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Abstract

We show that the Σ0
2 high e-degrees coincide with the high e-

degrees. We also show that not every properly Σ0
2 e-degree is high.

1 Introduction

Enumeration reducibility is the notion of relative enumerability of sets: a set
A is enumeration reducible (or simply e-reducible) to a setB, in symbols, A ≤e
B, if there is an effective procedure for enumerating A given any enumeration
of B. Formally, we define A ≤e B if there is some computably enumerable set
Φ (called in this context an enumeration operator or simply an e-operator)
such that

A = {x : (∃ finite D)[〈x,D〉 ∈ Φ &D ⊆ B]}

(throughout the paper we identify finite sets with their canonical indices). We
denote by≡e the equivalence relation generated by the preordering relation≤e
and dege(A) denotes the equivalence class (or the e-degree) of A. The partially
ordered structure of the e-degrees is denoted by De; its partial ordering is
denoted by ≤. De is, in fact, an upper semilattice with least element 0e.

One of the most interesting features of the e-degrees is that they extend
the structure DT of the Turing degrees ([Med55] and [Rog67]). Indeed if we
define ι : DT → De by ι(degT (A)) = dege(χA) (where degT (A) is the Turing
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degree of the set A and χA denotes the characteristic function of A) then ι
is the desired embedding. (In fact, it preserves joins and least element.) The
verification that ι is well defined relies on the following lemma:

Lemma 1.1 For every total function f and g, we have

f ≤T g ⇔ f ≤e g.

Proof. See e.g. [Rog67, p. 153]. �

One can define (see below) a jump operation ′ on the e-degrees, and there-
fore introduce the notions of a low e-degree (i.e. an element of the class
L1 = {a ≤ 0′e : a′ = 0′e}); and that of a high e-degree (i.e. an element of
H1 = {a ≤ 0′e : a′ = 0

′′
e}). Moreover, since ι preserves jump, we have that

low Turing degrees are mapped to low e-degrees and high Turing degrees are
mapped to high e-degrees.

A nice, useful characterization of the class L1 of the low e-degrees is given
in [MC85]: a ∈ L1 if and only if a contains a set A such that, for every
B ≤e A, B ∈ ∆0

2 . Thus a and all the e-degrees below a consist entirely
of ∆0

2 sets. In this paper, we characterize the class H1 of high e-degrees
by a result analogous to the one characterizing the high Turing degrees as
those containing a set with an approximation whose associated computation
function dominates every total recursive function (Theorem 2.1). The rele-
vant definitions of a Σ0

2 approximation and a computation function are given
below. The e-degrees of sets with such approximations are known as the Σ0

2-
high e-degrees (Definition 1.7). This characterization answers Question 7.3
of [Coo90].

Since the e-degrees below 0′e are exactly the e-degrees consisting of Σ0
2

sets, in view of the above cited characterization of the low e-degrees, a natural
question to ask is where an e-degree a ≤ 0′e which contains no ∆0

2 set (such
an e-degree is called a properly Σ0

2 e-degree) lies in the low/high hierarchy.
A natural conjecture might be that the properly Σ0

2 e-degrees are all in H1.
Cooper and Copestake ([CC88]) show that there exist properly Σ0

2 e-degrees
that are Σ0

2-high, and thus lie in H1 by Theorem 2.1. However, in Theorem
3.1 we show that the properly Σ0

2 e-degrees are not contained in H1.
Our notations and terminology are mostly based on [Soa87]. The reader

is referred to [Coo90] for an introduction and extensive bibliography on enu-
meration reducibility. We will be mostly working with Σ0

2 sets. We recall
that a Σ0

2 approximation to a Σ0
2 set A is computable sequence of computable

sets {As : s ∈ As} such that A = {x : (∃t)(∀s ≥ t)[x ∈ As]}. See [LS92]
for an introduction to Σ0

2 approximations, and for a proof that every Σ0
2 set

has a good Σ0
2 approximation {As : s ∈ As}, i.e. a computable sequence of

computable (in fact, finite) sets such that {s : As ⊆ A} is infinite.
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Let X be any set of natural numbers; if x is a number, then X [x] = {z ∈
X : (∃y)[z = 〈x, y〉]}, and X � x = {y ∈ X : y < x}. If σ is a string and
x < |σ| (where |σ| denotes the length of σ), then σ � x denotes the initial
segment of σ having length x; likewise, if f is a function, then f �x denotes
the initial segment of f having length x.

Let {ϕi}i∈ω be the standard enumeration of all partial computable func-
tions with corresponding enumerations {Wi}i∈ω and {Φi}i∈ω of the com-
putably enumerable sets and the enumeration operators, respectively. Let
us fix, as in [Soa87, p. 16], computable approximations {ϕi,s}i,s∈ω to the par-
tial computable functions. Without loss of generality, we may assume that if
ϕi,s(x) ↓ then ϕi,s(x) < s. Correspondingly, we get computable finite approx-
imations {Wi,s}i,s∈ω and {Φi,s}i,s∈ω to the computably enumerable sets and
the enumeration operators, respectively.

