Jumps of X9-high e-degrees and properly ¥
e-degrees

Richard Shore* Andrea Sorbif

Abstract

We show that the X9 high e-degrees coincide with the high e-
degrees. We also show that not every properly X9 e-degree is high.

1 Introduction

Enumeration reducibility is the notion of relative enumerability of sets: a set
Ais enumeration reducible (or simply e-reducible) to a set B, in symbols, A <,
B, if there is an effective procedure for enumerating A given any enumeration
of B. Formally, we define A <, B if there is some computably enumerable set
® (called in this context an enumeration operator or simply an e-operator)
such that

A = {z : (3 finite D)[(z, D) € & D C B|}

(throughout the paper we identify finite sets with their canonical indices). We
denote by =, the equivalence relation generated by the preordering relation <,
and deg,(A) denotes the equivalence class (or the e-degree) of A. The partially
ordered structure of the e-degrees is denoted by ®.; its partial ordering is
denoted by <. ®, is, in fact, an upper semilattice with least element 0,.
One of the most interesting features of the e-degrees is that they extend
the structure ®r of the Turing degrees ([Med55] and [Rog67]). Indeed if we
define ¢ : ®p — D, by t(degr(A)) = deg.(xa) (where degy(A) is the Turing
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degree of the set A and x4 denotes the characteristic function of A) then ¢
is the desired embedding. (In fact, it preserves joins and least element.) The
verification that ¢ is well defined relies on the following lemma:

Lemma 1.1 For every total function f and g, we have
f ST g <= f Se g.

Proof. See e.g. [Rog67, p. 153]. O

One can define (see below) a jump operation ’ on the e-degrees, and there-
fore introduce the notions of a low e-degree (i.e. an element of the class
L, = {a<0,:a = 0.}); and that of a high e-degree (i.e. an element of
H, = {a <0 :a =0_}). Moreover, since ¢ preserves jump, we have that
low Turing degrees are mapped to low e-degrees and high Turing degrees are
mapped to high e-degrees.

A nice, useful characterization of the class L of the low e-degrees is given
in [MC85]: a € L; if and only if a contains a set A such that, for every
B <. A, B € AY. Thus a and all the e-degrees below a consist entirely
of AY sets. In this paper, we characterize the class H; of high e-degrees
by a result analogous to the one characterizing the high Turing degrees as
those containing a set with an approximation whose associated computation
function dominates every total recursive function (Theorem 2.1). The rele-
vant definitions of a 39 approximation and a computation function are given
below. The e-degrees of sets with such approximations are known as the 39-
high e-degrees (Definition 1.7). This characterization answers Question 7.3
of [C0090)].

Since the e-degrees below 0/, are exactly the e-degrees consisting of 9
sets, in view of the above cited characterization of the low e-degrees, a natural
question to ask is where an e-degree a < 0, which contains no Aj set (such
an e-degree is called a properly X9 e-degree) lies in the low/high hierarchy.
A natural conjecture might be that the properly 39 e-degrees are all in H;.
Cooper and Copestake ([CC88]) show that there exist properly 29 e-degrees
that are ¥9-high, and thus lie in H; by Theorem 2.1. However, in Theorem
3.1 we show that the properly Y9 e-degrees are not contained in Hj.

Our notations and terminology are mostly based on [Soa87]. The reader
is referred to [Co090] for an introduction and extensive bibliography on enu-
meration reducibility. We will be mostly working with X9 sets. We recall
that a 39 approzimation to a ¥ set A is computable sequence of computable
sets {A® : s € A%} such that A = {z : (Ft)(Vs > t)[x € A®]}. See [LS92]
for an introduction to X9 approximations, and for a proof that every 39 set
has a good Y9 approximation {A4° : s € A°}, i.e. a computable sequence of
computable (in fact, finite) sets such that {s: A* C A} is infinite.



Let X be any set of natural numbers; if z is a number, then X[ = {z €
X : (e = (x,y)]}, and X [z = {y € X : y < x}. If 0 is a string and
xr < |o| (where |o| denotes the length of o), then o | z denotes the initial
segment of o having length z; likewise, if f is a function, then f [z denotes
the initial segment of f having length z.

