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Abstract

Complete axiomatizations and exponential-time decision procedures are provided for
reasoning about knowledge and common knowledge when there are infinitely many agents.
The results show that reasoning about knowledge and common knowledge with infinitely
many agents is no harder than when there are finitely many agents, provided that we can
check the cardinality of certain set differences G − G′, where G and G′ are sets of agents.
Since our complexity results are independent of the cardinality of the sets G involved, they
represent improvements over the previous results even when the sets of agents involved
are finite. Moreover, our results make clear the extent to which issues of complexity and
completeness depend on how the sets of agents involved are represented.
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1 Introduction

Reasoning about knowledge and common knowledge has been shown to be widely applicable
in distributed computing, AI, and game theory. (See [FHMV95] for numerous examples.)
Complete axioms for reasoning about knowledge and common knowledge are well known in the
case of a fixed finite set of agents. However, in many applications, the set of agents is not known
in advance and has no a priori upper bound (think of software agents on the web or nodes on
the Internet, for example); it is often easiest to model the set of agents as an infinite set. Infinite
sets of agents also arise in game theory and economics (where reasoning about knowledge and
common knowledge is quite standard; see, for example, [Aum76, Gea94]). For example, when
analyzing a game played with two teams, we may well want to say that everyone on team 1
knows that everyone on team 2 knows some fact p, or that it is common knowledge among the
agents on team 1 that p is common knowledge among the agents on team 2. We would want to
say this even if the teams consist of infinitely many agents. Since economies are often modeled
as consisting of infinitely many (even uncountably many) agents, this type of situation arises
when economies are viewed as teams in a game.

The logics for reasoning about the knowledge of groups of agents contain modal operators
Ki (where Kiϕ is read “agent i knows ϕ”), EG (where EGϕ is read “everyone in group G knows
ϕ”), and CG (where CGϕ is read “ϕ is common knowledge among group G”). The operators EG
and CG make perfect sense even if we allow the sets G to be infinite—their semantic definitions
remain unchanged. If the set of agents is finite, so that, in particular, G is finite, there is a
simple axiom connecting EGϕ to Kiϕ, namely, EGϕ⇔ ∧i∈GKiϕ. Once we allow infinite groups
G of agents, there is no obvious analogue for this axiom. Nevertheless, in this paper, we show
that there exist natural sound and complete axiomatizations for reasoning about knowledge
and common knowledge even if there are infinitely many agents.

It is also well known that if there are finitely many agents, then there is a decision procedure
that decides if a formula ϕ is satisfiable (or valid) that runs in time exponential in |ϕ|, where
ϕ is the length of the formula viewed as a string of symbols. We prove a similar result for a
language with infinitely many agents. However, two issues arise (that, in fact, are also relevant
even if there are only finitely many agents, although they have not been considered before):

• In the statement of the complexity result in [FHMV95], EG and CG are both viewed as
having length 2 + 2|G| (where |G| is the cardinality of G). Clearly we cannot use this
definition here if we want to get interesting complexity results, since |G| may be infinite.
Even if we restrict our attention to finite sets G, we would like a decision procedure that
treats these sets in a uniform way, independently of their cardinality. Here we view EG as
having length 1 and CG as having length 3, independent of the cardinality of G. (See, for
example, the proof of Proposition 3.5 for the role of independence and the definition of
Sub(ϕ) in the proof of Theorem 4.5 for an indication as to why CG has length 3 rather than
1.) Even with this definition of length, we prove that the complexity of the satisfiability
problem is still essentially exponential time. (We discuss below what “essentially” means.)
Thus our results improve previously-known results even if there are only finitely many
agents.

• In the earlier proofs, it is implicitly assumed that the sets G are presented in such a way
that there is no difficulty in testing membership in G. As we show here, in order to decide
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if certain formulas are satisfiable, we need to be able to test if certain subsets of agents of
the form G0 − (G1 ∪ . . . ∪Gk) are empty, where G0, . . . , Gk are sets of agents. In fact, if
we are interested in a notion of knowledge that satisfies positive introspection—that is, if
agent i knows ϕ, then she knows that she knows it—then we also must be able to check
whether such subsets are singletons. And if we are interested in a notion of knowledge that
satisfies negative introspection—that is, if agent i does not know ϕ, then she knows that
she does not know it—then we must be able to check whether such subsets have cardinality
m, for certain finite m. The difficulty of deciding these questions depends in part on how
G0, . . . , Gk are presented and which sets of agents we can talk about in the language. For
example, if G0, . . . , Gk are recursive sets, deciding if G0−(G1∪ . . .∪Gk) is nonempty may
not even be recursive. Here, we provide a decision procedure for satisfiability that runs in
time exponential in |ϕ| provided that we have oracles for testing appropriate properties
of sets of the form G0 − (G1 ∪ . . . ∪Gk). Moreover, we show that any decision procedure
must be able to answer the questions we ask. In fact, we actually prove a stronger result,
providing a tight bound on the complexity of deciding satisfiability that takes into account
the complexity of answering questions about the cardinality of G0 − (G1 ∪ . . . ∪Gk).
Again, this issue is of significance even if there are only finitely many agents. For exam-
ple, in the SDSI approach to security [RL96], there are names, which can be viewed as
representing sets of agents. SDSI provides a (nondeterministic) algorithm for computing
the set of agents represented by a name. If we want to make statements such as “every
agent represented by name n knows ϕ” (statements that we believe will be useful in rea-
soning about security [HvdM99, HvdMS99]) then the results of this paper show that to
decide validity in the resulting logic, we need more than just an algorithm for resolving
the agents represented by a given name. We also need algorithms for resolving which
agents are represented by one name and not another. More generally, if we assume that
we have a separate language for representing sets of agents, our results characterize the
properties of sets that we need to be able to decide in order to reason about the group
knowledge of these agents.

In the next section, we briefly review the syntax and semantics of the logic of common
knowledge. In Section 3 we state the main results and prove them under some simplifying
assumptions that allow us to bring out the main ideas of the proof. We drop these assumptions
in Section 4, where we provide the proofs of the full results.

2 Syntax and Semantics: A Brief Review

Syntax: We start with a (possibly infinite) setA of agents. Let G be a set of nonempty subsets
ofA. (Note that we do not require G to be closed under union, intersection, or complementation;
it can be an arbitrary collection of subsets.) We get the language LCG (Φ) by starting with a set
Φ of primitive propositions, and closing under ∧, ¬, and the modal operators Ki, for i ∈ A, and
EG, CG, for G ∈ G. Thus, if p, q ∈ Φ, i ∈ A, and G,G′ ∈ G, then KiCG(p∧EG′q) ∈ LCG (Φ). Let
LEG be the sublanguage of LCG that does not include the CG operators. Let |ϕ| be the length of
the formula viewed as a string of symbols, where the modal operators Ki and EG are counted
as having length 1 and CG is counted as having length 3 (even if G is an infinite set of agents)
and all primitive propositions are counted as having length 1.
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In [FHMV95, HM92], A is taken to be the set {1, . . . , n}; in [HM92], G is taken to be the
singleton {{1, . . . , n}} (so that we can only talk about every agent in A knowing ϕ and common
knowledge among the agents in A), while in [FHMV95], G is taken to consist of all nonempty
subsets of A. We are being deliberately vague here as to how the infinite sets which appear in
the subscripts of E and C are represented. The details of the representation are not relevant
to our results. However, it turns out to be quite critical that the representation is such that
certain questions about the cardinality of sets can be answered easily. This is discussed in much
more detail when we state the results.

Semantics: As usual, formulas in LCG are either true or false at a world in a Kripke structure.
Formally, a Kripke structure M over A and Φ is a tuple (S, π, {Ki : i ∈ A}), where S is a set of
states or possible worlds, π associates with each state in S a truth assignment to the primitive
propositions in Φ (so that π(s) : Φ→ {true, false}), and Ki is a binary relation on S for each
agent i ∈ A. We occasionally write Ki(s) for {t : (s, t) ∈ Ki}.

We define the truth relation |= as follows:

(M, s) |= p (for p ∈ Φ) iff π(s)(p) = true

(M, s) |= ϕ ∧ ψ iff both (M, s) |= ϕ and (M, s) |= ψ

(M, s) |= ¬ϕ iff (M, s) 6|= ϕ

(M, s) |= Kiϕ iff (M, t) |= ϕ for all t ∈ Ki(s)

(M, s) |= EGϕ iff (M, s) |= Kiϕ for all i ∈ G

(M, s) |= CGϕ iff (M, s) |= EkGϕ for k = 1, 2, 3, . . ., where EkG is defined inductively by taking
E1
Gϕ =def EGϕ and Ek+1

G ϕ =def EGE
k
Gϕ.

We say that t is G-reachable from s in M if there exist s0, . . . , sk with s = s0, t = sk, and
(si, si+1) ∈ ∪i∈GKi. For later use, we extend this definition so that if S′ ⊆ S, we say that
t is G-reachable from s in S′ if s0, . . . , sk ∈ S′. The following characterization of common
knowledge is well known [FHMV95].

Lemma 2.1: (M, s) |= CGϕ iff (M, t) |= ϕ for all t that are G-reachable from s in M .

Let MA(Φ) be the class of all Kripke structures over A and Φ (with no restrictions on the Ki
relations). We are also interested in various subclasses of MA(Φ), obtained by restricting the
Ki relations. In particular, we consider Mr

A(Φ), Mrt
A(Φ), Mrst

A (Φ), and Melt
A (Φ), the class of

all structures over A and Φ where the Ki relations are reflexive (resp., reflexive and transitive;
reflexive, symmetric, and transitive; Euclidean,1 serial, and transitive). For the remainder of
this paper, we take Φ to be fixed, and do not mention it, writing, for example LCG and MA
rather than LCG (Φ) and MA(Φ).

As usual, we define a formula to be valid in a class M of structures if (M, s) |= ϕ for all
M ∈ M and all states s in M ; similarly, ϕ is satisfiable in M if (M, s) |= ϕ for some M ∈ M
and some s in M .

1Recall that a relation R is Euclidean if (s, t), (s, u) ∈ R implies that (t, u) ∈ R.
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Axioms: The following are the standard axioms and rules that have been considered for
knowledge; They holds for all i ∈ A.

Prop. All substitution instances of tautologies of propositional calculus.

K1. (Kiϕ ∧Ki(ϕ⇒ ψ))⇒ Kiψ.

K2. Kiϕ⇒ ϕ.

K3. ¬Kifalse.

K4. Kiϕ⇒ KiKiϕ.

K5. ¬Kiϕ⇒ Ki¬Kiϕ.

MP. From ϕ and ϕ⇒ ψ infer ψ.

KGen. From ϕ infer Kiϕ.

Technically, Prop and K1–K5 are axiom schemes, rather than single axioms. K1, for example,
holds for all formulas ϕ and ψ. A formula such as K1q ∨ ¬K1q is an instance of axiom Prop
(since it is a substitution instance of the propositional tautology p∨¬p, obtained by substituting
K1q for p).

We will be interested in the following axioms and rule for reasoning about everyone knows,
which hold for all G ∈ G.

E1. EGϕ⇒ Kiϕ if i ∈ G.

E2. (∧i∈A′Kiϕ ∧ ∧G′∈G′EG′ϕ) ⇒ EGϕ if A′ is a finite subset of A, G′ is a finite subset of G,
and G ⊆ (A′ ∪ (∪G′)).

E3. (EGϕ ∧EG(ϕ⇒ ψ))⇒ EGψ.

E4. EG(EGϕ⇒ ϕ).

E5. EGϕ⇒ ϕ.

E6. ¬ϕ⇒ EG¬EGϕ.

E7. From ¬(ϕ1 ∧ . . . ∧ ϕk) infer ¬(EG1ϕ1 ∧ . . . ∧EGk
ϕk) if G1 ∩ . . . ∩Gk 6= ∅.

EGen. From ϕ infer EGϕ.

E2 can be viewed as a generalization of the axiom EGϕ⇒ EG′ϕ if G′ ⊆ G (of which E1 is a
special case if we identify Kiϕ with E{i}ϕ, as we often do in the paper). Essentially it says that
if Kiϕ holds for all agents i ∈ G (and perhaps some other agents i /∈ G) then EGϕ holds. Since,
if G is infinite, we cannot write the infinite conjunction of Kiϕ for all i ∈ G, we approximate
as well as we can within the constraints of the language. As long as EG′ϕ and Kiϕ holds for
sets G′ and agents i whose union contains G, then certainly EGϕ holds.

If A is finite (so that all the sets in G are finite) we can simplify E1 and E2 to
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E. EGϕ⇔ ∧i∈GKiϕ.

It is easy to see that E follows from E1 and E2 (in the presence of Prop and MP) and every
instance of E1 and E2 follows from E if A is finite. E is used instead of E1 and E2 in [FHMV95,
HM92]. Note that E2 is recursive iff deciding if G−(A′∪(∪G′)) = ∅ is recursive. (We determine
precisely which such questions we must be able to answer in Proposition 3.3.)

E3 and EGen are the obvious analogues of K1 and KGen for EG. We do not need them in
the case that A is finite; it is easy to see that they follow from K1, KGen, and E. In the case
that A is infinite, however, they are necessary.

Axiom E4 is sound inMr
A,Mrt

A,Mrst
A , andMelt

A . It is easy to see that E4 follows from K2,
E1, and EGen, so will not be needed in systems that contain these axioms. Moreover, it is not
hard to show that E4 follows from E1, E2, and K5 if the set of agents is finite. However, it does
not follow from these axioms if the set of agents is infinite. Thus, it will have to be explicitly
included in systems containing K5 but not K2.

Axiom E5 follows from K2 and E1. Moreover, we use it only in systems that already include
K2 and E1. Nevertheless, for technical reasons, it is useful to list it separately. Similarly, it is
not hard to see that E7 is a derivable rule in any system that includes Prop, MP, K1, K3, E1,
E4, and EGen (we prove this in Section 4.4). While we use E7 only in such systems, like E5, it
is useful to list it separately.

Axiom E6 (with EG replaced by Ki) is the standard axiom used to characterize symmetric
Ki relations [FHMV95]. It follows easily from K2, K5, E1, and E2 if A is finite. However, like
E4, it must be specifically included if A is infinite.

Finally, we have the following well-known axiom and inference rule for common knowledge:

C1. CGϕ⇒ EG(ϕ ∧ CGϕ).

RC1. From ϕ⇒ EG(ψ ∧ ϕ) infer ϕ⇒ CGψ.

Historically, in the case of one agent, the system with axioms and rules Prop, K1, MP, and
KGen has been called K; adding K2 to K gives us T; adding K4 to T gives us S4; adding K5 to
S4 gives us S5; replacing K2 by K3 in S5 gives us KD45. We use the subscript G to emphasize
the fact that we are considering systems with sets of agents coming from G rather than only
one agent and the superscript C to emphasize that we add E1–E3, EGen, C1, and RC1 to the
system. In this way, we get the systems KC

G , TC
G , and S4CG . Thus, KC

G consists of Prop, K1,
MP, KGen, E1, E2, E3, EGen, C1, and RC1; we get S4CG by adding K2 and K4 to KC

G . We get
KD45CG by adding K3–K5 and E4 to KC

G and we get S5CG by adding K2, K4, K5 and E6 to KC
G .

See Table 1 for a summary of these systems and the associated axioms and structures.
One of the two main results of this paper shows that each of these axiom systems is sound

and complete with respect to an appropriate class of structures. For example, KC
G is a sound and

complete axiomatization with respect toMA and S5CG is a sound and complete axiomatization
with respect to Mrst

A . In the case that A is finite, this result is well known (see [FHMV95,
HM92]—as mentioned earlier, E is used in the axiomatization instead of E1–E3 and EGen).
What is perhaps surprising is that E1–E3 and EGen suffice even if A is infinite. For example,
suppose that G just consists of the singleton A. In that case, E2 becomes vacuous. Thus, while
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System Axioms Structures Properties of Ki
KC
G Prop, K1, MP, KGen, M none

E1, E2, E3, EGen, C1, RC1
TC
G KC

G , K2 Mr reflexive
S4CG KC

G , K2, K4 Mrt reflexive, transitive
KD45CG KC

G , K3, K4, K5, E4 Melt Euclidean, serial, transitive
S5CG KC

G , K2,K4,K5, E6 Mrst reflexive, symmetric, transitive

Table 1: Axioms Systems and Structures

the axioms force EAϕ to imply that each agent in A knows ϕ, we have no way of expressing
the converse. Indeed, it is easy to construct a structure for the axioms with the standard
interpretations of all the Ki relations but a nonstandard one of EA, where all the agents in A
know ϕ and yet EAϕ does not hold. Consider, for example, a structure with a single state s
for the language with an infinite set A of agents. Suppose that every primitive proposition p
is true at s, Ki is empty for all i ∈ A, and Ki is interpreted in the usual way for all i ∈ A (so
that Kiϕ is true at s for all formulas ϕ). For EA, however, we say that EAϕ holds at s if and
only if it is provable in, say, KC

G . Of course, there are obviously standard models in which EAp
does not hold and so (by the soundness of the axioms for standard interpretations) EAp is not
provable. Thus, in this interpretation, EAp does not hold at s while Kip does for every i ∈ A.
Finally, it is clear that all the axioms of KC

G are true in this structure. Similar examples can
be given to show that E4 and E6 do not follow from the specified other axioms when the set of
agents is infinite.

3 The Main Results and a Proof in a Simplified Setting

In this section, we state the two main results of this paper—complete axiomatizations and
decision procedures. We then provide a proof of a simpler version of these results that illustrates
some of the main ideas. We first state the completeness results.

Theorem 3.1: For formulas in the language LCG :

(a) KC
G is a sound and complete axiomatization with respect to MA,

(b) TC
G is a sound and complete axiomatization with respect to Mr

A,

(c) S4CG is a sound and complete axiomatization with respect to Mrt
A,

(d) S5CG is a sound and complete axiomatization with respect to Mrst
A ,

(e) KD45CG is a sound and complete axiomatization with respect to Melt
A .

Before stating the results regarding complexity, we first show that questions about certain
facts regarding sets of the form G0 − (G1 ∪ . . . ∪Gk) are reducible to satisfiability. We are not
just interested in sets of the form G0 − (G1 ∪ . . . ∪Gk) for G1, . . . , Gk ∈ G. For example, when
dealing with Mrt, it turns out that we are interested in sets H of this form if |H| = 1. But if
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H1 is such a set, then we are also interested in sets of the form H2 = G0 − (G1 ∪ . . . Gk ∪H1).
And if |H2| = 1, then we can also include H2 in the union, and so on. The following definition
makes this precise.