Let

KA = {x : x ∈ ΦA
x }.

Lemma 1.2 [McE85] Let A,B be sets; then

A ≤e B ⇔ A ≤1 K
B ⇔ KA ≤1 K

B.

Define the jump of a set A ([McE85]) to be the set Je(A) = χKA . (Note
that we identify functions with their graphs.) Clearly Je(A) ≡e KA ⊕KA. If
a is an e-degree, then we can define a′ as dege(Je(A)) for any A ∈ a since, by
the previous lemma,

A ≡e B ⇒ KA ⊕KA ≡e KB ⊕KB

this gives a well defined unary operation on the e-degrees. Moreover, a < a′

for every e-degree a.
The following lemma records two important properties of the jump oper-

ation.

Lemma 1.3 [McE85] For every set A,

1. ι((degT (A))′) = (dege(A))′;

2. if A is total (i.e. the graph of some total function), then Je(A) ≡e KA.

Definition 1.4 A set A is called e-high if A ∈ Σ0
2 and J

(2)
e (∅) ≤e Je(A). An

e-degree a is called high, if a contains an e-high set (hence a′ = 0′′e).

By Lemma 1.3, the embedding ι preserves highness, i.e. it maps high
T-degrees to high e-degrees.

The following is a useful characterization of the e-high sets.
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Lemma 1.5 For every set A,

A is e-high ⇔ Tot ≤e Je(A)⇔ Tot ≤T KA.

Proof. First notice that, by Lemma 1.3, A is e-high if and only if KK ≤e
Je(A). Moreover, A is e-high if and only if, by Lemma 1.3, χKK ≤e χKA , if

and only if, by Lemma 1.1, KK ≤T KA. On the other hand, KK ≡1 Tot.

Indeed, KK ≤1 Tot follows from the fact that Tot is Π0
2-complete. To show

that Tot ≤1 KK simply observe that Tot ∈ Σ0
2, hence Tot ≤e K, and thus,

by Lemma 1.2, Tot ≤1 K
K .

It follows that A is e-high if and only if Tot ≤e Je(A) if and only if
Tot ≤T KA. �

Finally notice the following:

Lemma 1.6 For every total function f , Je(f) ≡T f ′.

Proof. Since Kf is computably enumerable in f , we have Kf ≤1 f
′, and so

Kf ≤T f ′. On the other hand, f ′ is computably enumerable in f , hence, by
the totality of f , f ′ ≤e f , and thus f ′ ≤1 K

f , by Lemma 1.2, which shows
that f ′ ≤1 Je(f).

Hence we conclude that Je(f) ≡T f ′. �

McEvoy ([McE85]) defines the notion of a Σ0
2-high e-degree:

Definition 1.7 A Σ0
2-high approximation {As}s∈ω to a set A is a Σ0

2 approx-
imation such that the function

c(x) = µs(s > x &As �x ⊆ A)

(called the computation function for A relative to the given approximation)
is total and dominates every computable function. A set A is called Σ0

2-high,
if it has a Σ0

2-high approximation. Finally an e-degree is said to be Σ0
2-high,

if it contains a Σ0
2-high set.

Using Lemma 1.3 (1), it is shown in [McE85] that if a ≤ 0′e is total (hence
a degree of the form ι(b), for some Turing degree b ≤T 0′T ), and a is high,
then a is Σ0

2-high. On the other hand, the class of Σ0
2-high e-degrees properly

extends the class of all high total e-degrees (in fact, there exist quasi-minimal
Σ0

2-high e-degrees, [McE85]).
In the next section we show that the high e-degrees and the Σ0

2-high e-
degrees coincide. This answers Question 7.3 of [Coo90].
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2 The Σ0
2-high e-degrees coincide with the

high e-degrees

Theorem 2.1 An e-degree a is Σ0
2-high if and only if a is high.

Proof. (⇒) Let A be Σ0
2-high; let {As}s∈ω be a Σ0

2-high approximation to A,
and let c be the computation function for A relative to this approximation.

By Lemma 1.5 it is enough to show that Tot ≤e Je(A). We claim that,
for every i,

i ∈ Tot⇔ (∀y)[ϕi(y) ↓]
⇔ (∃x)(∃s)[(∀y < x)ϕi,s(y) ↓ &

(∀y ≥ x)(∀t > y)[At � y ⊆ A⇒ ϕi,t(y) ↓]].

Indeed, if ϕi is total, then the function

ϕ̂i(x) = µs(ϕi,s(x) ↓)

is a total computable function, and thus dominated by c. Let x be such that
c(y) > ϕ̂i(y) for every y ≥ x; then

(∀y ≥ x)(∀t > y)[At � y ⊆ A⇒ ϕi,t(y) ↓].

This establishes the left-to-right implication in the claimed equivalence. The
right-to-left implication is trivial.

Now let

B = {〈i, x〉 : (∃y ≥ x)(∃t > y)[At � y ⊆ A & ϕi,t(y) ↑].