Let {p;}icw be the standard enumeration of all partial computable func-
tions with corresponding enumerations {W;};c, and {®;};c, of the com-
putably enumerable sets and the enumeration operators, respectively. Let
us fix, as in [So0a87, p. 16], computable approximations {; s }i se. to the par-
tial computable functions. Without loss of generality, we may assume that if
@i s(x) | then ¢; s(x) < s. Correspondingly, we get computable finite approx-
imations {W; s}isew and {®; s}isew to the computably enumerable sets and

the enumeration operators, respectively.
Let

KA ={2z:2 €.
Lemma 1.2 [McES85] Let A, B be sets; then
A<.Be A< KP o K* <, KP.

Define the jump of a set A ([McES85]) to be the set J.(A) = xxa. (Note

that we identify functions with their graphs.) Clearly J,(4) =, K4 @ KA. If
a is an e-degree, then we can define a’ as deg,(J.(A)) for any A € a since, by
the previous lemma,

A=.B=K 9o KA= K¢ KB

this gives a well defined unary operation on the e-degrees. Moreover, a < a’
for every e-degree a.

The following lemma records two important properties of the jump oper-
ation.

Lemma 1.3 [McES85] For every set A,
1. 1((degp(A))") = (deg.(A))';
2. if A is total (i.e. the graph of some total function), then J.(A) =, KA.

Definition 1.4 A set A is called e-high if A € 9 and J2(0) <. J.(A). An
e-degree a is called high, if a contains an e-high set (hence a’ = 07).

By Lemma 1.3, the embedding ¢ preserves highness, i.e. it maps high
T-degrees to high e-degrees.
The following is a useful characterization of the e-high sets.
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Lemma 1.5 For every set A,

A is e-high < Tot <. J.(A) & Tot <p K.

Proof. First notice that, by Lemma 1.3, A is e-high if and only if KX <,
Je(A). Moreover, A is e-high if and only if, by Lemma 1.3, X,z <e Xxa, if
and only if, by Lemma 1.1, KK <; KA. On the other hand, KX =; Tot.
Indeed, KK <, Tot follows from the fact that Tot is I19-complete. To show
that Tot <, KX simply observe that Tot € X9, hence Tot <, K, and thus,
by Lemma 1.2, Tot <, KK,

It follows that A is e-high if and only if Tot <, J.(A) if and only if
Tot <p KA. O

Finally notice the following:
Lemma 1.6 For every total function f, J.(f) =r f'.

Proof. Since K/ is computably enumerable in f, we have K/ <; f’, and so
KT <; f'. On the other hand, f’ is computably enumerable in f, hence, by
the totality of f, f’ <. f, and thus f’ <; K/, by Lemma 1.2, which shows
that f/ Sl Je(f)

Hence we conclude that J.(f) =¢ f. O

McEvoy ([McE85]) defines the notion of a ¥.9-high e-degree:

Definition 1.7 A X9-high approximation {A°®}.c, to a set A is a X approx-
imation such that the function

c(x) =ps(s >z &A%z C A)

(called the computation function for A relative to the given approximation)
is total and dominates every computable function. A set A is called X9-high,
if it has a X3-high approximation. Finally an e-degree is said to be X9-high,
if it contains a X9-high set.

Using Lemma 1.3 (1), it is shown in [McE85] that if a < 0/, is total (hence
a degree of the form «(b), for some Turing degree b <7 0/), and a is high,
then a is ¥9-high. On the other hand, the class of ¥:9-high e-degrees properly
extends the class of all high total e-degrees (in fact, there exist quasi-minimal
¥9-high e-degrees, [McES85]).

In the next section we show that the high e-degrees and the X3-high e-
degrees coincide. This answers Question 7.3 of [C0090].



2 The X)-high e-degrees coincide with the
high e-degrees

Theorem 2.1 An e-degree a is X5-high if and only if a is high.

Proof. (=) Let A be X5-high; let {A*} ., be a ¥.9-high approximation to A,
and let ¢ be the computation function for A relative to this approximation.