Definition 3.2: Given a set J of subsets of A and an integer m ≥ 1, define a sequence
Jm0 ,Jm1 , . . . of sets of subsets of A inductively as follows. Let Jm0 = J . Suppose that we have
defined Jm0 , . . . ,Jmk . Then Jmk+1 = Jmk ∪{G−∪H : G ∈ J , H ⊆ Jmk , H finite, |G−∪H| ≤ m}.
Let Jm = ∪iJmi ; let Ĵm = {G − ∪H : G ∈ J ,H ⊆ Jm,H finite}. For uniformity, we take
Ĵ 0 = {G− ∪H : G ∈ J ,H ⊆ J ,H finite}.

For example, if A = {1, 2, 3, . . .} and J = {A, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, . . .}, then
J 1

1 = J ∪ {∅, {2}, {3}, . . .}, since {k} = {1, . . . , k} − {1, . . . , k − 1}. Of course, J 1
m = J 1

1 for
m ≥ 1, since all singletons are already present in J 1

1 . Similarly, J 2
1 = J 1

1 ∪ {{n, n + 1} : n =
1, 2, 3} and J 2

2 consists of J 2
1 and all doubletons.

Let J ∗ be the algebra generated by J (that is, the Boolean combinations of sets in J ). It
is useful to talk about the length of a description of various sets in J ∗ (particularly those in
Ĵm for some m). Formally, we assume we have a language whose primitive objects consist of
the elements of J and the symbols ∪ and − (for set difference). The length of a description is
then the number of symbols of J that appear in it. Notice that, in general, an element of J ∗
may have several different descriptions. We are not always careful to distinguish a set from its
description. (We hope that the reader will be able to tell which is intended from context.) We
use l(G) to denote the length of the description of G ∈ J ∗.

Let GA = G ∪ {{i} : i ∈ A}. Throughout the paper (and, in particular, in the proof of the
next proposition), for ease of exposition, we identify E{i} with Ki, for i ∈ A (which allows us
to write EG for each G ∈ GA).

Proposition 3.3:

(a) The question of whether |G| > 0 for G ∈ Ĝ0
A is reducible (in time linear in l(G)) to the

satisfiability problem for the language LEG with respect to all of MA, Mr
A, Mrt

A, Mrst
A ,

and Melt
A .

(b) The questions of whether |G| > 0 and |G| > 1 for G ∈ Ĝ1
A are each reducible (in time

linear in l(G)) to the satisfiability problem for the language LEG with respect to all of Mrt
A,

Mrst
A , and Melt

A .

(c) For all m ≥ 1, the question of whether |G| > m for G ∈ ĜmA is reducible (in time linear
in l(G) +m) to the satisfiability problem for LEG with respect to Mrst

A and Melt
A .

(d) The question of whether |G1 ∩ . . . ∩ Gk| > 0, for G1, . . . , Gk ∈ GA is reducible (in time
linear in k) to the satisfiability problem for LEG with respect to Melt

A .

Proof: For part (a), suppose thatG ∈ Ĝ0
A. Thus, G = G0−(G1∪. . .∪Gk) for some G0, . . . , Gk ∈

GA. Consider the formula ϕa =def ¬EG0p∧EG1p∧. . .∧EGk
p, where p is a primitive proposition.

Clearly ϕa is satisfiable in MA, Mr
A, Mrt

A, Mrst
A , or Melt

A iff |G0 − (G1 ∪ . . . ∪Gk)| > 0.
For part (b), given G, we construct two formulas ϕG,p and ψG with the following properties.
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• ϕG,p is satisfiable inMt
A (i.e., the class of structures where the Ki relations are transitive)

iff |G| > 0.

• For all structures M and states s in M , if (M, s) |= ϕG,p, then (M, s) |= ¬Kjp for some
j ∈ G.

• ψG is satisfiable in Mt
A iff |G| > 1.

• |ϕG,p| and |ψG| are both linear in l(G).

This, of course, suffices to prove the result.
We construct the formulas ϕG,p by induction on the least h such that G = G′ − ∪H and

H ⊆ (GA)1
h. (We are here thinking of G as specified by its description.) If H ⊆ (GA)1

0 = GA,
suppose that H = {G1, . . . , Gk}. Then we take ϕG,p to be ¬EG′p ∧ EG1p ∧ . . . ∧ EGk

p. This
clearly has the desired properties.

Now suppose that H ⊆ (GA)1
h for h ≥ 1. Without loss of generality, we can assume

that H = {G1, . . . , Gk′ , Gk′+1, . . . , Gk}, where G1, . . . , Gk′ ∈ GA and, for j = k′ + 1, . . . , k,
Gj ∈ (GA)1

h − GA is of the form G′j − ∪Hj with G′j ∈ GA, Hj ⊆ (GA)1
h−1, and |Gj | = 1. Define

ϕG,p as

¬EG′¬(¬p ∧
k∧

j=k′+1

ϕGj ,pj ) ∧EG1p ∧ . . . ∧ EGk′p ∧
k∧

j=k′+1

EG′jpj ,

where we assume that the sets of primitive propositions that appear in ϕGj ,pj , j = k′+1, . . . , k,
are mutually exclusive and do not include p.2

Now suppose that ϕG,p is true at some state s in a structure M ∈ Mt
A. Then for some

i ∈ G′, we must have (M, s) |= ¬Ki¬(¬p ∧
∧k
j=k′+1 ϕGj ,pj ). We cannot have i ∈ G1 ∪ . . . ∪Gk′ ,

since (M, s) |= EGjp for j = 1, . . . , k′. Nor can we have i ∈ Gj for j = k′+1, . . . , k. For suppose
that Gj = {ij}, j ∈ {k′ + 1, . . . , k}. Then (M, s) |= ¬Ki¬ϕGj ,pj ∧ EG′jpj . From the second
property of ϕG,p, it follows that M |= ϕGj ,pj ⇒ ¬Kijp, so (M, s) |= ¬KiKijpj ∧ Kijpj . We
cannot have i = ij by transitivity. It follows that G 6= ∅.

Conversely, if G 6= ∅, we show that ϕG,p is satisfiable in Mrst
A (and hence also in Mrt

A and
Melt
A ). We actually prove a stronger result. We show that if G1, . . . , Gk are nonempty and the

formulas ϕG1,p1 , . . . , ϕGk,pk
involve disjoint sets of primitive propositions, then ϕG1,p1 ∧ . . . ∧

ϕGk,pk
is satisfiable in a structure inMrst

A of a certain form. To make this precise, suppose that
M = (S, π, {Ki : i ∈ A}), s ∈ S, S′ is a set of states disjoint from S, and s′ ∈ S′. We say that
M is embedded in the structure M ′ = (S ∪ S′, π′, {K′i : i ∈ A}) at (s, s′) if

1. π′|S = π and K′i|S×S = Ki for i ∈ A,

2. if (t, t′) ∈ K′i for t ∈ S and t′ ∈ S′, then t = s and t′ = s′.

We show by induction on h that if Gj = G′j − ∪Hj , Hj ⊆ (GA)1
h, |Gj | > 0 for j = 1, . . . , k,

and the formulas ϕG1,p1 , . . . , ϕGk,pk
involve disjoint sets of primitive propositions, then for all

i1, . . . , ik such that ij ∈ Gj , there exists a structure M ∈Mrst
A and a state s in M such that:

2Here we are implicitly assuming that the set of primitive propositions is infinite, so that this can be done.
With more effort, we can prove a similar result even if the set is finite, using the techniques of [Hal95].
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1. (M, s) |= ϕG1,p1 ∧ . . . ∧ ϕGk,pk
,

2. ∃t1, . . . , tk such that (s, tj) ∈ Kij and (M, tj) |= ¬pj ,

3. Ki(s) = {s} for i /∈ {i1, . . . , ik},

4. for all structures M ′ and states s′ in M ′ such that M is embedded in M ′ at (s, s′) and
(M ′, s′) |= p1 ∧ . . . ∧ pk, we have that (M ′, s) |= ϕG1,p1 ∧ . . . ∧ ϕGk,pk

.

If h = 0, then it is easy to construct such a structure. Given i1, . . . , ik such that ij ∈ Gj (where
the ij are not necessarily distinct) we construct a structure M with states s, t1, . . . , tk (where
tj = tj′ if ij = ij′) such that (M, tj) |=

∧
{j′:ij′=ij} ¬pj′ ∧

∧
{j′:ij′ 6=ij} pj

′ , (M, s) |= p1 ∧ . . . ∧ pk,
and Ki is the smallest equivalence relation that includes (s, tj) if i = ij . It is easy to check that
M has the required properties.

For the inductive step, suppose that we are given i1, . . . , ik such that ij ∈ Gj . Note that the
first conjunct of ϕGj ,pj has the form ¬EG′j¬(¬pj ∧

∧mj

k=1 ϕGjk,pjk
). By the induction hypothesis,

we can find a structure Mj with state space Sj and a state sj in Sj with the properties above
such that (M, sj) |= ¬pj ∧

∧mj

k=1 ϕGjk,pjk
. (That we can get (M, sj) |=

∧mj

k=1 ϕGjk,pjk
is an

immediate consequence of the induction hypothesis. Since pj does not appear in ϕGjk,pjk
for

k = 1, . . . ,mj , by construction of ϕGj ,pj , we can then extend the structure so as to make
(M, sj) |= ¬pj without changing any of the desired properties.) If ij = ij′ , we can also assume
without loss of generality that Mj = Mj′ and sj = sj′ . (For example, suppose that i1 = i2.
To make M1 = M2, we need to show that we can find a structure M ′ and state s′ such that
(M ′, s′) |= ¬p1 ∧ ¬p2 ∧

∧m1
k=1 ϕG1k,p1k

∧
∧m2
k=2 ϕG2k,p2k

; but this is immediate from the induction
hypothesis and the fact that p1 and p2 do not appear in ϕG1k,p1k

for k = 1, . . . ,m1 or ϕG2k,p2k

for k = 1, . . . ,m2.) Let S consist of S1 ∪ . . . ∪ Sk together with a new state s. We define
M ∈ Mrst

A so that each of the structures Mj is embedded in M at (sj , s) and the relation in
Kij in M is the smallest equivalence relation that makes this true such that (s, sj) ∈ Kij . For
i /∈ {i1, . . . , ik}, define Ki to be the smallest equivalence relation that makes each of the Mj ’s
embedded in M . Thus, for i /∈ {i1, . . . , ik}, the Ki relation in M is essentially the union of the
Ki relations in the Mj ’s together with (s, s), while the Kij relation in M is the union of the Kij
relations in the Mj ’s together with (s, s), (s, sj), and (sj , s). We define the interpretation π in
M so that (M, s) |= pj for j = 1, . . . , k. Since Ki(s) = {s} for i /∈ {i1, . . . , ik}, it now easily
follows that (M, s) |= ϕG1,p1 ∧ . . . ϕGk,pk

. We leave it to the reader to check that all the other
requirements in the construction hold as well. This completes the inductive step.

Of course, the fact that ϕG,p is satisfiable if |G| > 0 is now immediate.
Finally, define ψG to be ϕG,p ∧ EG′(q ∧ (¬p ⇒ ϕG,q)), where we assume that the primitive

propositions that appear in ϕG,p and ϕG,q are disjoint.
We claim that ψG is not satisfiable in Mt

A if |G| ≤ 1. Clearly it is not satisfiable in
Mt
A if |G| = 0, since ϕG,p is not. So suppose, by way of contradiction, that G = {i} and

(M, s) |= ψG for some M ∈ Mt
A. Then, thanks to the properties of ϕG,p and ϕG,q, we must

have (M, s) |= ¬Kip∧Ki(q∧ (¬p⇒ ¬Kiq)). It is easy to see that this gives us a contradiction.
On the other hand, if |G| > 1, we can construct a structure inMt

A (in fact, inMrst
A ) satisfying
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ψG as follows. Suppose that i, i′ ∈ G and ϕG,p is of the form

¬EG′¬(¬p ∧
k∧

j=k′+1

ϕGj ,pj ) ∧ EG1p ∧ . . . ∧EGk′p ∧
k∧

j=k′+1

EG′jpj .

We know that |Gk′+1| = · · · = |Gk| = 1, so by our previous argument, we can find a structure
M ′ = (S′, . . .) ∈Mrst

A and states s′, t′ ∈ S′ such that (M ′, s′) |= ϕG,q ∧
∧k
j=k′+1 ϕGj ,pj , (s′, t′) ∈

Ki′ , (M ′, t′) |= ¬q, and Ki(s′) = {s′}. Since p does not appear in ϕG,q, we can assume without
loss of generality that (M ′, s′) |= ¬p. Now let M ∈ Mrst

A be a structure whose state space is
S′∪{s}, where s is a fresh state not in S′, such that M ′ is embedded in M at (s, s′), (s, s′) ∈ Ki,
(M, s) |= p ∧ q ∧ pk′+1 ∧ . . . ∧ pk, and Kj(s) = {s} for j 6= i. It is easy to see that (M, s) |= ψG.

For part (c), we construct formulas ϕm,G,p such that

• if (M, s) |= ϕm,G,p for M ∈ Melt
A (and hence also for M ∈ Mrst

A ), then there exist m + 1
distinct agents i1, . . . , im+1 ∈ G such that (M, s) |= ¬Kij¬p, j = 1, . . . ,m+ 1;

• |ϕm,G,p| = O(l(G) +m);

• if |G| > m, then ϕm,G,p is satisfiable in Mrst
A (and hence in Melt

A ).

We first define an auxiliary family of formulas. If G′, G1, . . . , Gk ⊆ GA, let ψm,G′,G1,...,Gk,p

be the formula

EG1q0 ∧ . . . ∧ EGk
q0∧

¬EG′¬(p0 ∧ p1 ∧ q1 ∧ EG′(p0 ⇒ p1 ∧ q1))∧
. . . ∧ ¬EG′¬(p0 ∧ pm+1 ∧ qm+1 ∧ EG′(p0 ⇒ pm+1 ∧ qm+1))∧

EG′((p0 ⇒ (p ∧ ¬q0)) ∧ (q1 ⇔ ¬p2 ∧ q2) ∧ (q2 ⇔ ¬p3 ∧ q3) ∧ . . . ∧ (qm+1 ⇔ true)),

where p0, . . . , pm+1, q0, . . . , qm+1 are fresh primitive propositions distinct from p. Observe that
|ψm,G′,G1,...,Gk,p| is O(k+m). It is easy to check that the last clause forces qi, for 1 ≤ i ≤ m, to
be equivalent to ¬pi+1 ∧ . . . ∧ ¬pm+1, at least in the worlds G′-reachable in one step. Thus, in
these worlds, the formulas pi ∧ qi, i = 1, . . . ,m+ 1, are mutually exclusive. Clearly if (M, s) |=
ψm,G′,G1,...,Gk,p for M ∈ Melt

A , then there must be agents i1, . . . , im+1 in G′ − (G1 ∪ . . . ∪ Gk)
such that (M, s) |= ¬Kij¬(p0 ∧ pj ∧ qj ∧ EG′(p0 ⇒ pj ∧ qj)). (Note that we cannot have
ij ∈ G′ ∩ (G1 ∪ . . .∪Gk) since (M, s) |= EGjq0 ∧EG′(p0 ⇒ ¬q0)). Thus, there must exist states
tj , j = 1, . . . ,m+ 1 such that (s, tj) ∈ Kij and (M, tj) |= p0∧pj ∧ qj ∧EG′(p0 ⇒ pj ∧ qj). To see
that these agents ij must be distinct, suppose that ij = ij′ for j < j′. By the Euclidean property,
we have (tj , tj′) ∈ Kij . Since (M, tj) |= EG′(p0 ⇒ pj ∧ qj), we must have (M, tj′) |= pj ∧ qj . But
since (M, tj′) |= qj ⇔ (¬pj ∧ . . .∧¬pm+1), this is inconsistent with the fact that (M, tj′) |= pj′ .
Since (M, s) |= EG′(p0 ⇒ p), it follows that (M, s) |= ¬Kij¬p for j = 1, . . . ,m+ 1. Conversely,
it is easy to see that if |G′ − (G1 ∪ . . . ∪ Gk)| > m then ψm,G′,G1,...,Gk,p is satisfiable in Mrst

A .
We leave the details to the reader.

We now construct the formulas ϕm,G,p by induction on the least h such that G = G′ − ∪H
and H ⊆ (GA)mh . If H = {G1, . . . , Gk} ⊆ (GA)m0 = GA, then we take ϕm,G,p = ψm,G′,G1,...,Gk,p.
Now suppose that H ⊆ (GA)mh for h > 0. Without loss of generality, we can assume that
H = {G1, . . . , Gk′ , Gk′+1, . . . , Gk}, where G1, . . . , Gk′ ∈ GA and, for j = k′ + 1, . . . , k, Gj ∈
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(GA)mh−1 is of the form G′j − ∪Hj with G′j ∈ GA, Hj ⊆ (GA)mh−1, and |Gj | ≤ m. Suppose that
|Gj | = mj . By induction, for j = k′ + 1, . . . , k, we can construct formulas ϕmj−1,Gj ,p and the
formula ψm,G′,G1,...,Gk′ ,p

such that if (M, s) |= ϕmj−1,Gj ,p, then for each agent i ∈ Gj , we have
(M, s) |= ¬Ki¬p. Without loss of generality, we can assume that, other than p, the sets of
primitive propositions mentioned in the formulas ϕmj−1,Gj ,p are disjoint, and these sets are all
disjoint from the set of primitive propositions in ψm,G′,G1,...,Gk′ ,p

. Let ϕm,G,p be the formula

ψm,G′,G1,...,Gk′ ,p
′ ∧

m∧
j=k′+1

ϕmj−1,Gj ,p ∧ EG′(p′ ⇒ EG′¬p).

The argument that this formula has the required properties is almost identical to that for
ψm,G′,G1,...,Gk,p; we leave details to the reader.

Finally, for part (d), consider the formula ϕd defined as

EG1p1 ∧ . . . ∧ EGk−1
pk−1 ∧EGk

(¬p1 ∨ . . . ∨ ¬pk−1).

We leave it to the reader to check that ϕd is satisfiable in Melt
A iff G1 ∩ . . . ∩Gk = ∅.

We already saw that for axiom E2 to be recursive, we need to be able to decide whether
|G0 − (G1 ∪ . . . ∪Gk)| ≥ 1 (or, equivalently, whether G0 ⊆ G1 ∪ . . . ∪Gk) for G0, . . . , Gk ∈ GA.
Proposition 3.3 shows that if there is no recursive algorithm for answering such questions,
the satisfiability problem for the logic (even without CG operators) is also not decidable. For
simplicity here, we assume we have oracles that can answer the questions that we need to answer
(according to Proposition 3.3) in unit time; we consider the complexity of querying the oracle
in more detail in Section 4.5. More precisely, let Om be an oracle that, for a set G ∈ ĜmA , tells
us whether |G| > k, for any k < m. (Thus, queries to oracle Om have the form (G, k).) Let O′

be an oracle that tells us whether G1 ∩ . . . ∩Gk = ∅, for G1, . . . , Gk ∈ GA.

