Let � = f�iji 2 Ng be a recursive (partial) lattice table representation for L in the sense
of Theorem 4.2. We will build a function h : N!� recursively in X by a sequence of
�nite approximations hs which will be initial segments of h. Our embedding of L into the
degrees below x will then be given as usual by p 7! deg(hp) = hp where hp(n) = (h(n))(p)
for p 2 L. For notational convenience we let Dn = hdn 2 dn. By the de�nition of a lattice
table, p �L q ! hp �T hq and p _ q = r ! hp � hq �T hr. In our construction we must
act to satisfy the requirements for nonorder and in�mum:

Ne;p;q for p � q: feghp 6= hq.

Pe;p;q;r for p ^ q = r: If feghp = feghq = C then C �T hr.
In addition, we have the requirements for the sets Gi that we are constructing simulta-
neously via initial segment approximations gi;s to represent the desired degrees gi:

Qe: If fegG0 = D = fegG1, then D �T �fDiji � s & i 2 Sg for some s.
Rn: If n 2 S then Dn �T G0; G1.
Our mechanism to satisfy the requirementsRn will proceed by codingDn intoG

[hn;ui]
i =

fxj hn; u; xi 2 Gig if 8v9wR(n; u; v; w;X). The overriding rule that will be observed for
every hn; ui is that for each t,m and i 2 f0; 1g, there will be at most one hn; u; t;m; ki 2
Gi. We divide the requirement Rn into subrequirements Rn;u;m.

Rn;u;m: At stage s these requirements will ask that hn; u; t;m;Dn;s(m)i 2 Gi for some
t (actually the least t allowed) if 8v � m9w � sR(n; u; v; w;X). Thus if n 2 S and u
is its witness then for each m there will be a stage s(m) after which we will always try
to code Dn(m) into G

[hn;ui]
i in this way. Our decoding procedure is to calculate Dn(m)

from G
[hn;ui]
i by searching for a ht;m; ki such that ht;m; ki 2 G

[hn;ui]
i and declaring that

Dn(m) = k. Our overriding rule will guarantee that we �nd at most one answer and we
must argue that for almost all m we eventually insert the correct answer into Gi.

We put all the requirements Ne;p;q, Pe;p;q;r, Qe and Rn;u;m into a single priority list Se.

The requirements Ne;p;q and Pe;p;q;r are handled in a fairly standard way if they do
not appear satis�ed (as will be de�ned in the construction).

Ne;p;q at stage s: We look for an x and an extension ~h of hs such that feg~hp(x) #6=
~hq(x). Making such an extension would, of course, satisfy the requirement. We will argue
that if we never get to make such an extension, then feghp is not total.

15

Pe;p;q;r at stage s: Here we have a multistep procedure. We �rst look for an x

and extensions h0; h4 of hs of the same length such that fegh
0
p(x) #6= fegh4q(x) # and

h0(m)(r) = h4(m)(r) for m =2 domhs. If we �nd such, we choose interpolants �1;m; �2;m
and �3;m between h0(m) and h4(m) for m 2 domh0 � domhs as in Theorem 4.2(3).
Let hj (j = 1; 2; 3) extend hs by making hj(m) = �j;m for m 2 domh0 � domhs. Now
look in turn (for j = 1; 2; 3) for extensions ĥj of hj such that fegĥjp(x) #, fegĥjq(x) #
and ĥj(m) = ĥj

0
(m) for m =2 domhj for j; j0 � 4, i.e. �rst try to extend h1 to get the

convergences at x and then, if successful, add the new values on to h2 and try to extend
that to get the convergences. If successful add the new values onto h3 and try to extend
that to get the convergences. If successful, extend h0; h4 and the ĥj (1 � j � 3) to ~hj

(j � 4) so that they have the same length and the same values on all numbers at which
they are not yet de�ned. If we have been successful all the way to the end, then by the
properties of the interpolants and the fact that all later extensions of the hj were the
same for all new values, we see that there is a j � 4 such that feg~hjp(x) #6= feg~hjq(x). If
we �nd and choose such an ~hj as hs+1 we, of course, satisfy requirement Pe;p;q;r. We will
argue that if we never choose such an extension and feghp = feghq = C then C �T hr as
required.

Qe at stage s: If Qe appears unsatis�ed, we will search for an x and ~h extending hs
and ~gi extending gi;s such that feg~g0(x) #6= feg~g1(x) #, the ~gi obey the overriding rule
of coding, add no new elements hn; u; t;m; yi to Gi if hn; ui < e unless 8v � e9w �
sR(n; u; v; w;X). If this last condition holds, then such elements may be added to Gi by
~gi but only if they are of the right form, i.e. ~hdn(m) = y. Again, if we �nd and make such
an extension, we satisfy Qe. As in the other cases, we must argue that if we never make
such an extension and fegG0 = D = fegG1 for some n then D �T �fDiji � s & i 2 Sg
for some s.

Rn;u;m at stage s: If Rn;u;m is not yet satis�ed and 8v � m9w � sR(n; u; v; w;X)
then we look for extensions of gi;s to include hn; u; t;m;Dn;s(m)i for some t if this does
not violate the overriding rule of coding.
As usual for constructions below an ANR set X, we must de�ne an appropriate

function f̂ �wtt 00, choose one f �T X not dominated by f̂ and restrict our searches for
witnesses and extensions at stage s to ones with codes less than f(s). We now de�ne
f̂ by specifying, recursively in advance for each s, a �nite list of questions to be asked
of 00 and recursive search procedures that will terminate if 00 answers the associated
question positively. The questions and searches corresponding to the desired actions for
each requirement are as follows:

Ne;p;q: For each �nite function ĥ : N!� with code less than s and requirement
Ne;p;q = St for t < s ask if there is an x and an extension ~h of ĥ such that feg~hp(x) #6=
~hq(x). If the answer is yes, we include a search for one such extension.

Pe;p;q;r: For each �nite function ĥ : N!� with code less than s and requirement
Pe;p;q;r = St for t < s ask if there is an x and extensions h0; h4 of ĥ of the same length
such that fegh0p(x) #6= fegh4q(x) # and h0(m)(r) = h4(m)(r) for m =2 domhs. If the

16

answer to this question is yes, we include a search for the �rst such extensions in a
standard search procedure. Also ask if there is an extension ĥ1 of the h0 of the �rst pair
satisfying the previous search condition extended by the �rst interpolants between it and
h4 (the second element of the �rst pair found) as described above such that fegĥ1p(x) #
and fegĥ1q(x) #. If the answer from 00 is yes, include a search for (the �rst such) ĥ1. We
also ask if there is an extension ĥ2 of the �nite function that would be produced as h2

by the �rst search and extending �rst by the associated interpolants and then also by
the new values determined by the witness ĥ1 just described. If the answer from 00 is yes,
include a search for (the �rst such) ĥ2. Similarly, we ask if all the searches needed to
de�ne ĥ3 terminate and if so include that search as well.

Qe: For each requirement Qe = St for t < s and �nite functions ĥ; ĝ0; ĝ1 with codes
less than s and �nite set F of numbers less than e, we ask if there is an x and extensions
~h; ~g0; ~g1 of ĥ; ĝ0 and ĝ1, respectively, such that feg~g0(x) #6= feg~g1(x) #, the ~gi obey the
overriding rule of coding, add no new elements hn; u; t;m; yi to Gi if hn; ui < e unless
hn; ui 2 F and, if hn; ui 2 F , they add such elements only if ~hdn(m) = y. If the answer
is yes, we include a search for such extensions.

Rn;u;m: For each requirement Rn;u;m = St for t < s and �nite functions ĥ; ĝ0; ĝ1 with
codes less than s �nd (recursively including answering the question if they exist) the
least t such that hn; u; t;m; ĥdn(m)i can be added to Gi without violating the overriding
coding rule and the codes for the corresponding extensions of ĝi.

We let f̂(s) be the max of s and the codes of all �nite functions and witnesses found
by all of the search procedures that 00 says will terminate. Note that f̂ is nondecreasing
and wtt below 00. We let f �wtt X be such that f is nondecreasing and not dominated
by f̂ , i.e. 91s(f̂(s) < f(s)).