By Lemma 1.5 it is enough to show that Tot <. J.(A). We claim that,
for every 1,

i € Tot < (Vy)|pi(y) |]
< (32)(3s)[(Vy < 2)pis(y) | &
(Vy > z)(Vt > y)[A' [y C A= (y) L]

Indeed, if ; is total, then the function

pi(x) = ps(pis(x) 1)
is a total computable function, and thus dominated by c. Let x be such that

c(y) > ¢i(y) for every y > x; then

(Vy > 2)(Vt > y)[A" [y € A= pis(y) L.
This establishes the left-to-right implication in the claimed equivalence. The
right-to-left implication is trivial.
Now let

B={(i.a): (Gy > 2)(3t > y)A" | y C A& piuly) 1]

Clearly B <. A. Hence, by Lemma 1.2, B <; K%, via, say, the computable
function h.
Then

i € Tot & (35)(35)[(Vy < 2)pial) | & (i,3) ¢ B
& (3)(3s)[(Vy < 2)pis(y) L & h((i,x)) € KA.
It follows that Tot <. K4, hence Tot <, J.(A), as desired.

(<) Assume that A is e-high. Then, by Lemma 1.5, we have that Tot <p
KA. Let Z = K# and let {Z°}.c. be a good X-approximation to K4. Let
1) be some Turing functional such that Tot = ¥Z.

We now define an enumeration operator © by stages, and show that ©7 is

¥:9-high. Since the X9-high e-degrees are closed upwards in X9-e-degrees (see
[BCS97]), it follows that deg,(A) is X3-high as well.

Construction:
Stage 0: Let ©y = (.

Stage s + 1: For every ¢ < s, we distinguish the following two cases:
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(a) if ¥Z7(i) = 0, then for every z < s, we enumerate the axiom

<<'é’ ZL’>, Z8> € @S—i-l;
(b) otherwise, do nothing.

Let ©%T! consist of ©° plus all the axioms enumerated at stage s + 1 and
let © = (J,.,, ©s. We now prove that © is the desired enumeration operator
by verifying a series of claims.

Verifications:
Claim 1 For every number ¢,

i € Tot = (%) finite;
i ¢ Tot = (0%)l = Wl

Proof. If i € Tot then at all sufficiently large good stages of the approxi-
mation {Z%}c, we do nothing on behalf of i (i.e. case (b) of the definition
of © applies to 7). To see this, assume that i € T'ot, and let ¢ C yz be such
that 17(7) = 1. Let tg be such that

(Vo < |o])jo=1= (Vs > ty)[z € Z7]].
Then
(Vs > to)[s is good = ¥Z (i) = 1].

It follows that at stages s > t, if (a) holds then s is not good, hence ©Z° ¢
©Z. Therefore (©7)1 is finite.

If i ¢ Tot, then at all sufficiently large good stages, case (a) of the defini-
tion of © applies to i. Indeed, if i ¢ Tot, then ¥Z(i) = 0. One thus argues as
in the preceding case, but starting with a string o C xz such that ¢7(i) = 0.

Since ©% C ©7, for all good stages s, it follows in this case that (0%)l] =
Wi, O

Now let Y = ©Z. We want to show that Y has a ¥9-high approximation
{V*},e. Let {Y*},c,, be any good X9-approximation to Y. Given a partial
function ¢ and a number wu, define ¢ [ u |, if p(v) | for all v < w.

Define

(i,£) € V* & [(i,2) € Y3V i, | (i,z+1) 1]
Claim 2 {Yﬁ}sau is a Y-approximation to Y. )
Proof. Let Y = {y: (3t)(Vs > t)[y € Y*]}. If i ¢ Tot then Y1l = ol = Y1,
On the other hand, assume that i € Tot. If (i,x) € Y, then clearly (i,z) € Y.
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If (i,x) ¢ Y, then at all sufficiently large stages ;s | (¢,2+1) | and so when
(1,x) ¢ Y*, we have that (i,z) ¢ Y*. O

Next, let ¢ be the computation function for Y relative to the ¥ approxi-
mation {Y*}c,. The following claim completes the proof of the Theorem.

Claim 3 The function c is total and dominates all total computable functions.
Proof. Let us first show that c is total. To this end, let z € w be given. Let
t > z be a stage such that

V@i, z) < 2)[pi | (t,x + 1) |< @ip | (G, + 1) |].

Then if s > t is a good stage of the enumeration {Y*},.,, we have that
Y* | 2 C Y. Therefore ¢(z) is defined.