Theorem 3.4: There is a constant c > 0 (independent of A) and an algorithm that, given
as input a formula ϕ ∈ LCG , decides if ϕ is satisfiable in MA (resp., Mr

A, Mrt
A, Mrst

A , Melt
A )

and runs in time 2c|ϕ| given oracle O0 (resp., O0, O1, O|ϕ|, both O|ϕ| and O′), where queries
to the oracle take unit time. Moreover, if G contains a subset with at least two elements, then
there exists a constant d > 0 (independent of A) such that every algorithm for deciding the
satisfiability of formulas in MA (resp., Mr

A, Mrt
A, Mrst

A , Melt
A ) runs in time at least 2d|ϕ|, even

given access to oracle O0 (resp., O0, O1, O|ϕ|, both O|ϕ| and O′), for infinitely many formulas
ϕ.

Before proving Theorems 3.1 and 3.4, we prove a somewhat simpler theorem that allows
us to both explain intuitively why the results are true and point out some of the difficulties in
proving them.

Proposition 3.5: If there is an oracle that decides if G = ∅ for each Boolean combination G
of elements in GA, then, for every formula ϕ ∈ LCG , we can effectively find a formula ϕσ in a
language LCG′, where G′ consists of all nonempty subsets of a set A′ of at most 2|ϕ| agents, such
that |ϕσ| = |ϕ| and ϕ is satisfiable in MA iff ϕσ is satisfiable in MA′.
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Proof: Given ϕ, let Gϕ be the set of subsets G of agents such that EG or CG appears in ϕ.
(Recall that we are identifying Ki with E{i}, so that {i} ∈ Gϕ if Ki appears in ϕ.) Note that
|Gϕ| ≤ |ϕ|.

Suppose that G = {G1, . . . , GN}. An atom over G is a nonempty set of the formG′1∩. . .∩G′N ,
where G′i = Gi or G′i = Gi. Clearly there are at most 2N atoms over G. Let A′ consist of the
atoms over Gϕ. Note that |A′| ≤ 2|ϕ|. Define σ : A → A′ by taking σ(i) to be the unique atom
over Gϕ containing i. We extend σ to a map from 2A → 2A

′
by taking σ(G) = {σ(i) : i ∈ G}

(= {H ∈ Gϕ : H ⊆ G}). Translate ϕ to ϕσ by replacing all occurrences of EG and CG in ϕ by
Eσ(G), and Cσ(G), respectively. Clearly |ϕ| = |ϕσ|. (Note that it is important here that we take
the length of EG and CG to be independent of G.)

If ϕ is satisfiable, let (M, s) witness that fact. Convert M into a structure Mσ over A′
with the same state space by setting (s, t) ∈ KA iff (s, t) ∈ ∪j∈AKj for each A ∈ A′. An
easy induction shows that for every formula ψ with sets (of agents) chosen from Gϕ, we have
(M, s) |= ψ if and only if (Mσ, s) |= ψσ. The only point that needs any comment is that EG
(and so also CG) has the same meaning in M (in terms of reachability) as Eσ(G) (Cσ(G)) in Mσ,
by the definition of σ(G) and the KA relations. Thus (Mσ, s) |= ϕσ as required.

For the other direction, suppose that (M ′, s) |= ϕσ for some structure M ′ over A′. We
define a structure M over A by defining Ki = Kσ(i). Again, an easy induction shows that for
every formula ψ with sets chosen from Gϕ, (M ′, s) |= ψ if and only if (M, s) |= ψσ. Once again,
the only point to notice is that EG (and so also CG) has the same meaning in M ′ (in terms
of reachability) as Eσ(G) (Cσ(G)) in M by the definition of σ(G) and the relations Kj . Thus
(M, s) |= ϕ as required.

Corollary 3.6: Given an oracle that decides, for each Boolean combination G of elements in
GA, whether G = ∅, there is a constant c > 0 (independent of A) and an algorithm that, given
as input a formula ϕ ∈ LCG , decides if ϕ ∈ LCG is satisfiable in MA and runs in time 2c2

|ϕ|
.

Proof: Clearly, to check if ϕ is satisfiable, it suffices to check if ϕσ is satisfiable. In [HM92],
there is an exponential time algorithm for checking satisfiability. However, this algorithm
presumes that the set of agents is fixed. A close look at the algorithm actually shows that it
runs in time 2cm|ϕ|, where m is the number of agents. In our translation, the set of agents is
exponential in |ϕ|, giving us a double-exponential time algorithm.

Corollary 3.7: If G ∪ {∅} is closed under intersection and complementation, then KC
G is a

sound and complete axiomatization for the language LCG with respect to MA.

Proof: Soundness is straightforward, so we focus on completeness. Suppose that ϕ is valid.
By Proposition 3.5, so is ϕσ. Since A′ is finite, KC

G′ is a complete axiomatization for LCG′ with
respect to MA′ . Thus, KC

G′ ` ϕσ. We can translate this proof step by step to a proof of ϕ
in KC

G . We simply replace every formula ψ that appears in the proof of ϕσ by ψτ , where ψτ

is obtained by replacing each occurrence of KA in ψ by EA unless A = {i} is a singleton, in
which case we replace KA by Ki, and replacing each occurrence of EG, and CG in ψ by E∪G,
and C∪G, respectively. Since we have assumed G ∪ {∅} is closed under complementation and
intersection, G is closed under union, and hence ψτ is a formula in LCG .
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It is easy to check that the translated proof is still a proof over the language LCG : Tautologies
become tautologies as (ϕ ∨ ψ)τ = ϕτ ∨ ψτ and similarly for negations. Instances of MP in the
proof of ϕσ become instances of MP in the proof of ϕ because (ϕ→ ψ)τ = ϕτ → ψτ . Instances
of KGen in the proof of ϕσ become instances of EGen or KGen in the proof of ϕ; similarly,
instances of K1 are converted to instances of K1 or E1. It is easy to see that instances of E1,
E2, E3, EGen, C1, and RC1 are converted to legitimate instances of the same axiom.

While Corollaries 3.6 and 3.7 are close to our desired theorems, they also make clear the
difficulties we need to overcome in order to prove Theorems 3.1 and 3.4. Specifically,

• we need to cut the complexity down from double-exponential to single exponential;

• we need to prove completeness without assuming that G ∪ {∅} is closed under comple-
mentation and intersection;

• we want to use an oracle that tests only whether a set of the form G0 − (G1 ∪ . . . ∪Gk)
is nonempty, rather than one that applies to arbitrary Boolean combinations;

• we want to extend these results to the case that the Ki relations satisfy properties like
transitivity.

With regard to the last point, while in general it is relatively straightforward to extend com-
pleteness and complexity results to deal with relations that have properties like transitivity, it is
not so straightforward in this case. For example, even if M ∈Mrt

A, the relations in the structure
Mσ constructed in Proposition 3.5 are not necessarily transitive. As shown in Proposition 3.3,
we need a different oracle to deal with transitivity.

4 Proving the Main Results

In this section, we prove Theorems 3.1 and 3.4. The structure of the proof is similar to that
of Corollaries 3.6 and 3.7; we describe step by step the modifications required to deal with
the problems raised in the previous section. It is convenient to split the proof into four cases,
depending on the class of structures considered.

4.1 The Proof for MA and Mr
A

In Proposition 3.5 we showed that we could translate a formula ϕ to a formula ϕσ such that ϕ
was satisfiable in MA iff ϕσ was satisfiable in MA′ , where A′ consisted of the atoms over Gϕ.
Our goal is to maintain the translation idea, but use as our target set of agents a set whose
elements we can determine with the oracles at our disposal (for testing the nonemptiness of
certain set differences). As a first step, we try to abstract the key ingredients of Proposition 3.5.
Suppose that we have a set A′ of agents and a partial map σ : A → A′. Again, we can extend
σ to a map from 2A to 2A

′
: σ(G) = {σ(i) : i ∈ G}. Given a formula ϕ, let ϕσ be the formula

that results by replacing all the occurrences of G in ϕ by σ(G). In Proposition 3.5, A′ is the set
of atoms over Gϕ and σ(i) is the unique atom containing i. We were able to show that, for that
choice of A′ and σ, the formulas ϕ and ϕσ were equisatisfiable. What does it take to obtain
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such a result in general? The following result shows that we need to be able to find a mapping
τ : A′ → 2A − {∅} with one key property.

Proposition 4.1: Given a formula ϕ and a partial map σ : A → A′ such that σ(G) 6= ∅ for
all G ∈ Gϕ, suppose that there is a mapping τ : A′ → 2A − {∅} such that for all G ∈ Gϕ, we
have ∪{τ(A) : A ∈ σ(G)} = G. Then ϕ is satisfiable in MA (resp., Mr

A) iff ϕσ is satisfiable
in MA′ (resp., Mr

A′).

Proof: Given ϕ and σ, suppose there exists a mapping τ with the property above. We show
that ϕ and ϕσ are equisatisfiable.

First suppose that (M, s) |= ϕ, where M ∈ MA. We convert M = (S, π, {Ki : i ∈ A}) into
a structure M ′ = (S, π, {KA : A ∈ A′}) by defining KA = ∪{Ki : i ∈ τ(A)}. Notice that the
assumed property of τ implies that for all G ∈ Gϕ, we have

∪A∈σ(G)KA = ∪A∈σ(G) ∪i∈τ(A) Ki = ∪i∈GKi.

An easy induction on the structure of ψ now shows that (M, t) |= ψ if and only if (M ′, t) |= ψσ

for all t ∈ S and all formulas ψ ∈ LCGϕ
. Also note that if M ∈ Mr

A, then M ′ ∈ Mr
A′ (since the

union of reflexive relations is reflexive).
For the opposite direction, suppose (M ′, s) |= ϕσ for some M ′ = (S, π, {KA : A ∈ A′}) ∈

MA′ . Define M = (S, π, {Ki : i ∈ A}) ∈ MA by setting Ki = Kσ(i) if σ(i) is defined and the
empty relation otherwise. Note that for all G ∈ Gϕ we have

∪i∈GKi = ∪i∈GKσ(i) = ∪A∈σ(G)KA.

Again, an easy induction on the structure of ψ shows that (M, t) |= ψ if and only if (M ′, t) |= ψσ

for all t ∈ S and all formulas ψ ∈ LCGϕ
.

If M ′ ∈ Mr
A, we modify the construction slightly by taking Ki = {(t, t) : t ∈ S} if σ(i) is

undefined. Since σ(G) 6= ∅ for G ∈ Gϕ, it is easy to check that we still have ∪i∈GKi = ∪i∈GKσ(i),
so the modified construction works for the reflexive case.

For the mapping σ of Proposition 3.5 we can take τ to be the identity, but this requires an
oracle for nonemptiness of atoms. We now show how to choose A′ and define maps σ and τ in
a way that requires only information about whether sets of the form G0 − (G1 ∪ . . . ∪Gk) are
empty.

Definition 4.2: Given a set G of sets of agents and G ∈ G, a set H ⊆ G is a G-maximal subset
of G if G − ∪H 6= ∅ and G − ((∪H) ∪ G′) = ∅ for all G′ ∈ G − H. Let R(G) = {(G,H) : G ∈
G,H is a G-maximal subset of G}.

Note that we can check whether H is a G-maximal subset of G by doing at most |G| tests of
the form (G− ∪H′) = ∅, and we can find all pairs (G,H) in R(Gϕ) by doing at most |G|2|G|−1

such tests.
The following lemma gives some technical properties of R(G) that will be used frequently.

Lemma 4.3: Suppose that (G,H) ∈ R(G) for some set G of subsets of A.
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(a) G− ∪H is an atom over G and, in fact, G− ∪H = ∩(G −H) ∩ (∩H∈HH).

(b) If (G′,H) ∈ R(G), then (G−
⋃
H) = (G′ −

⋃
H).

(c) If (G′,H′) ∈ R(G) and H 6= H′, then (G−
⋃
H) ∩ (G′ −

⋃
H′) = ∅.

Proof: For part (a), first observe that since H is a G-maximal subset of G, for H /∈ H, we have
G− ∪(H ∪ {H}) = ∅; i.e., G− ∪H ⊆ H. Thus, if H /∈ H, we have G− ∪H = (G ∩H)− ∪H.
Thus, G− ∪H = G ∩ (∩H∈HH) = ∩(G −H) ∩ (∩H∈HH), as desired. By definition, G− ∪H is
an atom over G.

Part (b) is immediate from part (a), since it is clear that G− ∪H is independent of G and
depends only on H.

For part (c), suppose that H 6= H′. Without loss generality, there is some H ∈ H − H′.
It follows immediately from part (a) that G − ∪H and G′ − ∪H′ are distinct atoms (hence
disjoint), since G− ∪H ⊆ H and G′ − ∪H′ ⊆ H.

If (G,H) ∈ R(G), let AGH denote the atom associated with H defined in Lemma 4.3(a). It is
independent of G by Lemma 4.3(b). We omit G, writing simply AH, when it is clear from the
context which set G we have in mind.

We now show how to define a translation satisfying the hypotheses of Proposition 4.1 using
the elements of R(Gϕ) identified according to the second coordinate alone.

Given a formula ϕ, let Aϕ = {H : ∃G[(G,H) ∈ R(Gϕ)]}. Define σ1 : A → Aϕ by setting
σ1(i) = H if i ∈ AH (as defined after Lemma 4.3) and undefined otherwise. As before, we
extend σ1 to 2A by defining σ1(G) = {σ1(i) : i ∈ G}.

Lemma 4.4: Define τ : Aϕ → 2A by setting τ(H) = ∩(Gϕ −H). Then

(a) σ1(G) = {H ∈ Aϕ : ∃G′ ∈ Gϕ((G′,H) ∈ R(Gϕ)), G /∈ H},

(b) σ1(G) 6= ∅ for G ∈ Gϕ,

(c) τ(H) 6= ∅ for H ∈ Aϕ,

(d) ∪{τ(H) : H ∈ σ1(G)} = G.

Proof: For part (a), first suppose that G /∈ H and (G′,H) ∈ R(Gϕ) for some G′ ∈ Gϕ. Then
by Lemma 4.3(a), it follows that AH ⊆ G. Since AH 6= ∅, there is some i ∈ AH. Since i ∈ G
and σ1(i) = H, it follows that H ∈ σ1(G). For the opposite inclusion, suppose that H ∈ σ1(G).
Then H = σ1(i) for some i ∈ G ∩ AH. Since G ∩ AH 6= ∅, it follows from the definition of AH
that G /∈ H.

For part (b), given G, note that there must be some G-maximal subset H. Thus, (G,H) ∈
R(Gϕ). Since G− ∪H 6= ∅, we must have G /∈ H. By part (a), H ∈ σ1(G), so σ1(G) 6= ∅.

For part (c), suppose that H ∈ Aϕ. Then there exists some G such that (G,H) ∈ R(Gϕ),
and hence G − ∪H 6= ∅. It suffices to show that ∩(Gϕ − H) ⊇ G − ∪H. This follows from
Lemma 4.3(a).
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For part (d), we first show that ∪{τ(H) : H ∈ σ1(G)} ⊆ G. Note that if H ∈ σ1(G), then
by part (a), G ∈ Gϕ−H. Thus, τ(H) = ∩(Gϕ−H) ⊆ G. For the opposite containment, suppose
that i ∈ G. Let Hi = {G′ ∈ Gϕ : i /∈ G′}. Since i ∈ G − ∪Hi, there must be a G-maximal
subset H of Gϕ containing Hi. By part (a), we have H ∈ σ1(G). Moreover, since Hi ⊆ H, for
all H ′ ∈ Gϕ−H, we have i ∈ H ′. Thus, i ∈ ∩(Gϕ−H). It follows that i ∈ ∪H∈σ1(G) ∩ (Gϕ−H),
as desired.

Since |Aϕ| ≤ 2|ϕ|, we have now reduced satisfiability with infinitely many agents to satisfi-
ability with finitely many agents, at least for MA and Mr

A, using only tests that we know we
need to be able to perform in any case. We next must deal with the problem we observed in
the proof of Corollary 3.6, that is, there may be exponentially many agents in the subgroups
mentioned in ϕσ1 . This is done in the following result. In this result, we assume that the
complexity of checking whether i ∈ G is no worse than linear in |A|. While we do not assume
this in general, it is true for the A′ and sets G that arise in the translation of Proposition 4.1,
which suffices for our application of the result to the proof of Theorem 3.4.

Theorem 4.5: If A is finite and there is an algorithm for deciding if i ∈ G for G ∈ G that
runs in time linear in |A|, then there is a constant c > 0 (independent of A) and an algorithm
that, given as input a formula ϕ ∈ LCG , decides if ϕ is satisfiable in MA (resp., Mr

A) and runs
in time O(|A|2c|ϕ|).

Proof: We first present an algorithm that decides if ϕ is satisfiable in MA; we then show
how to modify it to deal with Mr

A. The algorithm is just a slight modification of standard
decision procedures [FHMV95, HM92]. (Far more serious modifications are needed to prove the
analogous result for the Mrt

A, Mrst
A , and Melt

A ; see Theorems 4.9, 4.16, and 4.20.)
Let Sub(ϕ) be the set of subformulas of ϕ together with EG(ψ∧CGψ) and ψ∧CGψ for each

subformula CGψ of ϕ. Sub+(ϕ) consists of the formulas in Sub(ϕ) and their negations. An easy
induction on |ϕ| shows that |Sub(ϕ)| ≤ |ϕ|, so |Sub+(ϕ)| ≤ 2|ϕ|. (Here we need to use the fact
that we take the length of CG to be 3.)

Let S1 consist of all subsets s of Sub+(ϕ) that are maximally consistent in that (a) for
each formula ψ ∈ Sub(ϕ), either ψ ∈ s or ¬ψ ∈ s, (b) they are propositionally consistent (for
example, we cannot have all of ψ ∧ ψ′, ¬ψ, and ¬ψ′ in s), and (c) they contain EG(ψ ∧ CGψ)
iff they contain CGψ. Note that there are at most 2|ϕ| sets in S1.