Clearly B ≤e A. Hence, by Lemma 1.2, B ≤1 K
A, via, say, the computable

function h.
Then

i ∈ Tot⇔ (∃x)(∃s)[(∀y < x)ϕi,s(y) ↓ & 〈i, x〉 /∈ B]

⇔ (∃x)(∃s)[(∀y < x)ϕi,s(y) ↓ & h(〈i, x〉) ∈ KA].

It follows that Tot ≤e KA, hence Tot ≤e Je(A), as desired.
(⇐) Assume that A is e-high. Then, by Lemma 1.5, we have that Tot ≤T

KA. Let Z = KA and let {Zs}s∈ω be a good Σ0
2-approximation to KA. Let

ψ be some Turing functional such that Tot = ψZ .
We now define an enumeration operator Θ by stages, and show that ΘZ is

Σ0
2-high. Since the Σ0

2-high e-degrees are closed upwards in Σ0
2-e-degrees (see

[BCS97]), it follows that dege(A) is Σ0
2-high as well.

Construction:

Stage 0: Let Θ0 = ∅.
Stage s+ 1: For every i ≤ s, we distinguish the following two cases:
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(a) if ψZ
s

s (i) = 0, then for every x ≤ s, we enumerate the axiom

〈〈i, x〉, Zs〉 ∈ Θs+1;

(b) otherwise, do nothing.

Let Θs+1 consist of Θs plus all the axioms enumerated at stage s+ 1 and
let Θ =

⋃
s∈ω Θs. We now prove that Θ is the desired enumeration operator

by verifying a series of claims.

Verifications:
Claim 1 For every number i,

i ∈ Tot⇒ (ΘZ)[i] finite;

i /∈ Tot⇒ (ΘZ)[i] = ω[i].

Proof. If i ∈ Tot then at all sufficiently large good stages of the approxi-
mation {Zs}s∈ω we do nothing on behalf of i (i.e. case (b) of the definition
of Θ applies to i). To see this, assume that i ∈ Tot, and let σ ⊂ χZ be such
that ψσ(i) = 1. Let t0 be such that

(∀x < |σ|)[σ = 1⇒ (∀s ≥ t0)[x ∈ Zs]].

Then

(∀s ≥ t0)[s is good ⇒ ψZ
s

s (i) = 1].

It follows that at stages s ≥ t0, if (a) holds then s is not good, hence ΘZs

s *

ΘZ . Therefore (ΘZ)[i] is finite.
If i /∈ Tot, then at all sufficiently large good stages, case (a) of the defini-

tion of Θ applies to i. Indeed, if i /∈ Tot, then ψZ(i) = 0. One thus argues as
in the preceding case, but starting with a string σ ⊂ χZ such that ψσ(i) = 0.

Since ΘZs
s ⊆ ΘZ , for all good stages s, it follows in this case that (ΘZ)[i] =

ω[i]. �

Now let Y = ΘZ . We want to show that Y has a Σ0
2-high approximation

{Ŷ s}s∈ω. Let {Y s}s∈ω be any good Σ0
2-approximation to Y . Given a partial

function ϕ and a number u, define ϕ � u ↓, if ϕ(v) ↓ for all v < u.
Define

〈i, x〉 ∈ Ŷ s ⇔ [〈i, x〉 ∈ Y s ∨ ϕi,s � 〈i, x+ 1〉 ↑].

Claim 2 {Ŷ s}s∈ω is a Σ0
2-approximation to Y .

Proof. Let Ŷ = {y : (∃t)(∀s ≥ t)[y ∈ Ŷ s]}. If i /∈ Tot then Y [i] = ω[i] = Ŷ [i].
On the other hand, assume that i ∈ Tot. If 〈i, x〉 ∈ Y , then clearly 〈i, x〉 ∈ Ŷ .
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If 〈i, x〉 /∈ Y , then at all sufficiently large stages ϕi,s � 〈i, x+ 1〉 ↓ and so when

〈i, x〉 /∈ Y s, we have that 〈i, x〉 /∈ Ŷ s. �

Next, let c be the computation function for Y relative to the Σ0
2 approxi-

mation {Ŷ s}s∈ω. The following claim completes the proof of the Theorem.

Claim 3 The function c is total and dominates all total computable functions.
Proof. Let us first show that c is total. To this end, let z ∈ ω be given. Let
t > z be a stage such that

(∀〈i, x〉 < z)[ϕi � 〈i, x+ 1〉 ↓⇔ ϕi,t � 〈i, x+ 1〉 ↓].

Then if s ≥ t is a good stage of the enumeration {Y s}s∈ω, we have that
Ŷ s � z ⊆ Y . Therefore c(z) is defined.