Now consider any total ;. Let = be such that (i,y) ¢ Y, for every y > x.
Let z > (i, z), and let y be the least number such that (i,y) < z < (i,y + 1).
Let s be the least stage such that ¢; <(z) |, hence ;¢ [ (i,y + 1) T for every
t < s. Then (i,y) € Y, for every t < s. Therefore ¢;(z) < s < ¢(z). O

3 Jumps of properly ¥ e-degrees

A X9 e-degree a is called properly X9 ([CC88]) if a contains no AJ set. Copes-
take and Cooper, [CC88, Theorem 1], show that there exist e-degrees that are
properly ¥9 and ¥9-high. Since every high computably enumerable Turing
degree corresponds, under the embedding ¢, to a high e-degree, it follows that
not every ¥3-high e-degree is properly 39-high. (A trivial counterexample
is 0/ = deg,(K)). It is shown in [MC85] that deg,(A) is low if and only if
B € AY, for every B <. A. This characterization of the low e-degrees seems
to suggest the possibility that the properly 39 e-degrees are all high. We
show in this section that this is not the case.

Theorem 3.1 Let C be such that C' is computably enumerable in ', O/ <p
C <7 0" and C" =7 ("". Then there exists a set A of properly 39 e-degree,
such that J.(A) <. xc-

Corollary 3.2 There exist properly X3 e-degrees that are not high.
Proof. Let C' and A be as in the previous theorem. If A were e-high, then

J§2)(®) <. Xc, from which, by totality, Je(2)(®) <7 xc; but J§2)(Q)) =7 (0", by
Lemma 1.6. Hence ()" <¢ C, contradiction. [



3.1 Proof of Theorem 3.1

Let C satisfy the hypotheses of the theorem; let C = WX, for some com-
putably enumerable set W. For every t, let k; = x ¢ [ k(t), where k is some
1 — 1 computable function such that K = range(k) and K' = {k(s)|s < t}.
Define a 39 approximation {C*};c, to C by letting

Ct =Wy,

As C' = K", there is an f <p C that dominates all AJ total functions
(see e.g. [Ler83, p. 85]). Let f = WY, for some Turing functional ¥, be such
a function.

We need the following lemma:

Lemma 3.3 There exists a computable sequence {B{}i se., of finite sets such
that, if

B; ={z:(3t)(Vs > t)[x € B]}
then

1. for every B € AY, there is an i such that B =* B; and, for almost all
x, limg B (x) exists;

2. the relation x € B; (as one of x and i) is computable in C.

Proof. Given v and X, with X = K, or X = K" for some v > u, we say
that u is X -true if k, C xx. We will use the fact that for every B € AJ there
exists some i such that yz = ¢X. Roughly speaking, we will have z € B if
there exists some K*-true stage t < w, with gofi(w) = 1, where w is the least
K*-true stage such that W7 (z) |, for some o C yo. Then we use the fact
that U¢ dominates all AY functions to verify that, for all but finitely many
x, there exists a K-true stage t such that ¢ft(x) = 1 and ¢t < U%(z) < w.
The main difficulty here is that one can not find, in a computable way, the
right w at s. For every i, x, s, we will therefore define the values of a finite set
B} C w, a finite set L(z,s) C w x 2<% and a linear ordering <, s on L(z, s).
We “assign preconditions” to elements of w x 2<“ subject to the following
rules: L(x,s) may contain only pairs (r, p) with preconditions which have
been satisfied at some stage u < s. At stage s, we will choose the <, (first
element (r, p) of L(x,s). We will argue that infinitely many times we choose
the correct (w, o) and we eventually choose only pairs (r, p) with r > w.

Let 7,z be given. The formal definitions are given by induction on s.

Stage 0: Define BY = () and L(x,0) =<, o= 0. No (r, p) has a precondition
at 0.

Stage s+ 1: If ¥ > s+ 1 then x ¢ BS™; otherwise, we distinguish two cases:
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e if L(xz,s) =0, then

v € Bt < 1 € B

e otherwise, let (w, o) be the <, ;-least element of L(x,s). Then,

(a) if there is no t < w such that ¢ is K**-true, then x ¢ Bt

(b) otherwise, for the least such ¢, € B{*! if and only if oii(r) = 1.