Construction: We begin at stage 0 with h0; gi;0 = ;. At stage s+ 1 we have hs and
gi;s with codes less than s+1 and act to de�ne hs+1; gi;s+1 with codes less than s+2. For
each requirement Se with e < s that does not now appear to be satis�ed we search for
extensions (and witness x if needed) with codes less than f(s) as requested in the initial
descriptions above of the requirements. If we �nd any such, we act for the one found of
highest priority by choosing as hs+1 and gi;s+1 the longest possible extensions of hs and
gi;s, respectively, contained in the �rst found extensions which have codes less than s+2
(these are the targets for this requirement at stage s). If there are no such extensions for
any requirement less than s then hs+1 = hs and gi;s+1 = gi;s.

This description is unambiguous for requirements of the formNe;p;q, Qe and Rn;u;m. If,
by our action in these cases, we reach the desired target extensions for the requirement
of highest priority for which we found desired extensions, we declare this requirement
satis�ed and it will remain satis�ed forever. The procedure for requirements Pe;p:q;r
needs further elaboration.

For each currently unsatis�ed Pe;p:q;r = Sk for k < s, we mimic the search procedure
as described in the initial account of this requirement but bounding our searches by f(s).
If we reach the end of the procedure with an ~hj as described then that is our target

17

for this requirement. If we reach this target at stage s, Pe;p:q;r is declared satis�ed and
remains so forever. If there is no such ~hj as a target, we see where the search procedure
for Pe;p:q;r failed.

If the search failed at the �rst step, i.e. we found no extensions h0; h4 of hs of the
same length such that fegh0p(x) #6= fegh4q(x) # and h0(m)(r) = h4(m)(r) for m =2 domhs,
we let hs and gi;s be the targets for Pe;p:q;r. If we act for no requirement of higher priority,
we act for Pe;p:q;r by setting hs+1 = hs, gi;s+1 = gi;s and declare Pe;p:q;r to be satis�ed. If
at the beginning of any later stage t we see that there are extensions h0; h4 of hs with
codes below f(t) as were desired at stage s, then Pe;p:q;r becomes unsatis�ed.

If we found extensions h0; h4 of hs as desired below f(s), we take the �rst ones found
in our standard search and de�ne hj for j = 1; 2; 3 as above. We now search (below f(s))
in turn for j = 1; 2; 3 for ĥj as described. If we �nd them all then we would have an
~hj as required and so by our case assumption, one of the searches fails. Say the �rst to
fail is for ĥj. It failed because we had found an extension �hj of hj as described so far
but no extension ~h of �hj such that feg~hp(x) # and feg~hq(x) #. In this case, we set our
target for Pe;p:q;r to be this �hj (and no changes for gi;s). If we reach this target at stage
s we declare Pe;p:q;r to be satis�ed. However, if at the beginning of any later stage t we
see (by a search below f(t)) that there is an extension ~h of �hj such that feg~hp(x) # and
feg~hq(x) #, Pe;p:q;r becomes unsatis�ed.
Veri�cations: We wish to show that we stop acting for each requirement and that

each of their goals is met.

Lemma 4.3. For each requirement St there is a stage s(t) after which St is never the
requirement supplying the target chosen at stage s.

Proof. We proceed by induction on t and by cases dictated by the type of requirement.

St = Ne;p;q, Qe or Rn;u;m: If there is any stage s > s(t � 1) at which St supplies a
target then, by the rules of the construction and the assumption that s > s(t� 1), that
target remains the one of highest priority available until we reach it. At that point St is
satis�ed and remains so forever. It therefore never supplies a target again.

St = Pe;p:q;r: Choose an s > s(t � 1) such that f(s) > f̂(s). If Pe;p:q;r entered this
stage apparently satis�ed and is not declared unsatis�ed by our check below f(s) at the
beginning of this stage then there will be no later stage at which it becomes unsatis�ed.
The point is that any extension that we are looking for has code less than f̂(s) if one
exists at all by de�nition and so less than f(s) by our choice of s. Thus we may assume
that Pe;p:q;r appears unsatis�ed. By construction it always has a target and as s > s(t�1)
it is the one of highest priority. Thus we head toward this target, eventually reach it
and declare Pe;p:q;r satis�ed. Again, as this target was chosen when f(s) > f̂(s), we will
never discover that there was some desired extension not found at stage s. Thus Pe;p:q;r
will remain satis�ed forever and never supply a target again.

Lemma 4.4. All the requirements are satis�ed.

18

Proof. St = Ne;p;q: If we ever declare Ne;p;q satis�ed at t then feghp;t(x) #6= hq;t(x) and so
feghp 6= hq as required. If not, consider an s > s(t) such that f(s) > f̂(s). As there are
no targets found for Ne;p;q at s then as f(s) > f̂(s) there is no x with an extension ~h of
hs such that feg~hp(x) #6= ~hq(x). If, however, feghp(x) # for some x =2 domhq;s then there
would be an ŝ > s such that feghp(x) #= feghp;ŝ(x) #. By the properties of the lattice
table there would then be an ~h such that ~hp = hp;ŝ and ~hq(x) 6= hq;ŝ(x). Clearly one of ~h
and hŝ would be an extension of hs satisfying the desired property for a contradiction to
our case assumption. Thus, in this case, feghp is not total.

St = Pe;p;q;r: By the proof of the previous Lemma there is a stage s at which we declare
Pe;p;q;r satis�ed and it never becomes unsatis�ed again. If the declaration was based on
making an extension such that feg~hjp(x) #6= feg~hjq(x) # then feghp(x) #6= feghq(x) # and
we satisfy Pe;p;q;r. Otherwise, our search procedure terminated at an intermediate step
because of our failure to �nd certain extensions with speci�ed properties. As we never
declare Pe;p;q;r to be unsatis�ed a later stage, there are, in fact, no such extensions.

If the failure occurred at the �rst step, there are no extensions h0 and h4 of hs such
that fegh0p(x) #6= fegh4q(x) # and h0(m)(r) = h4(m)(r) for m =2 domhs. In this case, if
feghp = C = feghq we claim that C �T hr. To compute C(x) �nd any ĥ extending hs
such that ĥ(m)(r) = h(m)(r) for m 2 domh with fegĥp(x) #. Such an ĥ exists since
h � u is one where u is su¢ ciently large so that feg(h�u)p(x) # and feg(h�u)q(x) #. If
fegĥp(x) #6= C(x) then the pair ĥ and h � u would supply a pair as desired and not
found at stage s (by possibly extending one of them to make them of the same length)
contradicting our case assumption. Thus, in this case, we satisfy Pe;p;q;r by computing C
from hr if feghp = C = feghq .
If the failure occurred later, we had an �hj with no extension ĥ of �hj such that

fegĥp(x) # and fegĥq(x) #. In this case we set this �hj to be our target and eventu-
ally realized it as an initial segment of our �nal h. Thus not both feghp(x) and feghq(x)
are convergent and we satisfy Pe;p;q;r in this way.