Now consider any total ϕi. Let x be such that 〈i, y〉 /∈ Y , for every y ≥ x.
Let z ≥ 〈i, x〉, and let y be the least number such that 〈i, y〉 ≤ z < 〈i, y + 1〉.
Let s be the least stage such that ϕi,s(z) ↓, hence ϕi,t � 〈i, y + 1〉 ↑ for every

t < s. Then 〈i, y〉 ∈ Ŷ t, for every t < s. Therefore ϕi(z) < s ≤ c(z). �

3 Jumps of properly Σ0
2 e-degrees

A Σ0
2 e-degree a is called properly Σ0

2 ([CC88]) if a contains no ∆0
2 set. Copes-

take and Cooper, [CC88, Theorem 1], show that there exist e-degrees that are
properly Σ0

2 and Σ0
2-high. Since every high computably enumerable Turing

degree corresponds, under the embedding ι, to a high e-degree, it follows that
not every Σ0

2-high e-degree is properly Σ0
2-high. (A trivial counterexample

is 0′e = dege(K)). It is shown in [MC85] that dege(A) is low if and only if
B ∈ ∆0

2, for every B ≤e A. This characterization of the low e-degrees seems
to suggest the possibility that the properly Σ0

2 e-degrees are all high. We
show in this section that this is not the case.

Theorem 3.1 Let C be such that C is computably enumerable in ∅′, ∅′ ≤T
C <T ∅′′ and C ′ ≡T ∅′′′. Then there exists a set A of properly Σ0

2 e-degree,
such that Je(A) ≤e χC.

Corollary 3.2 There exist properly Σ0
2 e-degrees that are not high.

Proof. Let C and A be as in the previous theorem. If A were e-high, then
J

(2)
e (∅) ≤e χC , from which, by totality, J

(2)
e (∅) ≤T χC ; but J

(2)
e (∅) ≡T ∅′′, by

Lemma 1.6. Hence ∅′′ ≤T C, contradiction. �
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3.1 Proof of Theorem 3.1

Let C satisfy the hypotheses of the theorem; let C = WK , for some com-
putably enumerable set W . For every t, let κt = χKt �k(t), where k is some
1 − 1 computable function such that K = range(k) and Kt = {k(s)|s ≤ t}.
Define a Σ0

2 approximation {Ct}t∈ω to C by letting

Ct = W κt
t ,

As C ′ ≡T K ′′, there is an f ≤T C that dominates all ∆0
2 total functions

(see e.g. [Ler83, p. 85]). Let f = ΨC , for some Turing functional Ψ, be such
a function.

We need the following lemma:

Lemma 3.3 There exists a computable sequence {Bs
i }i,s∈ω of finite sets such

that, if

Bi = {x : (∃t)(∀s ≥ t)[x ∈ Bs
i ]}

then

1. for every B ∈ ∆0
2, there is an i such that B =∗ Bi and, for almost all

x, limsB
s
i (x) exists;

2. the relation x ∈ Bi (as one of x and i) is computable in C.

Proof. Given u and X, with X = K, or X = Kv for some v ≥ u, we say
that u is X-true if κu ⊆ χX . We will use the fact that for every B ∈ ∆0

2 there
exists some i such that χB = ϕKi . Roughly speaking, we will have x ∈ Bs

i if
there exists some Ks-true stage t < w, with ϕκti,t(x) = 1, where w is the least
Ks-true stage such that Ψσ

w(x) ↓, for some σ ⊂ χC . Then we use the fact
that ΨC dominates all ∆0

2 functions to verify that, for all but finitely many
x, there exists a K-true stage t such that ϕκti,t(x) = 1 and t < ΨC(x) < w.
The main difficulty here is that one can not find, in a computable way, the
right w at s. For every i, x, s, we will therefore define the values of a finite set
Bs
i ⊆ ω, a finite set L(x, s) ⊆ ω × 2<ω and a linear ordering <x,s on L(x, s).

We “assign preconditions” to elements of ω × 2<ω subject to the following
rules: L(x, s) may contain only pairs 〈r, ρ〉 with preconditions which have
been satisfied at some stage u ≤ s. At stage s, we will choose the <x,s-first
element 〈r, ρ〉 of L(x, s). We will argue that infinitely many times we choose
the correct 〈w, σ〉 and we eventually choose only pairs 〈r, ρ〉 with r ≥ w.

Let i, x be given. The formal definitions are given by induction on s.

Stage 0: Define B0
i = ∅ and L(x, 0) =<x,0= ∅. No 〈r, ρ〉 has a precondition

at 0.

Stage s+ 1: If x ≥ s+ 1 then x /∈ Bs+1
i ; otherwise, we distinguish two cases:
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• if L(x, s) = ∅, then

x ∈ Bs+1
i ⇔ x ∈ Bs

i ;

• otherwise, let 〈w, σ〉 be the <x,s-least element of L(x, s). Then,

(a) if there is no t < w such that t is Ks+1-true, then x /∈ Bs+1
i ;

(b) otherwise, for the least such t, x ∈ Bs+1
i if and only if ϕκti,t(x) = 1.

In the latter case, i.e. when L(x, s) 6= ∅, we extract 〈w, σ〉 from L(x, s+1)
and cancel the related precondition. Hence 〈w, σ〉 has no precondition at any
stage v ≥ s + 1 prior to the smallest stage v′ > s + 1 (if any) at which we
again assign a precondition to 〈w, σ〉.