For s ∈ S1 and G ∈ GA, we define s/EG = {ψ : EGψ ∈ s} (again, we identify Ki with
E{i}). Define s/Ki = ∪i∈G(s/EG). Define a binary relation Ki on S1 for each i ∈ A by taking
(s, t) ∈ Ki iff s/Ki ⊆ t. We now define a sequence Sj of subsets of S1. Suppose that we have
defined S1, . . . , Sj . Sj+1 consists of all states s in Sj that seem consistent, in that the following
two conditions hold:

1. If ¬EGψ ∈ s, then there is some t ∈ Sj such that (s, t) ∈ ∪i∈GKi and ¬ψ ∈ t.

2. If ¬CGψ ∈ s, then there is some t ∈ Sj such that t is G-reachable from s in Sj and ¬ψ ∈ t.

If Sj 6= Sj+1 then we continue the construction. Otherwise the construction terminates; in this
case, the algorithm returns “ϕ is satisfiable” if ϕ ∈ s for some state s ∈ Sj+1 and returns “ϕ is
unsatisfiable” otherwise.
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Since Sj ⊇ Sj+1, S1 has at most 2|ϕ| elements, and there are |A| relations, it is easy to see
that the whole procedure can be carried out in time O(|A|2c|ϕ|) for some c > 0.

It remains to show that the algorithm is correct. First suppose that ϕ is satisfiable. In
that case, (M, s0) |= ϕ for some structure M = (S, π, {K′i : i ∈ A}) ∈ MA. We can associate
with each state s ∈ S the state s∗ in S1 consisting of all the formulas ψ ∈ Sub(ϕ) such that
(M, s) |= ψ. It is easy to see that if (s, t) ∈ K′i then (s∗, t∗) ∈ Ki. A straightforward induction
shows that the states s∗ for s ∈ S always seem consistent, and thus are in Sj for all j. Moreover,
ϕ ∈ s∗0. Thus, the algorithm declares that ϕ is satisfiable, as desired.

Conversely, suppose that the algorithm declares that ϕ is satisfiable. We construct a struc-
ture M = (S, π, {K′i : i ∈ A}) over A and Φ in which ϕ is satisfied as follows. Let j be the stage
at which the algorithm terminates. Let S = Sj . Define π so that π(s)(p) = true iff p ∈ s, for
s ∈ S and p ∈ Φ. For each i ∈ A, we take K′i to be the restriction of Ki to Sj . A straightforward
induction on the structure of formulas shows that for all formulas ψ ∈ Sub(ϕ) and states s ∈ S,
we have (M, s) |= ψ iff ψ ∈ s. (The cases for EGψ and CGψ use the appropriate clauses of the
definition of seeming inconsistent and the choice of j.) Since ϕ ∈ s for some s∗ ∈ S, it follows
that (M, s∗) |= ϕ, so ϕ is satisfiable.

To deal with Mr
A, the only change necessary is that in going from S1 to S2 in the con-

struction, we also eliminate s ∈ S1 if (s, s) /∈ Ki for some i ∈ A. This guarantees that the Ki
relations are reflexive. The remainder of the proof goes through unchanged.

Proof of Theorem 3.4 for MA and Mr
A: The deterministic exponential time lower bound

in Theorem 3.4 follows from the lower bound in the case where A is finite, which is proved in
[HM92, Theorem 6.19] using techniques developed by Fischer and Ladner [FL79] for PDL. The
sets G that arise in the lower bound proof have cardinality 2, so oracles are of no help here.

For the upper bound, suppose that we are given a formula ϕ. We first compute the set
R(Gϕ). This can be done with at most |ϕ|2|ϕ| calls to oracle O0, since |Gϕ| ≤ |ϕ| and we need
only check, for each G ∈ Gϕ and H ⊆ Gϕ, whether G−H = ∅.

Consider the mapping σ1 of Lemma 4.4. By part (a) of Lemma 4.4, we can compute the
formula ϕσ1 using ≤ |ϕ|2|ϕ| calls to oracle O0. By Proposition 4.1 and Lemma 4.4, the formulas
ϕ and ϕσ1 are equisatisfiable. By Theorem 4.5, we can decide if ϕσ1 is satisfiable in time O(2c|ϕ|)
for some c > 0 (since |ϕσ1 | = |ϕ| and the set Aϕ of agents that appear in ϕσ1 has size at most
2|ϕ|).

We now want to prove Theorem 3.1 in the case of MA and Mr
A. The idea is the same

as that of Corollary 3.7. If ϕ is valid, then so is ϕσ1 . We can then appeal to completeness
in the case of finitely many agents to get a proof of ϕσ1 that we can then “pull back” to a
proof of ϕ. There is only one difficulty that we encounter when trying to put this idea into
practice. Exactly how do we pull back the proof? For example, suppose that the proof of ϕσ1

involves a formula ψ with an operator KH. In general, there will be many agents i ∈ A such
that σ1(i) = H. One option is to replace KH by Eσ−1

1 (H), that is, replace H by all i such that
σ1(i) = H. (This is what was done in the proof of Corollary 3.7.) The problem with this is
that there is no guarantee that the resulting set is in G. Alternatively, we could replace KH by
Ki for some i such that σ1(i) = H. But if so, which one?
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We actually take the latter course here. We solve the problem of which i to choose by showing
that there is a proof of ϕσ1 in which the only modal operators that arise in any formula used
in the proof are modal operators that appear in ϕσ1 (Lemma 4.7). For these operators, there
is a canonical way to do the replacement (Lemma 4.6). While it may seem almost trivial that
the only operators that should be needed in the proof of ϕσ1 are ones that already appear in
the formula, this is not the case for the standard completeness proof [FHMV95, HM92], since
in the proof of the validity of a formula of the form EGψ, the modal operators Ki are used for
i ∈ G, although these operators may not appear in ψ. It is important that we use the axioms
E1 and E2 in doing the proof, rather than the axiom E; otherwise the result would not hold.
Indeed, the result does not quite hold in the case of TC

G ; we need to augment it with E5.

Lemma 4.6: The mapping σ1 (when viewed as a map with domain 2A) is injective on Gϕ.

Proof: Suppose that G 6= G′. Without loss of generality, suppose that i ∈ G−G′. Then there
is a G-maximal set H that includes G′. By Lemma 4.4(a), we have H ∈ σ1(G). Since G′ ∈ H,
it follows from Lemma 4.4(a) that H /∈ σ1(G′). Thus, σ1(G) 6= σ1(G′).

For the next lemma, we write AX `ϕ ψ if there is a proof of ϕ in AX that involves only
modal operators that appear in ϕ. Let (TC

G )+ consist of TC
G augmented with the axiom E5.

Although E5 follows from E1 and K2, using E5 allows us to be able to write proofs of ϕ that
use only the modal operators in ϕ.

Lemma 4.7: If A is finite and ϕ ∈ LCG is valid with respect toMA (resp.,Mr
A), then KC

G `ϕ ϕ
(resp., (TC

G )+ `ϕ ϕ).

Proof: We first consider the case of MA. Since ϕ is valid, ¬ϕ is not satisfiable. That means,
when we apply the construction in the proof of Theorem 4.5 to ¬ϕ, all the sets containing ¬ϕ
are eliminated. For each state s ∈ S1, let ϕs be the conjunction of all the formulas in s.

We prove the result by showing, by induction on j, that

if a state s ∈ Sj does not seem consistent, then ϕs is KC
G -inconsistent, i.e., KC

G `ϕ ¬ϕs. (1)

To see that (1) suffices to prove the lemma, note that standard propositional reasoning (i.e.,
using Prop and MP) shows that, for any formula ψ ∈ Sub(¬ϕ),

KC
G `ϕ ψ ⇔ ∨{s∈S1:ψ∈s}ϕs.

(Here we need the observation that by EGen, E3, C1 and RC1, nothing is lost by our assumption
that CGψ ∈ s iff EG(ψ ∧ CGψ) ∈ s.) Negating both sides of ⇔, we get

KC
G `ϕ ¬ψ ⇔ ∧{s∈S1:ψ∈s}¬ϕs. (2)

Thus, if KC
G `ϕ ¬ϕs for each set s containing ¬ϕ, it follows by standard propositional reasoning

that KC
G `ϕ ϕ, as desired.

While this general approach to proving completeness is quite standard, we must take extra
care because of our insistence on restricting to symbols that appear in ϕ, particularly when
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dealing with the case when a state seems inconsistent due to a formula of the form ¬EGψ or
¬CGψ not being satisfied. This is where the axioms E1 and E2 come into play.

To prove (1), we first need a number of basic facts of epistemic logic and some preliminary
observations. The basic facts (which are easily proved using Prop, E3 (or K1 when G = {i}),
MP, and EGen (or KGen); see [FHMV95, p. 51, 94]) are that if ψ and ψ′ involve only modal
operators in ϕ, then

KC
G `ϕ EG(ψ ∧ ψ′)⇔ EGψ ∧EGψ′ (3)

and
if KC

G `ϕ ψ ⇒ ψ′ then KC
G `ϕ EGψ ⇒ EGψ

′. (4)

Assume by induction that for all s ∈ S1 − Sj , we have KC
G `ϕ ¬ϕs. We now show that if

s ∈ Sj does not seem consistent then KC
G `ϕ ¬ϕs, by considering in turn each of the two ways

s may seem inconsistent.
First suppose that s does not seem consistent because ¬EGψ ∈ s and there is no state t ∈ Sj

such that (s, t) ∈ ∪i∈GKi and ¬ψ ∈ t. We show that

KC
G `ϕ ϕs ⇒ EGψ. (5)

Since ¬EGψ is a conjunct of ϕs (since ¬EGψ ∈ s, by assumption), (5) shows that ϕs is KC
G -

inconsistent, as desired.
To prove (5), we first show that if G ∈ Gϕ, then

if (s, t) /∈ ∪i∈GKi, then KC
G `ϕ ϕs ⇒ EG¬ϕt. (6)

To prove (6), suppose that (s, t) /∈ ∪i∈GKi. For each i ∈ G there must be some Gi,t ∈ Gϕ
and formula EGi,tθ such that i ∈ Gi,t, EGi,tθ ∈ s and ¬θ ∈ t. Since EGi,tθ ∈ s and ¬θ ∈ t it is
immediate that KC

G `ϕ ϕs ⇒ EGi,tθ and KC
G `ϕ θ ⇒ ¬ϕt. Now applying (4) and propositional

reasoning, we get that KC
G `ϕ ϕs ⇒ EGi,t¬ϕt. Since we can find such a Gi,t for each i ∈ G, we

have that G ⊆ ∪i∈GGi,t. Since G is finite, by E2, we have KC
G `ϕ ϕs ⇒ EG¬ϕt, as desired.

Returning to the proof of (5), note that (since EGψ ∈ s) if ¬ψ ∈ t then (s, t) /∈ ∪i∈GKi.
Thus, from (6) and (3), we have

KC
G `ϕ ϕs ⇒ EG(∧{t∈Sj :¬ψ∈t}¬ϕt). (7)

By the induction hypothesis, for all states in t ∈ S1−Sj , we have that KC
G `ϕ ¬ϕt. Thus, using

(2), we have
KC
G `ϕ ψ ⇔ ∧{t∈Sj :¬ψ∈t}¬ϕt. (8)

(5) now follows from (4), (7), and (8).
Finally, we must show that if ¬CGψ ∈ s and there is no state t ∈ Sj G-reachable from s

in Sj such that ¬ψ ∈ t, then KC
G `ϕ ϕs ⇒ CGψ, again showing that ϕs is KC

G -inconsistent.
This follows by a relatively straightforward modification of the completeness proof given in
[FHMV95, HM92], so we just sketch the details here. Let T1 = {t ∈ Sj : ¬CGψ ∈ t and there is
no state t′ ∈ Sj G-reachable from t in Sj such that ¬ψ ∈ t′} and T2 = {t ∈ Sj : CGψ ∈ t}. Let
T ′i consist of those states in Ti that also contain ψ, i = 1, 2. Let T = T1∪T2 and let T ′ = T ′1∪T ′2.
We claim that there is no pair (t, t′) ∈ ∪i∈GKi such that t ∈ T and t′ ∈ Sj−T ′. It is immediate
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that if t ∈ T2 then (since ψ ∧ CGψ ∈ t/EG ⊆ t′) t′ ∈ T ′2. If t ∈ T1 and t′ ∈ Sj − T ′, then either
¬ψ ∈ t′ or ¬CGψ ∈ t′ and there is a state t′′ G-reachable from t′ in Sj such that ¬ψ ∈ t′′. This
means that either t′ or t′′ is a state G-reachable from t in Sj containing ¬ψ. This contradicts
the fact that t ∈ T1.

It now follows from (6) that for all t ∈ T and t′ ∈ Sj − T ′, we have

KC
G `ϕ ϕt ⇒ EG¬ϕt′ . (9)

Let ϕT = ∨t∈Tϕt and let ϕT ′ = ∨t′∈T ′ϕt′ . By propositional reasoning, we have KC
G `ϕ ϕT ′ ⇔

(ϕT ∧ψ). It easily follows from (3), (4), and (9) that KC
G `ϕ ϕt ⇒ EGϕT ′ . Since this is true for

all t ∈ T , we have
KC
G `ϕ ϕT ⇒ EG(ϕT ∧ ψ). (10)

By applying RC1 and the fact that s ∈ T , we have KC
G `ϕ ϕs ⇒ CGψ. Since ¬CGψ ∈ s, it

follows that ϕs is KC
G -inconsistent.

This completes the completeness proof in the case ofMA. To deal withMr
A, we must just

show that if s is eliminated because (s, s) /∈ Ki for some i ∈ A, then TC
G `ϕ ¬ϕs; all other cases

are identical. But if (s, s) /∈ Ki, then there must be some G and ψ such that i ∈ G, EGψ ∈ s,
and ¬ψ ∈ s. Since (TC

G )+ includes the axiom EGψ ⇒ ψ, we have that (TC
G )+ `ϕ ¬ϕs, as

desired.

Proof of Theorem 3.1 for MA and Mr
A: We have already observed that the axioms are

sound. For completeness, suppose that ϕ is valid with respect to MA. By Proposition 4.1, so
is ϕσ1 . By Lemma 4.7, there is a proof of ϕσ1 in KC

Gϕ
that mentions only the modal operators

in ϕσ1 . Given a formula ψ in which the only modal operators that appear are modal operators
that appear in ϕσ1 (and thus have the form Eσ1(G), Cσ1(G), and Kσ1(i), for sets G and {i} in Gϕ)
let ψτ1 be the unique formula all of whose modal operators appear in ϕ such that (ψτ1)σ1 = ψ.
Lemma 4.6 assures us that ψτ1 is well defined. We can pull the proof of ϕσ1 back to a proof of
ϕ, by replacing each occurrence of a formula ψ in the proof by ψτ1 .

The argument for Mr
A is identical, except that the proof uses instances of the axiom E5.

These can be eliminated by using E1 and K2, as we observed earlier (although now the proof
of ϕ may use modal operators Ki that do not appear in ϕ).

4.2 Dealing with Mrt
A

Proposition 4.1 as it stands does not hold for Mrt
A. There is no guarantee that the translated

formula is satisfiable inMrt
A, even if ϕ is. Indeed, suppose that G ∪{∅} is closed under intersec-

tion and complementation, so that we can use the function σ of Proposition 3.5. Suppose that
ϕ is the formula EGp ∧ ¬EGEGp, where |G| ≥ 2. The formula ϕσ looks syntactically identical,
except that σ(G) is a single agent in A′. We cannot make the KG relation transitive and still
satisfy ϕσ. More generally, to deal withMrt

A, we must be careful in how we deal with singleton
sets.

As a first step, we define mixed structures. Since we also need these to deal with Mrst
A

and Melt
A , we define three types of mixed structures at once. We say that a binary relation K
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is secondarily reflexive [Che80] if (s, t) ∈ K implies (t, t) ∈ K. Let Mrt
A1+A2

(resp., Mrst
A1+A2

;
Melt
A1+A2

) consist of structures M = (S, π, {Ki : i ∈ A1∪A2}) where the relations Ki for i ∈ A1

are reflexive and transitive (resp., reflexive, symmetric and transitive; Euclidean, serial and
transitive) and the relation Ki for i ∈ A2 are reflexive (resp., reflexive and symmetric; serial
and secondarily reflexive). See Table 2.

Mixed Structures Ki for i ∈ A1 Ki for i ∈ A2

Mrt
A1+A2

reflexive, transitive reflexive
Mrst
A1+A2

reflexive, symmetric, transitive reflexive, symmetric
Melt
A1+A2

Euclidean, serial, transitive serial, secondarily reflexive

Table 2: Mixed Structures

We can now define our translation in the case of Mrt
A. Although we can in fact get an

analogue to Proposition 4.1 for Mrt
A, it turns out to be easier to provide a translation that

combines Proposition 4.1 and Lemma 4.4, rather than separating them. As suggested by
Proposition 3.3, the translation involves R(G1

ϕ), rather than R(Gϕ). Given a formula ϕ, let
Aϕ,rt = {H : ∃G[(G,H) ∈ R(G1

ϕ)]}. Let A1 = {H : ∃G[(G,H) ∈ R(G1
ϕ), |G − ∪H| = 1]};

let A2 = Aϕ,rt − A1. Define σ2 : A → Aϕ,rt as before: σ2(i) = H if i ∈ AH and σ2(i) is
undefined otherwise. Given H ∈ Aϕ,rt, we define τ2(H) = ∩(G1

ϕ − H). Since it is easy to see
that R(G1

ϕ) = R(Gψ) for some appropriate ψ, it is immediate that Lemma 4.4 applies to σ2 and
τ2 with Aϕ,rt in place of Aϕ and G1

ϕ in place of Gϕ.

Proposition 4.8: ϕ is satisfiable in Mrt
A iff ϕσ2 is satisfiable in Mrt

A1+A2
.

Proof: First suppose that (M, s) |= ϕ, where M ∈ Mrt
A. We convert M = (S, π, {Ki : i ∈ A})

into a structure M ′ = (S, π, {KH : H ∈ Aϕ,rt}) as before, by defining KH = ∪{Ki : i ∈ τ2(H)}.
Since Lemma 4.4 applies, the proof that (M ′, s) |= ϕ is identical to that in Proposition 4.1.
We must only show that M ′ ∈Mrt

A1+A2
. Since the union of reflexive relations is reflexive, it is

immediate that KH is reflexive for H ∈ A2. If H ∈ A1, then |AH| = 1. Suppose that AH = {i}.
We claim that τ2(H) = {i}. By construction, {i} ∈ G1

ϕ. We cannot have {i} ∈ H, since i /∈ ∪H.
Thus {i} ∈ G1

ϕ −H, so τ2(H) = ∩(G1
ϕ −H) ⊆ {i}. Since τ2(H) 6= ∅ by Lemma 4.4(c), we must

have τ2(H) = {i}. Thus, KH = Ki, so KH is reflexive and transitive.
For the opposite direction we need to work a little harder than before, because we must

ensure that all the Ki relations are reflexive and transitive for all i ∈ A. Suppose (M, s) |= ϕσ2

for some M = (S, π, {KH : H ∈ Aϕ,rt}) ∈ Mrt
A1+A2

. Let S0 and S1 be two disjoint copies of
S. For a state s ∈ S, let si be the copy of s in Si, i = 0, 1. Let M ′ = (S′, π′, {Ki : i ∈ A}) be
defined as follows:

• S′ = S0 ∪ S1.

