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Abstract

We a¢ rm a conjecture of Sacks [1972] by showing that every countable distrib-
utive lattice is isomorphic to an initial segment of the hyperdegrees, Dh. In fact,
we prove that every sublattice of any hyperarithmetic lattice (and so, in particular,
every countable, locally �nite lattice) is isomorphic to an initial segment of Dh.
Corollaries include the decidability of the two quanti�er theory of Dh and the un-
decidability of its three quanti�er theory. The key tool in the proof is a new lattice
representation theorem that provides a notion of forcing for which we can prove
a version of the fusion lemma in the hyperarithmetic setting and so the preserva-
tion of !CK1 . Somewhat surprisingly, the set theoretic analog of this forcing does
not preserve !1. On the other hand, we construct countable lattices that are not
isomorphic to any initial segment of Dh.

1 Introduction

Given a notion of relative computability or complexity �r on sets A (of natural num-
bers) or functions f (from ! to !) the corresponding degree structure Dr consists of the
equivalence classes degr(A) (degr(f)) of mutually computable sets (functions) with the
ordering induced by the given reducibility �r. These classes are called the r-degrees. The
classic example is Turing computability, Turing reducibility �T and the Turing degrees
but many others have been studied ranging from polynomial-time to constructibility.
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The �rst level of the sca¤olding on which our understanding of such degree structures is
built provides an analysis of the partial orders that can be embedded in them.

For the Turing degrees the story begins with Kleene and Post [1954] who proved that
every countable partial order can be embedded in DT . They used �nite approximation
methods that today would be called Cohen forcing in arithmetic. Stronger results about
embedding uncountable partial orders were proven, for example, by Sacks [1963] but the
full question of whether every partial order of size 2@0 with fxjx � zg countable for every
z can be embedded in DT remains open. Nonetheless, the countable case is more than
enough to decide all one quanti�er sentences of hDT ;�T i as being true if and only if
consistent with the axioms of partial orders.

The next level of analysis deals with extension of embedding questions such as den-
sity or minimality and, more generally, questions about when a given realization of a
partial order in Dr can be extended to a speci�ed larger partial order. In DT , the long
journey along this road began with Spector�s [1956] construction of a minimal degree.
His method can be viewed as using full binary trees in place of �nite characteristic func-
tions for the approximations to the desired set. These methods were greatly extended
by many researchers to embed more and more lattices as initial segments of DT . We
mention a few of the key steps: Lachlan [1968] showed that every countable distributive
lattice is isomorphic to an initial segment of DT (and so that its theory is undecidable);
Lerman [1971] did the same for all �nite lattices; Lachlan and Lebeuf [1976] for countable
uppersemilattices (usls) and Abraham and Shore [1986] for all usls of size @1. (Groszek
and Slaman [1983] show that it is consistent with ZFC that there are lattices of size
@2 � 2@0 with fxjx � zg countable for every z that can not be embedded in DT as initial
segments.) The embedding methods in the countable situations involve approximations
by more and more complicated types of trees whose shape is tied to a series of represen-
tation theorems for (uppersemi)lattices. The uncountable ones need, in addition, some
set theoretic techniques.

At this level of our sca¤olding, Lerman�s [1971] result on embedding �nite lattices
shows that the three quanti�er theory of DT is undecidable (Schmerl, see Lerman [1983]).
Coupled with the methods of Kleene and Post [1954], it also su¢ ces to establish the
decidability of the two quanti�er theory of this structure (Shore [1978] and Lerman
[1983, VII.4]). The case of countable recursive lattices su¢ ces (Miller, Nies and Shore
[2004]) to show the undecidability of the two quanti�er theory in the language extended
by symbols for both join and in�mum with the understanding that the result applies to
any total extension of the in�mum relation on DT which, by Kleene and Post [1954], is
not a lattice. (This proof also supplies another one for the undecidability of the three
quanti�er theory in the language with just �T .)
The same results on embedding as partial orderings and initial segments, and so the

corresponding applications to the analysis of their theories, can be proved by quite anal-
ogous types of constructions (Cohen and perfect tree forcing) for a range of reducibilities
from truth table to arithmetic, A �a B , A �T B(n) for some n 2 !, (see e.g. Fefer-
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man [1965], Nerode and Shore [1980], Odifreddi [1983], M. Simpson [1985]). When one
moves from the realm of recursion theory and the natural numbers to set theory and the
ordinals, new issues arise.

If we look, for example, at relative constructibility (A �c B , A 2 L[B] forA;B � !)
and the constructibility degrees, Dc, of subsets of !, we are faced with the new problem
of preserving !1 in our forcing extensions. For Cohen forcing this was part of Cohen�s
seminal results and one can carry over (under suitable set theoretic hypotheses which we
ignore here) the partial order embedding (Cohen [1966]) and related results to �c with
little di¢ culty (see, e.g. Balcar and Hajek [1978], Farrington [1983], [1984] and Abraham
and Shore [1986a]). Our ability to preserve !1 for perfect forcing is due to Sacks [1971]
and is based on what he calls the fusion lemma. It enabled Sacks [1971] to prove the
existence of a minimal degree of constructibility.

The next major steps towards determining the initial segments of Dc were taken by
Adamowicz who proved �rst [1976] that all �nite lattices can be embedded as initial
segments of Dc and then [1977] that all countable constructible well founded usls can
be so embedded. The extra assumptions Adamowicz needed for her proof turned out
to be to some extent necessary. Abraham and Shore [1986a] showed that not every
countable well founded distributive lattice is isomorphic to an initial segment of Dc.
The crucial fact here is that the relation �c is itself constructible and so one can get
the result by coding nonconstructible sets in distributive lattices. Even if we restrict
attention to constructible lattices, some remnants of the well-foundedness assumption
remain necessary. Lubarsky [1987] proved that every countable lattice isomorphic to
an initial segment of Dc is complete. On the positive side, the best results are those
of Groszek and Shore [1988] that every countable (dual) algebraic lattice L (i.e. L is
complete and generated by its compact elements x for which ^I � x implies that there is
a �nite F � I such that ^F � x, for every I � L) is isomorphic to an initial segment of
Dc. (There is new interesting work, however, by Dorais [2007] on the c-degrees of subsets
of @1 produced by forcing with Souslin trees instead of countable perfect trees.)
Our concern in this paper is a reducibility and degree notion lying between that of

arithmetic and constructible: the hyperarithmetic degrees Dh. For Turing reducibility
and DT and arithmetic reducibility and Da, the setting is �rst order arithmetic and the
natural numbers or !. For set theory, we have relative constructibility and !1. Our
setting is second order arithmetic and !CK1 , the �rst nonrecursive ordinal. It takes the
place of !1, the �rst uncountable ordinal, as its e¤ective analog. We say that A is
hyperarithmetic in B, A �h B, if A �T B(�) for some ordinal � < !B1 , i.e. the order
type of � has a representative recursive in B. Here B(�) is the �th iterate of the Turing
jump applied to B where e¤ective (in B) unions are taken at limit levels . For another
view, note that Kleene showed (see Sacks [1990, II.1-2]) that A �h B if and only if A is
�1
1(B).

In this setting, Feferman [1965] (see also Sacks [1990]) introduced a rami�ed language
for second order arithmetic and the appropriate notion of Cohen forcing. He proved
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(among other results) that every countable partial order is embeddable in Dh (even below
the hyperarithmetic degree of Kleene�s O, the complete �11 set). Some extensions and
related results using Cohen forcing are in Thomason [1967] and [1969] and also Odifreddi
[1983a]. The crucial fact needed is the preservation of !CK1 , i.e. if G is Cohen generic
in this setting then !G1 = !

CK
1 . (This turns out to be equivalent to �1

1-comprehension
holding in the generic extension.)

One can also adapt perfect forcing to this setting to construct a minimal hyperdegree
(Gandy and Sacks [1967] or with more detailed exposition and explanation Sacks [1971]
or [1990]). Again the crucial issue is the preservation of !CK1 (or �1

1-comprehension) by
a fusion lemma (see §3 below). Here delicate de�nability issues and the theory of �11 sets
play a role not seen in either the arithmetic or set theoretic settings. In contrast to all
the other degree structures discussed so far, almost nothing more has been known about
initial segments of Dh.
Thomason [1970] proved that every �nite distributive lattice is isomorphic to an initial

segment of Dh and there matters stood. In his review of this paper, Sacks [1972] writes
as follows:

�He raises a methodologically interesting open question: is every countable distribu-
tive lattice isomorphic to an initial segment of hyperdegrees? The answer (according to
the reviewer) is probably yes, but (as the author points out) the method of the paper
does not su¢ ce to prove it.�

Now in 1970 Lerman�s methods for handling nondistributive lattices were not yet
available but for the distributive ones there was as much available then as now. Thus
the methodological issues were not about the initial segment constructions as used in DT
but rather about making the analog of the fusion lemma work in more general settings.
Constructing embeddings of in�nite lattices required (even in the later Turing degree
constructions) imposing more and more restrictions on the trees as the construction
progressed (often using �nite approximations to the lattice to guide them). This type of
forcing condition is not amenable to the arguments for the fusion lemma as the nature
of the conditions change as more elements of the lattice are considered and so fusing
an in�nite sequence of such conditions produces a tree that is not a condition. The
argument for the constructibility degrees gets around this problem by restricting attention
to constructible lattices so that the entire lattice can be treated at once and so uses trees
of a single shape just with branchings that grow to match the uniformly constructible
approximations to the given lattice. One can then prove the set theoretic fusion lemma
to preserve !1 much as for binary trees.

This approach would work for the hyperdegrees as well but would be restricted to
(dual) algebraic hyperarithmetical lattices and so, of course, it would not su¢ ce to embed
all the distributive lattices. Now for the constructibility degrees some such restrictions
were necessary and not all countable distributive lattices (or even linear orders) are iso-
morphic to initial segments of Dc. This analogy makes it seem less likely that Sacks�s
conjecture about the initial segments of Dh is true especially since all the available tech-

4



niques seem to be quite similar.