We assign a precondition to each pair 〈r, ρ〉 such that

1. r is Ks+1-true;

2. Ψρ
r(x) ↓;

3. ρ ⊆ χCr ;

4. ρ of minimal length, satisfying 2. and 3. (i.e. if Ψρ′
r (x) ↓ and ρ′ ⊆ χCr

then ρ ⊆ ρ′; notice that |ρ′| < r, for each such ρ′, by the definition of
the use function as in [Soa87, p. 49]);

5. 〈r, ρ〉 does not have a precondition at s+ 1.

At any v > s+ 1, we say that this precondition becomes satisfied at v if

(∀i < |ρ|)[ρ(i) = 0⇒ (∃t)[s+ 1 ≤ t ≤ v& i /∈ Ct]].

Let

L(x, s+ 1) = (L(x, s)− {〈w, σ〉}) ∪
{〈r, ρ〉 : 〈r, ρ〉 has a precondition that becomes satisfied at s+ 1}.

Finally, we order L(x, s+ 1) as follows: if 〈r, ρ〉, 〈r′, ρ′〉 ∈ L(x, s+ 1), then let
〈r, ρ〉 <x,s+1 〈r′, ρ′〉 if either

1. 〈r, ρ〉, 〈r′, ρ′〉 ∈ L(x, s) and 〈r, ρ〉 <x,s 〈r′, ρ′〉, or

2. 〈r, ρ〉 ∈ L(x, s) and 〈r′, ρ′〉 /∈ L(x, s), or

3. 〈r, ρ〉, 〈r′, ρ′〉 /∈ L(x, s) and r < r′.
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We now check that the sequence Bs
i has the desired properties.

Claim Let x be given, let σ be the least string such that σ ⊂ χC and Ψσ(x) ↓.
Let w be the least K-true stage such that Ψσ

w(x) ↓. Then

1. at infinitely many stages s we extract 〈w, σ〉 from L(x, s);

2. there exists a stage t0 such that we do not extract any pair 〈r, ρ〉 with
r < w from L(x, s) at any stage s ≥ t0.

Proof. Since σ ⊂ χC , it is clear that there are infinitely many stages at which
the requirements (1-4) for assigning a precondition to 〈w, σ〉 are fulfilled.
Moreover, once assigned at a stage s0, there exists a stage s1 > s0 such
that the precondition becomes satisfied at s1 and so is then in L(x, s) until
extracted. As there are only finitely many elements of L(x, s1) before 〈w, σ〉
in the ordering and no new ones can later be inserted before it 〈w, σ〉 is
eventually extracted. Hence, there exist infinitely many stages s such that
〈w, σ〉 ∈ L(x, s) and we extract 〈w, σ〉 from L(x, s) at infinitely many stages.

Let t < w, and assume for a contradiction that at infinitely many stages
s, we extract 〈t, ρs〉, for some string ρs. Thus |ρs| < t by the definition of
the use function, since Ψρs

t (x) ↓. Then there exist a ρ, with |ρ| < t, and
infinitely many stages us at which we assign a precondition to 〈t, ρ〉 which
becomes satisfied at some stage vs ≤ s and 〈t, ρ〉 ∈ L(x, v) for every v such
that vs ≤ v ≤ s. Then t is K-true. Let t0 be a stage such that

(∀s ≥ t0)(∀i < t)[i ∈ C ⇒ i ∈ Cs].

By the minimality of σ and w, and since Ct ⊆ C and t is K-true, it follows
that there exists some i < |ρ| < t such that i ∈ C and ρ(i) = 0. But no
pair 〈r, ρ〉 with ρ(i) = 0, for some i < |ρ| such that χC(i) = 1, can have
a precondition assigned to 〈r, ρ〉 at some stage u ≥ t0 which becomes later
satisfied. �

We now conclude the proof of the lemma. Let B ∈ ∆0
2, and let i be such

that χB = ϕKi . Let

t(x) = min{t : t is K-true and ϕκti,t(x) ↓}.

Then t is total and so a ∆0
2 function. It follows that there exists some number

x0 such that f(x) > t(x), for all x ≥ x0.
Given x ≥ x0, let w and σ be as in the previous claim (for x). Then

t(x) < f(x) < w (since f(x) = Ψσ
w(x)). Moreover, if t0 is as in the proof

of the previous claim, then, for every pair 〈r, ρ〉 such that 〈r, ρ〉 is extracted
from L(x, s) at any stage s ≥ t0, we have t(x) ≤ r. Hence for all x ≥ x0,
χBi(x) = ϕKi (x).

Since f(x), ψ(x), and w can be computed by C, we easily conclude that
the relation x ∈ Bi is computable in C. �
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Remark 3.4 Note that if t(x) ≥ w, then limsB
s
i (x) need not exist, but, in

any case, x /∈ Bi, since at every large enough stage at which we extract 〈w, σ〉
from L(x, s) we have x /∈ Bs

i .