• π′(si) = π(s) for i = 0, 1.

• If σ2(i) ∈ A1, define Ki = {(si, tj) : (s, t) ∈ Kσ2(i), i, j ∈ {0, 1}}. Ki is clearly reflexive
and transitive in this case, since Kσ2(i) is.
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• If σ2(i) = H ∈ A2, note that |AH| ≥ 2. It is immediate from the definition that σ2(i) = H
for all i ∈ AH. Pick some iH ∈ AH. If i = iH, then define Ki = {(s0, t1) : (s, t) ∈ KH} ∪
{(sj , sj) : j ∈ {0, 1}}; if i 6= iH, define Ki = {(s1, t0) : (s, t) ∈ KH} ∪ {(sj , sj) : j ∈ {0, 1}}.
Clearly Ki is reflexive and transitive.

This construction guarantees that

(s, t) ∈ KH iff (s0, t1), (s1, t0) ∈ ∪{i:σ2(i)=H}Ki (11)

and
(s1, t0) ∈ ∪{i:σ2(i)=H}Ki iff (s0, t1) ∈ ∪{i:σ2(i)=H}Ki. (12)

A straightforward argument by induction on structure now shows that if ψ ∈ LCG1
ϕ
, then the

following are equivalent for all t ∈ S:

• (M, t) |= ψσ2 ,

• both (M ′, t0) |= ψ and (M ′, t1) |= ψ,

• (M ′, t0) |= ψ or (M ′, t1) |= ψ.

Of course, the interesting cases are if ψ is of the form Kiψ
′, EGψ′, or CGψ′. These follow

immediately from observations (11) and (12).

The next step is to get an analogue of Theorem 4.5 for Mrt
A1+A2

. The basic idea of the
proof is the same as that of Theorem 4.5. However, in our construction, we need to make
the Ki relations transitive. To see the difficulty, suppose that ϕ is K1p ∧ EGq, where G is
a set of agents containing 1. Recall that in Theorem 4.5, states are consistent subsets of
Sub+(ϕ). Let s, t, and u be states such that s = {K1p,EGq, p, q}, t = {K1p,¬EGq, p, q}, and
u = {K1p,¬EGq, p,¬q}. With our previous construction, we would have both (s, t) ∈ K1 and
(t, u) ∈ K1. By transitivity, we should also have (s, u) ∈ K1. But since EGq ∈ s and ¬q ∈ u, we
have (s, u) /∈ K1. Nevertheless, each of s, t, and u individually seems consistent. Which state
should we eliminate in order to preserve transitivity?

To deal with this problem, we need to put more information (i.e., more formulas) into each
state. Intuitively, if (s, t) ∈ Ki, then we should have Kiq ∈ t, because if EGq ∈ s, then Kiq
should also be in s, as should KiKiq by K4. It would then follow that Kiq should be in t. This,
in turn, would guarantee that (t, u) /∈ Ki, since q /∈ u.

What we would like to do now is to augment Sub(ϕ) by including all formulas Kiψ such
that EGψ ∈ Sub(ϕ) and i ∈ G ∩ A1. (We restrict to A1 since these are the only relations that
are required to be transitive.) While this approach can be used to force the Ki relations to
be transitive, the resulting set of formulas can have size O(|A1||ϕ|), which means the resulting
state space (the analogue of S1) could then have size 2|A1||ϕ|. This would not give us the desired
complexity bounds. Thus, we must proceed a little more cautiously.

Theorem 4.9: If A = A1 ∪ A2 is finite and there is an algorithm for deciding if i ∈ G for
G ∈ G that runs in time linear in |A|, then there is a constant c > 0 (independent of A) and
an algorithm that, given a formula ϕ of LCG , decides if ϕ is satisfiable in Mrt

A1+A2
and runs in

time O(|A|2c|ϕ|).

22



Proof: We assume for ease of exposition thatA1 6= ∅; we leave the straightforward modification
in case A1 = ∅ to the reader. For each i ∈ A1, let ESubi(ϕ) be the smallest set containing
Sub(ϕ) such that if EGψ ∈ Sub(ϕ) and i ∈ G, then Kiψ ∈ ESubi(ϕ). It is easy to see that
|ESubi(ϕ)| ≤ 2|Sub(ϕ)|, since we add at most one formula for each formula in |Sub(ϕ)|. Let S1

i

consist of all the subsets of ESub+
i (ϕ) that are maximally consistent, and now let S1 = ∪i∈A1S

1
i .

Note that, as modified, |S1| ≤ 22|ϕ|. Thus, this modification keeps us safely within the desired
exponential time bounds.

We keep the definition of Ki unchanged for i ∈ A2 (i.e., (s, t) ∈ Ki iff s/Ki ⊆ t), but we
need to modify it for i ∈ A1. We redefine Ki for i ∈ A1 by defining (s, t) ∈ Ki iff s/Ki ∪ {Kiψ :
Kiψ ∈ s} ⊆ t ∩ (t/Ki ∪ {Kiψ : Kiψ ∈ t}). It is easy to check that this modification forces the
Ki relations to be transitive. We force all the Ki relations to be reflexive just as with Mr

A, by
eliminating s ∈ S1 if (s, s) /∈ Ki for some i ∈ A1 ∪ A2. The remainder of the construction—
eliminating the states that do not seem consistent—is unchanged.

We now need to show that the algorithm is correct. First suppose that ϕ is satisfiable in
Mrt
A1+A2

. In that case, (M, s0) |= ϕ for some structure M = (S, π, {K′i : i ∈ A1 ∪ A2}) ∈
Mrt
A1+A2

. We can associate with each state s ∈ S and i ∈ A1 the state s∗i in S1
i consisting

of all the formulas ψ ∈ ESubi(ϕ) such that (M, s) |= ψ. It is easy to see that if (s, t) ∈ K′i
then (s∗j , t

∗
i ) ∈ Ki for all j.3 Using this observation, a straightforward induction shows that the

states s∗i for s ∈ S always seem consistent, and thus are in Sj for all j and all i ∈ A1. Moreover,
ϕ ∈ (s0)∗i for all i ∈ A1. Thus, the algorithm will declare that ϕ is satisfiable, as desired.

Conversely, suppose that the algorithm declares that ϕ is satisfiable. We construct a struc-
ture M = (S, π, {K′i : i ∈ A1 ∪ A2}) ∈ Mrt

A1+A2
in which ϕ is satisfied just as Theorem 4.5.

Our modified construction guarantees that the K′i relations are all reflexive and the ones in A1

are transitive.

We are almost ready to prove Theorem 3.4 forMrt
A. However, we first we need to characterize

the complexity of translating from ϕ to ϕσ2 . In particular, we need a bound on the number of
elements in R(G1

ϕ) and the number of oracle calls required to compute them. To do this, we
first define two auxiliary sequences of sets Dmi (J ) and Emi (J ), i = 1, 2, 3, . . .. (We omit the
parenthetical J when it is clear from context.) Fix m. Let Dm0 = J and Dmi+1 = J ∪{G−∪H :
(G,H) ∈ R(Dmi ) and |G − ∪H| ≤ m}; let Emi = Dmi − Dm0 . Set Dm = ∪iDmi and Em = ∪iEmi .
Finally, denote R(Dm) by Rm(J ). It is easy to check, using Lemma 4.3, that Dm0 ⊆ Dm1 ⊆ . . .
and that Rm(J ) = ∪iR(Dmi ).

For example, if A = {1, 2, 3, . . .} and J = {{2n, . . . , 3n} : n = 1, 2, 3, . . .}, then it is not hard
to show that D1

1 = J ∪ {{6n+ 1} : n = 1, 2, 3} (since {6n+ 1} = {6n, 9n} − ∪{{4n, 6n}, {6n+
2, 9n + 3}}, and D1

k = D1
1 ∪ {{6n} : n = 1, 2, 3, . . .}. Similarly, D2

1 = D1
1 ∪ {{2n, 2n + 1} : n is

not a multiple of 3}, and D2
k = D1

2 ∪{{2n, 2n+ 1} : n is not a multiple of 3}, for k ≥ 1. Finally,
Dm
k = D2

k for m ≥ 2. Em1 = {{n} : n > 1} = Em.
The next lemma provides partial motivation for these definitions.

Lemma 4.10: Rm(J ) = R(Jm).
3Note that it is not necessarily the case that (s∗j , t∗j′) ∈ Ki for j′ 6= i. For example, suppose ϕ is the formula

EGp, i ∈ G ∩ A1, and M is such that (M, s) |= EGp ∧ p, (M, t) |= ¬EGp ∧ p, and (s, t) ∈ Ki. Then for i 6= j, j′

and j /∈ G, we have s∗j = {EGp, p} and t∗j′ = {p,¬EGp}. Since p ∈ s∗j /Ki − t∗j′/Ki, we have that (s∗j , t∗j′) /∈ Ki.
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Proof: An easy induction on i shows that Dmi (J ) ⊆ Jmi (as defined in Definition 3.2) for all
i, so Dm ⊆ Jm. We next show that every set in Jmi is the union of sets in Dm, by induction
on i. This is immediate if i = 0, since Jm0 = Dm0 = J . Suppose that the result holds for Jmi ;
we show it for Jmi+1. Suppose that H ∈ Jmi+1. If H ∈ J , then clearly H ∈ Dm. Thus, without
loss of generality, H ∈ Jmi+1 − J , which means that |H| ≤ m. Let H ′ be the union of all sets
in Dm contained in H. If H ′ = H, then we are done. Suppose by way of contradiction that
H −H ′ 6= ∅. We obtain a contradiction to the choice of H ′ by showing that H −H ′ contains a
set in Dm.

Since H ′ is finite, it can be written as a finite union of sets in Dm, say of H1 = H1, . . . , Hk.
Since H ∈ Jmi+1−J , H = G−∪H2 for some G ∈ J and H2 ⊆ Jmi . By the induction hypothesis,
there exists some H3 ⊆ Dm such that ∪H2 = ∪H3. There must exist some set H4 ⊇ H1 ∪ H3

such that (G,H4) ∈ R(Dm). But then H −H ′ ⊇ G − ∪H4 ∈ Dm, and we obtain the desired
contradiction.

It now easily follows that R(Jm) = R(Dm) = Rm(J ).

The following result will be used to help compute the elements of Rm(J ). Recall that J ∗
is the algebra generated by J .

Lemma 4.11: Let J be a set of subsets of A with |J | = n.

(a) If (G,H) ∈ R(D), where J ⊆ D ⊆ J ∗, then G− ∪H is an atom over J .

(b) J ⊆ Dmi ⊆ J ∗ for all i,m.

(c) |{H : ∃G ∈ Dm((G,H) ∈ Rm(J )}| ≤ 2n.

(d) If (G,H) ∈ R(Dmi ), then either G ∈ J and Emi ⊆ H or AH ∈ Emi and Emi − {AH} ⊆ H.
Moreover, if (G,H) ∈ Rm(J ), then either G ∈ J and Em ⊆ H or (G − ∪H) ∈ Em and
Em − {G− ∪H} ⊆ H.

(e) Dm = Dmn and Em = Emn .

Proof: For part (a), we know from Lemma 4.3(a) that if (G,H) ∈ R(D), then G − ∪H is an
atom over D. Since J ⊆ D ⊆ J ∗, it is immediate that it must in fact be an atom over J as
well.

Part (b) follows immediately from (a), since an easy induction on i shows that Emi ⊆ J ∗.
For part (c), by Lemma 4.3(a), it follows that AH is an atom over Dm. But since J ⊆

Dm = ∪iDmi ⊆ J ∗ by part (b), it follows that AH is actually at atom over J . Moreover if
(G′,H′) ∈ Rm(J ) and H 6= H′, then it follows from Lemma 4.3(c) that AH 6= AH′ . Since there
are at most 2n atoms over J , part (c) follows.

For part (d), if (G,H) ∈ R(Dm
i ) then, by Lemma 4.3(a), AH = G − ∪H is an atom over

Dmi and has the form ∩(Dmi −H)∩∩{H : H ∈ H}. By the arguments of part (c), AH is also an
atom over J . We say that the sets in Dmi −H appear positively in AH and the sets in H appear
negatively in AH. If one of the sets G′ ∈ Emi appears positively in AH then clearly AH ⊆ G′.
But since the elements of Emi are also atoms over J , it follows that in this case AH = G′ ∈ Emi
and, since H is G-maximal, Emi − {AH} ⊆ H. Otherwise, Emi ⊆ H as required; moreover, since
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Dmi = Emi ∪ J and G /∈ H, we must have G ∈ J . The argument for the second half of (d) is
identical.

Clearly the two claims in part (e) are equivalent. We prove the second. As observed in the
proof of (c), every set in Em is an atom A over J . It is easy to see that there are no atoms in
Em where all n sets in J appear negatively, since every set in Em is a nonempty subset of some
G ∈ J . (This can be proved by induction on i for each Emi .) We prove by induction on i that
if A ∈ Em and n− i sets appear negatively in A for i ≥ 1, then A ∈ Emi .

Clearly if i = 1, then A = G− (H1 ∪ . . . ∪Hn−1) and H = {H1, . . . , Hn−1} is a G-maximal
subset of J . Thus, (G,H) ∈ Dm1 and A ∈ Em1 . Suppose that the result is true if i = k and
suppose that n − (k + 1) sets appear negatively in A. Since A ∈ Em, there must be some
minimal j such that A ∈ Emj+1. By definition, A = AH for some (G,H) ∈ R(Dmj ). By (d),
either A = G − (∪H′ ∪ Emj ) and H′ ⊆ J or A ∈ Emj . The latter case contradicts our choice of
j, so we may assume that A = G − (∪H′ ∪ Emj ) and H′ ⊆ J . It is easy to see that H′ must
consist of precisely the sets in J that appear negatively in A. (If H′ did not include all the sets
that appear negatively in A then H′ ∪ Emj would not be a G-maximal subset of J ∪ Emj ; if H′
included any sets that appear positively in A, then A would be empty.) Let E ′ consist of all the
atoms A′ in Emj in which the set of sets in J that appear negatively in A′ is a strict superset
of H′. It is easy to see that G − (∪H′ ∪ Emj ) = G − (∪H′ ∪ E ′), since all the sets in Emj − E ′
must be disjoint from G−∪H′. (This is clear for the B ∈ Emj −E ′ for which some set appearing
negatively in A does not appear negatively in B. On the other hand, if the same sets appear
negatively in B as in A, then B = A and we contradict the minimality of j.) By the induction
hypothesis, E ′ ⊆ Emn−k. Now consider A′ = G − (∪H′ ∪ Emn−k) ∈ Emn−k+1. Since E ′ ⊆ Emn−k, it
follows that A′ ⊆ A. Moreover, A′ = AH′′ for some H′′ such that (G,H′′) ∈ R(Dmn−k), since
any relevant extension of H′ that would keep the difference with G nonempty would be one for
A as well, contradicting the assumption that A ∈ Emj+1. Thus, A′ is an atom over J . As we
observed earlier, A is also an atom over J . Thus, A = A′ ∈ Emn−k+1, as desired.

We remark that a simpler proof, just using the fact that there are at most 2n atoms over
J , can be used to show that Emn′ = Em2n for n′ > 2n. This simpler proof would suffice for the
purposes of this subsection. However, we use the added information in part (e) in Section 4.5.

Proof of Theorem 3.4 for Mrt
A: Again, the lower bound follows from standard results in

[HM92].
For the upper bound, suppose that we are given a formula ϕ such that n = |ϕ| andH ∈ Aϕ,rt.

By definition, there exists a G such that (G,H) ∈ R(G1
ϕ). By Lemma 4.10, R1(Gϕ) = R(G1

ϕ).
Thus, H ⊆ D1(Gϕ) = Gϕ ∪ E1

n(Gϕ). By Lemma 4.11(d), either E1
n(Gϕ) ⊆ H or H contains all

but one element of E1
n(Gϕ). Thus, we can uniquely characterize H by a pair (H′, X), where

H′ = H∩Gϕ and X = E1
n(Gϕ)−H (so that X is either the empty set or a singleton). It should

be clear that we can compute the set E1
n(Gϕ) in time O(n22cn) and which of these (at most

22n + 2n) pairs is in A1 and A2 using at most 2n(22n + 2n) calls to the oracle O1.
By Lemmas 4.4(a) and 4.11, we can similarly compute the formula ϕσ2 in time O(2cn)

using O(2cn) oracle calls. We now apply Proposition 4.8 and Theorem 4.9, just as we applied
Proposition 4.1 and Theorem 4.5 in the case of MA.

We next want to prove Theorem 3.1 for Mrt
A. Just as with MA and Mr

A, we want to pull
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a proof of ϕσ2 back to a proof of σ. However, it is no longer true that we can necessarily
prove ϕσ2 using only the modal operators that appear in ϕσ2 . We may also need to use KH for
H ∈ A1. Fortunately, this does not cause us problems. The following extension of Lemma 4.6
is immediate.

Lemma 4.12: The mapping σ2 (when viewed as a map with domain 2A) is injective on G1
ϕ.

Let (S4CG )A1+A2 consist of the axioms in (TC
G )+ (so that, in particular, E5 is included),

together with every instance of K4 (Kiϕ ⇒ KiKiϕ) for i ∈ A1. We write (S4CG )A1+A2 `ϕ ψ if
there is a proof of ψ in (S4CG )A1+A2 using only the modal operators that appear in ϕ and Ki

for i ∈ A1.

Lemma 4.13: If A is finite and ϕ ∈ LCG is valid with respect to Mrt
A1+A2

, then (S4CG )A1+A2 `ϕ
ϕ.

Proof: The proof is similar to that of Lemma 4.7 for Mr
A, except that since the definition of

the Ki relation is different, we must check that the results still hold with the modified definition.
Suppose that s ∈ Sj does not seem consistent because ¬EGψ ∈ s and there is no state

t ∈ Sj such that (s, t) ∈ ∪i∈GKi and ¬ψ ∈ t. We want to show that (S4CG )A1+A2 `ϕ ϕs ⇒ EGψ.
As before this suffices.