One thus turns to �nding counterexamples. The crucial fact used both in the �rst
examples of distributive lattices not isomorphic to initial segments of Dc and in the later
proofs of the necessity of completeness was that �c is itself a constructible relation. For
the Turing degrees, �T is far from recursive: it is only a �03 relation. The hyperdegrees lie
in between (in this sense as well) as �h is a �11 relation and so analogous to �01 or r.e. ones
in the setting of the Turing degrees. (A �h B if and only if both A and its complement
are �11 in B.) Thus the construction of even the basic counterexamples requires more
delicacy. We here use the methods of �nitely generated successor models introduced in
Shore [1981] and used in the setting of Dh in Shore [2007], [2008] to prove Slaman and
Woodin�s result that Dh is rigid and biinterpretable with second order arithmetic by
purely degree theoretic arguments that work locally (in jump ideals) rather than just in
Dh as a whole.
As every initial segment of Dh (or any of our degree structures) has a least element we

assume that all (upper or lower semi)lattices have a least element 0. As we only consider
countable lattices, we also consider only (upper or lower semi)lattices with a greatest
element, 1, as well. We think of both 0 and 1 as named by constants in the language and
so are preserved under substructures and extensions, even as upper or lower semilattices.

Theorem 1.1. Not every countable lattice is isomorphic to an initial segment of the
hyperdegrees.

Proof. Shore [2007, §2] and [2008, §2-3] present a method for taking any set X and
constructing a lattice LX such that if f is an embedding of LX intoDh thenX �h f(0LX ).
Thus if we take X to be, for example, Kleene�s O or any nonhyperarithmetic set, any
embedding f of LX as an initial segment of Dh would contradict the assumption that X
is not hyperarithmetic.

We defer a more detailed explanation of this coding method to §6 where we need an
elaboration for a �ner result. For now it su¢ ces to state that the lattices constructed
contain �nitely many elements which generate (using _ and ^) a sequence of incompa-
rable elements of type ! and other parameters that de�ne the subsets of this sequence
corresponding to X and its complement. Moreover, the recovery procedure producing X
(and its complement) is positively �01 in the partial order relation and join operator of
the lattice and so �11 (and so �

1
1) in (by an additional trick) the bottom (and not just

top) set of any embedding. Thus these lattices have two seemingly crucial properties
that would lead to our contradiction if they could be realized as initial segments of Dh.
The �rst is that the lattice is not hyperarithmetic. This is analogous to the �rst exam-
ples in Dc except that the coding is more delicate and survives �h being only �11 rather
than hyperarithmetic. On the other hand, this same di¤erence makes the direct coding
methods into distributive lattices used for Dc unavailable in Dh. The second aspect of
the argument is that the coding (of nonhyperarithmetic information) used here seems to
rely on the fact that it is �nitely generated as it uses the generators as parameters in the
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decoding. This type of coding cannot be carried out in distributive lattices as they are
all locally �nite lattices: every �nite subset generates a �nite sublattice. This obstacle to
constructing counterexamples then revives the possibility of verifying Sacks�s conjecture
for distributive lattices.
In fact, we prove that both of these properties (nonhyperarithmetic and not locally

�nite) are necessary for a countable lattice not to be isomorphic to an initial segment of
Dh. Perhaps surprisingly, we provide a common generalization of a lattice being either
hyperarithmetic or locally �nite.

Theorem 1.2. Every sublattice K of any hyperarithmetic lattice L is isomorphic to an
initial segment of the hyperdegrees. In fact, it can be realized as an initial segment with
top a hyperdegree below that of O �K.

To see that this is indeed the desired common generalization we need to show that
every countable locally �nite lattice is isomorphic to a sublattice of a hyperarithmetic
lattice.

Proposition 1.3. There is a recursive, universal, locally �nite lattice, i.e. a recursive,
locally �nite lattice into which every countable, locally �nite lattice can be embedded.

Proof. With the proper organization of the requirements, the standard Fraissé construc-
tion (as in Hodges [1993, 7.1.2] produces the desired lattice once one has the amalgama-
tion property for the class of �nite lattices.

Lemma 1.4. The class of �nite lattices (with 0 and 1) has the amalgamation property,
i.e. if A, B0 and B1 are �nite lattices and f0; f1 are embeddings of A into B0 and B1,
respectively, then there is a �nite lattice C and embeddings g0 and g1 of B0 and B1,
respectively, into C such that g0f0 � A = g1f1 � A.

Proof. This should be a known fact but we have not found a reference to the precise form
of the amalgamation property that we need. We supply a proof at the end of §5.

As we mentioned above, every distributive lattice is locally �nite (this is well known
and follows easily from the Stone Representation Theorem (see e.g. Grätzer [2003, p.
85]) that it is isomorphic to a ring of sets). Thus we have our answer to the original
question of Thomason [1970] and Sacks [1972].

Corollary 1.5. Every countable locally �nite and so, in particular, every countable dis-
tributive lattice is isomorphic to an initial segment of the hyperdegrees.

These results also allow us to establish the same �ne line between decidability and
undecidability in the fragments of the theory of Dh as one has for DT .

Theorem 1.6. The two quanti�er theory of Dh is decidable while the three quanti�er
theory is undecidable as is the two quanti�er theory in the language with both _ and ^
where ^ denotes any total extension of the in�mum relation.
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Proof. The proofs for the �rst two assertions in DT (see Lerman [1983 VII.4, II.4.11 and
A.2.9] although some minor corrections are needed) rely only on two facts. First, the
structure is an usl with 0 in which all �nite lattices can be embedded as initial segments.
Second, it requires a Kleene-Post type extension of embedding theorem: Given any �nite
usl P extended as a partial order by a �nite Q and any embedding of P into DT there is
an extension of the embedding to one of Q as long as Q respects the usl structure of P
and has no new elements below any of those in P . Our results supply the �rst fact. Cohen
forcing in the hyperarithmetic setting supplies the second. (The required extension of the
given embedding can easily be constructed from a set of hyperdegrees independent over
all the given degrees in the image of P as in the standard construction of an embedding
of an arbitrary partial order. Such independent degrees are given by the columns of a
Cohen generic set (in the hyperarithmetic sense) by relativizing Feferman [1965] to the
top given degree.) The �nal undecidability result needs only that all recursive lattices
are isomorphic to initial segments as in Miller, Nies and Shore [2003, Cor. 3.2].

The crucial aspect of our version of perfect trees (and associated forcing notion)
that allows us to prove the required fusion lemma is a type of forgetfulness property
(Proposition 3.2). We will use pairs consisting of trees T and a �nite sublowersemilattice
(slsl) K̂ of L. The shape of the tree is determined in advance by a type of sequential
usl representation for L and the second component indicates the congruence relations
that must be respected in all further re�nements. (All these notions are made precise
in §2.) What goes wrong in a naive attempt to transfer the methods of either DT or
Dc is the variation in the congruences that must be respected. Our forcing will have
the property that if some condition forces a sentence of a certain form then the second
component is irrelevant and so can be made the same in all the extensions needed in the
fusion lemma. While this may seem unlikely, it is possible once one has proven a new
lattice representation theorem (Theorem 5.1). Its construction takes into account various
requirements for all sublattices at every step. The full lattice structure is exploited here
by using a slsl decomposition of L and usl representations for the slsls. (The slsls are
actually lattices as they are �nite although with elements having possibly di¤erent joins
than in all of L.)
While all of this could have been done in the setting of DT (and actually gives some

simpli�ed proofs for various cases) no new theorems, of course, can be proven this way.
On the other hand, given the known counterexamples in Dc, it is clear that the methods
cannot carry over to that setting. Surprisingly, all the recursion theoretic arguments can
be carried over and all the uses of fusion other than to preserve !CK1 can be avoided.
(Those used to show that deciding each sentence is dense are, of course, unnecessary.
Those to convert reductions to ones resembling Turing ones can be replaced by local
Cohen forcing inside the tree parts of the conditions.) Thus it must be that the forcing
notion in the set theoretic case analogous to ours, but using constructible trees instead
of hyperarithmetic ones, fails to preserve !1 despite the fact that ours preserves !CK1 .

Before beginning the detailed proofs of our results, we also want to make a comment
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on the coding methods used. While early results using codings in degree structures in
general (and later ones for Dc) used distributive lattices, later stronger ones have all used
nondistributive ones. It turns out that we now have a formal proof of the necessity of
moving to nondistributive lattices to get the best results. While one can code arbitrary
sets into distributive lattices (e.g. by the venerable lines and diamonds method) the
decoding takes a number of quanti�ers. In degree structures, however, while join is an
e¤ective operation (on indices) meet is not and requires extra quanti�ers. Thus to get
the best possible results one wants a coding for which the decoding is r.e. in only � and
_ (with only positive occurrences of � as negative ones also add to the complexity). This
is the type of coding used in the many applications of e¤ective successor models from
Shore [1981] to [2008]. As explicitly stated in Shore [2007] and [2008] one has a recursive
sequence �n of positive �1 formulas in � and _ such that given any set X there is a
countable lattice LX (even one recursive in X) such that n 2 X , LX j= �n. Our results
show that there is no such coding procedure in distributive lattices. Indeed, there is an
X (actually the complement of O) such that there is no hyperarithmetic sequence �n of
positive �1 formulas in � and _ and no distributive (or even locally �nite) countable
lattice LX such that n 2 X , LX j= �n. To see this, suppose there were such an L.
Take an embedding of L as an initial segment of Dh with top the degree of some G.
As �h and _ are �11(G) on (the indices of) the initial segment of Dh below degh(G),
X, the complement of O would be �11 in G and so O would be hyperarithmetic in G
but the hyperdegrees below O do not form a lattice. On the other hand, our coding in
Proposition 6.2 shows that there is a recursive sequence �n such that given any X we
can �nd an usl KX which is a susl of a locally �nite lattice LX (each recursive in X) such
that n 2 X , KX j= �n. In a slightly di¤erent vein, it seems that using the coding in
distributive lattices found in Selivanov [1988] one can code arbitrary sets into distributive
lattices in this way if one gives up the requirement that the sentences �n are positive.
(Of course, this would increase the absolute complexity of the decoding procedure for DT
or Dh.)
Our plan now is to present the de�nitions of usl representations and our forcing notion

in §2. We also prove some basic facts and state the representation theorem we need. The
actual proof of the theorem we need is given in §5. The crucial fusion lemma is proven
in §3 while the lemmas needed for the construction of our generic sequence and the
veri�cations that it gives the desired initial segment of Dh are in §4. Finally, we close in
§6 with a discussion of the situation for countable usl initial segments of Dh and various
open questions.