We now go back to the proof of the theorem. We will build a Σ0
2 set A

such that, for every ∆0
2 set B, A 6≡e B, and KA ≤T C. This implies that

dege(A) is properly Σ0
2 and, by Lemma 1.1, Je(A) ≤e χC .

3.2 The strategies

The properly Σ0
2-strategy. Let {Φe,Ψe}e∈ω be some effective listing of

all pairs of e-operators. To make A of properly Σ0
2 e-degree, it is enough to

satisfy the following requirements, for every e, i ∈ ω:

Pe,i : A = ΦBi
e &Bi = ΨA

e ⇒ (∃∞x)[lim
s
Bs
i (x) ↑]

where {Bi}i∈ω and {Bs
i }i,s∈ω are as given in Lemma 3.3.

Indeed, if we satisfy these requirements for every e, i, then dege(A) is
properly Σ0

2. Suppose, for the sake of a contradiction, that A ≡e B and
B ∈ ∆0

2. Then, by the previous lemma, A = ΦBi
e and Bi = ΨA

e for some e, i,
with B =∗ Bi and so limsB

s
i (x) does not exist for infinitely many x for the

desired contradiction, since limsB
s
i (x) exists for almost all x.

The strategy to meet Pe,i is a slight modification of the canonical properly
Σ0

2 strategy as given in [CC88], and described as follows:

(a) appoint a witness x and let x ∈ A;

(w1) wait for finite sets D,E such that x ∈ ΦD
e and D ⊆ ΨE

e ;

(b) fix E − {x} ⊆ A;

(w2) wait for D ⊆ Bi;

(w3) let x /∈ A, wait for D * Bi;

(`) let x ∈ A; go back to (w2).

A triple x,D,E as above is called a follower of Pe,i.
As described in [CC88, Theorem 1], for a given follower x,D,E this strat-

egy may have the following outcomes: (w1) yields x ∈ A−ΦBi
e or y ∈ Bi−ΨA

e

for some y; (w2) corresponds to the case D ⊆ ΨA, D * Bi; (w3) corresponds
to the case x ∈ ΦBi−A; finally, the infinitary outcome ` entails that limsB

s
i (y)

does not exist for some y ∈ D.
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The subrequirements Pe,i,j. It follows by the analysis of the outcomes
of the previous strategy that if Bs

i (x) does have limit on every x ∈ D, then
A 6= ΦBi

e or Bi 6= ΨA
e . The only complication here (see Remark 3.4) is that

there might exist finitely many numbers x such that limsB
s
i (x) does not exist,

thus, for some y ∈ D, limsB
s
i (y) need not exist. We cope with this difficulty

by attacking Pe,i through infinitely many subrequirements Pe,i,j, with j ∈ ω.
The strategy for Pe,i,j consists in looking for a follower x,D,E such that
D � j = Bi � j : thus, for almost all j, if we appoint a follower x,D,E as
before, we are bound to conclude that Bs

i (y) exists on every y ∈ D. Thus Pe,i
is satisfied through some subrequirement Pe,i,j (in fact cofinitely many such
subrequirements). Before acting, the subrequirement Pe,i,j must therefore be
provided with some knowledge of what numbers x < j are in fact in Bi. This
information is coded in the first component, h(σ, s), of the outcome of the
node corresponding to Pe,i,j in the tree of outcomes.

The strategy for KA ≤T C. For every i, we will look for a finite set D
such that i ∈ ΦD

i . If such a D exists then we let D ⊆ A. Notice that we can
determine computably in ∅′ and, thus, in C, whether or not such a finite set
exists.

3.3 The tree of outcomes

For notation and terminology for strings and trees, the reader is referred to
[Soa87]. The tree of outcomes is the smallest set T of strings σ such that

1. if |σ| is even then σ̂(h, r) ∈ T , for every h ∈ ω and r ∈ {0, 1};

2. if |σ| is odd then σ̂r ∈ T , for every r ∈ {0, 1}.

The strings of even length are assigned to the (sub)requirements Pe,i,j,
according to some fixed priority listing. The first component, h(σ, s), of the
outcome of σ at stage s will be an assessment as to which numbers x < j are
in fact in Bi: at stage s + 1, h(σ, s) will be chosen to be the first element of
a list L(σ, s) of numbers. Each element h of the list is the canonical index of
a finite subset of {x : x < j}. Its position in the list measures how well the
set {x : x < j}−Bi is approximated by the finite set Dh. Having decided on
the first component, h, of the outcome at σ, the strategy for Pe,i,j is ready
to act at σ+ = σ̂h. The outcome 1 at σ+ corresponds to (w1) or (w2); the
outcome 0 corresponds to (w3) or (`).

The strings of odd length are devoted to guaranteeing that KA ≤T C: if
|σ| = 2i + 1 then we have outcome 0 if there exists (modulo higher priority
constraints) some finite set D such that i ∈ ΦD

i ; otherwise we have outcome
1.
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Let T̂ = T ∪ {σ̂h : |σ| even &h ∈ ω}. For σ ∈ T̂ , the parameter α(σ, s)
is intended to record some finite set which we want to keep in A for the sake
of our actions at σ; the parameter ε(σ, s) is meant to record some finite set
of elements which we want to keep out of A.