St = Qe: If we satisfy Qe at some stage s then fegg0;s(x) #6= fegg1;s(x) # and so
fegg0 6= fegg1 as required. Otherwise, consider an s > s(t � 1) such that f(s) > f̂(s)
and, for every hn; ui < e, 8v � e9wR(n; u; v; w;X) ! 8v � e9w � sR(n; u; v; w;X).
We also require that if hn; ui < e and 9v8w:R(n; u; v; w;X) with v(n; u) being the least
such v then Rn;u;m never supplies a target after stage s for m � v(n; u). If there are no
targets found for Qe at s then, as f(s) > f̂(s), there is no x with extensions ĝi of gi;s such
that fegĝ0(x) #6= fegĝ1(x) # also satisfying the other conditions required for them. We
claim that for every v � s, the hv and gi;v satisfy these extra conditions. As we always
obey the overriding rule of coding, it is satis�ed by every gi;v. If it is not the case that
8v � e9w � sR(n; u; v; w;X) for some hn; ui < e then this situation remains true at every
v > s by our choice of s. Thus noQi with i > e can add an element hn; u; t;m; yi with such
hn; ui < e to Gi. The only other requirements that can add elements hn; u; t;m; yi with
hn; ui < e to Gi are the Rn;u;m. Our �nal condition on the size of s, however, guarantees
that none of these for which 9v8w � s:R(n; u; v; w;X) will ever act after stage s. The

19

other Rn;u;m0 will put numbers into Gi at a stage v > s only if y = hdn;v(m
0). Thus

in every case we maintain the fact that hv; gi;v satisfy the extra conditions required for
the extensions desired at stage s. Now suppose fegg0(x) #= fegg1(x) #= z: We can
calculate z by �nding any ĥ, ĝi extending hs and gi;s, respectively and obeying the extra
conditions on ĝi such that fegĝ0(x) #= fegĝ1(x) # and such that ĥdn(m0) = hdn(m

0) for
every m0 2 dom ĥdn, n < e and n 2 S. Such exist by our assumption. If one had
fegĝ0(x) #6= z then hv; ĝ0 and g1;v would be extensions of hs and gi;s as desired in our
original search at stage s contradicting our case assumption. Clearly, we can �nd such
ĥ, ĝi and so z recursively in �fDnjn < e & n 2 Sg. Thus if fegg0(x) = D = fegg1(x);
then D �T �fDnjn < e & n 2 Sg as required.

Rn: Suppose that n 2 S and u is a witness, i.e. 8v9wR(n; u; v; w;X). By our
overriding coding condition, there is, for each m, at most one k such that hn; u; t;m; ki 2
Gi for each i 2 f0; 1g. We wish to show that, for each i 2 f0; 1g and almost every m,
hn; u; t;m;Dn(m)i 2 Gi for some t. This will su¢ ce to show that Dn �T Gi as we can
then correctly calculate Dn(m) at almost every m by searching for a hn; u; t;m; ki 2 Gi
and, upon �nding one, declaring that k = Dn(m). Let s0 be such that no Qe with
e � hn; ui ever supplies a target after stage s0. The only actions that put a number
hn; u; t;m; ki into Gi at s > s0 are ones (by other Qe0 and Rn;u:m) that do so only if
k = hdn;s(m) = Dn(m). Thus there at most �nitely many incorrect values coded into
Gi. Consider any m larger than all of these values, the requirement Rn;u;m and any stage
s after s0 and t(j) where Sj = Rn;u;m such that 8v � m9w � sR(n; u; v; w;X) and
hdn;s(m) #. If no hn; u; t;m; ki 2 gi;s, then an extension putting hn; u; t;m; hdn;s(m)i in
is declared a target and it is the one of highest priority not yet satis�ed. Thus we will
eventually put such an element into gi as required.

This concludes the proof of Theorem 4.1.

Corollary 4.5. ANR and hence C and ~C have Property 1.

5 Forcing argument

In this section prove that C and ~C have Property 2.

Theorem 5.1. For every degree x, there are a0; a1 � x(!) (indeed recursive in �f(x _ 0(n))000j
n 2 Ng) such that a0; a1 � x, a000 ^ a001 = x00 and (8i 2 f0; 1g)(8n)(a000i � (ai _ 0(n))00, i.e.
ai 2 C. Moreover, there are b0;b1 � (x _ 0(!))000 such that (x _ b0)00 ^ (x _ b1)00 = x00

and (8i 2 f0; 1g)(8n)(b000i � (bi _ 0(n))00 and so (x _ bi) 2 ~C.

Working towards our proof, we �rst describe a forcing language and a speci�c notion
of forcing. After analyzing the forcing relation for two quanti�er sentences, we construct
a sequence of forcing conditions that decide all two quanti�er sentences in our language.

20

We also act along the way to satisfy requirements corresponding to the conditions on the
degrees in the theorem.

Our forcing language is that of �rst order arithmetic with a unary predicate G for the
generic set as usual plus additional unary predicates for a �xed X 2 x and the sets 0(n).
Our notion of forcing consists of triples h�; F; Ii. Here � 2 2<! is thought of as a �nite
initial segment of the characteristic function for the generic G, so if we have a sequence
ps = h�ps ; Fps ; Ipsi of conditions the corresponding generic set is G = [�s. F and I are
disjoint �nite subsets of !. We say that p0 = h�0; F 0; I 0i extends p = h�; F; Ii, p0 � p, if

� �0 � �, F 0 � F , I 0 � I and

� (8j 2 F)(8x 2 dom�0 � dom�)(x 2 ![j] ! �0(x) = 0).

The intuition here is that once j 2 Fp no more numbers in column j can be put into
G and so G[j] = fxj hj; xi 2 Gg will be �nite. On the other hand, once j 2 Ip, j can never
be put into Fq for any q � p and so if G is even slightly generic, G[j] will be in�nite.

We say that p
 �(�x;G;X; 0(n)) for � with only bounded quanti�ers ifN � �(�x; �p; X; 0(n)),
in the usual sense of �p having enough information to verify the statement which depends
only on an initial segment of the predicate G. Thus p
 �(�x;G;X; 0(n)) , (�p; ;; ;)

�(�x;G;X; 0(n)). Note that this relation is uniformly recursive in X � 0(n) (or in X(0(n))
if 0(n)(X) does not appear in �. The forcing relation on more complicated sentences is
then de�ned in the usual inductive fashion.

Lemma 5.2. The relations p
 9�x8�y�(�x; �y;G;X; 0(n)) and p
 8�x9�y�(�x; �y;G;X; 0(n))
for � with only bounded quanti�ers are uniformly �2 and �2 in X � 0(n), respectively,
or in X(0(n)) alone if 0(n)(X) does not appear in �. Moreover, given any condition
p and sentence 9�x8�y�(�x; �y;G;X; 0(n)) either there is a q � p and �x such that q

8�y�(�x; �y;G;X; 0(n)) and Iq = Ip or p
 8�x9�y:�(�x; �y;G;X; 0(n)). In either, case we
see that there is a q � p deciding 9�x8�y�(�x; �y;G;X; 0(n)) with Iq = Ip.

Proof. To �x our notation we carry along both X and 0(n) in � and the full analysis.
Omitting either one is purely a notational change. As usual, p
 9�x�(�x;G;X; 0(n)) ,
9�xp
 �(�x;G;X; 0(n)) for � with only bounded quanti�ers and so p
 9�x�(�x;G;X; 0(n)),
(�p; ;; ;)
 9�x�(�x;G;X; 0(n)). Thus if, for any given p, there is a q � p such that
q
 9�x�(�x;G;X; 0(n)) then there is one q0 with Fq0 = Fp and Iq0 = Ip: (Just let q0 =
(�q; Fp; Ip).) For �1 sentences we have by de�nition p
 8�x�(�x;G;X; 0(n)), 8q � p(q 1
9�x:�(�x;G;X; 0(n)). Thus these relations are uniformly �1 and �1 inX�0(n). We also see
that p
 8�x�(�x;G;X; 0(n)) , 8q � p(Fq = Fp & Iq = Ip ! q 1 9�x:�(�x;G;X; 0(n))). So
p
 8�x�(�x;G;X; 0(n)) , (�p; Fp; ;)
 8�x�(�x;G;X; 0(n)). (For the right to left direction
suppose, for the sake of a contradiction that (�p; Fp; ;) 1 8�x�(�x;G;X; 0(n)). So we have
a q � (�p; Fp; ;) such that q
 9�x:�(�x;G;X; 0(n)) and so by the analysis of forcing for
existential sentences, (�q; ;; ;)
 9�x:�(�x;G;X; 0(n)) and so (�q; Fp; Ip)9�x:�(�x;G;X; 0(n))
and extends p for the required contradiction.)

21

At the two quanti�er level, p
 9�x8�y�(�x; �y;G;X; 0(n)) , 9�xp
 8�y�(�x; �y;G;X; 0(n))
and p
 8�x9�y�(�x; �y;G;X; 0(n)), 8�x8q � p9�y9r � q(r
 �(�x; �y;G;X; 0(n)) and so these
relations are uniformly �2 and �2 in X � 0(n), respectively. Moreover, given any p if
there is any x and q � p such that q
 8�y�(�x; �y;G;X; 0(n)) then, by the fact above about
forcing �1 sentences, (�q; Fq; ;)
 8�y�(�x; �y;G;X; 0(n)) and so does (�q; Fq; Ip) which is
an extension q0 of p with Ip = Iq0. On the other hand, if there is no x and no q � p with
Ip = Iq that forces 8�y�(�x; �y;G;X; 0(n)), then p
 8�x9�y:�(�x; �y;G;X; 0(n)).