2 Usl representations and the notion of forcing

We are given a hyperarithmetic lattice L and a sublattice K (both with the same 0 and
1). We begin our journey to the required notion of forcing with the de�nition of an
uppersemilattice (usl) representation.
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De�nition 2.1. Let � be a set of maps from an usl L into !. For �; � 2 � and x 2 L,
we write � �x � (� is congruent to � modulo x) if �(x) = �(x). We write � �x;y �
to indicate that � is congruent to � modulo both x and y and generally use commas
conjunctively in this way. Such a � is an usl representation of L if it contains the
function that is 0 on every input and for every �; � 2 � and x; y; z 2 L the following
properties hold:

1. �(0) = 0.

2. (Di¤erentiation) If x � y then there are 
; � 2 � such that 
 �y � but 
 6�x �.

3. (Order) If x � y and � �y � then � �x �.

4. (Join) If x _ y = z and � �x;y � then � �z �.

Notation 2.2. If � is an usl representation for L and L̂ � L then we denote the
restriction of � to L̂ by � � L̂ = f� � L̂j� 2 �g. We also say that � is an extension of
� � L̂.

For those familiar with lattice representations as presented in lattice theory we note
that these representations (with the additional requirements for in�mum given below
in Theorem 5.1 (2)) essentially correspond to ones of the dual lattice by equivalence
relations. If the reader prefers to think in terms of equivalence relations on a set then the
set is �, the relation that corresponds to x 2 L is �x and, for � 2 �, its x-equivalence
class is determined by �(x). A further reduction making the set � into one of natural
numbers can be achieved by identifying the elements � of � with their values at the 1
of L (and so some natural number �(1)) as this uniquely determines all the values of
� by the order property. However, we �nd the functional notation convenient for the
construction of representations in §5.

De�nition 2.3. If�0 and� are usl representations for L0 and L, respectively, L̂ � L0 � L
and f : �0 ! �, then f is an L̂-homomorphism if, for all �; � 2 �0 and x 2 L̂,
� �x � ) f(�) �x f(�).

In §5 we will prove the existence of a special type of representation for our given
lattice L that we need to de�ne our forcing conditions.

Theorem 5.1. If L is a countable lattice, then there is an usl representation � of L
along with a nested sequence of �nite slsls Li starting with L0 = f0; 1g with union L and
a nested sequence of �nite subsets �i with union � with both sequences recursive in L
with the following properties:

1. For each i, �i � Li is an usl representation of Li.
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2. There are meet interpolants for �i in �i+1, i.e. if � �z �, x^y = z (with �; � 2 �i
and x; y; z 2 Li) then there are 
0; 
1; 
2 2 �i+1 such that � �x 
0 �y 
1 �x 
2 �y
�.

3. For every sublowersemilattice L̂ of Li, L̂ �lsl Li, there are homogeneity inter-
polants for �i with respect to L̂ in �i+1, i.e. for every �0; �1; �0; �1 2 �i such that
8w 2 L̂(�0 �w �1 ! �0 �w �1), there are 
0; 
1 2 �i+1 and L̂-homomorphisms
f; g; h : �i ! �i+1 such that f : �0; �1 7! �0; 
1, g : �0; �1 7! 
0; 
1 and
h : �0; �1 7! 
0; �1, i.e. f(�0) = �0, f(�1) = 
1 etc.

We point out that the presentations in Lerman [1983] and Lachlan and Lebeuf [1976]
are phrased in terms of there being only one element/two functions homogeneity inter-
polants instead of the two/three we required in our de�nition. One/two are not su¢ cient
in general and two/three are used in the original proof for �nite lattices in Lerman [1971]
and ones of size @1 in Abraham and Shore [1986]. In addition, we have changed the
de�nition of homogeneity interpolants from the one used in Lerman [1971] and elsewhere
in the literature by requiring that g : �0; �1 7�! 
0; 
1 (in place of 
1; 
0). This variation
is a di¤erent special case than Lerman�s of a more general de�nition introduced in Kjos-
Hanssen [2002], [2003]. (Kjos-Hanssen�s version allows a �nite sequence of interpolants

i and functions fi and is indi¤erent to order in that sense that it only requires that
ffi(�0); fi(�1)g = f
i; 
i+1g.) Adopting our version does not make the construction of
the required interpolants (Proposition 5.6) any more di¢ cult but makes our construction
of the crucial splitting trees in Proposition 4.7 considerably simpler than the previous
ones. (The same simpli�cation would carry over to DT and other degree structures.)
All the previous constructions proceed by using only susls and usl representations. We
have mixed in the full lattice structure by requiring the decomposition of L to be into
slsls instead while still using usl representations. We exploit the full lattice structure at
various points in our construction. We will see, moreover, in §6 that this use of the meet
structure of L is also necessary (in contrast to the situation in DT ). Given such Li and
�i we next need to de�ne the class of trees that will be eligible to be the �rst component
of our forcing conditions. Each of our trees will be a function from �nite strings to �nite
strings (of elements from the �i) with various properties.

De�nition 2.4. A tree T (for the sequence hLi;�ii) is a hyperarithmetic function such
that for some k 2 ! its domain is the empty string ; and all strings in the Cartesian
product

n=mQ
n=0

�k+n for each m 2 !. We denote this number k by k(T ). Moreover, for each

� 2 domT , T (�) 2
n=qQ
n=0

�n for some q � j�j�1. Moreover, T has the following properties
for all �; � 2 domT :

1. (Order) � � � ) T (�) � T (�).
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2. (Nonorder) �j� ) T (�)jT (�). In fact, we speci�cally require that, for every � 2
n=mQ
n=0

�k+n and � 2 �k+m+1, T (�^�) � T (�)^�. (We use j to denote incompatibility

of strings.)

3. (Uniformity) For every �xed length l there is, for each � 2 �k+l, a string �l;� so
that, for a given l, all the �l;� are of the same length independently of � and if
j�j = l then T (�^�) = T (�)^�l;�. (We use ^ to denote concatenation and confuse
a single symbol such as � with the string h�i of length one.) Note that by the
nonorder property (2), for �xed l and � 6= �, �l;� 6= �l;�, in fact, by our speci�c
requirement, �l;�(0) = �.

Thus our trees T have branchings of width j�k(T )+nj at level n and obey the usual
order and uniformity properties of those used in Lerman [1983] to prove initial segment
results for DT . Our de�nition of S being a subtree of T incorporates the (technically
convenient) requirement also used there that the branchings on S follow those on T . The
structure of the representations plays no essential role on the range side of our trees and
so, if desired, one could view our trees as maps into !<! by replacing elements � of the
representations by �(1), their values at top element of L, which determine � uniquely by
the order property (3) of De�nition 2.1.

De�nition 2.5. We say that a tree S is a subtree of a tree T , S � T , if k(S) � k(T )
and (8� 2 domS)(9� 2 domT )[S(�) = T (�)]. Note that by our speci�c imple-
mentation of the nonorder property for trees (De�nition 2.4(2)), we also have that
(8� 2 �k(S)+j�j)(S(�^�) � T (�^�)).

We note two useful facts that illuminate the structure of subtrees.

Lemma 2.6. If S is a subtree of T then
1. (8� 2 �k(S)+j�j)(S(�^�) � T (�^�)) and
2. 8l9�l;�8�; �(j�j = l & S(�) = T (�) ! S(�^�) = T (�^�l;�) for � 2 �k(S)+l.

Proof. The �rst fact follows immediately from our speci�c implementation of the nonorder
property for trees (De�nition 2.4(2)). The second follows from the uniformity require-
ments (3) of De�nition 2.4 for S and T as well as property (2).

Transitivity of the subtree relation should be clear but a stronger claim is proven in
Proposition 2.9. We mention some speci�c operations on trees that we will need later.

De�nition 2.7. If T is a tree and � 2 domT then T� is de�ned by T�(�) = T (�^�).
Clearly, k(T�) = k(T ) + j�j and T� � T . Note that for � 2 domT and � 2 domT�,
(T�)� = T�^� . For a string � 2

n=qQ
n=0

�n with q � jT (;)j � 1, we let T � (the transfer tree

of T over �) be the tree such that, for every � 2 domT , T �(�) is the string gotten from
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T (�) by replacing its initial segment of length q + 1 (which is contained in T (;)) by �.
We write T �� for (T�)

�. Finally, if T is a tree with k(T ) = k and � 2 domT then we let
T �� = T� � domT . Clearly, k(T �� ) = k(T ) and T �� � T . Note that for � 2 domT and
� 2 domT �� , (T �� )�� = T ��^� .

A crucial notion for our constructions is that of preserving the congruences of speci�ed
slsls of our given lattice L.