In the latter case, i.e. when L(z,s) # ), we extract (w, o) from L(x,s+1)
and cancel the related precondition. Hence (w, o) has no precondition at any
stage v > s+ 1 prior to the smallest stage v > s+ 1 (if any) at which we
again assign a precondition to (w, o).

We assign a precondition to each pair (r, p) such that

1. ris Kt !-true;
2. W(x) |;
3. p € xers

4. p of minimal length, satisfying 2. and 3. (i.e. if ¥#'(z) | and o' C xcr
then p C p'; notice that |p/| < r, for each such p, by the definition of
the use function as in [Soa87, p. 49]);

5. (r,p) does not have a precondition at s + 1.
At any v > s + 1, we say that this precondition becomes satisfied at v if
Vi < |p)[p(i) =0= 3t)[s+1<t<v&igC).

Let

L(z,s+1) = (L(z,s) — {{w,0)}) U
{(r,p) : {r, p) has a precondition that becomes satisfied at s+ 1}.

Finally, we order L(x, s+ 1) as follows: if (r, p), (', p') € L(x,s+1), then let
<Ta p> <z,s+1 <T/7 pl> if either

L (r,p),{r',p') € Lz, s) and (r, p) <us (', p'), or
2. (r,p) € L(z,s) and (', p) & L(x, s), or

3. (r,p),(r',p) & L(x,s) and r < r'.



We now check that the sequence B} has the desired properties.

Claim Let 2 be given, let o be the least string such that o C x¢ and V7 (z) |.
Let w be the least K-true stage such that U7 (x) |. Then

1. at infinitely many stages s we extract (w, o) from L(z, s);

2. there exists a stage ty such that we do not extract any pair (r, p) with
r < w from L(z,s) at any stage s > to.

Proof. Since o C x¢, it is clear that there are infinitely many stages at which
the requirements (1-4) for assigning a precondition to (w,o) are fulfilled.
Moreover, once assigned at a stage sg, there exists a stage s; > sg such
that the precondition becomes satisfied at s; and so is then in L(x,s) until
extracted. As there are only finitely many elements of L(x,s;) before (w, o)
in the ordering and no new ones can later be inserted before it (w,o) is
eventually extracted. Hence, there exist infinitely many stages s such that
(w,0) € L(z,s) and we extract (w, o) from L(x,s) at infinitely many stages.

Let t < w, and assume for a contradiction that at infinitely many stages
s, we extract (t,ps), for some string ps. Thus |ps| < t by the definition of
the use function, since U7*(z) |. Then there exist a p, with |p| < ¢, and
infinitely many stages u, at which we assign a precondition to (¢, p) which
becomes satisfied at some stage vs < s and (t,p) € L(x,v) for every v such
that vy < v < s. Then t is K-true. Let ¢ty be a stage such that

(Vs >to)(Vi<t)ie C=ieC”.

By the minimality of ¢ and w, and since C* C C and t is K-true, it follows
that there exists some i < |p| < ¢ such that i € C' and p(i) = 0. But no
pair (r,p) with p(i) = 0, for some i < |p| such that xc(i) = 1, can have
a precondition assigned to (r,p) at some stage u > to which becomes later
satisfied. [

We now conclude the proof of the lemma. Let B € AY, and let 7 be such
that xp = ¢X. Let

t(z) = min{t : ¢ is K-true and ¢j}(x) |}.

Then ¢ is total and so a AJ function. It follows that there exists some number
xo such that f(x) > t(z), for all z > x.

Given © > g, let w and ¢ be as in the previous claim (for z). Then
t(z) < f(z) < w (since f(x) = W7 (x)). Moreover, if ¢y is as in the proof
of the previous claim, then, for every pair (r, p) such that (r, p) is extracted
from L(zx,s) at any stage s > ty, we have t(x) < r. Hence for all z > xo,
vo. () = 9 ().

Since f(z),v(z), and w can be computed by C, we easily conclude that
the relation x € B; is computable in C'. [J
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Remark 3.4 Note that if ¢(x) > w, then lim, Bf(z) need not exist, but, in
any case, x ¢ B;, since at every large enough stage at which we extract (w, o)
from L(z,s) we have x ¢ B?.