We now show how to construct the degrees ai required in the Theorem. Minor
modi�cations will then su¢ ce to construct the desired bi. Our plan is to construct
sequences pis of forcing conditions for i 2 f0; 1g with pis+1 � pis. We let Gi = [�pis and Ai
be X �Gi which for notational convenience we take to be f0g�X [f1g�Gi. We make
a list �j;n(�x; �y;G;X; 0(n)) of the formulas with only bounded quanti�ers and so of the
�2 sentences of our language: 'j;n = 9�x8�y�j;n(�x; �y;G;X; 0(n)). Deciding these sentences
in our construction will be requirements Sj;n. We also deal with the requirements Ne :
fegA000 = C = fegA001) C �T X 00 and Di;e;n : A

000
i 6= feg(Ai�0(n))00. We let Rs list all

these requirements. To handle the diagonalization requirements, we choose a recursive
function f such that (8A; s; t)(f(s; t) =2 A000 , (8w � t)(A[h1;s;ti] is �nite).

Construction: We begin with pi0 = (;; ;; ;). At the beginning of stage s+ 1 we will
have forcing conditions pis. We act at stage s+ 1 according to the following cases:

Rs = Sj;n: For each i 2 f0; 1g, ask if 9�x9qi � pis such that q
i
 8�y�j;n(�x; �y;G;X; 0(n)).

If so, we can choose such qi with Iqi = Ipis by Lemma 5.2. We then set p
i
s+1 = qi. If there

is no such qi, we set pis+1 = pis. Note that in either case p
i
s+1 decides 'j;n and Ipis+1 = Ipis .

By Lemma 5.2, this procedure is uniformly recursive in (x _ 0(n))00.
Rs = Di;e;n: Let t = max Ipis + 1 and ask if there is a � such that feg

� (f(s; t)) = 0
and a q � pis that forces the �2 and �2 facts about G;X; 0

(n) needed to make � an
initial segment of (X � Gi � 0(n))00 such that there is no hk; vi 2 Iq � Ipis with k � s.
If so, let w = maxFq + t + 1 and pis+1 = (�q; Fq; Iq [fhs; wig). (The condition pis+1
guarantees that at the end of the construction feg(Ai�0(n))00(f(s; t)) = 0. On the other
hand, it also guarantees that A[h1;s;wi]i is in�nite and so that f(s; t) 2 A000i for the desired
diagonalization.) If there is no such q then let pis+1 = pis. (In this case we will argue that
every A[h1;s;t

0i]
i is �nite for t0 � t but feg(Ai�0(n))00(f(s; t)) 6= 0 and so we also diagonalized.)

Again by Lemma 5.2 this procedure is recursive in (x _ 0(n))000.
Rs = Ne: Ask if there are � i and x such that feg�

0
(x) #6= feg�1(x) # and qi � pis such

that there is no hk; vi 2 Iq � Ipis with k � s and qi forces all the �2 and �2 facts needed
to make � i an initial segment of (X �Gi)

00. If so, let pis+1 = qi. (Clearly in this case we
have guaranteed that fegA000 6= fegA001 .) Otherwise, we let pis+1 = pis. (In this case, we will
argue that we also satisfy the requirement Ne.) Again by Lemma 5.2 this procedure is
recursive in x000.

Veri�cation: We argue that at stage s+1 we satisfy requirement Rs. For Rs = Sj;n
this is immediate and so, as usual, every �2(�2) sentence about Gi; X and any 0(n) (and

22

so also the appropriate �translations�of such sentences about Ai and 0(n)) is true if and
only if it is forced. For the other requirements, we �rst note that, by construction, no
hk; vi with k � s is ever added to Ipit+1 for t > s.

Rs = Di;e;n: Clearly if we extended pis to a q as desired in the construction, we have
feg(Ai�0(n))00(f(s; t)) = 0. We also put some hs; wi into Ipis+1 and so it never enters Fpir
for any r. Thus when we reach any stage r > s with Rr devoted to a sentence that says
that 9x > v(hs; xi 2 Gi) then we choose an extension that forces it to be true and so
A
[h1;s;ti]
i is in�nite and f(s; t) 2 A000i for the desired diagonalization. On the other hand, if
there is no q � pis as desired in the construction, then no number hs; vi with v � t is ever
put into Ipir for any r. Thus when we reach any stage r with Rr devoted to a sentence

that says that 9w8u > w(u =2 G
[hs;vi]
i) for any v � t, we will choose an extension which

forces it to be true by putting hs; vi into Fpir . Thus G
[hs;vi]
i and so A[h1;s;vi]i is �nite for

every v � t and f(s; t) =2 A000. On the other hand, if feg(Ai�0(n))00(f(s; t)) #= 0 then there
is some oracle information � about (X �Gi � 0(n))00 that gives the correct computation.
Each �2 or �2 fact about X � Gi � 0(n) re�ected in � is decided at some stage of the
construction and must be decided in accordance with the information in � . So some piy
forces all the facts needed by � . By construction, no numbers of the form hs; vi are added
to Ipir after stage s and so p

i
y is an extension of p

i
s that could have been chosen at stage s

contradicting our assumption. So again we have that, if convergent, feg(Ai�0(n))00(f(s; t))
does not equal A000(f(s; t)) as required.

Rs = Ne: Again, if at stage s we found qi as described and extended pis accordingly,
fegA000 6= fegA001 . If not, but fegA000 = C = fegA001 , then we claim that C �T X 00. To
compute C(x), �nd any � such that feg� (x) # and any extension q of p0s such that q
forces all the �2 and �2 facts about X � G0 needed to make � an initial segment of
A000 and there is no hk; vi 2 Iq � Ip0s with k � s. As some p0y forces all the true facts
about A0 needed to get the correct computation of fegA

00
0 (x) and, by construction, there

is no hk; vi 2 Ip0y � Ip0s with k � s, this search terminates (with some � and q). As the
forcing relation for �2(G;X)and �2(G;X) sentences are �2(X) and �2(X) respectively,
the search is recursive in X 00. Finally, we claim that the search terminates with a � such
that feg� (x) = fegA1(x) = C(x) as desired. The point here is that there is some y such
that p1y forces all the all the true facts �

1 about A001 needed to get the correct computation
of fegA001 (x) and, of course, p1y � p1s and there is no hk; vi 2 Ip1y�Ip1s with k � s. Thus the
pairs � ; � 1 and q; p1y would be as desired at stage s of the construction, contrary to our
assumption. This concludes the construction of the sets A0 and A1 and so the desired
degrees a0 and a1.

To construct the degrees bi required in the theorem repeat the above argument with
Bi = Gi in place of Ai omitting X from the requirements Di;e;n making that step of
the construction recursive in 0(n+3). We also adjust the list of formulas �j;n in Sj;n so
that they omit either X or 0(n) but still contain all instances of such formulas with at
most one of these two parameters. This adjustment makes the corresponding steps of

23

the construction recursive in either x000 or 0(n+3). Thus the Bi so constructed will have
all the desired properties.

6 Localization and Counting Quanti�ers

In this section we will examine our proof of the de�nability of the jump more carefully
to see that it is a correct de�nition in every su¢ ciently large jump ideal. The de�nition
with C works in all ideals closed under the !-jump but that with ~C works in all jump
ideals simply containing the single degree 0(!). We will also calculate bounds on the
quanti�er complexity of these de�nitions. We begin with the localization issue. Let I be
a jump ideal.

We start with the de�nition C! = fxj(8z)(z _ x is not a minimal cover of zg. We
need to verify that, for each n, I j= 0(n) 2 C! and, for every x 2I, there is an n 2 N such
that I j= (8z)(z _ x is not a minimal cover of z)! x � 0(n). Of course, fact that 0(n)_z
is not a minimal cover of z in D means that it is not one in any ideal containing 0(n)

and z. For the second fact, note that Jockusch and Shore [1984, Corollary 3.3] actually
prove that if x � 0(n) for every n then there is a z � x _ 0(!) such that z _ x is a minimal
cover of z. Thus the facts we need about C! are true in any jump ideal containing 0(!)
as required.