De�nition 2.8. If L̂ is a �nite slsl of L we say that a subtree S of T preserves the
congruences of L̂, S �L̂ T , if L̂ � Lk(T ) and, whenever x 2 L̂, S(�) = T (�), � �x �,
S(�^�) = T (�^�) and S(�^�) = T (�^�), then � �x �. Here � and � are members of the
appropriate �i and � and � are sequences (necessarily of the same length m) of elements
from the appropriate �j�s. We say that such sequences � and � are congruent modulo
x, � �x �, if �(j) �x �(j) for each j < m.

Proposition 2.9. If R �L1 S �L2 T and then R �L1\L2 T .

Proof. To see that R � T note �rst that k(R) � k(S) � k(T ). Next suppose that
� 2 domR and � 2 �k(R)+j�j. As R � S we have a � such that R(�) = S(�) and
R(�^�) � S(�^�). As S � T we have a � such that S(�) = T (�) and S(�^�) � T (�^�).
Thus R(�) = T (�) and R(�^�) � T (�^�) as required. As for the preservation of L1 \L2
congruences, suppose R(�) = S(�) = T (�), x 2 L1\L2, �0; �1 2 �k(R)+j�j and �0 �x �1.
Let R(�^�i) = S(�^�i) = T (�^�i). As x 2 L1 and R �L1 S, �0 �x �1. As x 2 L2 and
S �L2 T it then follows by induction on the (by uniformity, necessarily common) length
of �i that �0 �x �1 as required.
The details of this induction follow. Write �i = �0i ^ � � � ^�si where S(�^�i(0) � � � ^�i(t)) =

T (�^�0i ^
���^�ti). Then inductively �0(j) �x �1(j) gives �

j
0 �x �

j
1. For j = 0 this follows

directly from De�nition 2.8. For the inductive step, consider, without loss of general-
ity, the case j = 1. We have S(�^�0(0)^�0(1)) = T (�^�

0
0^�

1
0) and S(�^�1(0)^�1(1)) =

T (�^�01^�
1
1). Consider S(�^�0(0)^�1(1)) = T (�^�00^�) for some �. By the uniformity

clause (3) of De�nition 2.4, there is a � such that S(�^�0(0)^�1(1)) = S(�^�0(0))^� and
S(�^�1(0)^�1(1)) = S(�^�1(0))^�. Thus T (�^�

0
0^�) = T (�^�00)^� and T (�^�

0
1^�

1
1) =

T (�^�01)^�. Again, by the uniformity clause and the uniqueness of the �l;� there (iterated
j�j times), � = �11. Finally, by De�nition 2.8 again, � �x �10 as �1(1) �x �0(1) and so
�11 �x �10 as required.

De�nition 2.10. Recall that K is an arbitrary sublattice of L (preserving 0 and 1). Our
notion of forcing PhLi;�ii;K = P is given �rst by letting the forcing conditions P be the
pairs hT; K̂i where T is a tree for hLi;�ii and K̂ is a �nite slsl of K\Lk(T ). We then say
that hT1;K1i extends or re�nes hT0;K0i, hT1;K1i �P hT0;K0i if T1 �K0 T0 and K1 � K0.
If P = hT; K̂i is a condition we let K(P ) = K̂, Tr(P ) = T and k(P ) = k(T ). If the
notion of forcing is �xed in some context we will often omit the subscript P in �P . We
sometimes abuse notation by identifying a condition P with Tr(P ) when K(P ) is �xed.
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Along these lines, for example, we use P�, P �� , P
� and P �� to stand for hTr(P )�; K(P )i,

hTr(P )��; K(P )i, hTr(P )� ; K(P )i and hTr(P )��; K(P )i, respectively. The top element of
P consists of the identity tree Id (which has k(Id) = 0) and the slsl L0 = f0; 1g.
Lemma 2.11. If T is a tree, � 2 domT and L̂ � Lk(T ), then T� �L̂ T . So if P = hT; K̂i
is a condition, then hT�; K̂i �P hT; K̂i (by letting L̂ = K̂). If �; � 2 domT are of the same
length and hS; K̂i � hT�; K̂i then hST (�); K̂i �P hT� ; K̂i. We also have that T T (�)� = T� .

Proof. The �rst assertions follow directly from the de�nitions. The last two follow from
the uniformity assumption on our trees.

It is easy to see that with trivial genericity requirements any generic �lter G determines
a function G 2

1Q
n=0

�n , i.e. a function on ! with G(n) 2 �n. (G =
S
fT (;)jT is

the �rst component of some condition in Gg.) On this basis we could naively try to
de�ne our embedding of K into the hyperdegrees as follows. For x 2 K � L we let
Gx : ! ! ! be de�ned by Gx(n) = G(n)(x). (As G(n) 2 �n � � it is a map from
L into !.) The desired image of x would then be degh(Gx). Now the order and join
properties of usl representations guarantee that this embedding preserves order and join
(on all of L even). If x � y then by the order property we can (recursively in the
hyperarithmetic representation h�ii) calculateGx(m) fromGy(m) by �nding any � 2 �m
with �(y) = Gy(m) and declaring that Gx(m) = �(x). (Such an � exists since G(m)
is one.) Similarly if x _ y = z then, by the join property, we can calculate Gz(m) from
Gx(m) and Gy(m) by �nding any � 2 �m such that �(x) = Gx(m) and �(y) = Gy(m)
and declaring that Gz(m) = �(z). (Again G(m) is such an �.)
Were congruences modulo x always preserved for every x, we could directly carry out

the diagonalization and other requirements as well for this de�nition of Gx. (Of course,
we cannot allow this to happen as it would produce an embedding of all of L as an initial
segment of Dh in place of the one wanted of K.) In actuality, not all congruences are
preserved as we re�ne to various subtrees in our construction. Thus we must modify
the de�nition of the images in Dh and provide nice representations of the hyperdegrees
corresponding to x. To that end we introduce some dense sets that our generic must
meet.

Lemma 2.12. For each x 2 K and k 2 ! the sets fP jx 2 K(P )g and fP jk(P ) � kg are
dense.

Proof. Consider any Q 2 P, x 2 K and k 2 !. Let K0 be the slsl of K generated by
K(Q) and x and let i � k(Q); k be such that K0 � Li. De�ne S with k(S) = i by
S(�) = Tr(Q)(0i�k(Q)^�). Clearly, hS;K0i �P Q and is in both required sets.

From now on assume that any generic �lter G we consider meets the dense sets of
Lemma 2.12. They su¢ ce to de�ne our generic G as above. More crucially, they allow
us to de�ne nice representatives of the desired images of x in Dh.
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De�nition 2.13. If G is a generic �lter meeting the dense sets of Lemma 2.12, G the cor-
responding element of

1Q
n=0

�n, P 2 G and x 2 K(P ) then GP is the sequence h�njn 2 !i

where Tr(P )(h�njn < mi) � G for every m. (Thus h�ni is the path that G follows in
the domain of Tr(P ). In particular, G = GId. It is obvious from the de�nitions that G
is a path on (i.e. in the range of) Tr(Q) for every Q 2 G.) We de�ne GPx (n) as �n(x).
(In the parlance of Lachlan and Lebeuf [1976], GP is the signature of G on Tr(P ).)

The crucial point is that the hyperdegree of GPx does not depend on P .

Lemma 2.14. If x 2 K(P ); K(Q) for P;Q in a generic G, then GPx �h GQx .

Proof. As there is an R � P;Q in G by the compatibility of all conditions in a generic
�lter, it su¢ ces to consider the case that Q � P . Let GP = h�ni and GQ = h�ni.
By the de�nition of subtree there is for each n an m(n) such that Tr(Q)(h�sjs < ni) =
Tr(P )(h�sjs < m(n)i) and we can compute the function m recursively in the trees. (By
the uniformity of the trees, there is, for each n, a unique m(n) such that jTr(Q)(�)j =
jTr(P )(�)j for every � of length n and every � of length m(n).) Moreover, by our
de�nition of subtree, �n = �m(n). Thus G

Q
x (n) = �n(x) = �m(n)(x) = G

P
x (m(n)) and so

GQx �h GPx . The other direction depends on the congruence preservations for x implied
by Tr(Q) �K(P ) Tr(P ).
Suppose that we have, by a hyperarithmetic recursion, determined GPx (i) = �i(x)

for i � m(n). The next step followed by G in Q is �n+1 = �m(n)+1. It corresponds
to the sequence h�ijm(n) + 1 � i < m(n+ 1)i. The de�nition of �K(P ) implies that
h�i(x)jm(n) + 1 � i < m(n+ 1)i is uniquely determined by �n+1(x) to continue the re-
cursion.

Thus given a generic G we can de�ne a map from K into Dh by sending x 2 K to
degh(G

P
x ) for any P 2 G with x 2 K(P ). Our naive proofs of the preservation of order

and join can now be made precise by simply applying them to GP on Tr(P ) (in place of
G on Id) for any P 2 G with x; y; z 2 K(P ).
Now we must de�ne, analyze and exploit our forcing language and relation to prove

that the embedding corresponding to a su¢ ciently generic G preserves nonorder and
produces an initial segment of the hyperdegrees.