For each i ∈ G and, by induction, each j, we have a provable equivalence for ψ similar to
the one before: (S4CG )A1+A2 `ϕ ψ ⇔ ∧{t∈Si

j :¬ψ∈t}¬ϕt. So it suffices to find, for each such i and

each t ∈ Sji with ¬ψ ∈ t, a Gi,t containing i such that (S4CG )A1+A2 `ϕ ϕs ⇒ EGi,t¬ϕt. For
i ∈ A2, this follows just as before. For i ∈ A1, we show that (S4CG )A1+A2 `ϕ ϕs ⇒ Ki¬ϕt.
By our assumption (s, t) /∈ Ki. Thus, there exists some formula θ ∈ s/Ki ∪ {Kiδ : Kiδ ∈
s}−(t∩(t/Ki∪{Kiδ : Kiδ ∈ t})). If θ ∈ s/Ki, then (S4CG )A1+A2 `ϕ ϕs ⇒ Kiθ. If θ = Kiθ

′ is in
s, then (S4CG )A1+A2 `ϕ ϕs ⇒ Kiθ

′. By K4, we have that (S4CG )A1+A2 `ϕ ϕs ⇒ KiKiθ
′. Thus, in

either case, we have (S4CG )A1+A2 `ϕ ϕs ⇒ Kiθ. Since θ ∈ s/Ki∪{Kiδ : Kiδ ∈ s}, it follows that
Kiθ ∈ ESubi(¬ϕ). We cannot have Kiθ ∈ t, for then (since (t, t) ∈ Ki, so t/Ki ⊆ t) we would
have θ ∈ t ∩ t/Ki, contradicting our choice of θ. Thus we must have that ¬Kiθ ∈ t. It follows
that (S4CG )A1+A2 `ϕ Kiθ ⇒ ¬ϕt. Using (4), we get that (S4CG )A1+A2 `ϕ KiKiθ ⇒ Ki¬ϕt. Since
(S4CG )A1+A2 `ϕ Kiθ ⇒ KiKiθ and, as shown earlier, (S4CG )A1+A2 `ϕ ϕs ⇒ Kiθ, it follows that
(S4CG )A1+A2 `ϕ ϕs ⇒ Ki¬ϕt, as desired.

Finally, we must show that if ¬CGψ ∈ s and there is no state t ∈ Sj G-reachable from s in
Sj such that ¬ψ ∈ t, then S4CG `ϕ ϕs ⇒ CGψ. This argument is identical to that given in the
proof of Lemma 4.7, so we do not repeat it here.

Proof of Theorem 3.1 forMrt
A: Again, we have already observed that the axioms are sound.

For completeness, suppose that ϕ is valid with respect toMA. By Proposition 4.8, ϕσ2 is valid
with respect to Mrt

A1+A2
. By Lemma 4.13, there is a proof of ϕσ2 in KC

Gϕ
that mentions only

the modal operators in ϕσ2 and the operators KH for H ∈ A1. Using Lemma 4.12, it follows
that we can pull this back to a proof of ϕ in S4CG .
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4.3 Dealing with Mrst
A

Mrst
A and Melt

A introduce additional complications. The translation used in Proposition 4.8 no
longer suffices. We need to deal with the fact that in Mrst

A , we can test not only that whether
a set is a singleton, but whether it has size k for any k. Given a formula ϕ, suppose that
|ϕ| = n. We want to map A to a finite set of agents and prove an analogue of Propositions 4.8.
The obvious analogue of Aϕ,rt would be to consider the sets H such that (G,H) ∈ R(Gnϕ). We
essentially do this, except that we replace all sets of cardinality ≤ n by the singletons in them.

Given a set J of subsets of A, let J̃m = Dm(J ) ∪ {{i} : ∃G ∈ Dm(J )(|G| ≤ m, i ∈ G)}.
Let Aϕ,rst = {H : ∃G((G,H) ∈ R(G̃nϕ))}. Let A1 = {H : ∃G[(G,H) ∈ R(G̃nϕ), |G − ∪H| = 1]};
let A2 = Aϕ,rst − A1. Define σ3 : A → A1 ∪ A2 as before: σ3(i) = H if i ∈ AH and σ3(i) is
undefined otherwise. Much as before, we define τ3(H) = ∩(G̃nϕ − H). Since it is easy to see
that R(G̃nϕ) = R(Gψ) for some appropriately chosen ψ, it is immediate that Lemma 4.4 applies
without change to σ3 and τ3.

Lemma 4.14: If H ∈ A2, then |AH| ≥ n+ 1.

Proof: Suppose, by way of contradiction, that H ∈ A2 and 1 ≤ |AH| ≤ n. We must have
|AH| > 1, for otherwise H ∈ A1. Since A2 ⊆ Aϕ,rst, there must exist G ∈ Dn(Gϕ) such that H
is G-maximal. But if |AH| ≤ n, then every singleton subset of AH is in G̃nϕ. This contradicts
the fact that H is G-maximal, because if H′ is H together with one of these singleton subsets,
we must have G− ∪H′ 6= ∅.

We have defined A1 and A2 just above. Recall that M ∈ Mrst
A1+A2

if the relations Ki for
i ∈ A1 are reflexive, symmetric, and transitive while the ones in A2 are reflexive and symmetric.

Proposition 4.15: ϕ is satisfiable in Mrst
A iff ϕσ3 is satisfiable in Mrst

A1+A2
.

Proof: First suppose that (M, s) |= ϕ, where M ∈Mrst
A . We convert M = (S, π, {Ki : i ∈ A})

into a structure M ′ = (S, π, {KH : H ∈ Aϕ,rst}) as before, by defining KH = ∪{Ki : i ∈ τ3(A)}.
As the union of symmetric relations is symmetric, the proof that this works is essentially
identical to that in Lemma 4.8 for the case of Mrt

A.
For the opposite direction, suppose that (M, s) |= ϕσ3 for some M = (S, π, {KH : H ∈

Aϕ,rst}) ∈ Mrst
A1+A2

. We must construct a structure M ′ ∈ Mrst
A that satisfies ϕ. The state

space for the structure M ′ will again consist of copies of S, but two copies no longer suffice
to guarantee that the Ki relations are equivalence relations. In fact, we use countably many
copies.

By Lemma 4.14, for each H ∈ A2, there exist at least n+1 agents in AH. Choose n+1 such
agents, and call them i0H, . . . , i

n
H. Partition AH into n + 1 disjoint sets GH,j with ijH ∈ GH,j .

We build copies of M in a tree-like manner. We index the copies of M with strings of the form
((s1, t1), i1, . . . , (sk, tk), ik), such that sj , tj ∈ S, ij is ij

′

H for some H ∈ A2 and 0 ≤ j′ ≤ n,
(sj , tj) ∈ KH, and ij 6= ij+1. Roughly speaking, between Mσ and Mσ·((sk,tk),ik) we have edges
for the Ki relations for {i} = AH with H ∈ A1 and also edges between sk and tk in Kik ;
however, there are no edges in Kj if {j} /∈ A1 and j 6= ik; moreover, there are no other edges
in Kik except those required to assure reflexivity.
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Before we can construct M ′, we need some preliminary observations. We can suppose that
the states in S are well ordered. Thus, for each state s ∈ S, if (M, s) |= ¬CGψ, there is a
lexicographically minimal shortest path (s0, . . . , sk) such that (si, si+1) ∈ KH for some H ∈ G
and (M, sk) |= ¬ψ. Note that, for each i ≤ k, (M, si) |= ¬CGψ and (si, . . . , sk) is also the
lexicographically minimal shortest G-path from si leading to a state that satisfies ¬ψ. For
each s ∈ S and B = E or C, let ¬BG1ψ1, . . . ,¬BGk

ψk be the formulas in Sub+(ϕ) such that
(M, s) |= (¬BGjψj)

σ3 . For each state s ∈ S, we can associate a set F (s) of at most n pairs
(H, t) such that (s, t) ∈ KH and for every formula BGψ ∈ Sub(ϕ), if (M, s) |= (¬BGψ)σ3 , then
there exists a pair (H, t) ∈ F (s) such that t is the first state after s on the lexicographically
minimal σ3(Gj)-path from s to a state satisfying ¬ψ.

We can now define a set Σ of strings inductively. Let Σ0 be the empty string. Suppose
that we have constructed Σk consisting of strings ((s1, t1), i1, . . . , (sk, tk), ik) with the properties
given above. For each σ = ((s1, t1), i1, . . . , (sk, tk), ik) ∈ Σk, s ∈ S, (H, t) ∈ F (s), such that
H ∈ A2, there is exactly one string σ · ((s, t), i) ∈ Σk+1. We choose i ∈ AH in such a way that
i 6= ik, i is one of i0H, . . . , i

n
H, and a different i is chosen for each (H, t) ∈ F (s). Since |F (s)| ≤ n

and we can choose among n+ 1 agents i0H, . . . , i
n
H, this can clearly be done. Let Σ = ∪kΣk.

Let M ′ = (S′, π′, {Ki : i ∈ A}) be defined as follows:

• S′ = ∪σ∈ΣSσ, where each Sσ is a disjoint copy of S. We denote by sσ the copy of state
s ∈ S in Sσ.

• π′(sσ) = π(s) for s ∈ S, σ ∈ Σ.

• If σ3(i) ∈ A1, define Ki = {(sσ, tσ′) : (s, t) ∈ Kσ3(i), σ, σ
′ ∈ Σ}. Ki is clearly reflexive,

symmetric, and transitive in this case, since Kσ3(i) is.

• If σ3(i) = H ∈ A2 and i ∈ GH,j , then Ki = {(sσ, sσ) : s ∈ S, σ ∈ Σ)}∪ {(sσ, tσ′), (tσ′ , sσ) :
σ′ = σ · ((s, t), ijH) and (s, t) ∈ Kσ3(i)}. Again, it is clear from the construction that Ki is
reflexive, symmetric, and transitive.

• If σ3(i) is undefined, then Ki = {(sσ, sσ) : s ∈ S, σ ∈ Σ)}. Of course, in this case Ki is
also reflexive, symmetric, and transitive.

We claim that for each formula ψ ∈ Sub+(ϕ), the following are equivalent:

(a) (M, s) |= ψσ3 ,

(b) (M ′, sσ) |= ψ for all σ ∈ Σ,

(c) (M ′, sσ) |= ψ for some σ ∈ Σ.

The argument proceeds by a straightforward induction on the structure of ψ. The argument
that (a) implies (b) is easy using the induction hypothesis, and the implication from (b) to
(c) is trivial. For the argument that (c) implies (a), the only interesting cases are when ψ is
of the form Kiψ

′, EGψ′ or CGψ′. For Kiψ
′, the argument is easy because it is easy to see

that {i} = AH with H ∈ A1. For EGψ′, suppose that (M ′, sσ) |= EGψ
′. Then we must have

(M, s) |= (EGψ′)σ3 . For suppose not. Then there is some (H, t) ∈ F (s) such that H ∈ σ3(G),
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(s, t) ∈ KH and (M, t) 6|= (ψ′)σ3 . Our construction guarantees that σ′ = σ · ((s, t), i) ∈ Σ
for some i ∈ AH. From Lemmas 4.3(a) and 4.4(a), it follows that i ∈ G. Moreover, by our
construction, (sσ, tσ′) ∈ Ki. The induction hypothesis now guarantees that (M ′, tσ′) |= ¬ψ′.
But this contradicts the assumption that (M ′, sσ) |= (EGψ′)σ3 .

Finally, suppose that (M ′, sσ) |= CGψ
′. Again, for a contradiction, suppose that (M, s) |=

¬(CGψ′)σ3 . Now we proceed by a subinduction on the length of the shortest σ3(G)-path in M
leading to a state satisfying (¬ψ′)σ3 to show that (M ′, sσ) |= ¬CGψ′. We leave the straightfor-
ward details to the reader.

Next, we want an analogue of Theorem 4.9 for Mrst
A . The reader will not be surprised to

learn that there are new complications here as well, although the basic result still holds.

Theorem 4.16: If A = A1 ∪ A2 is finite and there is an algorithm for deciding if i ∈ G for
G ∈ G that runs in time linear in |A|, then there is a constant c > 0 and an algorithm that,
given a formula ϕ of LCG , decides if ϕ is satisfiable in Mrst

A1+A2
and runs in time O(|A|2c|ϕ|)

Proof: We start as in the proof of Theorem 4.9. Again, we assume for ease of exposition that
A1 6= ∅. For i ∈ A1, let S1

i consist of all the subsets of ESub+
i (ϕ) that are maximally consistent

and let S1 = ∪i∈A1S
1
i . The definitions of the Ki relations depend on whether i ∈ A1 or i ∈ A2.

For i ∈ A1, we define the Ki relations on S1 so that (s, t) ∈ Ki iff s/Ki ∪ {Kiψ : Kiψ ∈ s} ⊆ t
and s/Ki∪{Kiψ : Kiψ ∈ s} = t/Ki∪{Kiψ : Kiψ ∈ t}. It is easy to check that this modification
forces these Ki relations to be Euclidean and transitive. We will need this intermediate result
in the next section on Melt

A . To make these Ki equivalence relations, as needed here, we force
them to be reflexive as well using the same technique as with Mr

A: by eliminating s ∈ S1 if
(s, s) /∈ Ki for some i ∈ A1 ∪ A2. For i ∈ A2, we define Ki so that (s, t) ∈ Ki iff s/Ki ⊆ t and
t/Ki ⊆ s. Clearly this modification forces these Ki relations to be symmetric. We force them
to be reflexive just as we did for A1.

We now must also change the definition of s seeming consistent. Define the relations �i
on S1 × S1

i by taking s �i s′ if s′ ∈ S1
i and s ∩ ESubi(ϕ) ⊆ s′. Suppose that we have defined

S1, . . . , Sm. Sm+1 consists of all states s ∈ Sm that seem consistent, in that the following three
conditions hold (where we assume that all states considered are in Sm):

1. For all i ∈ A1, there exists an s′ ∈ Sm such that s �i s′.

2. There exist distinct agents i1, . . . , ik ∈ A1 and states s1, . . . , sk such that s �ih sh for
h ∈ {1, . . . , k} and for every formula of the form ¬EGψ ∈ s, there is a t such that either

(a) (∃i ∈ G ∩ A2)((s, t) ∈ Ki ∧ ¬ψ ∈ t) or

(b) (∃h ≤ k)(ih ∈ G ∧ (sh, t) ∈ Kih ∧ ¬ψ ∈ t).

3. If ¬CGψ ∈ s then there exist states s0, s
′
0, s1, s

′
1, . . . , sk′ such that s = s0, ¬ψ ∈ sk′ , and

there exist j0, . . . , jk′−1 in G such that, for each i ≤ k′, (s′i, si+1) ∈ Kji and either ji ∈ A2

and si = s′i or ji ∈ A1, si �ji s′i and s′i is acceptable for si, where we say that s′ is
acceptable for s if there are states th and agents ih, h = 1, . . . , k, where these states and
agents satisfy the same conditions as the states s1, . . . , sk and agents i1, . . . , ik in condition
2 for s, and s′ = ti for some i ≤ k.
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Note that the second condition does not simply say that for each formula ¬EGϕ in s there
is a “witness” t such that (s, t) ∈ Ki and ¬ψ ∈ t. For one thing, it is not necessarily (s, t) that
is in Ki. For i ∈ Ai, it is actually (si, t) that is in Ki for some si such that s �i si. This leads
to a second problem. Suppose that EGψ and EGψ′ are both formulas in s. There could be two
states si and s′i such that s �i si, s �i s′i, and states t and t′ such that (si, t) ∈ Ki, (si, t′) ∈ Ki,
¬ψ ∈ t, and ¬ψ′ ∈ t′. This is not good enough for our purposes. We need to be able to find
witnesses for each formula ¬EGψ ∈ s using at most one state si corresponding to each agent
i ∈ A1. The second consistency condition says that this is possible.

To show that this algorithm is correct, first suppose that ϕ is satisfiable. In that case,
(M, s0) |= ϕ for some structure M = (S, π, {K′i : i ∈ A}) ∈ Mrst

A1+A2
. As for Mrt, we can

associate with each state s ∈ S and i ∈ A1 the state s∗i in S1
i consisting of all the formulas

ψ ∈ ESub+i (ϕ) such that (M, s) |= ψ. It is easy to see that if (s, t) ∈ K′i then (s∗i , t
∗
i ) ∈ Ki, while

if i ∈ A2, then (s∗j , t
∗
i ) ∈ Ki for every j. Using this observation, a straightforward argument

shows that the states s∗j for s ∈ S always seem consistent, and thus are in Sm for all m and all
i ∈ A1: For suppose s∗j ∈ Sm. We wish to show that s∗j seems consistent and so is in Sm+1.
For (1), let s′ = s∗i . For (2), suppose that A1 = {i1, . . . , ik} and set sh = s∗ih , so that s∗j �ih s∗ih .
Now if ¬EGψ ∈ s∗j , (M, s) |= ¬EGψ. Thus there is a state r and an agent i ∈ G such that
(M, r) |= ¬ψ and (s, r) ∈ K′i. If i ∈ G∩A2 then we satisfy (2a) by taking t = r∗i . If i ∈ A1, say
i = ih, we satisfy (2b) by taking t = r∗ih . For (3), if ¬CGψ ∈ s∗j , then (M, s) |= ¬CGψ. Thus,
there is a sequence of states t0, . . . , tk in M such that t0 = s, (M, tk) |= ¬ψ and (th, th+1) ∈ Kjh
for 0 ≤ h < k with each jh ∈ G. We satisfy (3) by taking sh = (th)∗jh−1

and letting s′h be sh
if jh ∈ A2 and (th)∗jh if jh ∈ A1. Moreover, ϕ ∈ (s0)∗i for all i ∈ A1. Thus, the algorithm will
declare that ϕ is satisfiable, as desired.

For the converse, we need to show that if the algorithm declares that ϕ is satisfiable, then
it is indeed satisfiable in Mrst

A1+A2
. We need to work a little harder than in the previous

proofs. Now we can no longer just view the object constructed by our algorithm as the required
structure. Rather, it serves as a “blueprint” for building the required structure.

Suppose that the algorithm terminates at stage N with a state u ∈ Siu = SNiu containing ϕ.
Before we go on, we make one observation that will prove useful in the sequel. Notice that if
s �i s′, then EGψ ∈ s iff EGψ ∈ s′ for G 6= {i}, and if j ∈ A2, then (s, t) ∈ Kj iff (s′, t) ∈ Kj .
A complete state is a vector ~s = (si : i ∈ A1 ∧ si ∈ SNi ) such that

• si �j sj for all i, j ∈ A1 and

• for every formula of the form ¬EGψ ∈ ∪i∈A1s
i, there exists an agent j ∈ G and a state

t ∈ SN such that ¬ψ ∈ t and either j ∈ A1 ∩ G, ¬Kjψ ∈ sj , and (sj , t) ∈ Kj or j ∈ A2

and (si, t) ∈ Kj for some i ∈ A1 (and hence (si, t) ∈ Kj for all i ∈ A1).

By consistency condition 2, every state s ∈ SN must be a component of some (perhaps many)
complete states.

Define a structure M∗ = (S∗, π∗, {K∗i : i ∈ A1 ∪ A2}) as follows:

• S∗ consists of all complete states;

• π∗(~s)(p) = true iff p ∈ ∪i∈A1s
i;
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• (~s,~t) ∈ K∗i for i ∈ A1 iff (si, ti) ∈ Ki;

• (~s,~t) ∈ K∗i for i ∈ A2 iff (sj , tj) ∈ Ki for some j ∈ A1 (it is easy to check that if (sj , tj) ∈ Ki
for some j ∈ A1 then (sj , tj) ∈ Kj for all j ∈ A1).