Next, we note that all the procedures connected with Slaman-Woodin coding are
arithmetic by the results of Slaman and Woodin [1986]. In particular, any countable
set of pairwise incomparable degrees uniformly recursive in x are coded by a c � x00.
Moreover, by de�nition, the set Kd(c) coded by c is uniformly recursive in just a few
jumps of c. Thus it, and all the notions developed in §3 about coding and comparing
sets, work in (i.e. are absolute for) I for any sets with degrees in I and any codes inside I
for any jump ideal I. The relations absolute to any jump ideal I thus include y 2Kd(c),
Mp(�c; _c;�c; ĉ;d; ~d), Compl(x; a;b; c) and Eq(a; c;~a;~c).

This brings us to the de�nitions of C and ~C in Theorem 3.5. We must verify that the
classes so de�ned when interpreted in I still have Properties 1 and 2 in I. The lattice
coding needed for Property 1 is done in Theorem 2.2 by degrees below the given x and so
is available in any ideal containing x. The Slaman-Woodin coding needed in the formal
de�nition of sets being coded below x work, as we just remarked, in every jump ideal
containing x as they do in D. In particular, in the de�nition of Cd(x; a; c), a c needed for
any a < x exists in the degrees arithmetic in x as the set fdng being coded is uniformly
recursive in x(5) (to calculate the in�mum and other operations on degrees below x). As
this set is the minimal one coded anywhere satisfying condition (3) and (4) of De�nition
3.3, it is also the minimal one coded in I satisfying these conditions. Thus, for any
a � x coding a set, the existence of a c such that Cd(x; a; c) is absolute to any jump
ideal so all the desired sets are coded below x by degrees in I. Similarly, the existence
of codes needed for any instances of the relations M , Compl and Eq for parameters in

24

I is absolute for any jump ideal. All that remains to check for the absoluteness of our
de�nition of x00� y00 is Theorem 5.1 that C and ~C have Property 2.
From the statement of Theorem 5.1, we see that the degrees a0; a1 required for C

exists below x(!). As the properties of these degrees required in the de�nition are all
speci�ed in terms of lattice coding of sets and Slaman-Woodin comparisons, the degrees
constructed have the desired properties inside any jump ideal containing them. Thus
the de�nition of x00� y00 from C works in any ideal closed under the !-jump as desired.
For the de�nition in terms of ~C, we need the degrees b0;b1 of Theorem 5.1. Again the
statement of the theorem assures us that they are computable in (x _ 0(!))000 and so exist
in any jump ideal containing 0(!).

All that remains now is to verify the absoluteness of the de�nition of the jump
from the relation x00 � y00. Here we note that Shore and Slaman [1999, Theorem 2.3
n = 2 relativized to x] prove that if w � x0 then there is a g � w _ x00 such that
w _ g = g00. As argued there, this su¢ ces to show that x0 is the maximal w such that
8g(g � x! (w _ g) 6= g00 as required in the de�nition of x0 from the relation x00 � y00:
Clearly no degree less than or equal to x0 can join any g � x to g00. For the other di-
rection, the cited theorem provides, for every w � x0, a g � w _ x00, and so one in any
jump ideal containing x and w, such that w _ g = g00.
We have thus proven Theorem 3.7 and a version for the de�nition with ~C as well.

Theorem 6.1. The de�nitions of x00 � y00 and x0 = w in terms of C are absolute to
every ideal I closed under the !-jump, i.e. for x;y;w 2I,

1. x00 � y00 , I j= (8a; c)[Cd(a; c) & (8z)(z 2C & x � z ! (9~a;~c)(Cd(z;~a;~c) &
Eq(a; c;~a;~c))! (8w)(w 2C & y � w!(9â; ĉ)(Cd(w;â; ĉ) & Eq(a; c; â; ĉ))].

2. x0 = w, I j= 8g(g � x! (w _ g) 6= g00) & 8v(8g(g � x! (v _ g) 6= g00! v � w).

When given in terms of ~C they are absolute for every jump ideal I containing 0(!),
i.e. for x;y;w 2I,

1. x00 � y00 , I j= (8a; c)[Cd(a; c) & (8z)(z 2 ~C & x � z ! (9~a;~c)(Cd(z;~a;~c) &
Eq(a; c;~a;~c))! (8w)(w 2 ~C & y � w!(9â; ĉ)(Cd(w;â; ĉ) & Eq(a; c; â; ĉ))].

2. x0 = w, I j= 8g(g � x! (w _ g) 6= g00) & 8v(8g(g � x! (v _ g) 6= g00! v � w).

We now provide an analysis of these de�nitions to calculate their quanti�er complexity.
We follow the process of de�nition in §3 and work �rst in the language with _, ^ and 0.

Theorem 6.2. There are �5 formulas of D in the language with �, _ and ^ that de�ne
the relations x00� y00, x 2 L2(y) and x00 = y00in any jump ideal containing 0(!), a �6&�6
one that de�nes w = x00 and a �8 one that de�nes the relation w = x0 in any such ideal.

Lemma 6.3. The relation y 2Kd(c) is 9&8.

25

Proof. By de�nition (Theorem 3.1) y 2Kd(c), y � u & 9w(w � h0_y;h1_y & w � y)
& (8u < y):9w(w � h0 _ u;h1 _ u & w � u).

Lemma 6.4. The relations Cd(x; a; c), Cd(a; c) and Cd(x; a;b; c) are 89. The precise
versions are 898.

Proof. Consider the clauses of De�nition 3.3. Clauses (1) and (2) are quanti�er free.
Clause (3) is 9&8 by the previous Lemma. Similarly, clause (4) is 8(9&8 ! 9&8&9&8)
and so 89. Clause (5) is 8(9&8 ! 8). Using this analysis of (4), clause (6) is 8(89 !
8(9&8 ! 9&8)) and so 898.

Lemma 6.5. The relation Compl(x; a;b; c) is 89.

Proof. Compl(x; a;b; c) , Cd(x; a;b; c) & (8d 2Kd(c))(d � g0;g1 $ d �g2;g3). By
the previous Lemmas this relation is 89.

Lemma 6.6. The relation Mp(�c; _c;�c; ĉ; z;~z) is 98.

Proof. Mp(�c; _c;�c; ĉ; z;~z) , (9w; ~w 2Kd(�c))(z _w 2Kd(_c) & ~z _ ~w 2Kd(�c) &
(z _w _ ~z _ ~w) 2Kd(ĉ)). By Lemma 6.3 this is 98.

Lemma 6.7. The relation Eq(a; c;~a;~c) is 9898; i.e. �4.

Proof. Eq(a; c;~a;~c),Cd(a; c)&Cd(~a;~c)&(9�c; _c;�c; ĉ)f(8x;y; z)(Mp(�c; _c;�c; ĉ;x;y) &
Mp(�c; _c;�c; ĉ;x; z)! y = z) & Mp(�c; _c;�c; ĉ;d0; ~d0) & (8d)(8~d)
(Mp(�c; _c;�c; ĉ;d; ~d)!Mp(�c; _c;�c; ĉ; (d_ e0)^ f1; (~d_~e0)^~f1) & Mp(�c; _c;�c; ĉ; (d_ e1)^
f0; (~d _ ~e1) ^~f0) & (d � g0;g1 $ ~d � ~g0; ~g1)g. Applying the previous Lemmas we have
that the relation is 89&89&9f8(98&98 !) & 98&8[(98 ! 98&98)]g. Some simpli�ca-
tion yields 89 & 9f8(98 !) & 8[(98 ! 98]g. One more round gives 9f89 & 898g and
so 9898.