We proceed essentially as for (perfect) forcing with binary trees in Sacks [1990, IV.4].
Our base structure (model) is formally the rami�ed analytic hierarchy up to !CK1 (Church-
Kleene !1, the �rst nonrecursive ordinal) which we denote byM. This is the analog of
L!CK1 where the language and de�nitions are set in second order arithmetic instead of
set theory. The sets in the structure are, however, just those subsets of ! that appear in
L!CK1 or equivalently the hyperarithmetic ones. Our forcing extension will beM(!CK1 ; G)

which is de�ned analogously to L!CK1 [G]. If !G1 , the least ordinal not recursive in G, is
!CK1 (as will be the case for generic G) then the sets inM(!CK1 ; G) are precisely those
hyperarithmetic in G. To de�ne and describe the model and forcing relation we have a
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rami�ed forcing language as introduced in Feferman [1965] and described in Sacks [1990,
III.4] with a term G for the function G (in place of T and the set T ) to describe this
structure and de�ne the forcing relation. (We are thinking of everything as coded in
second order arithmetic.) In addition to the usual paraphernalia of second order arith-
metic, the language has ranked set variables X� for ordinals � < !CK1 which range over
the sets constructed by level � inM(!CK1 ; G). A formula is ranked if all its set variables
are ranked. We refer to Sacks [1990, III.4] for the simultaneous recursive de�nitions of
the setsM(�;G)), interpretations of terms x̂H(x) for the set of numbers satisfying the
ranked formula H and for the truth of ranked and unranked formulas in the structure
M(!CK1 ; G). The de�nitions proceed through inductions on a reasonably de�ned notion
of �full ordinal rank�of a formula. Sacks also provides an analysis of the complexity of
the satisfaction relation for ranked (and unranked) formulas. Of course, unranked for-
mulas are interpreted as having their unranked variables ranging over all ofM(!CK1 ; G).
As the change from his setting to ours is purely notational, going from a set (element

of 2!) to a function in
1Q
n=0

�n, the development there carries over with only notational

changes.

The crucial starting point of the de�nition of the forcing is that hT; K̂i 
 F for a
ranked formula F if and only ifM(!CK1 ; G) j= F for every G 2 [T ] (the paths through
T ). The relation is then de�ned on the unranked formulas by induction on the usual
complexity of formulas. The clauses for conjunction and negation are standard: P 

F ^ H , P 
 F and P 
 H; P 
 :F , (8Q � P )(Q 1 F). There are three
cases for the existential quanti�ers: P 
 9xF(x) , P 
 F(n) for some numeral n;
P 
 9X�F(X�) for � < !CK1 , P 
 F(x̂H(x)) for some H of rank at most �; P 

9XF(X), P 
 9X�F(X�) for some � < !CK1 .

The key complexity theoretic fact from Sacks [1990, IV.4] is that when restricted
to conditions P with a �xed K(P ) and �11 sentences F (those with initial unranked
existential set quanti�ers followed by a ranked formula), the forcing relation P 
 F is
a �11 relation uniformly in K(P ). This fact is again established quite abstractly and is
still true by the same simple argument for our new de�nition of forcing conditions. The
crucial property of perfect forcing in Sacks [1990] that now allows one to prove that for
generic G forcing equals truth and !CK1 is preserved (i.e. !G1 = !

CK
1 ) is the fusion lemma

to which we now turn.

3 The fusion lemma

We can view the problem of preserving !CK1 as preserving admissibility in L!CK1 when
we add on the new function G. From this point of view, we want to preserve �1 re-
placement, i.e. L!CK1 [G] j= 8n 2 !9X'(n;X) ! 9X8n 2 !('(n;X [n]). Translated into
our setting of second order arithmetic and M(!CK1 ; G) this is equivalent to preserving
�1
1-comprehension. The key in either case is what is called the fusion lemma. It it is a
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natural step from the replacement version when one replaces satisfaction by forcing and
wants to prove that one can densely decide sentences of the desired form (as is needed
to show the usual equivalence between forcing and truth).

Lemma 3.1 (Fusion). Let P = hT; K̂i be a forcing condition and 9 �XnFn( �Xn) a hyper-
arithmetic sequence of �11 sentences with their unranked quanti�ers displayed such that
8n8Q � P9R � Q[R 
 9 �XnFn( �Xn)]. Then there is a Q � P , and even one with
k(Q) = k(P ) and K(Q) = K(P ), such that 8n(Q 
 9 �XnFn( �Xn)). Moreover, there is a
� < !CK1 such that 8n(Q 
 9 �X�

nFn( �X�
n)).

Nowwhat goes wrong with an attempted proof of this theorem if we use some standard
type of sequential representations �i for Li and the associated trees? When we try to
prove the fusion lemma, we thin out our given tree (above each node successively) and
get conditions that are trees for �i for larger and larger i as we treat each Fn in turn. As
the trees are of di¤erent shapes for each i and the representations not nicely nested, there
is no way to combine (fuse) the subtrees into the single condition Q required. The �rst
crucial property of our representation is that it allows us to use trees that are essentially
(i.e. eventually) of the same shape with splittings for a co�nal segment of the �i. (Our
construction of the required nested representations in §5 relies on the fact that the Li
are slsls of L and so preserve in�mum.) We now turn to the basic lemma that conveys
the other technical facts about our notion of forcing that enables us to overcome this
problem. It was for this application that our lattice representation theorem (Theorem
5.1) was designed.

Proposition 3.2. If hT1;K1i �P hT0;K0i then hT1;K0i �P hT0;K0i. Moreover, we can
get an S with [S] � [T1] such that k(S) = k(T0) and hS;K0i �P hT0;K0i. Thus, if F is a
ranked formula, P is a condition, Q � P and Q 
 F , then there is an R � P such that
R 
 F , k(R) = k(P ) and K(R) = K(P ).

Proof. That hT1;K0i �P hT0;K0i is clear from the de�nition of extension. The required
S is simply T1 � domT0. So for every � in its domain S(�) = T1(�). It is then clear that
[S] � [T1], k(S) = k(T0) and hS;K0i �P hT0;K0i as required. Now if Q � P and Q 
 F
with F ranked then this argument gives us an R � P with [R] � [Q], k(R) = k(P ) and
K(R) = K(P ). As F is ranked and Q 
 F , [R] � [Q] implies that R 
 F as well by the
de�nition of forcing for ranked sentences.

For those familiar with the proof of the fusion lemma in other settings, we note how
our special representation allows us to avoid changing the shape of the trees or increasing
the slsl K̂ with respect to which we are preserving congruences. The point is that when
we have some condition P = hT0;K0i and ask if there is any Q = hT1;K1i extending P
that forces some ranked formula F we can restrict ourselves to those with k(T1) = k(T0)
and K1 = K0 by Proposition 3.2. This idea is really the only new one needed to carry
out the proof of the fusion lemma.
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Proof of Fusion Lemma. As when K(P ) is �xed, the forcing relation for �11 sentences is
�11 and extension is arithmetic by de�nition, the relationR � Q& k(R) = k(P ) &K(R) =
K(P ) & R 
 9 �XnFn( �Xn) is �11 and it can be uniformized to a partial �

1
1 function R(n;Q)

by Kreisel uniformization (Sacks [1990 II.2.6]). Our hypothesis and Proposition 3.2 to-
gether imply that R is de�ned for every hn;Qi with Q � P and K(Q) = K(P ). We now
de�ne a tree S by recursion so that hS; K̂i is the forcing condition required in the Lemma.
In fact, along with the de�nition of S(�) by induction on the length n of � we de�ne an
auxiliary sequence of conditions hUn;i; K̂i � P with k(Un;i) = k(P ) and jUn;i(;)j = jS(�)j
(which depends only on n by uniformity) for i � m(n) where m(n) is one less than the
number of branches on T at level n. Indeed we will have that hUT (�)n;i ; K̂i � P for each
� of length n. (Recall De�nition 2.7 and Lemma 2.11.) We begin with S(;) = T (;).
Suppose we have de�ned S(�) for all � with length n and have the corresponding Un;m(n).
For any � of length n and any appropriate � we let S(�^�) = US(�)n;m(n)(0

n^�). Thus S (up

to this level) is clearly uniform and a subtree of T that preserves the congruences in K̂.
Note that we have now de�ned S(�) for all � of length n+1 and have intuitively thinned
out the still possible nodes above each such � to a subtree of Un;m(n). Before de�ning
the next level of S, we further thin them out to force the values at n + 1 while (by an
iterated nesting procedure) still maintaining uniformity across the level. To do this, we
de�ne the Un+1;i for i � m(n+ 1) by induction on i. We begin with �0 = �^� (for some
� of length n and some � in the appropriate �j). We let Un+1;0 be the �rst component
of R(n+ 1; (Un;m(n))

S(�0)
0n^� ). Given Un+1;i and �i+1 we let Un+1;i+1 be the �rst component

of R(n + 1; US(�i)n+1;i). (So, by induction, hUn+1;i; K̂i � P and hUn+1;i; K̂i 
 Fn+1.) This
completes the inductive de�nition of the Un+1;i and so of S. The crucial fact about S
is that for each n and � of length n every path on S that contains S(�) is a path on
Un;i for some i and so makes Fn true by our choice of Un;i as the �rst component of
R(n; U) for some U with hU; K̂i � P . Thus Fn is true of every path on S for every n,
i.e. 8n(hS; K̂i 
 Fn).

Given the fusion lemma for our forcing, the remaining development of the basic facts
about our forcing is routine and follows Sacks [1990, IV.4]. In particular, essentially the
same proofs show �rst that for every P and F there is a Q � P that decides F , i.e.
Q 
 F or Q 
 :F and then that for any generic �lter G (i.e. one such that for every
F there is a P 2 G that decides F) forcing equals truth in the sense that, for every F ,
M(!CK1 ; G) j= F , (9P 2 G)(P 
 F).
In addition to meeting the dense sets of conditions deciding each F , we explicitly

meet certain other sets of conditions to assure that we can de�ne our embedding on all
of K and show that it is a one-one map onto the hyperdegrees below that of the generic
G = GId �h GP �h GP1 for any P in the generic �lter.

17



4 Initial segment veri�cations

To simplify our notation for the sets hyperarithmetic in G, i.e. those in M(!CK1 ; G),
and to emphasize the analogy to the Turing degree constructions of initial segments, we
number the terms x̂H of our language by ordinals � < !CK1 and denote the characteristic
function of the set they stand for by f�gG. (Note that, in contrast to the situation with
Turing reductions, these are all total functions but, of course, the list is only recursive in
O.) We at times use �Px to name the reduction such that f�Px gG = f�gG

P
x .