The ordering � of T is determined in the usual way by the ordering of
the outcomes given that we define (h, r) < (h′, r′) if

h > h′ or [h = h′& r < r′].

We extend � to T̂ in the obvious way.
Finally, let {ξσ}σ∈T̂ be a computable partition of ω into infinite com-

putable sets.

3.4 The construction

The construction proceeds by stages. At stage s we define a finite set As, a
string δs, and the values of several parameters. Unless otherwise specified, at
each stage each parameter retains the same value as at the preceding stage.

Stage 0: Define δ0 = ∅. For every σ ∈ T̂ , let

α(σ, 0) = ε(σ, 0) = L(σ, 0) = ∅.

Let x(σ, 0) and p(σ, h, 0) be undefined for every x, h ∈ ω. Finally, let A0 = ∅.
Stage s + 1: Suppose that we have defined δs+1 � n, where n < s + 1: let
σ = δs+1� n. Our aim is to define a string σ++ which we will be δs+1 �n+ 1.

|σ| even. Let Pe,i,j be the requirement assigned to σ. For simplicity, drop
subscripts, and let Φe = Φ,Ψe = Ψ and Bi = B.

Our first task is to define the first component, h(σ, s+ 1), of the outcome.
We define h(σ, s+1) to be the least element of L(σ, s) if L(σ, s) 6= ∅, otherwise
h(σ, s + 1) = 0. Then we cancel the precondition for h(σ, s + 1) by letting
p(σ, h(σ, s+ 1), s+ 1) ↑.

To every h such that maxDh < j and h does not have a precondition, we
assign the precondition p(σ, h, s + 1) which becomes satisfied at some later
stage v > s + 1 if, for every x < j and x ∈ Dh, there exists u such that
s+ 1 ≤ u ≤ v and Bu(x) = 0.

Define

L(σ, s+ 1) = (L(σ, s)− {h(σ, s+ 1)}) ∪
{h : h has a precondition that is satisfied at s+ 1}

and order L(σ, s + 1) in the usual way: for every h, h′ ∈ L(σ, s + 1), define
h <σ,s+1 h

′ if either

13



1. h, h′ ∈ L(σ, s) and h <σ,s h
′, or

2. h ∈ L(σ, s) and h′ /∈ L(σ, s), or

3. h, h′ /∈ L(σ, s) and h < h′.

Let σ+ = σ̂h(σ, s+ 1).

Now we are ready to activate the strategy for P .
Let x = x(σ+, s+ 1) be the least number in ξσ+ such that x /∈ α(ρ, s+ 1),

for every ρ ≺ σ+.

Case 1).

(∃D)(∃E)[x ∈ ΦD
s &D ∩Dh(σ,s+1) = ∅&D ⊆ ΨE

s

&E ∩
⋃
{ε(ρ, s+ 1) : ρ � σ} = ∅].

Choose the least such pair D,E.

In this case, let α(σ+, s+ 1) = E − {x}:

1. if D ⊆ Bs, then let σ++ = σ+̂0 and ε(σ++, s+ 1) = {x};
2. otherwise, let σ++ = σ+̂1 and α(σ++, s+ 1) = {x}.

Case 2). Otherwise, let σ++ = σ+̂1 and α(σ++, s+ 1) = {x}.

|σ| odd. Let |σ| = 2i+ 1. We distinguish two cases.

Case 1). (∃D)[i ∈ ΦD
i &D ∩

⋃
{ε(ρ, s+ 1) : ρ � σ} = ∅].

In this case, let σ++ = σ̂0, and let α(σ, s + 1) = D for the least such
D.

Case 2). Otherwise, let σ++ = σ̂1.

Definition of As+1. At the end of stage s+ 1, let

As+1 = (As ∪
⋃
{α(ρ, s+ 1) : ρ � δs+1})−

⋃
{ε(ρ, s+ 1) : ρ � δs+1}.
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3.5 Verification

The verification is based upon the following lemmas.

Lemma 3.5 For every n, σn = lim infs δs �n exists.

Proof. Assume by induction that the claim is true of n. The only nontrivial
case is when |σn| is even, where, say, the requirement Pe,i,j is assigned to σn.

Let h be the canonical index of Bi � j. It is clear that, whenever we assign
a precondition to h, then this precondition becomes satisfied at some later
stage. Hence, at infinitely many stages s, h ∈ L(σn, s), and at infinitely many
stages t, h = h(σn, t). On the other hand, it is also clear that for almost all
stages s, if h′ ∈ L(σn, s), then Dh′ ⊆ Dh, hence h′ ≤ h by the usual coding of
canonical sets. Therefore it follows that σn+1 = σn̂(h, r), for some r ∈ {0, 1}.
�

Let f =
⋃
n∈ω σn.