We can actually improve this calculation by being more explicit in our de�nitions
of Mp and Eq. Recall that we de�ned Mp between the sets fdng and f~dng corre-
sponding to two codes a; c and ~a;~c, respectively, by choosing �c; _c;�c and ĉ such that,
for any z 2Kd(c) and ~z 2Kd(~c), (9w; ~w 2Kd(�c))(z _w 2Kd(_c) & ~z _ ~w 2Kd(�c) &
(z _w _ ~z _ ~w) 2Kd(ĉ)) $ (9n)(z = dn & ~z = ~dn). The intention here was that we
would have a set hi of mutually 1-generic degrees relative to any degree above all the dn
and ~dn and let �c code fhig. Next we let _c code the set fdn _ h2ng of pairwise incom-
parable degrees and �c code f~dn _ h2n+1g. Finally we let ĉ code fdn _ h2n _ ~dn _ h2n+1g
which is also pairwise incomparable. We can now add on a new code �c for the set
fhn _ hn+2jn 2 !g and so guarantee that (for these codes) if w; ~w are the witnesses
that Mp(�c; _c;�c; ĉ;dn; ~dn) for n > 1 and w _ h; ~w _ ~h;w _ j; ~w _~j 2Kd(�c) with h 6= j
and ~h 6=~j then some choice of one each of fh; jg and f~h;~jg provides the witnesses that
Mp(�c; _c;�c; ĉ;dn+1; ~dn+1). (The reason we need two candidates here is that for a given
hn, n > 1, both hn _ hn+2 and hn _ hn�2 are in Kd(�c).) We can now use the code �c to
provide a �3 equivalent for Eq.

26

Lemma 6.8. There is a �3 equivalent of Eq.

Proof. We use d1 and ~d1 as abbreviations for (d_e0)^f1 and ((~d _ ~e0) ^~f1), respectively.
Eq(a; c;~a;~c),Cd(a; c)&Cd(~a;~c)&(9�c; _c;�c; ĉ;�c)f

(8x;y; z)(Mp(�c; _c;�c; ĉ;x;y) & Mp(�c; _c;�c; ĉ;x; z)! y = z) & Mp(�c; _c;�c; ĉ;d0; ~d0)
& Mp(�c; _c;�c; ĉ;d1; ~d1) & (8d 2Kd(c))(8~d 2Kd(~c))(8h; ~h; j;~j 2Kd(�c)[h 6= j&~h 6=~j
& (9w; ~w 2Kd(�c))(h _w 2Kd(�c) & ~h _ ~w 2Kd(�c) & j _w 2Kd(�c) & ~j _ ~w 2Kd(�c)&
d _w 2Kd(_c) & ~d _ ~w 2Kd(�c) & (d _w _ ~d _ ~w) 2Kd(ĉ))!

_
k2fh;jg;~k2f~h;~jg

f

[((d _ e1) ^ f0 = d !((d _ e0) ^ f1)_k 2Kd(_c) & ((~d _ ~e0) ^~f1) _ ~k 2Kd(�c) &
(((d _ e0) ^ f1)_k _ ((~d _ ~e0) ^~f1) _ ~k) 2Kd(ĉ))] &
[((d _ e0) ^ f1 = d !((d _ e1) ^ f0)_k 2Kd(_c) & ((~d _ ~e1) ^~f0) _ ~k 2Kd(�c) &
(((d _ e1) ^ f0)_k _ ((~d _ ~e1) ^~f0) _ ~k) 2Kd(ĉ)]g]g.
This formula is of the form 89&89&9f8(98&98 !) & 98 & 98 & 88[9&8 & 9&8::: &

9(9&8 & 9&8:::)!
_
f[! 9&8 & 9&8 & 9&8] & [! 9&8 & 9&8 & 9&8]g]g. Simpli-

fying we get 9f89&98 & 8[9&8 & 9(9&8) !
_
f9&8g]g and so 9f8[98 ! 9&8]g, i.e.

989.

Lemma 6.9. The relation x 2C! is 89.

Proof. x 2C! , (8z)(z _ x is not a minimal cover of zg ,
(8z)(z _ x � x or 9w(x < w < z _ x)).

Lemma 6.10. The relation x 2C is �4.

Proof. By Theorem 3.5, x 2C , 9a; c(Cd(x; a; c) &
(8~a; ~b;~c; z)(z 2C! & Compl(x _ z;~a; ~b;~c)! :Eq(a; c;~a;~c)). By the previous Lemmas
this is 9(89 & 8(89 & 89 ! �3)) and so �4.

Lemma 6.11. The relation x 2 ~C is also �4.

Proof. x 2 ~C , 9y(y 2C & y � x).

Lemma 6.12. The relation x00� y00 using C or ~C is �5.

Proof. By Theorem 3.6, x00 � y00 , (8a; c)[Cd(a; c) & (8z)(z 2C & x � z! (9~a;~c)
(Cd(z;~a;~c) & Eq(a; c;~a;~c))! (8w)(w 2C & y � w!(9â; ĉ)(Cd(w;â; ĉ) & Eq(a; c; â; ĉ))].
So this relation is 8[�2 & 8(�4 ! 9(�2 & �3)) ! 8(�4 ! 9(�2 & �3))]. Simplifying
gives 8[�4 ! �4], i.e. �5. If we use ~C in place of C, nothing changes as both are �4.

Lemma 6.13. The relation u � x00 is �6, u � x00 is �6 and so u = x00 is �6&�6.

27

Proof. As pointed out at the beginning of §2, x00 = _fy � xjy00 � x00g and so u � x00 ,
(8y � x)(y00 � x00! & u � y) and by the previous Lemma this relation is �6. As we
also noted there, we have y1;y2 � x with y001 ;y

00
2 = x00 such that y001_y002= x00 so that

u � x00 , (9y1;y2 � x)(y001;y002 � x00 & u � y1_y2). This relation is then �6.
Lemma 6.14. The relation x0 = w is �8.

Proof. By Theorem 3.6, x0 = w, w = maxfz �Txj(8g �Tx)(z _ g � g
00
),

8g(g � x! (w _ g) � g00) & 8v(8g(g � x! (v _ g) � g00)! v � w). By the previous
Lemmas, this relation is 8(�6) & 8(8�6 !), i.e. �7 & �8.

We turn now to the issue of eliminating the de�ned symbols 0, _ and ^. The only
use of 0 is in clause (5) of De�nition 3.3. We can eliminate it and the uses of _ and ^
there as well without increasing its quanti�er complexity by rewriting the clause as

50 8d; d̂(d 6= d̂ & d; d̂ 2Kd(c) ! 8u;v(u � d; d̂! u � v) & 8u(u � d;p! q � u)
& 9x;y(y < x � d;g0;g1)! d � g0;g1).

Now, in general, we can eliminate _ at the expense of increasing the quanti�er com-
plexity by at most one. Given a formula Q~x' where ' is quanti�er free and includes the
symbol _, we can �nd an equivalent without _ that has at most one additional alterna-
tion of quanti�ers as follows: for each term of the form x _ y in ' we can add a new
variable u and replace ' by 9u(x;y � u & 8v(x;y � v ! u � v) & '(u=(x _ y))).
Similarly, ' can be replaced by 8u(x;y � u & 8v(x;y � v! u � v) ! '(u=(x_y))).
Of course, one of these replacements has its initial quanti�er the same as the �nal one
of Q~x and so increases the quanti�er complexity by exactly one. Clearly, we can iterate
and even chain this procedure to eliminate all occurrences of _ at the same cost. We
could perform the dual procedure for ^ except for the fact that ^ is not always de�ned
in D. Checking all our formulas we see that the only remaining occurrences of ^ are in
terms of the form (d _ e0) ^ f1 or (d _ e1) ^ f0 with d 2Kd(a; c) and the other elements
ei and fi are the standard ones in a. In each such instance, we have also asserted in the
formula that Cd(a; c) or we are within the de�nition of Cd itself. Thus we wish to add
a condition that guarantees that all in�ma of this form exist. We do this by adding the
following to clause (3) of De�nition 3.3:

(8d)(d 2 cKd(c)) ! (9u0;u1;v0;v1)(d; e0 � u0 & 8w(d; e0 � w! u0 � w) & v0 �
u0; f1 & 8w(w � u0; f1 ! w � v0) & d; e1 � u1 & 8w(d; e1 � w! u1 � w) & v1 �
u1; f0 & 8w(w � u1; f0 ! w � v1))
where cKd(c) is the version of Kd with _ eliminated and so on general grounds of com-
plexity at most 98&89. This new clause is then �3 in the language with just �. The
whole translation of Cd into the language with just � is then �3 as we can now apply the
general elimination procedure to clause (4). All later uses of ^ take place within contexts
in which we have, by this addition to clause (3) of the de�nition of Cd, guaranteed that
the required in�mum exists. We can thus apply the general elimination rules for ^ as
well as _ to all the remaining formulas at the cost of one level in quanti�er complexity.