To assure that our embedding preserves nonorder we want to show for any x � y in
K, condition P with x; y 2 K(P ) and � < !CK1 , that fQjQ 
 f�Py gG 6= GPx g is dense
below P . In addition we want to show that fQj9x 2 K(Q 
 f�gG �h GQx )g is also dense
for each �. These two results would then �nish the proof of our theorem. We begin with
an auxiliary collection of dense sets that make our task much simpler. They correspond
to the total subtrees of Lerman [1983] and allow us to convert the arguments for DT to
our setting of Dh.

De�nition 4.1. A condition Q decides f�gG via q (a map into f0; 1g), if, for every x
and � 2 domQ of length x, Q� 
 f�gG(x) = q(x; �).

Lemma 4.2. If Q decides f�gG via q then q is hyperarithmetic.

Proof. This follows immediately from the fact that the relevant instances of the forcing
are uniformly �11.

Lemma 4.3 (Totality). For each condition P and � < !CK1 there is a Q � P which
decides f�gG.

Proof. For any Q � P and any m there is clearly an R � Q and an n 2 f0; 1g for
which R 
 f�gG(m) = n. (Otherwise by the density of deciding formulas we could �nd
R1 � R0 � Q such that Rn 
 f�gG(m) 6= n (for n = 0; 1) contradicting one of the basic
facts about forcing.) Now applying the construction of the fusion lemma, with the �11
operator taking m;Q to such an R (and n) for the nodes at level m, gives the desired
condition.

Proposition 4.4 (Diagonalization). For any x � y in K, � < !CK1 and condition P
with x; y 2 K(P ), there is an R � P such that R 
 f�Py gG 6= GPx .

Proof. We begin by taking a Q � P which decides f�Py gG by Lemma 4.3. We then
choose any �0; �1 2 �k(P ) such that �0 �y �1 but �0 6�x �1. Such �0 and �1 exist
by the di¤erentiation property of usl representations. Suppose Tr(Q)(;) = Tr(P )(�)
and so Tr(Q)(�i) � Tr(P )(�^�i) for i 2 f0; 1g. Now clearly any condition Qi � Q�i
forces GPx (j�j) = �i(x). Let �i = (�i)j�j; i.e. the concatenation of j�j many copies of �i.
Consider then the conditions Q�i. They still force G

P
x (j�j) = �i(x). On the other hand

by Lemma 4.3 they each force a value for f�Py gG at j�j.
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As the �i, for i = 0; 1, are congruent modulo y and y 2 K(P ), the initial segments of
GPy that Q�i(;) determine are congruent modulo y as well. If G is any path through Q�0
then (by uniformity of Tr(Q)) changing its initial segment Q�0(;) to Q�1(;) produces
a path G0 through Q�1 and so a corresponding one through Tr(P ) that is congruent to
GP modulo y. As the value of f�gGPy = f�Py gG is determined by GPy the two conditions
must force the same value for f�gGPy (j�j). This value must be di¤erent from one of �i(x)
= 0; 1. Thus one of the Q�i extends Q (and so P ) and forces f�gGPy = f�Py gG 6= GPx as
required.

We turn now to the requirement that the image of K under our embedding form
an initial segment of Dh. This argument is somewhat more complicated than those
above and uses both the meet and homogeneity interpolants. Still, given Lemma 4.3, we
present an argument that would work for DT as well. In that setting it would be simpler
than the existing proofs in the literature because of our changes to the de�nition of the
homogeneity interpolants.

We begin with the notion of a �-splitting and a lemma about such splittings.

De�nition 4.5. Given a reduction � and a condition Q that decides f�gG via q (and a
w 2 K(Q)), we say that � and � (of the same length) are a �-splitting (or �-split) on
Q (modulo w) if (� �w � and) there is an n � j�j such that q(n; � � n) 6= q(n; � � n).
(So for any paths G0 and G1 on Q extending Tr(Q)(�) and Tr(Q)(�), respectively,
f�gG0(n) 6= f�gG1(n).) If R � Q;R(�) = Q(�); R(�) = Q(�) and � and � �-split
(modulo w) on Q then we also say that � and � �-split on R (modulo w).

Lemma 4.6. Given a reduction � and a condition Q that decides f�gG, there is a � 2
domQ such that the set Sp(�) = fw 2 K(Q)j there are no �; � that �-split on Q�� modulo
wg is maximal. Moreover, this maximal set is closed under meet and so has a least
element z.

Proof. Let k = k(Q) = k(P ) and K̂ = K(P ) = K(Q). As K̂ is �nite there is clearly
a � such that Sp(�) is maximal. Note that then Sp(�) = Sp(�) for any � � � with
�n� 2 domTr(Q)�� as Tr(Q)�� �K̂ Tr(Q)��. Consider any x; y 2 Sp(�) with x^y = w. As
K̂ �lsl L, w 2 K̂. To show that Sp(�) is closed under meet it su¢ ces (by the maximality
of Sp(�)) to show that there is no �-splitting on Q��^0 modulo w. Remember that, by
de�nition, k = k(Q��^0) = k(Q

�
�) = k(Q). Suppose there were such a split �� and �� which

we may take to be of the same length m. By our de�nition of Q��^0, ��; �� 2
n=mQ
n=0

�k+n . In

Q�� at the corresponding levels, however, there are branchings for all elements of �k+n+1.
(That is there are, for example, successors of Tr(Q��)(0^� � n + 1) for every element of
�k+n+1 while in Tr(Q��)(� � n+1) there are ones only for the elements of �k+n.) Thus, by
the existence of meet interpolants for �k+n in �k+n+1, there are �
0; �
1; �
2 2

n=mQ
n=0

�k+n+1

such that for each j � m, the �
i(j) for i 2 f0; 1; 2g are meet interpolants for ��(j) and
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��(j), i.e. �� �x �
0 �y �
1 �x �
2 �y ��. As �� and �� form a �-splitting on Q��^0 so do one
of the successive pairs such as 0^�
0, 0^�
1 on Q

�
�. But then 0^�
0 and 0^�
1 would be a

�-split on Q�� congruent modulo y for a contradiction. (The situations for the other pairs
are the same but perhaps with x in place of y.)

We now build the analog of what is often called a �-splitting tree in the Turing degree
setting. It is in the construction of these trees that our new de�nition of homogeneity
interpolants simpli�es the construction as compared, for example, to that of Lerman
[1983, VII.3].

Proposition 4.7 (Splitting trees). Given a Q with k(Q) = k and K(Q) = K̂ that
decides f�gG with � and z as in Lemma 4.6, there is a condition hS; K̂i � Q�� such that
any �; � 2 domS(= domTr(Q)) with � 6�z � �-split on S. (Of course, by the choice of �
and z there are no �-splits on Q�� which are congruent modulo z.) Such a tree S is called
a z � �-splitting tree.

Proof. We de�ne S(�) (with k(S) = k) by induction on j�j beginning, of course, with
S(;) = Q��(;). Suppose we have de�ned S(�) = Q��(��) for all � of length n. We
must de�ne S(�^�) for all such � and appropriate � as extensions Q��(��^�) of Q

�
�(��^�)

obeying all the congruences in K̂, i.e. if x 2 K̂ and � �x � then ��^� �x ��^�. We

list the � of length n + 1 as �i^�i for i < m = j
j=nQ
j=0

�k+jj and de�ne by induction on

r < l = m(m+1)=2 (the number of pairs fi; jg with i; j < m) strings �i;r simultaneously
for all i < m. At the end of our induction we will set ��i^�i = ��i^�i^�i;0^ : : : ^�i;l�1.
For this to succeed it su¢ ces to maintain uniformity and guarantee, for every i; j < m
and w 2 K̂, that �i �w �j ) �i;r �w �j;r for every r < l and that if �i 6�z �j then
��i^�i^�i;0^ : : : ^�i;r and ��j^�j^�j;0^ : : : ^�j;r �-split on Q

�
� where r < l is (the code for)

fi; jg.
By induction on r < l we suppose we have ��i^�i;0^ : : : ^�i;r�1 = �i for all i < m and

that fp; qg is pair number r. If �p �z �q there is no requirement to satisfy and we let
�i;r = ; for every i. Otherwise, let w be the largest y 2 Lk+n such that �p �y �q. (To see
that there is a largest such y, �rst note that Lk+n is a lattice as it is a �nite lsl. As �k+n
is an usl representation for Lk+n, if �p �u;v �q for u; v 2 Lk+n then �p �t �q where t is
the least element of Lk+n above both u and v (their join from the viewpoint of Lk+n).
Thus, there is a largest y as desired.) Of course, z � w. By our choice of z there are

�; � 2
t=cQ
t=0

�k+t such that �p extended by � and � form a �-splitting congruent modulo w

on Q��. (We can �nd such a split on Q
�
�p by the de�nition of � and z and our assumption

on w. It translates into such � and � .) Consider �q^� . It must form a �-splitting on Q��
with one of �p^� and �p^� by the basic properties of Q. If it splits with the latter string
then we can set �i;r+1 = � and clearly ful�ll the requirements for this pair fp; qg both
for congruence modulo w (as all new extensions are identical) and �-splitting. Of course,
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uniformity is maintained as the �i;r+1 are the same for all i. Thus we assume that �p^�
and �q^� �-split on Q��. We now use our homogeneity interpolants.

We know that w is the largest y 2 Ln+k such that �p �y �q and that � �w � . Thus for
any x 2 K̂ � Lk+n if �p �x �q then x � w and so � �x � . By Theorem 5.1(3) we can now
�nd homogeneity interpolants 
0(s); 
1(s) in �k+s+1 and associated K̂-homomorphisms
fs; gs; hs : �k+s ! �k+s+1 such that fs : �p; �q 7! �(s); 
1(s), gs : �p; �q 7! 
0(s); 
1(s)
and hs : �p; �q 7! 
0(s); �(s) for each s < j�j = j� j. (We let �0 = �p, �1 = �q, �0 = �(s),
�1 = �(s), L̂ = K̂ and i = k + s in the Theorem.) Note that the branchings in Q�� are
at some levels up from the corresponding ones in Q��p or Q

�
�q on which we chose � and � .