We now go back to the proof of the theorem. We will build a % set A
such that, for every A set B, A #, B, and K* <; C. This implies that
deg,(A) is properly X9 and, by Lemma 1.1, J.(A4) <. xc-

3.2 The strategies

The properly XJ-strategy. Let {®., U.}.c., be some effective listing of
all pairs of e-operators. To make A of properly 9 e-degree, it is enough to
satisfy the following requirements, for every e, 7 € w:

P A =08 & B, = U = (3%2)[lim B (z) 1]

where {B;}ic, and {B}}; sc. are as given in Lemma 3.3.

Indeed, if we satisfy these requirements for every e, i, then deg,(A) is
properly 39. Suppose, for the sake of a contradiction, that A =, B and
B € AY. Then, by the previous lemma, A = ®5 and B; = ¥4 for some e, i,
with B =* B; and so lim, Bf(z) does not exist for infinitely many x for the
desired contradiction, since limg Bf(z) exists for almost all z.

The strategy to meet P, ; is a slight modification of the canonical properly
Y9 strategy as given in [CC88], and described as follows:

(a) appoint a witness x and let © € A;

(wy) wait for finite sets D, E such that z € ®2 and D C UF;
(b) fix E — {z} C A;

(wy) wait for D C B;

(w3) let x ¢ A, wait for D € B;;

(

0) let = € A; go back to (ws).

A triple z, D, E as above is called a follower of P, ;.

As described in [CC88, Theorem 1], for a given follower x, D, E this strat-
egy may have the following outcomes: (w;) yields z € A—®5i or y € B; — ¥4
for some y; (ws) corresponds to the case D C ¥4 D & B;; (ws) corresponds
to the case z € ®5i— A; finally, the infinitary outcome £ entails that lim, B (y)
does not exist for some y € D.
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The subrequirements P.;;. It follows by the analysis of the outcomes
of the previous strategy that if Bf(x) does have limit on every € D, then
A # ®Bi or B; # V. The only complication here (see Remark 3.4) is that
there might exist finitely many numbers x such that limg Bf(x) does not exist,
thus, for some y € D, limg B (y) need not exist. We cope with this difficulty
by attacking P.; through infinitely many subrequirements P, ; ;, with j € w.
The strategy for P.;; consists in looking for a follower x, D, E such that
D |7 = B;[j: thus, for almost all j, if we appoint a follower z, D, E as
before, we are bound to conclude that B} (y) exists on every y € D. Thus P, ;
is satisfied through some subrequirement P, ;; (in fact cofinitely many such
subrequirements). Before acting, the subrequirement P, ; ; must therefore be
provided with some knowledge of what numbers z < j are in fact in B;. This
information is coded in the first component, h(o,s), of the outcome of the
node corresponding to P.; ; in the tree of outcomes.

The strategy for K4 <; C. For every i, we will look for a finite set D
such that 7 € @7{3. If such a D exists then we let D C A. Notice that we can
determine computably in (' and, thus, in C, whether or not such a finite set
exists.

3.3 The tree of outcomes

For notation and terminology for strings and trees, the reader is referred to
[S0a87]. The tree of outcomes is the smallest set 1" of strings o such that

1. if |o| is even then 0" (h,r) € T, for every h € w and r € {0,1};
2. if |o| is odd then 0" r € T, for every r € {0,1}.

The strings of even length are assigned to the (sub)requirements P, ;,
according to some fixed priority listing. The first component, h(o, s), of the
outcome of o at stage s will be an assessment as to which numbers z < j are
in fact in B;: at stage s + 1, h(o, s) will be chosen to be the first element of
a list £(o, s) of numbers. Each element h of the list is the canonical index of
a finite subset of {z : x < j}. Its position in the list measures how well the
set {z : x < j} — B; is approximated by the finite set Dj. Having decided on
the first component, h, of the outcome at o, the strategy for P.; ; is ready
to act at 0 = o~ h. The outcome 1 at o* corresponds to (wy) or (ws); the
outcome 0 corresponds to (ws) or ().

The strings of odd length are devoted to guaranteeing that K4 <, C: if
lo| = 2i + 1 then we have outcome 0 if there exists (modulo higher priority
constraints) some finite set D such that i € ®P; otherwise we have outcome
1.