It is easy to check that M∗ ∈ Mrst
A1+A2

. We now show that for all ψ ∈ ∪i∈A1ESub+
i (ϕ), we

have
(M∗, ~s) |= ψ iff ψ ∈ ∪i∈A1s

i.

We proceed, as usual, by induction on the structure of ψ. If ψ is a primitive proposition, a
conjunction, or a negation, the argument is easy. Suppose that ψ is of the form EGψ

′. If
EGψ

′ ∈ ∪i∈A1s
i, then the construction of the Kj relations guarantees that ψ′ ∈ ∪i∈A1t

i for all
~t ∈ S∗ such that (~s,~t) ∈ K∗j for some j ∈ G. Thus, by the induction hypothesis, we have that
(M∗, ~s) |= EGψ

′. For the converse, suppose that ¬EGψ′ ∈ ∪i∈A1s
i. Then from the definition

of complete state, there must be some agent j ∈ G and a state t ∈ SN such that ¬ψ ∈ t, and
either j ∈ A1 ∩G, ¬Kjψ ∈ sj , and (sj , t) ∈ Kj or j ∈ A2 ∩G and (si, t) ∈ Kj for some i ∈ A1.
By the second consistency condition, t must be a component of some complete state ~t. By
definition (~s,~t) ∈ K∗j and ¬ψ′ ∈ ∪i∈A1t

i.

Finally, suppose that ψ is of the form CGψ
′. If CGψ′ ∈ ∪i∈A1s

i then, since EG(ψ′ ∧ CGψ′)
must also be in ∪i∈A1s

i, an easy induction on the length of the path shows that for every
complete state ~t G-reachable from ~s, we must have ψ′ ∈ ∪i∈A1t

i so, by the induction hypothesis,
we have (M∗, ~s) |= CGψ

′. For the converse, suppose that ¬CGψ ∈ ∪i∈A1s
i. Then ¬CGψ ∈ sj

for some (in fact, all) j ∈ A1. If G ∩ A1 6= ∅, choose j ∈ G ∩ A1; otherwise, choose j ∈ G
arbitrarily. Thus, there must exist a sequence s0, s

′
0, s1, s

′
1, . . . , sk of states in SN and agents

j0, . . . , jk−1 in G, as required by consistency condition 3, where s0 = sn and ¬ψ ∈ sk. By the
definition of acceptability, it follows that there exist complete states ~s0, . . . , ~sk such that s′i is a
component of ~si, for i = 0, . . . , k. (Note that states of the form s′i are needed here to determine
the complete state.) By construction, (~sh, ~sh+1) ∈ K∗jh h = 0, . . . , k − 1, and ¬ψ′ ∈ ∪i∈A1s

i
k. If

j ∈ A1, then (~s,~s0) ∈ K∗j ; if j /∈ A1, then j0 ∈ A2, and it follows from our initial observation
that (~s,~s1) ∈ K∗j0 . In either case, ~sk is G-reachable from ~s, so (M∗, ~s) |= ¬CGψ′, as desired.

To see that the algorithm runs in the required time bound, we need to show that we can
check whether s seems consistent in time O(|A|2c|ϕ|). The only difficulty is to determine, for
given s and s′, if s′ is acceptable for s. It is clear that k ≤ |ϕ|, since we need at most one state
and agent for each formula of the form ¬EGψ ∈ s. However, if we simply check each subgroup
of states containing s′ and of agents containing j where s′ ∈ S1

j that are of size ≤ |ϕ| in the
naive way, this check will take time at least C(2|ϕ|, |ϕ|)C(|A|, |ϕ|) (where C(n, k) is n choose
k), which is unacceptable for our desired time bounds. Instead, we proceed as follows.

Suppose that s′ ∈ S1
i1

and s �i1 s′. (If it is not the case that s �i1 s′ for some i1, then
clearly s′ is not acceptable for s′.) Let F (s, s′) consist of all formulas EGψ such that

1. ¬EGψ ∈ s,

2. ¬∃t, i(i ∈ G ∩ A2 ∧ (s, t) ∈ Ki ∧ ¬ψ ∈ t), and

3. |A(s, s′, EGψ)| < |ϕ|, where A(s, s′, EGψ) = {i ∈ G∩A1 : i = i1∨ ∃t(s �i t ∧ ¬Kiψ ∈ t)}.
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Intuitively, F (s, s′) consists of the potentially “problematic” formulas that may prevent s′ from
being acceptable for s.

Let T = ∪EGψ∈F (s,s′)A(s, s′, EGψ). Note that |T | < |ϕ|2. Suppose that T = {i1, . . . , iN}.
We construct sets B1, . . . , BN of subsets of F (s, s′) with the property that X ∈ Bk iff X consists
of the formulas of the form EGψ such that there exist states t1, . . . , tk such that s �ij tj for
j = 1, . . . , k , t1 = s′ and, for each formula EGψ ∈ X, there exists a j such that ¬Kijψ ∈ tj
and ij ∈ G.

Given a state t ∈ S1
i , let Ft(s, s′) = {EGψ ∈ F (s, s′) : ¬Kiψ ∈ t, i ∈ G ∩ T}. In-

tuitively, Ft(s, s′) consists of the formulas in F (s, s′) that can be “taken care of” by state
t. Let B1 = {Fs′(s, s′)}. Suppose that we have defined B1, . . . , Bk. Let Bk+1 = {X ∪
Ft(s, s

′) : X ∈ Bk ∧ s �ik+1
t}. It is easy to check that Bk+1 has the required property. More-

over, we can compute the sets B1, . . . , BN in time O(2cn). To see this, note that since
|F (s, s′)| ≤ |ϕ|, clearly |Bj | ≤ 2|ϕ|. Thus, given Bk, we can clearly compute Bk+1 in time
O(2cn) for some c > 0. Since N < |ϕ|2, the result follows. Finally, we claim that s′ is accept-
able for s iff F (s, s′) ∈ BN .

Clearly if F (s, s′) /∈ BN , then it is almost immediate from the definition that s′ is not
acceptable for s. Conversely, if F (s, s′) ∈ BN , then there exist states t1, . . . , tN such that
s′ = t1, s �ij tj and, for each formula in EGψ ∈ F (s, s′), there exists j such that Kijψ ∈ tj . We
clearly do not need all of these states and agents; we just need at most one for each formula in
F (s, s′). That is, there exists a set A′ of agents (contained in {i1, . . . , iN}) with |A′| ≤ |F (s, s′)|
and a state ui corresponding to each agent i ∈ A′ (contained in {t1, . . . , tN}) such that for
each formula EGψ ∈ F (s, s′), there exists an agent i ∈ A′ such that s �i ui and ¬Kiψ ∈ ui.
We now wish to extend A′ to a set showing that s′ is acceptable for s. If we consider any
¬EGψ ∈ s, either condition 2(a) is satisfied or there is already an i ∈ A′ satisfying 2(b) or
|A(s, s′, EGψ)| ≥ |ϕ|. In the last case, it is immediate that we can extend A′ to include an
agent satisfying 2(b) for EGψ.

We can now prove Theorem 3.4 for Mrst
A .

Proof of Theorem 3.4 for Mrst
A : Again, the lower bound follows from standard results in

[HM92].
For the upper bound, suppose that we are given a formula ϕ such that n = |ϕ|. We can

compute the set Emn (Gϕ) defined just before Lemma 4.11 in time O(n22cn), using at most n22n

calls to the oracle Om, just as we computed E1(Gϕ). Similarly, we can characterize the sets H
such that (G,H) is in R(Gnϕ) = Rn(Gϕ) by a pair (H′,X), where H′ ⊆ Gϕ and X is either ∅
or an element of Enn (Gϕ); we can compute which of the pairs (H′, X) actually represent sets H
such that (G,H) ∈ R(Gnϕ) using at most 2n(22n + 2n) calls to the oracle On. It is not hard to
show that R(G̃nϕ) consists of pairs (G,H) such that either |AH| > n + 1 and (G,H) ∈ R(Gnϕ)
or |AH| = 1 and there exists (G,H′) ∈ R(Gnϕ) such that |AH′ | ≤ n and AH ⊆ AH′ . Recall
that Aϕ,rst = {H : ∃G((G,H) ∈ R(G̃nϕ))}, A1 = {H : ∃G[(G,H) ∈ R(G̃nϕ), |G − ∪H| = 1]},
and A2 = Aϕ,rst − A1. Thus, we can represent elements H ∈ A1 by pairs of the form (H′, X)
as above, while elements of H ∈ A2 can be represented by triples of the form (H′,X, i), for
i = 1, . . . , |AH|. Thus, although we cannot in general compute the individual elements of the
sets AH such that |AH| ≤ m, it does not matter. It suffices that we know the cardinality of
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these atoms (which our oracle will tell us).
It is now straightforward to compute the formula ϕσ3 in time O(2cn) using O(2cn) oracle

calls. We now apply Proposition 4.15 and Theorem 4.16, just as we applied Proposition 4.1
and Theorem 4.5 in the case of MA.

We now turn our attention to proving Theorem 3.1 for Mrst
A . Again, the basic structure is

the same as for MA and Mrt
A.

Lemma 4.17: The mapping σ3 (when viewed as a map with domain 2A) is injective on G̃nϕ.

Let (S5CG )A1+A2 consist of the axioms in (TC
G )+ (including E5) together with E6 and every

instance of K4 and K5 for i ∈ A1. We write (S5CG )A1+A2 `ϕ ψ if there is a proof of ψ in
(S5CG )A1+A2 using only the modal operators that appear in ϕ and Ki for i ∈ A1.

Lemma 4.18: If A is finite and ϕ ∈ LCG is valid with respect to Mrst
A1+A2

, then (S5CG )A1+A2 `ϕ
ϕ.

Proof: The proof is similar in spirit to that of Lemma 4.13 forMrt
A, except that since we have

a different definition of the Ki relations and of seeming consistent, we must check that states
eliminated under this definition are inconsistent. Again we must consider each of the three
ways that a state s can be eliminated.

First, suppose that s ∈ Sj and, for some i ∈ A1, there is no s′ such that s �i s′. As
before, propositional reasoning shows that (S5CG )A1+A2 `ϕ ϕs ⇔ ∨{s′∈S1

i :s�is′}ϕs′ . Thus, it
easily follows that (S5CG )A1+A2 `ϕ ¬ϕs.

Next, suppose that s ∈ Sj does not satisfy the second condition of seeming consistent.
Define an extension of s to be a vector ~s = (si : i ∈ A1) of states, where s �i si. Let
EX(s) be the set of all extensions of s. If ~s is an extension of s, let ϕ~s be the conjunction
over all i ∈ A1 of the formulas in ϕsi . By straightforward propositional reasoning, we have
(S5CG )A1+A2 `ϕ ϕs ⇔ ∨~s∈EX(s)ϕ~s. Thus, to show that (S5CG )A1+A2 `ϕ ¬ϕs if s is eliminated
by the second condition of seeming consistent, it suffices to show that (S5CG )A1+A2 `ϕ ¬ϕ~s for
each ~s ∈ EX(s). This we do by showing that, for each extension ~s ∈ EX(s), there is a formula
¬EGψ ∈ s such (S5CG )A1+A2 `ϕ ϕ~s ⇒ EGψ. Since ¬EGψ ∈ s, simple propositional reasoning
shows that (S5CG )A1+A2 `ϕ ϕ~s ⇒ ¬EGψ. This shows that (S5CG )A1+A2 `ϕ ¬ϕ~s as desired.

So suppose that A1 = {i1, . . . , im} and ~s = (s1, . . . , sm) ∈ EX(s). Since s does not satisfy
the second condition of seeming consistent, it follows that there exists some formula ¬EGψ ∈ s
such that for all t ∈ Sj ,

1. for all i ∈ G ∩ A2, if (s, t) ∈ Ki, then ψ ∈ t and

2. for all h ∈ {1, . . . ,m} such that ih ∈ G, if (sh, t) ∈ Kih , then ψ ∈ t.

The proof now follows the lines of the analogous argument in the proof of Lemma 4.13. As
before, it suffices to find, for each i ∈ G and each t ∈ Sji with ¬ψ ∈ t, a set Gi,t of agents
containing i such that (S5CG )A1+A2 `ϕ ϕ~s ⇒ EGi,t¬ϕt. So fix i ∈ G and t ∈ Sji with ¬ψ ∈ t. As
before, the proof splits into two cases: i ∈ A1 and i ∈ A2.
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If i ∈ A2, this follows as before if the reason that (s, t) /∈ Ki is that s/Ki 6⊆ t. If instead
t/Ki 6⊆ s, then there is some EG′θ ∈ t with i ∈ G′ such that ¬θ ∈ s and so ¬θ ∈ si for each i.
Thus (S5CG )A1+A2 `ϕ ϕ~s ⇒ ¬θ and, by E6, (S5CG )A1+A2 `ϕ ¬θ ⇒ EG′¬EG′θ. Since EG′θ ∈ t we
have that (S5CG )A1+A2 `ϕ ϕ~s ⇒ EG′¬ϕt. That is, we can take Gi,t = G′ in this case.

On the other hand, if i ∈ A1, we show that (S5CG )A1+A2 `ϕ ϕ~s ⇒ Ki¬ϕt (so that we can
take Gi,t = {i}). By assumption, since ¬ψ ∈ t, (si, t) /∈ Ki. Since t ∈ Sij , there is some formula
θ such that either Kiθ ∈ si and ¬Kiθ ∈ t or Kiθ ∈ t and ¬Kiθ ∈ si. Here we are implicitly
using the following facts: (1) if EG′θ ∈ s for some G′ such that i ∈ G′ then Kiθ ∈ si, since
si ∈ S1

i , and similarly for t, (2) if Kiθ /∈ s, then ¬Kiθ ∈ s, since si ∈ Sji , and similarly for t,
and (3) if Kiθ ∈ si then θ ∈ s since (s, s) ∈ Ki, and similarly for t. If Kiθ ∈ s and ¬Kiθ ∈ t,
it follows that (S5CG )A1+A2 `ϕ ϕs ⇒ Ki¬ϕt just as in the case of (S4CG )A1+A2 . If Kiθ ∈ t and
¬Kiθ ∈ s, then by K5 we have (S5CG )A1+A2 `ϕ ϕs ⇒ Ki¬Kiθ and (S5CG )A1+A2 `ϕ ¬Kiθ ⇒ ¬ϕt.
The desired result now follows by standard arguments.

We have now shown that for all i ∈ G and t ∈ Sij such that ψ ∈ t, there exists some
set Gi,t with i ∈ Gi,t such that (S5CG )A1+A2 `ϕ ϕs ⇒ EGi,t¬ϕt. We can now conclude that
(S5CG )A1+A2 `ϕ ϕs ⇒ ¬EGψ just as in the case of (S4CG )A1+A2 , showing that ϕs is inconsistent,
as desired.

Finally, if s ∈ Sj does not satisfy the third condition of seeming consistent, the argument
that (S5CG )A1+A2 `ϕ ¬ϕs is similar to that of Lemma 4.7. We replace G-reachability by the
existence of sequences as in condition 3 in the definition of seeming consistent in Theorem 4.16
and note that we have essentially already proved the analogue of (6) from Lemma 4.7. We leave
the remaining details to the reader.

Proof of Theorem 3.1 for Mrst
A : The proof follows as for Mrt

A using the analogous lemmas
proved above for Mrst

A .

4.4 Dealing with Melt
A

ForMelt
A , we proceed much as forMrst

A . There is one new subtlety. Consider the construction in
the proof of Proposition 4.15, which uses σ3. Recall that σ3(i) may be undefined for some i. For
such i, we defined Ki to consist of all pairs (sσ, sσ), making it reflexive. This approach will not
work forMelt

A . More precisely, the analogue of Proposition 4.15 forMelt
A will not hold using this

construction (even if we drop the reflexivity requirement). For example, if ϕ = ¬p∧EG1p∧EG2p
and G1 ∩G2 6= ∅, then ϕσ3 is satisfiable in Melt

A1+A2
but ϕ is not satisfied in the structure M ′

constructed in Proposition4.15, since for all i ∈ G1∩G2, the construction will make Ki reflexive.
We solve this problem by defining a mapping σ4 much like σ3, except that we ensure that σ4 is
never undefined.

Let B be the set consisting of those maximal subsets T of Gϕ such that ∩T 6= ∅ for which
the corresponding atom over Gϕ, AT = (∩T ) ∩ (∩G∈Gϕ−T G) (= ∩T , by the maximality of T ),
form AH for some H ∈ Aϕ,rst. Let Aϕ,elt = Aϕ,rst ∪ B, A1 = B ∪ {H ∈ Aϕ,rst : |AH| = 1},
A2 = Aϕ,elt − A1. The definitions of σ4 : A → Aϕ,elt and τ4 : Aϕ,elt → 2A need some care.
If i ∈ AH for some H ∈ Aϕ,rst, let σ4(i) = H as before. Otherwise, choose T ∈ B such that
T ⊇ {G ∈ Gϕ : i ∈ G} and let σ4(i) = T . Note that, by construction, σ4 is defined for all i.
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For H ∈ Aϕ,rst, τ4(H) = ∩{G̃nϕ −H} as before. For T ∈ B, choose some iT ∈ AT (it does not
matter which) and set τ4(T ) = {iT }.

Proposition 4.19: ϕ is satisfiable in Melt
A iff ϕσ4 is satisfiable in Melt

A1+A2
.

Proof: First suppose that (M, s) |= ϕ, where M ∈ Melt. We convert M to M ′ ∈ Melt
A1+A2

as
before, by defining KI = ∪{Ki : i ∈ τ4(I)} for I ∈ Aϕ,elt. To apply Proposition 4.1, we need to
show that ∪{τ4(I) : I ∈ σ4(G)} = G for all G ∈ Gϕ. We know from the analysis of the Mrst

case that ∪{τ3(H) : H ∈ σ3(G)} = G for all G ∈ Gϕ. Since σ4(G) ⊇ σ3(G) and τ4(H) = τ3(H)
for H ∈ Aϕ,rst, we have that ∪{τ4(I) : I ∈ σ4(G)} = ∪{τ3(H) : H ∈ σ3(G)} ∪ ∪{τ4(I) : I ∈
σ4(G) − σ3(G)}. It is clear from the definitions, however, that if I ∈ σ4(G) − σ3(G), then
there exists some i ∈ G such that I = σ4(i) and σ3(i) is undefined. Moreover, I = T for some
maximal set T such that (among other things) G ∈ T . Thus, AI ⊆ G, so τ4(I) ∈ G. Thus,
∪{τ3(I) : I ∈ σ4(G)− σ3(G)} ⊆ G, so ∪{τ4(I) : I ∈ σ4(G)} = ∪{τ3(H) : H ∈ σ3(G)} = G, as
desired. Applying Proposition 4.1, we get that to see that (M ′, s) |= ϕσ4 .