Thus these homogeneity interpolants are available within the branchings in Q��. As �p^�
and �q^� �-split on Q�� one of the pairs �p^�; �q^�
1; �p^�
0; �q^�
1 and �p^�
0; �q^� must
also �-split on Q��. Suppose for the sake of de�niteness it is the second pair �p^�
0; �q^�
1.
In this case we let �i;r+1(s) = gs(�i) for every i and s. Note that uniformity is maintained
as �i;r+1(s) depends only on �i. We use fs or hs in place of gs if the �-splitting pairs
are �p^�; �q^�
1 or �p^�
0; �q^� , respectively. By the homomorphism properties of the
interpolants these extensions preserve all the congruences in K̂ between any �i and �j
as required to complete the induction and our construction of a �-splitting tree .

We now conclude the proof that fQjQ 
 9x 2 K(Q 
 f�gG �h GQx )g is dense for
each � by proving that any z� �-splitting tree S forces that f�gG �h GSz . This will show
that our embedding maps onto an initial segment of Dh. The required fact is generally
called the Computation Lemma. We supply the standard proof.

Lemma 4.8 (Computation Lemma). If S is a z � �-splitting tree then S 
 f�gG �h
GSz .

Proof. Let G 2 [S]. We �rst show that f�gG �h GSz . Consider any n. Using GSz we
can �nd all the � 2 domS of length n such that �(l) = GSz (l) for every l � n. All of
these � are congruent modulo z and so all S� force the same value for f�gG at n. As
S(�) is an initial segment of G for one of these �, this value must be f�gG(n). We next
argue that GSz �h f�gG. Consider all �; � 2 domS of length n. If � 6�z � then S� and
S� force di¤erent values for f�gG at some l < n. Thus using f�gG � n we can �nd the
unique congruence class modulo z consisting of those � such that S(�) is not ruled out
as a possible initial segment of G. For one � in this class, S(�) is an initial segment of G
and as all the � in this class are congruent modulo z, they all determine the same values
of GSz � n which must then be the correct value.

We have now completed the proof that any generic �lter G (deciding all sentences and
meeting the dense sets provided by Lemma 4.3 and Propositions 4.4 and 4.7) provides
an embedding of K onto an initial segment of Dh that sends x 2 K to degh(GPx ) (for any
P 2 G).
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Forcing ranked sentences (for conditions P with a �xedK(P )) is a �11 relation (and so
recursive in O) uniformly in K(P ) and the inductive de�nition of forcing thereafter pro-
ceeds by the standard de�nition quantifying over previous levels of the forcing relation.
(Remember that existential quanti�cation is reduced to quanti�cation over ordinals and
terms below !CK1 and so to quanti�cation over O, while negation requires quanti�cation
over forcing conditions and so over O �K.) Thus the forcing relation for arbitrary sen-
tences is arithmetic in O�K (at a level simply related to the complexity of the sentence).
Thus one can, as usual, construct a generic �lter that decides all sentences hyperarith-
metically in O � K. The steps for meeting the requirements of totality, diagonalization
and splitting are also obviously computable in the forcing relation once one has proven
the existence of the desired extensions (Lemma 4.3, Proposition 4.4 and 4.7). Thus we
can �nd our generic G �h GId1 (remember, 1 is the top element of our lattice), such that
the hyperdegrees below that of G are isomorphic to our given K, hyperarithmetically in
O �K. This establishes Theorem 1.2 given our lattice representation theorem to whose
proof we now turn.

5 The lattice representation theorem

Theorem 5.1. If L is a countable lattice then there is an usl representation � of L along
with a nested sequence of �nite slsls Li starting with L0 = f0; 1g with union L and a
nested sequence of �nite subsets �i with union � with both sequences recursive in L with
the following properties:

1. For each i; �i � Li is an usl representation of Li.

2. There are meet interpolants for �i in �i+1, i.e. if � �z �, x^y = z (in �i and Li,
respectively) then there are 
0; 
1; 
2 2 �i+1 such that � �x 
0 �y 
1 �x 
2 �y �.

3. For every L̂ �lsl Li there are homogeneity interpolants for �i with respect to L̂ in
�i+1, i.e. for every �0; �1; �0; �1 2 �i such that 8w 2 L̂(�0 �w �1 ! �0 �w �1),
there are 
0; 
1 2 �i+1 and L̂-homomorphisms f; g; h : �i ! �i+1 such that f :
�0; �1 7! �0; 
1, g : �0; �1 7! 
0; 
1 and h : �0; �1 7! 
0; �1.

Proof. We �rst de�ne the sequence Li of slsls of L beginning with L0 which consists
of the 0 and 1 of L. We let the other elements of L be xn for n � 1 and Ln be
the (necessarily �nite) slsl of L generated by f0; 1; x1; : : : ; xng. As for �, we choose a
countable set �i and stipulate that � = f�iji 2 !g. We begin de�ning the (values of)
the �i by setting �0(x) = 0 for all x 2 L and �(0) = 0 for all � 2 �. We will now
de�ne �n and the values of � 2 �n (other than �0) on the elements of Ln (other than
0) by recursion. For �0 we choose a new element � of � and let �0 = f�0; �g and set
�(1) = 1. Given �n and the values for its elements on Ln we wish to enlarge �n to �n+1
and de�ne the values of �(x) for � 2 �n+1 and x 2 Ln+1 so that the requirements of
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the Theorem are satis�ed. To do this we prove a number of general extension theorems
for usl representations in the Propositions below that show that we can make simple
extensions to satisfy any particular meet or homogeneity requirement and also extend
usl representations from smaller to larger slsls of L. To be more speci�c, we �rst apply
Proposition 5.5 successively for each choice of x ^ y = z in Ln and �; � 2 �n with
� �z � choosing new elements of � to form �0n extending �n and de�ning them on Ln
so that �0n � Ln is an usl representation for Ln containing �n and the required meet
interpolants for every such x; y; z; � and �. We then apply Proposition 5.6 successively
for each L̂ �lsl Ln and each �0; �1; �0; �1 2 �n such that 8w 2 L̂(�0 �w �1 ! �0 �w �1)
to get larger subset �00n of � which we also de�ne on Ln so as to have an usl representation
�00n � Ln for Ln that has the required homogeneity interpolants and L̂-homomorphisms
from �n into �00n for every such �0; �1; �0; �1 2 �n. Finally, we apply Proposition 5.4 to
de�ne the elements of �00n on Ln+1 and further enlarge it to our desired �nite �n+1 � �
with all its new elements also de�ned on Ln+1 so as to have an usl representation of
Ln+1 with all the properties required by the Theorem. It is now easy immediate from
the de�nitions that the union � of the �n is an usl representation of L.

Notation 5.2. If a �nite L̂ is a slsl of L, L̂ �lsl L, and x 2 L then we let x̂ denote
the least element of L̂ above x. The desired element of L̂ exists because L̂ is a slsl of L
and so the in�mum (in L̂ or, equivalently, in L) of fu 2 L̂jx � ug is in L̂ and is the
desired x̂. As L̂ is �nite it is also a lattice but join in L̂ may not agree with that in L.
We denote them by _L̂ and _L respectively when it is necessary to make this distinction.

Lemma 5.3. With the notation as above, x̂ = x for x 2 L̂ and so it is an idempotent
operation. If x � y are in L then x̂ � ŷ. If x _L y = z are in L then ẑ = x̂ _L̂ ŷ.

Proof. The �rst two assertions follow immediately from the de�nition of x̂. The third is
only slightly less immediate: x; y � x _L y = z and so by the second assertion, x̂; ŷ � ẑ
and so x̂ _L̂ ŷ � ẑ. For the other direction, note that as x � x̂, y � ŷ, we have that
z = x _L y � x̂ _L ŷ � x̂ _L̂ ŷ 2 L̂ and so ẑ � x̂ _L̂ ŷ.

Proposition 5.4. If � is a �nite usl representation for L̂ �lsl L (�nite) then there are
extensions for each � 2 � to maps with domain L and �nitely many further functions
� with domain L such that adding them on to our extensions of the � 2 � provides an
usl representation �0 of L with � � �0 � L̂. Moreover, these extensions can be found
uniformly recursively in the given data (�, L̂ and L).

Proof. For � 2 � and x 2 L set �(x) = �(x̂). We �rst check that we have maintained the
order and join properties required of an usl representation. If x � y are in L, �; � 2 �
and � �y � then by de�nition � �ŷ � and so � �x̂ � as x̂ � ŷ by Lemma 5.3 and ��s
being an usl representation of L̂. Thus, by de�nition, � �x � as required.
Next, if x _L y = z are in L and � �x;y � we wish to show that � �z �. Again by

de�nition � �x̂;ŷ �. By Lemma 5.3, x̂ _L̂ ŷ = ẑ, so by � being an usl representation for
L̂, � �ẑ � and so by de�nition, � �z �.
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All that remains is to show that we can add on new maps with domain L that provide
witnesses for the di¤erentiation property for elements of L�L̂ while preserving the order
and join properties. This is a standard construction. For each pair x � y (in L but
not both in L̂) in turn we add on new elements �x;y and �x;y with all new and distinct
values at each z 2 L except that they agree on all z � x (and at 0, of course, have value
0). These new elements obviously provide the witnesses required for the di¤erentiation
property for an usl representation. It is easy to see that they also cause no damage to the
order or join properties. There are no new nontrivial instances of congruences between
them and the old ones in � (extended to L). Among the new elements the only instances
to consider are ones between �x;y and �x;y for the same pair x; y and for lattice elements
z less than or equal to x. As �x;y �z �x;y for all z � x, the order and join properties are
immediate.