12



Let T=TU{o"h:|o| even &h € w}. For o € T, the parameter a(o, s)
is intended to record some finite set which we want to keep in A for the sake
of our actions at o; the parameter €(o, s) is meant to record some finite set
of elements which we want to keep out of A.

The ordering < of T" is determined in the usual way by the ordering of
the outcomes given that we define (h,r) < (h',7’) if

h>h"or[h="n&r <.

We extend < to T in the obvious way.
Finally, let {{},o7 be a computable partition of w into infinite com-
putable sets.

3.4 The construction

The construction proceeds by stages. At stage s we define a finite set A°, a
string d,, and the values of several parameters. Unless otherwise specified, at
each stage each parameter retains the same value as at the preceding stage.

Stage 0: Define 0y = (). For every o € T, let
a(o,0) = €(0,0) = L(0,0) = (.

Let z(0,0) and p(o, h,0) be undefined for every z, h € w. Finally, let A° = ().

Stage s + 1: Suppose that we have defined 05,1 | n, where n < s+ 1: let
0 = 0441] n. Our aim is to define a string o which we will be §,; [n + 1.

lo| even. Let P.;; be the requirement assigned to o. For simplicity, drop
subscripts, and let &, = &, ¥V, = ¥ and B; = B.

Our first task is to define the first component, h(o, s+ 1), of the outcome.
We define h(o, s+1) to be the least element of L(o, s) if L(0, s) # 0, otherwise
h(o,s + 1) = 0. Then we cancel the precondition for h(o,s + 1) by letting
p(o,h(o,s+1),s+ 1) T.

To every h such that max D;, < 7 and h does not have a precondition, we
assign the precondition p(o,h,s + 1) which becomes satisfied at some later
stage v > s+ 1 if, for every z < 7 and x € D, there exists u such that
s+1<u<wvand B%x)=0.

Define

L(o,s+1)=(L(g,s) —{h(o,s+1)})U
{h : h has a precondition that is satisfied at s + 1}

and order L(o,s + 1) in the usual way: for every h,h' € L(o,s + 1), define
h <gs41 b if either

13



1. h,h € L(o,s) and h <, I, or
2. he L(o,s) and b/ ¢ L(0o,s), or
3. hyh' ¢ L(o,s) and h < }'.

Let ot =0 h(o,s+ 1).

Now we are ready to activate the strategy for P.
Let x = z(o%, s+ 1) be the least number in &,+ such that x ¢ a(p, s+ 1),
for every p < o™

Case 1).

(ID)(3E)[x € @2 & DN Dpps41) =D& D C Y
&EﬂU{e(p,s—l—l) cp=o}=10].

Choose the least such pair D, F.
In this case, let a(o™,s+1) = E — {a}:

1. if D C B?, then let 07" = 0170 and ¢(c™ ", s+ 1) = {z};

2. otherwise, let " =0o™"1 and a(c™",s+ 1) = {z}.

Case 2). Otherwise, let 6™t =011 and a(ot, s+ 1) = {z}.

lo| odd. Let |o| = 2i+ 1. We distinguish two cases.

Case 1). (AD)[i € ®P & DN U{e(p,s+1):p 20} =10].

In this case, let o™t = 070, and let a(o,s+ 1) = D for the least such
D.

Case 2). Otherwise, let o™+ = ¢ 1.

Definition of A**!. At the end of stage s + 1, let

A = (AU Halps +1):p = 50a}) — | Helps+1) 1 p 2}
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3.5 Verification

The verification is based upon the following lemmas.
Lemma 3.5 For every n, o, = liminf, d, [n exists.

Proof. Assume by induction that the claim is true of n. The only nontrivial
case is when |o,| is even, where, say, the requirement P, ; ; is assigned to o,,.

Let h be the canonical index of B; | j. It is clear that, whenever we assign
a precondition to h, then this precondition becomes satisfied at some later
stage. Hence, at infinitely many stages s, h € L(0,, s), and at infinitely many
stages t, h = h(o,,t). On the other hand, it is also clear that for almost all
stages s, if b € L(oy,, s), then Dy, C Dy, hence b’/ < h by the usual coding of
canonical sets. Therefore it follows that 0,41 = 0, (h,r), for some r € {0, 1}.
O

Let f = U,cp On-

Lemma 3.6 For every 7 € T, if 7 C f, then a(7) = lim, a(7, s), e() =
limg e(7,s) and z(7) = limgx(7,s) exist. Moreover, if T = o, for some n,
then the requirement assigned to o, is satisfied.