28

Theorem 6.15. There are �6 formulas of D in the language with just � that de�ne the
relations x00� y00, x 2 L2(y) and x00 = y00 in any jump ideal containing 0(!), a �7&�7
one that de�nes w = x00 and a �9 one that de�nes the relation w = x0 in any such ideal.

7 Questions

Before turning to the major topic of this paper, the de�nability of the jump operator,
we would like to point out an interesting class of problems raised by the introduction
of our new hierarchies of generalized high and low classes in De�nition 2.5. There are
clearly many natural questions that these notions suggest. In general terms, one would
want to know what properties of the usual generalized high and low hierarchies carry
over to these new ones. These properties would include classi�cations by growth rates
and structural properties of the degrees in the various classes.

Returning to our concern with de�nitions, perhaps someone so well steeped in the
ways of the Turing degrees that the lattice and Slaman-Woodin coding procedures are
second nature might been inclined to view our de�nitions as natural. At least in terms
of invariance under automorphisms, one can dispense with the Slaman-Woodin coding
apparatus. In this case, they simply say that one can determine various classes of degrees
by the order types embeddable below them. (More precisely, they are determined by the
�nitely generated copies of independent degrees of order type ! along with an additional
pair of degrees above some subset of these degrees.) In any case, there still seems room
for a de�nition that the casual observer would see as natural. As we are perhaps already
close to the border of the natural, it is even more di¢ cult to make a precise claim as to
what form of de�nition would �t the bill. There are, however, a couple of ways in which
our results can be improved that do have precise measures.

The �rst is obviously the quanti�er complexity of the de�nitions. Simpler is better
and so we ask the following:

Question 7.1. Are there de�nitions of L2, the double jump and the jump which are at
lower levels of the alternating quanti�er hierarchy than those established here?

The second way is the extent to which the de�nitions are local. Of course, a de�nition
of the (double) jump can only make sense in jump ideals. (Individual instances such as
a de�nition of 00 can make sense in arbitrary ideals.) Our results require just a bit more:
the presence of the single degree 0(!). Thus we ask for the best possible results:

Question 7.2. Is there a formula that de�nes the relations x0 = w in every jump ideal?
Is there a formula which de�nes the degree 00 in every ideal containing it?

It seems reasonably likely that a de�nition that supplies positive answers to both
questions will also be viewed by all as natural.

29

We have one suggestion for an approach for a minor improvement along the lines of
the �rst of these questions. It is based on an alternate approach to a lattice coding of
sets �X3 supplied by recursive enumerability.

Theorem 7.3. If c > b and c is r.e. in b then every �C3 set is coded below a.

Proof. Choose a 2 (b; c) r.e. in b with a0 = b0. As described in Shore [1982, p. 262],
the lattice L of Theorem 2.2 can be embedded in [b; a) with the images of dn becoming
uniformly recursive in a. By Shore [1981, Lemma 4.2], given any X 2 �C3 there is an
exact pair for the ideal generated by fdnjn 2 Xg below c.

Thus we could hope to use a class of degrees every member of which bounds an r.e.
degree as a stepping stone to a de�nition of the (double) jump. A natural de�nable
candidate for such a class is C! as it is known to contain all the n-REA degrees (Shore
and Slaman [2001] but not known to contain any other degrees. (The 1-REA degrees
are the r.e. degrees and the (n+1)-REA degrees are those that are REA in an n-REA
degree. So all of them bound an r.e. degree.)

Conjecture 7.4. C! is the union over n 2 N of the n-REA degrees and indeed for any
a Ca! = ffx � aj(8z � a)(z _ x is not a minimal cover of zg is the union of the degrees
n-REA in a.

Proposition 7.5. If this conjecture holds then we can de�ne the double jump of h as
_Th where Th = fx � hj(9z 2 Ch!)[(8u < v � z)(u � h! u _ x < v _ x) &
8a; c(Cd(x _ z; a; c) ! (8y 2 Ch!)(9~a;~c)(Cd(y;~a;~c) & Eq(a; c;~a;~c)]g. Moreover, the
relation x 2 Th is �5 and so the resulting de�nition of the relation h00 = w is �6. This
then would give a �7 de�nition of x0 = w in the language with �, _ and ^.

Proof. First, if x 2 Th let z be its witness and let h � u < v � z be such that v is r.e.
in u. Thus u _ x < v _ x and v _ x is r.e. in u _ x. By the Theorem 7.3, every �V�X3

set S is coded below v _ x. By the de�nition of Th, S is coded below every y 2Ch! . Now
choose y to be REA in h with h0 = y0. Thus S 2 �Y3 = �H3 and so (v _ x)

00 � h00 and so
a fortiori x00 �T h00.
On the other hand, consider any z 2Ch! with z REA in h and h0 = z0. Let x be any set

2-generic with respect to z so that (8u < v � z)(u � h! u _ x _ h < v _ x _ h) and
also (x _ h _ z)00 = (x _ h)00 = z00. Thus every S coded below x _ h _ z is �A3 and coded
below every y 2Ch! and so x 2 T. As z00 = h00 is the join of two degrees x1 and x2 each
2-generic with respect to z, both x1_h and x2_h are in Th and so h00 = _Th as desired.
We leave the quanti�er counting as an exercise given the information already in §6.

A very interesting problem is to attack this issue from the other end and put lower
bounds on the complexity of such de�nitions. Some beginnings to this approach are
in Lerman and Shore [1988] who show, for example, that no nonzero degree has a �2
de�nition in D. We o¤er one more such example in the style of that paper that shows

30

that, for at least one of our de�nitions, the gap between what we have and what is
possible is not too large. By Lemma 6.12 L2 = fxjx00 = 000g = fxj8v(x00 � v00)g is �6 in
the language with just �. We show that it is neither �2 nor �2.

Proposition 7.6. There is no �2 or �2 de�nition in D (with just �) of L2 (or of L2(y)
by relativization).

Proof. Suppose, for the sake of a contradiction to the assumed existence of a �2 de�nition
of L2, that x 2 L2 , 8~v9~u�(x; ~v; ~u). Choose a minimal degree x1 2 L2 such that there
are extensions of [0;x] to initial segments realizing all possible uppersemilattices of size
at most 2j~vj+2 with x as a minimal element. (Clearly there is a �nite lattice containing
copies of each such extension of a single minimal element as an initial segment. Choose a
realization of this lattice inside L2 by Lerman [1983] and take the degree corresponding to
the single distinguished minimal element as x.) Now choose an x2 =2 L2 and witnesses ~v2
such that :8~v9~u�(x2; ~v; ~u). Consider the uppersemilattice U generated in D by x2 and
~v2. Now take a realization of U as an initial segment extending x1 and let its elements
corresponding to ~v2 be ~v1. As x1 2 L2, there are degrees ~u1 such that �(x; ~v1; ~u1). As
~v1 generates an usl initial segment, the degrees in ~u1 consist of members of this initial
segment (i.e. joins of some of the ~v1) plus an end extension of it. For those i such
that u1;i is a join of elements of ~v1 take as u2;i the corresponding join of elements of
~v2. All the others form a partial order end extension of the initial segment realization of
U . By the usual Kleene-Post construction, there is an isomorphic end extension in D of
the usl generated by x2 and ~v2. Use such an extension to de�ne the remaining u2;i and
note that we now have constructed witnesses ~u2 such that �(x2; ~v2; ~u2) for the desired
contradiction.