It remains to verify that M ′ ∈ Melt
A1+A2

. For this, we need to show that the KI relations
for I ∈ A1 are Euclidean, serial and transitive and that those in A2 are serial and secondarily
reflexive. For the ones in A1, note that τ4(I) is a singleton and so the desired properties hold
since they hold for all agents in M . For the ones in A2, we just note that the union of serial
relations is serial and the union of Euclidean relations is secondarily reflexive.

For the other direction, we proceed much as in the proof of Proposition 4.15. In addition
to the concerns dealt with there for Mrst, our primary new one is to make sure that the Ki
relations for all agents are serial. The problem arises for those i for which σ3(i) was undefined.
The new agents in B are used to deal with this problem.

We proceed much as in Proposition 4.15, with two changes. First, we replace the automatic
forcing of reflexivity by forcing secondary reflexivity for σ3(i) ∈ A2. Second, we modify the
definition of the Ki relation in M ′ as follows.

• If σ4(i) ∈ A1 ∩ Aϕ,rst then, as before, Ki = {(sσ, tσ′) : (s, t) ∈ Kσ3(i), σ, σ
′ ∈ Σ}.

• If σ4(i) ∈ A2 and i ∈ GH,j , then Ki = {(sσ, tσ′), (tσ′ , tσ′) : σ′ = σ · ((s, t), ijH)}.

• If σ4(i) = T ∈ B, then Ki = {(sσ, tσ′) : (s, t) ∈ Kσ4(i), σ, σ
′ ∈ Σ}.

Now note that every relation Ki is Euclidean, serial and transitive. For the ones correspond-
ing to agents in A1 this is immediate from the fact that the agents in A1 have these properties.
For those with σ4(i) ∈ A2, seriality follows from the fact that the agents in A2 are serial and
the construction. Transitivity and the Euclidean property follow from the construction. In par-
ticular, if there is a Ki edge coming into some tσ then there is none going out by construction
except for the one from tσ to itself.

The verification that M ′ satisfies ϕ now proceeds as in Proposition 4.15.

Theorem 4.20: If A = A1 +A is finite and there is an an algorithm for deciding if i ∈ G for
G ∈ G that runs in time linear in |A|, then there is a constant c > 0 (independent of |A|) and
an algorithm that, given a formula ϕ of LCG , decides if ϕ is satisfiable in Melt

A1+A2
and runs in

time O(|A|2c|ϕ|).
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Proof: The argument here is like that for the Mrst
A1+A2

case in Theorem 4.16. We keep the
definition of Ki for i ∈ A1 and, as we noted there, this makes these relations Euclidean and
transitive. We change the definition of Ki for i ∈ A2 by putting (s, t) in Ki iff s/Ki ⊆ t and
t/Ki ⊆ t. This latter definition clearly makes the Ki secondarily reflexive for i ∈ A2. We ensure
seriality by adding a clause to the definition of a state s seeming consistent:

4 For every agent i ∈ A2 there is a state t such that (s, t) ∈ Ki and for every agent i ∈ A1

there are states s′ and t such s �i s′ and (s′, t) ∈ Ki.

The proof now proceeds as before.

Proof of Theorem 3.4 forMelt
A : The argument here is essentially the same as forMrst

A . Just
note that using the oracle O′ we can determine the members of B within the appropriate time
bound and so compute ϕσ4 as required.

We now turn our attention to proving Theorem 3.1 for Melt
A . The basic structure is the

same as for Mrst
A .

Lemma 4.21: The mapping σ4 (when viewed as a map with domain 2A) is injective on G̃nϕ.

Let (KD45CG )A1+A2 consist of the axioms in KC
G together with K3, E4, E7, and every instance

of K4 and K5 for i ∈ A1. We write (KD45CG )A1+A2 `ϕ ψ if there is a proof of ψ in (KD45CG )A1+A2

using only the modal operators that appear in ϕ and Ki for i ∈ A1.

Lemma 4.22: If A is finite and ϕ ∈ LCG is valid with respect toMelt
A1+A2

, then (KD45CG )A1+A2 `ϕ
ϕ.

Proof: The proof is similar to that of Lemma 4.18 for Mrst
A . Again we must check that all

states eliminated in the construction are provably inconsistent, but now using the axioms of
(KD45CG )A1+A2 and the modified definition of the Ki relations, and dealing with the additional
clause in the definition of seeming consistent.

The argument for the first condition for seeming consistent is the same as that forMrst
A .

Before dealing with the second condition, we prove a fact that will also be useful in dealing
with the fourth condition. Let Ti = {t ∈ Sji : (t, t) ∈ Ki}. It is easy to see that

if t ∈ Sji − Ti, then (KD45CG )A1+A2 `ϕ ϕs ⇒ EG¬ϕt for some G such that i ∈ G. (13)

For if t ∈ Sji − Ti, then there exists EGθ ∈ t such that i ∈ G and ¬θ ∈ t. But then (EGθ ⇒
θ) ⇒ ¬ϕt is propositionally valid (and so provable by Prop). Since (KD45CG )A1+A2 `ϕ ϕs ⇒
EG(EGθ ⇒ θ), we can easily obtain (13) using (4).

Now suppose that s is eliminated because it does not satisfy the second condition for seeming
consistent. As in the proof of Lemma 4.18, it suffices to show that for each extension ~s ∈ EX(s),
there is a formula ¬EGψ ∈ s such (S5CG )A1+A2 `ϕ ϕ~s ⇒ EGψ. So fix an extension ~s =
(s1, . . . , sm) ∈ EX(s) and choose the formula ¬EGψ ∈ s that causes the violation of the second
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condition for (s1, . . . , sm). It again suffices to show that for each i ∈ G and t ∈ Sji such such that
¬ψ ∈ t, there is a set Gi,t of agents containing i such that (KD45CG)A1+A2 `ϕ ϕ~s ⇒ EGi,t¬ϕt.
First suppose that i ∈ A2. If (s, t) /∈ Ki because s/Ki 6⊆ t then the argument given in Lemma 4.7
works to get a Gi,t as desired. If s/Ki ⊆ t but t/Ki 6⊆ t then the existence of the required
Gi,t is immediate from (13). Now suppose i ∈ A1. Then, because s does not satisfy the second
condition of seeming consistent, we have (si, t) /∈ Ki. If s/Ki 6⊆ t, then there is some formula
θ such that Kiθ ∈ si and ¬θ ∈ t; it easily follows that (KD45CG )A1+A2 `ϕ ϕ~s ⇒ Ki¬ϕt, as
required. If {Kiθ : Kiθ ∈ s} 6⊆ t, then there is some θ such that Kiθ ∈ s but ¬Kiθ ∈ t; the
result now easily follows using K4, just as in the argument for (S4CG )A1+A2 . If both of these
conditions hold (but still (si, t) /∈ Ki), then it must be that there is a θ with Kiθ ∈ t and
Kiθ /∈ s. In this case ¬Kiθ ∈ s, and the result follows using K5, just as in the argument for
(S5CG )A1+A2 .

The argument in the case that s is eliminated because it does not satisfy the third condition
for seeming consistent is the same as in the proof of Lemma 4.18.

Finally, suppose that s does not satisfy the new (fourth) condition of seeming consistent.
Then either

• there is an i ∈ A2 for which there is no t with (s, t) ∈ Ki or

• there is an i ∈ A1 for which there is no pair s′, t such that s �i s′ and (s′, t) ∈ Ki.

For the first case, for each t ∈ Ti, it must be the case that s/Ki 6⊆ t, so that there must be
some Gi,t with i ∈ Gi,t such that (KD45CG )A1+A2 ` ϕs ⇒ EGi,t¬ϕt, as usual. By (13), for each
t ∈ Sji − Ti, there is some Gi,t with i ∈ Gi,t such that (KD45CG )A1+A2 `ϕ ϕs ⇒ EGi,t¬ϕt. Thus,
(KD45CG )A1+A2 `ϕ ϕs ⇒ ∧t∈SjEGi,t¬ϕt. But since (KD45CG )A1+A2 `ϕ ¬(∧t∈Sj¬ϕt) by induc-
tion and propositional reasoning, it follows from E7 that (KD45CG )A1+A2 `ϕ ¬(∧t∈SjEGi,t¬ϕt).
Thus we get (KD45CG )A1+A2 `ϕ ¬ϕs, as desired.

For the second case, we know as in the proof of Lemma 4.18 that ϕs is provably equivalent
to the disjunction of ϕs′ for those s′ such that s �i s′ and similarly for any t. Thus to prove
(KD45CG )A1+A2 `ϕ ¬ϕs it suffices to prove (KD45CG )A1+A2 `ϕ ¬ϕs′ for every s′ ∈ Sji such that
s �i s′. For each such s′ we know that there is no t′ ∈ Sji such that (s′, t′) ∈ Ki. Given s′, if
t′ ∈ Sji and (s′, t′) /∈ Ki, then the same argument as in the proof of Lemma 4.18 shows that
(KD45CG )A1+A2 `ϕ ϕs′ ⇒ Ki¬ϕt′ , since the Ki relations are defined the same way for agents in
A1 in both theMelt

A andMrst
A cases, and the proof in Lemma 4.18 used only axioms K4 and K5

(as well as Prop, K1, and MP), and these axioms are in both (S5CG )A1+A2 and (KD45CG )A1+A2 .
By (3), we have that (KD45CG )A1+A2 ` ϕs′ ⇒ Ki(∧t′∈Sj

i
¬ϕt′). Since (KD45CG )A1+A2 `ϕ

(∧
t′∈Sj

i
¬ϕt′)⇒ false by induction and propositional reasoning, we conclude that (KD45CG )A1+A2

`ϕ ϕs′ ⇒ Kifalse. Now using K3, we get (KD45CG )A1+A2 `ϕ ¬ϕs′ , as desired.

Proof of Theorem 3.1 for Melt
A : The proof follows as for Mrt

A using the analogous lemmas
proved above for Melt

A . We must just show that E7 is derivable from the other axioms in
KD45CG . Suppose that i ∈ G1 ∩ . . . ∩ Gk. Then, using E1, KD45CG ` EG1ϕ1 ∧ . . . ∧ EGk

ϕk ⇒
Kiϕ1 ∧ . . . ∧Kiϕk. By (3), we have KD45CG ` Kiϕ1 ∧ . . . ∧Kiϕk ⇒ Ki(ϕ1 ∧ . . . ∧ ϕk). Thus,
KD45CG ` ¬Ki(ϕ1∧ . . .∧ϕk)⇒ ¬(EG1ϕ1∧ . . .∧EGk

ϕk). It thus suffices to show that in KD45CG ,
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from ¬(ϕ1 ∧ . . .∧ϕk) we can infer ¬Ki(ϕ∧ . . .∧ϕk). But since ¬(ϕ1 ∧ . . .∧ϕk) is equivalent to
(ϕ1 ∧ . . . ϕk)⇒ false, this follows easily using (4) and K3.

4.5 The complexity of querying the oracles

Up to now we have assumed that we are charged one for each query to an oracle. In this
section, we reconsider our results, trying to take into account more explicitly the cost of the
oracle queries.

Let f(m, k) be the worst-case time complexity of deciding whether a set with description
G ∈ ĜmA such that l(G) ≤ k has cardinality greater than m′ for each m′ ≤ m (where we take
the worst case over all G ∈ ĜmA such that l(G) ≤ k and over all m′ ≤ m). Let g(k) to be the
worst-case complexity of deciding if G1 ∩ . . . ∩ Gk = ∅ for G1, . . . , Gk ∈ GA. We take f(m, k)
(resp., g(k)) to be ∞ if these questions are undecidable. We can think of f(m, k) (resp., g(k))
as the worst-case cost of querying the oracle Om (resp., O′) on a set with a description of length
≤ k.

Using these definitions, we can sharpen Theorem 3.4 as follows.

Theorem 4.23: There is a constant c > 0 and an algorithm that decides if a formula ϕ ∈ LCG
is satisfiable in MA (resp., Mr

A, Mrt
A, Mrst

A , Melt
A ) and runs in time 2c|ϕ|f(0, |ϕ|) (resp.,

2c|ϕ|f(0, |ϕ|), 2c|ϕ|f(1, 2c|ϕ|
2
), 2c|ϕ|f(|ϕ|, 2c|ϕ|2), 2c|ϕ|(f(|ϕ|, 2c|ϕ|2) + g(|ϕ|))) Moreover, if G con-

tains a subset with at least two elements, then there exists a constant d > 0 such that every
algorithm for deciding the satisfiability of formulas in MA (resp., Mr

A, Mrt
A, Mrst

A , Melt
A )

runs in time at least max(2d|ϕ|, f(0, d|ϕ|)) (resp., (max(2d|ϕ|, f(0, d|ϕ|)), max(2d|ϕ|, f(1, d|ϕ|)),
max(2d|ϕ|, f(d|ϕ|, d|ϕ|)), max(2d|ϕ|, f(d|ϕ|, d|ϕ|), g(d|ϕ|))) for infinitely many formulas ϕ.

Proof: The upper bound is almost immediate from the proof of Theorem 3.4. The only point
that needs discussion is the second argument—2c|ϕ|

2
—of f in the cases Mrt

A, Mrst
A , and Melt

A .
This follows from Lemma 4.11. An easy induction on i shows that the sets in the set E |ϕ|i
constructed just before Lemma 4.11 have description length at most ≤ 22i|ϕ| (using the fact
that |E |ϕ|i | ≤ 2|ϕ| for all i). Thus, all the sets that we need to deal with have description length
≤ 22|ϕ|2 , since they are all in E |ϕ||ϕ| , by Lemma 4.11(e).

The lower bound is immediate from the results of [HM92] and Proposition 3.3.

Note that if f0(k) = f(0, k) is well behaved, in that there exist c′, k0 such that f0(k) ≤ 2c
′k

for all k ≥ k0 or f0(k) ≥ 2c
′k for all k ≥ k0, then it is easy to see that there is some c′′ > 0 such

that 2c|ϕ|f(0, |ϕ|) ≤ max(2c
′′|ϕ|, c′′f(0, |ϕ|)). Thus, if f0 is well behaved, then the lower and

upper bounds of Theorem 3.4 match, and we have tight bounds in the case of MA and Mr
A.

This is not the case forMrt
A,Mrst

A , andMelt
A , because the sets that arise have exponential-length

descriptions.
Do we really have to answer queries about such complicated formulas if we are to deal with

Mrt
A, Mrst

A , and Melt
A ? To some extent, this is an artifact of our insistence that the sets be

described using union and set difference. In fact, all the sets that we need to consult the oracle
about in our algorithm are atoms, and so have very simple descriptions (O(|ϕ|)) if we are allowed
to used intersections and complementation. Indeed, suppose that we define an ordering ≺ on
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atoms such that AH ≺ AH′ if H ⊃ H′. It follows easily from Lemma 4.3 and Lemma 4.4 that in
order to compute σ2(G) (resp., σ3(G), σ4(G)), we start by considering all atoms AH such that
G appears positively in AH and all other sets in Gϕ appear negatively; we then need to check
whether |AH| > 0 and |AH| > 1 (resp., |AH| > 0, . . . , and |AH| > |ϕ|) only for those atoms AH
such that for all H′ ≺ H, we have |AH′ | ≤ 1 (resp., |AH′ | ≤ |ϕ|). (In addition, in the case of
σ4, we have also have to check whether G1 ∩ . . .∩Gk = ∅, but again, these are sets with simple
descriptions if we allow intersection.) Thus, as long as we can check the required properties
of sets described in terms of intersection and complementation relatively efficiently, then the
queries to the oracle pose no problem. Unfortunately, the bounds in Proposition 3.3 depend
on the descriptions involving only set difference and union, so we cannot get tight bounds for
Theorem 3.4 (at least, with our current techniques) using descriptions that involve intersection
and complementation. It remains an open question whether we can get tight bounds in all cases
taking into account the cost of querying the oracle.

5 Conclusions

We have characterized the complexity of satisfiability for epistemic logics when the set of agents
is infinite. Our results emphasize the importance of how the sets of agents are described and
provide new information even in the case where the sets involved are finite.

In this paper we have focused on a language that has operators EG and CG. There are two
interesting directions to consider extending our results.

• We could restrict the language so that it has only EG operators. If the set of agents is
finite (and all sets G are presented in such a way that it is easy to check if i ∈ G), then
there are well-known results that show the complexity of the decision problem in this case
is PSPACE complete [HM92]. However, again, this result counts EG as having length
|G|. Although we have not checked details, it seems relatively straightforward to combine
the techniques of [HM92] with those presented here to get PSPACE completeness for LEG ,
taking EG to have length 1, using the same types of oracle calls as in Theorem 3.4. (Note
that Proposition 3.3 applies to the language LEG ; we did not use the CG operators in this
proof.)

• We could add the distributed knowledge operator DG to the language [FHMV95, FHV92,
HM92]. Roughly speaking, ϕ is distributed knowledge if the agents could figure out that
ϕ is true by pooling their knowledge together. Formally, we have

(M, s) |= DGϕ if (M, t) |= ϕ for all t ∈ ∩i∈GKi(s).

It is known that if A is finite (and there is no difficulty in telling if i ∈ G), then adding
DG to the language poses no essential new difficulties [FHMV95, HM92]. We can get
a complete axiomatization, the satisfiability problem for the language with DG and EG
operators is PSPACE complete, and once we add common knowledge, the satisfiabil-
ity problem becomes exponential-time complete. Once we allow infinitely many agents,
adding DG introduces new subtleties. For example, even if we place no assumptions on the
Ki relations, once we have both EG and DG in the language, we need to be able to distin-
guish between sets of cardinality one and those with larger cardinality since EGp⇔ DGp
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is valid if and only if G is a singleton. New issues also arise once we make further as-
sumptions about the Ki relations because different properties are preserved for the new
agents, say KAD and KAE , which are to be added on as in Proposition 3.5 to represent
DA and EA, respectively. Intuitively, KAE corresponds to the union of the relations Ki

for i ∈ G while KAD corresponds to their intersection. Thus, while both KAD and KAE

inherit reflexivity and symmetry from the Ki relations, KAD inherits transitivity and the
Euclidean property while KAE does not. There are also additional relations between these
agents that must be taken into account. Examples in S4 and S5 include KAEϕ⇒ KADϕ,
KAEKADϕ⇒ KAEϕ and KADKAEϕ⇒ KAEϕ.

These are issues for future work.

Acknowledgment: We thank an anonymous referee for his/her many detailed and useful
comments on a previous version of this paper.
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