Lemma 3.6 For every τ ∈ T̂ , if τ ⊂ f , then α(τ) = lims α(τ, s), ε(τ) =
lims ε(τ, s) and x(τ) = lims x(τ, s) exist. Moreover, if τ = σn for some n,
then the requirement assigned to σn is satisfied.

Proof. By induction on n, we show that if τ = σn or τ = σ+
n , where

σn+1 = σ+
n ̂r for some r ∈ {0, 1} (of course σ+

n = σn if n is odd), then
lims α(τ, s), lims ε(τ, s) and lims x(τ, s) exist, and the requirement assigned
to σn is satisfied. The case n = 0 is trivial as are the existence of the required
limits for all nodes to the left of the true path.

Assume that the claim is true of n. For every τ ∈ T̂ such that τ � σn,
let α(τ) = lims α(τ, s), ε(τ) = lims ε(τ, s) and x(τ) = lims x(τ, s); and let t be
a stage such that, for every s ≥ t and τ � σn, α(τ) = α(τ, s), ε(τ) = ε(τ, s)
and x(τ) = x(τ, s).

Suppose first that |σn| is even, and let Pe,i,j be the requirement assigned
to σn. Let σn+1 = σn̂(h, i), and let σ+

n = σn̂h. Then

x(σ+
n ) = min x ∈ (ξσ+

n
−
⋃
τ�σn

α(τ)).

• If there are no finite sets D,E such that D ∩ Dh = ∅, x(σ+
n ) ∈ ΦD

e ,
E ∩

⋃
τ�σn ε(τ) = ∅ and D ⊆ ΨE

e , then σn+1 = σ+
n ̂1,

lim
s
ε(σ+

n , s) = lim
s
ε(σn+1, s) = ∅,

lims α(σ+
n , s) = ∅, lims α(σn+1, s) = {x(σ+

n )} and x(σ+
n ) ∈ A. Moreover,

either x(σ+
n ) ∈ A−ΦBi

e , or x(σ+
n ) ∈ ΦD

e , for some D ⊆ Bi, but D * ΨA
e .
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• If D,E exist, then we eventually choose the least such pair D,E, hence
α(σ+

n ) = E − {x(σ+
n )}, ε(σ+

n ) = ∅, and either (a) or (b) holds:

(a) σn+1 = σ+
n ̂0 and α(σn+1) = ∅, ε(σn+1) = {x(σ+

n )};
(b) σn+1 = σ+

n ̂1 and α(σn+1) = {x(σ+
n )}, ε(σn+1) = ∅.

In case (a) either

(a1) there exist infinitely many stages s such that σ+
n ̂1 ⊆ δs, in which

case, there exists some y ∈ D such that limsB
s
i (y) does not exist;

or

(a2) D ⊆ Bi but x(σ+
n ) /∈ A, giving x(σ+

n ) ∈ ΦBi
e − A.

In (b) we have D * Bi, but E ⊆ A, hence D ⊆ ΨA
e .

Remark 3.7 Notice that if j is such that limsB
s
i (y) exists for every y ≥ j,

then (a1) does not occur, by Lemma 3.3.

If |σn| = 2i + 1 is odd and i ∈ ΦD
i , for some finite set D such that

D ∩
⋃
τ�σn ε(τ) = ∅, then σn+1 = σn̂0 and α(σn+1) = D, for some such D;

otherwise σn+1 = σn̂1 and α(σn+1) = ∅. In either case ε(σn+1) = ∅.

The proof of the lemma is now complete. �

Lemma 3.8 KA ≤T C.

Proof. We will show that, for every n, one can compute σn recursively in C.
Now, σ0 = ∅. Assume by induction that we can compute σn and a stage

sn such that τ * δs, for every s ≥ sn and τ ≺L σn and each parameter at
any τ � σn has reached its limit by stage sn. Assume first that |σn| is even,
and let Pe,i,j be the requirement assigned to σn. Since C can compute Bi � j,
it follows that C can compute the first component, h = lims h(σn, s), of the
outcome of σn. Moreover, since ∅′ ≤T C, C can compute the least stage
s+
n ≥ sn such that τ * δs, for every τ ≺L σn̂h (since for every x ∈ Bi � j

and every t, one can compute in ∅′ whether there exists some s ≥ t such that
x /∈ Bs

i ). Again, using ∅′ as an oracle, one can compute whether Case 1 or
Case 2 of the construction holds, thus computing σn+1 and the corresponding
sn+1.

A similar argument applies in the case |σn| = 2i + 1, for some i, since
the oracle ∅′ can compute whether or not there exists some stage s ≥ sn and
some finite D such that i ∈ ΦD

i , and D ∩
⋃
τ�σn ε(τ, sn) = ∅.

It follows that i ∈ KA if and only if σ2i+2 = σ2i+1̂0, thus KA ≤T C. �
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Remark 3.9 We expect that, by combining the above construction of A with
a variant of the coding procedure and the associated guessing at outcomes
used in the tree proof of the Sacks’ jump inversion theorem, one can actually
guarantee that Je(A) ≡e χC .
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