To consider a proposed �2 de�nition of L2 and so a �2 one 8~v9~u�(x; ~v; ~u) for �L2, just
interchange the roles of L2 and �L2 by choosing x1 and its extensions as initial segments
of D not in L2 (e.g. not below 000). Now choose x2 2 L2 and appropriate witnesses
~v2 such that :8~v9~u�(x2; ~v; ~u) and continue on as above to get witnesses ~u2 such that
�(x2; ~v2; ~u2) for the desired contradiction.

Finally, the major global fact about D not addressed by our results is that it has at
most countably many automorphisms (Slaman and Woodin [2008]). We ask for a local
version:

Question 7.7. Does every jump ideal ofD have at most countable many automorphisms?

We note that a positive answer would have Slaman and Woodin�s result as a corollary.
First a lemma.

Lemma 7.8. The following conditions are equivalent:

1. There are at most countably many automorphisms of D.

31

2. There is a countable automorphism base for D, i.e. a countable set A of degrees
such that any two automorphisms of D that agree on A are identical.

3. There is a �nite automorphism base for D.

Proof. (1)) (2): Suppose f'iji 2 Ng lists all the automorphisms of D. Choose di;j for
i 6= j such that 'i(di;j) 6= 'j(di;j). Clearly fdi;jg is an automorphism base since any two
distinct automorphisms must be 'i and 'j for some i 6= j and so di¤er on di;j.

(2)) (3): As pointed out in Odifreddi and Shore [1991], Slaman-Woodin coding
shows that the restriction of any automorphism ' to the degrees below any x is deter-
mined by the action of ' on �nitely many parameters which are arithmetic in x.

(3)) (1): Any automorphism takes the members of the �nite base to degrees of
the same arithmetic degree by Jockusch and Shore [1984] (indeed to ones below their
join with 000 as all degrees above 000 are �xed under all automorphisms). Thus there
are only countably many possible images for this base and so only countably many
automorphisms.

Proposition 7.9. If every countable jump ideal which is su¢ ciently large (i.e. contains
some �xed degree h) or su¢ ciently closed (i.e. closed under the !-jump or any other
�xed function F on D) has at most countably many automorphisms then so does D.

Proof. As we know, every automorphism of D restricts to an automorphism of each
jump ideal I. Now note that if a countable jump ideal I (containing h or closed under
F) is not an automorphism base and ' is an automorphism of D then there is another
automorphism of D that agrees with ' on I: If � and � are any distinct automorphisms
that agree on I, then ��1�' is the desired . Next we can choose a degree d on which '
and di¤er. With this procedure as the basic step and the assumption that no countable
ideal is an automorphism base, we can start with I�1 = I and any automorphisms ' = ';
and build a binary tree with a degree d� at each node and a nested sequence of jump
ideals In (closed under F) for each level n of the tree such that, for every string �,
d� 2 Ij�j and there are automorphisms '� of D such that '�^0 and '�^1 di¤er at d� but
agree on Ij�j�1. Now consider the jump ideal I! = [In which contains h (and is closed
under F). For every P 2 2! the function [f'� � Ij�j�1j� � Pg is an automorphisms of
I! and they are all distinct for the desired contradiction to our assumption that no such
countable jump ideal is an automorphism base. Thus, by the Lemma, there are at most
countably many automorphisms of D.

8 Bibliography

Cooper, S. B. [1990], The jump is de�nable in the structure of the degrees of unsolv-
ability (research announcement), Bull. Am. Math. Soc. 23, 151-158.

32

Cooper, S. B. [1993], On a conjecture of Kleene and Post, University of Leeds, De-
partment of Pure Mathematics Preprint Series No. 7.

Cooper, S. B. [2001], On a conjecture of Kleene and Post. Math. Log. Q. 47, 3�33.
Downey, R. G., Jockusch, C. G. Jr. and Stob, M. [1990], Array nonrecursive sets

and multiple permitting arguments, in Recursion Theory Week, K. Ambos-Spies, G. H.
Müller and G. E. Sacks eds., Springer-Verlag, Berlin, 141-174.

Greenberg, N. and Montalbán, A. [2004], Embedding and coding below a 1-generic
degree, Notre Dame J. Formal Logic 44, 200-216.
Harrington, L. and Kechris, A. S. [1975], A basis result for �03 sets of reals with an

application to minimal covers, Proc. Am. Math. Soc. 53, 445-448
Harrington, L. and Shore, R. A. [1981], De�nable degrees and automorphisms of D,

Bul. Am. Math. Soc. (NS) 4, 97-100.
Jockusch, C. G. Jr. [2002], review of Cooper [2001], Math. Rev. MR1808943

(2002m:03061).

Jockusch, C. G. Jr. and Shore, R. A. [1984], Pseudo-jump operators II: trans�nite
iterations, hierarchies and minimal covers, J. Symb. Logic 49, 1205-1236.
Jockusch, C. G. Jr. and Simpson, S. G. [1976], A degree theoretic de�nition of the

rami�ed analytic hierarchy, Ann. Math. Logic 10, 1-32.
Jockusch, C. G. Jr. and Soare, R. I. [1970], Minimal covers and arithmetical sets,

Proc. Amer. Math. Soc. 25, 856-859.
Jockusch, C. G. Jr. and Solovay, R. M., [1977], Fixed points of jump preserving

automorphisms of degrees, Israel J. Math. 26, 91-94.
Jónsson, B. [1953] On the representations of lattices, Math. Scand. 1, 193-206.

Kleene, S. C. and Post, E. L. [1954] The upper semi-lattice of degrees of recursive
unsolvability, Ann. of Math. (2) 59, 379�407.
Lachlan, A. [1966], Lower bounds for pairs of recursively enumerable degrees, Proc.

Lon. Math. Soc. 16(3), 53-569.
Lerman, M. [1971], Initial segments of the degrees of unsolvability, Ann. Math. 93,

365-89.

Lerman, M. [1983], Degrees of Unsolvability, Perspectives in Mathematical Logic,
Springer-Verlag, Berlin.

Lerman, M. and Shore, R. A. [1988], Decidability and invariant classes for degree
structures, Trans. Am. Math. Soc. 310, 669-692.
Nies, A., Shore, R. A. and Slaman, T. [1998], Interpretability and de�nability in the

recursively enumerable degrees, Proceedings of the London Mathematical Society (3) 77,
241-291.

Odifreddi, P. and Shore, R. A. [1991], Global properties of local degree structures,
Bul. U. Mat. Ital. 7, 97-120

33

Sacks, G. E. [1963], Recursive enumerability and the jump operator, Trans. Am.
Math. Soc. 108, 223-239.
Selman, A. L. [1972], Applications of forcing to the degree theory of the arithmetic

hierarchy, Proc. Lon. Math. Soc. 25,586-602.
Shore, R. A. [1981], The theory of the degrees below 00, J. London Math. Soc. (3)

24 (1981), 1-14.
Shore, R. A. [1982], Finitely generated codings and the degrees r.e. in a degree d,

Proc. Am. Math. Soc. 84, 256-263.
Shore, R. A. [2006], Degree Structures: Local and Global Investigations, Bulletin of

Symbolic Logic, 12, 369-389
Shore, R. A. [2008], Rigidity and biinterpretability in the hyperdegrees, in Computa-

tional Prospects of In�nity, Part II: Presented Talks, C. T. Chong, F. Qi and Y. Yang
eds., Lecture Note Series, Institute for Mathematical Sciences, National University of
Singapore 15, World Scienti�c Publishing Co., Singapore.
Shore, R. A. and Slaman, T. A. [1999], De�ning the Turing jump, Math. Research

Letters 6 (1999), 711-722.
Shore, R. A. and Slaman, T. A. [2001], A splitting theorem for n-REA degrees, Proc.

Am. Math. Soc. 129, 3721-3728.
Simpson, S. G. [1977], First order theory of the degrees of recursive unsolvability,

Ann. Math. (2), 105, 121-139.
Slaman, T. A. [1991], Degree structures, in Proc. Int. Cong. Math., Kyoto 1990,

Springer-Verlag, Tokyo, 303-316.

Slaman, T. A. and Woodin, H. W. [1986], De�nability in the Turing degrees, Illinois
J. Math. 30, 320-334.
Slaman, T. A. and Woodin, H. W. [2008], De�nability in degree structures, J. Math.

Logic, to appear.

34