Proof. By induction on n, we show that if 7 = o0, or 7 = o, where
Ony1 = o 1 for some r € {0,1} (of course o = o, if n is odd), then
limg a7, s), lime(7,s) and limg z(7, s) exist, and the requirement assigned
to o, is satisfied. The case n = 0 is trivial as are the existence of the required
limits for all nodes to the left of the true path.

Assume that the claim is true of n. For every 7 € T such that 7 < o,
let a(7) = limg (7, 8), €(7) = lim, €(7, s) and z(7) = lim, (7, s); and let ¢ be
a stage such that, for every s > t and 7 < o, a(7) = a(T, ), €(1) = €(7,s)
and z(1) = z(1, s).

Suppose first that |o,| is even, and let P, ; ; be the requirement assigned
to o,. Let 0,41 = 0, (h,1), and let o = 0,,"h. Then

z(oy) =min z € (4 — U a(T)).

T=0n

e If there are no finite sets D, F such that DN Dy, = 0, z(o,) € P,
ENU,<,, €(r)=0and D C ¥, then 0,41 = 0,771,

n

lime(o),s) =lime(o,,q,s) =0,

lim, a(o;f, s) =0, lims a(o,,41,8) = {x(0;7)} and z(0]") € A. Moreover,
either z(o,f) € A—®5i or z(0,}) € ®P, for some D C B;, but D ¢ .
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e If D, F exist, then we eventually choose the least such pair D, F/, hence
a(of)=E —{xz(o])}, e(o;) = 0, and either (a) or (b) holds:

(a) on1 = 0,770 and a(on11) =0, €(oni) = {z(oy)};
(b) on1 = oy 1 and a(ony1) = {x(0;))}, (onsa) = 0.

In case (a) either

(a1) there exist infinitely many stages s such that o, "1 C d;, in which
case, there exists some y € D such that lim, B (y) does not exist;
or

(az) D C B; but z(0}) ¢ A, giving z(0) € ®5i — A.
In (b) we have D € B;, but E C A, hence D C ¥

Remark 3.7 Notice that if j is such that lims B (y) exists for every y > j,
then (a;) does not occur, by Lemma 3.3.

If |o,] = 2i + 1 is odd and i € ®P, for some finite set D such that
DNU,<,, €(r) =0, then 0,1 = 0,70 and a(0,41) = D, for some such D;
otherwise 0,11 = 0,,"1 and a(0,41) = 0. In either case €(0,41) = 0.

The proof of the lemma is now complete. [

Lemma 3.8 K4 <, C.

Proof. We will show that, for every n, one can compute o, recursively in C'.

Now, o9 = (). Assume by induction that we can compute o,, and a stage
S, such that 7 Q ds, for every s > s, and 7 < g, and each parameter at
any 7 = o, has reached its limit by stage s,. Assume first that |o,| is even,
and let P ; ; be the requirement assigned to o,,. Since C' can compute B; | j,
it follows that C' can compute the first component, A = lim, h(o,, s), of the
outcome of ¢,. Moreover, since (/' <7 C, C' can compute the least stage
st > s, such that 7 € 4, for every 7 <, 0, h (since for every x € B; | j
and every t, one can compute in () whether there exists some s > ¢ such that
xr ¢ Bf). Again, using (/' as an oracle, one can compute whether Case 1 or
Case 2 of the construction holds, thus computing o,,,; and the corresponding
Sni1-

A similar argument applies in the case |o,| = 2i + 1, for some i, since
the oracle () can compute whether or not there exists some stage s > s, and
some finite D such that i € ®7, and DN, , €(7,s,) = 0.

It follows that ¢ € K4 if and only if 02i+2_: 09i41 0, thus KA<,C. O
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Remark 3.9 We expect that, by combining the above construction of A with
a variant of the coding procedure and the associated guessing at outcomes
used in the tree proof of the Sacks’ jump inversion theorem, one can actually
guarantee that J.(A) =, xc-
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