Proposition 5.5. If �; � 2 �, an usl representation for a �nite lattice L, � �z � and
x ^ y = z in L then there are 
0; 
1; 
2 such that � �x 
0 �y 
1 �x 
2 �y � and
� [ f
0; 
1; 
2g is still an usl representation for L. Moreover, these extensions can be
found uniformly recursively in the given data.

Proof. This is a standard fact going back to Jónsson [1953] and can be found in Lerman
[1983, Appendix B.2.5]. If x � y, there is nothing to be proved. Otherwise, the inter-
polants can be de�ned by letting 
0(w) be �(w) for w � x and new values for w � x;

1(w) = 
0(w) for w � y and new values otherwise; and 
2(w) = �(w) for w � y,

2(w) = 
1(w) if w � x but w � y and new otherwise.

Proposition 5.6. If L̂ �lsl L, a �nite lattice, and � is an usl representation for L
with �0; �1; �0; �1 2 � such that 8w 2 L̂(�0 �w �1 ! �0 �w �1), then there is an usl
representation ~� � � for L with 
0; 
1 2 ~� and L̂ homomorphisms f; g; h : �! ~� such
that f : �0; �1 7! �0; 
1, g : �0; �1 7! 
0; 
1 and h : �0; �1 7! 
0; �1. Moreover, these
extensions can be found uniformly recursively in the given data.

Proof. For each � 2 � and x 2 L we set f(�)(x) = �0(x) if � �x̂ �0 and otherwise we
let it be a new number that depends only on �(x̂), e.g. �(x̂)�. Note that which case of
the de�nition applies for f(�)(x) depends only on �(x̂) and it can be an �old�value (i.e.
one of some � 2 �) only in the �rst case. Thus, for �; � 2 �,

(a) � �x̂ � , f(�) �x f(�) and (b) f(�) �x � ) � �x̂ �0 ) f(�) �x �0. (1)

Let �1 = � [ f [�]. We claim that �1 is an usl representation for L and f is an L̂-
homomorphism from � into �1. That f is an L̂-homomorphism is immediate from the
�rst clause in (1) and the fact (Lemma 5.3) that x̂ = x for x 2 L̂. We next check that
�1 satis�es the properties required of an usl representation. Of course, f(�)(0) = 0 by
de�nition for every � and di¤erentiation is automatic as it extends �.

First, to check the order property for �1 we consider any x � y in L. As � is already
an usl representation for L, it su¢ ces to consider two cases for the pair of elements of
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�1 which are given as congruent modulo y and show that in these two cases they are
also congruent modulo x. The two cases are that (a) both are in f [�] and that (b) one
is in f [�] and the other in �. Thus it su¢ ces to consider any �; � 2 �, assume that (a)
f(�) �y f(�) or (b) f(�) �y � and prove that (a) f(�) �x f(�) and (b) f(�) �x �,
respectively. For (a), we have by (1) that � �ŷ � and so by the order property for �,
� �x̂ �. Thus f(�) �x f(�) by de�nition as required. As for (b), (1) tells us here that
� �ŷ �0 and � �y f(�) �y �0 (and therefore � �x �0). Now by Lemma 5.3 � �x̂ �0 so
f(�) �x �0 and so f(�) �x � as required.
Next we verify the join property for x _ y = z in L and two elements of �1 (not

both in �) in the same two cases. For (a) we have that f(�) �x;y f(�) and so as above
� �x̂;ŷ �. Now by the join property in � and Lemma 5.3, � �ẑ � and so f(�) �z f(�)
as required. For (b) using (1b) and Lemma 5.3 again we have that f(�) �x;y � )
� �x̂;ŷ �0 ) � �ẑ �0 ) f(�) �z �0 while it also tells us that � �x;y f(�) �x;y �0 as
required. Note that clearly f(�0) = �0. We let 
1 = f(�1) and so have the �rst function
and (partial) extension of � required in the Proposition.
We now de�ne h on �1 as we did f on � using �1 and �1 in place of �0 and �0,

respectively: h(�)(x) = �1(x) if � �x̂ �1 and otherwise we let it be a new number
that depends only on �(x̂), e.g. �(x̂)��. Let �2 = �1 [ h[�1]. As above, �2 is an usl
representation for L and h is an L̂-homomorphism from �1 (and so �) into �2 taking
�1 to �1. We let 
0 = h(�0) and so have the third function and (partial) extension of �
required in the Proposition. As above in (1), we have for any �; � 2 �1 and x 2 L,

(a) � �x̂ � , h(�) �x h(�) and (b) h(�) �x � ) � �x̂ �1 ) h(�) �x �1. (2)

Applying the second clause to 
0 = h(�0) and �rst to any � 2 �1 and then, in particular
to 
1 we have

(a) 
0 �x � ) �0 �x̂ �1 ) f(�1) = 
1 �x �0 and (b) 
0 �x 
1 , �0 �x̂ �1. (3)

To see the right to left direction of the second clause, note that �0 �x̂ �1 implies that

0 �x �1 and 
1 �x �0 by the de�nitions of h and f , respectively, while it also implies that
�0 �x̂ �1 by the basic assumption of the Proposition. Thus, as � is an usl representation
of L and x � x̂, �0 �x �1 and 
0 �x 
1.
Finally, we de�ne g on � 2 �2 by setting g(�)(x) = 
0(x) if � �x̂ �0. If � 6�x̂ �0 but

� �x̂ �1 then g(�)(x) = 
1(x). Otherwise, we let g(�)(x) be a new number that depends
only on �(x̂), e.g. �(x̂)���. Note that if � �x̂ �1 then we always have g(�) �x 
1 as if
� �x̂ �0 as well then, by (3b), 
0 �x 
1. Thus g(�0) = 
0 and g(�1) = 
1 as required.
It is also obvious that g is an L̂-homomorphism of �2 (and so �) into �3 = �2 [ g[�2]
as by de�nition and Lemma 5.3, � �x̂ � ) g(�) �x̂ g(�) for any x 2 L. Indeed, for any
�; � 2 �2 and x 2 L

� �x̂ � , g(�) �x g(�). (4)

To see the right to left direction here, note that if either of g(�) or g(�) is new for g
at x (i.e. of the form �(ŷ)���) then clearly both are. In this case, � �x̂ � by de�nition.
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Otherwise, either they are both congruent to �0 or both to �1 and so congruent to each
other mod x̂. The point here is that if one is congruent to �0 and the other to �1 but
not �0 at x̂ then by de�nition 
0 �x 
1 and so by (3b), �0 �x̂ �1 for a contradiction.
Thus we only need to verify that �3 is an usl representation of L. We consider any

�; � 2 �2 and divide the veri�cations into cases (a) and (b) as before with the former
considering g(�) and g(�) and the latter g(�) and �. These cases may then be further
subdivided.

We begin with the order property and so x � y in L.
(a) If g(�) �y g(�) then, by (4), � �ŷ � and so � �x̂ � as x̂ � ŷ (Lemma 5.3) and

�2 is an usl representation of L. Thus, again by (4) g(�) �x g(�) as required.
(b) If g(�) �y � then by de�nition they are congruent modulo y to 
i (for some

i 2 f0; 1g) and � is congruent to �i at ŷ. Thus � �x̂ �i as x̂ � ŷ and �2 is an usl
representation so g(�) �x 
i by de�nition. Similarly, as x � y, � �x 
i as well.
Now for the join property for x _ y = z in L.
(a) If g(�) �x;y g(�) then, as above, � �x̂;ŷ �. As x̂ _ ŷ = ẑ by Lemma 5.3 and �2 is

an usl representation, � �ẑ � and so by (4) g(�) �z g(�) as required.
(b) If g(�) �x;y � then again � �x̂ �i and � �ŷ �j for some i; j 2 f0; 1g and

g(�) �x � �x 
i while g(�) �y � �y 
j. If i = j then � �x̂;ŷ �i and so � �ẑ �i and
g(�) �z 
i �z � as required.
On the other hand, suppose, without loss of generality, that (�) � �x̂ �0 and so

� �x g(�) �x̂;x 
0 = h(�0) while �0 6�ŷ � �ŷ �1 and so � �y g(�) �ŷ;y 
1 = f(�1). If
� 2 �1 then by (4a) �0 �x̂ �1 and so � �x̂ �1. As our assumption is that � �ŷ �1 we
have (by the join property in �2) that � �ẑ �1 and so g(�) �z 
1. As �0 �x̂ �1 (3b) tells
us that 
0 �x 
1. Our assumptions then say that � �x;y 
1 and so � �z 
1 as required.
Thus we may assume that � = h(�) for some � 2 �1.
We now have h(�) = � �x g(�) �x 
0 = h(�0) 2 �1 and so by (2a) applied to

h(�) �x h(�0) with � for � and �0 for � we see that � �x̂ �0. We also have h(�) = � �y
g(�) �ŷ;y 
1 = f(�1). Applying (2b) to h(�) �y 
1 with � for � and 
1 2 �1 for �, we
see that � �ŷ �1and h(�) �y �1 and so �1 �y 
1 = f(�1). Now applying (1b) with �1
for � and �1 2 � for �, we have that �1 �ŷ �0. As this contradicts (�), we are done.

We complete our lattice theoretic material by supplying a proof of Lemma 1.4.

Lemma 1.4: The class of �nite lattices (with 0 and 1) has the amalgamation property,
i.e. if A, B0 and B1 are �nite lattices and f0; f1 are embeddings of A into B0 and B1,
respectively, then there is a �nite lattice C and embeddings g0 and g1 of B0 and B1,
respectively, into C such that g0f0 � A = g1f1 � A.

Proof. To simplify the notation we assume without loss of generality that the embeddings
f0 and f1 are the inclusion maps and that the elements of A are the only ones that
B0 and B1 have in common. We begin with a partial lattice P whose universe is the
union of those of B0 and B1. We de�ne an order on P that coincides with the one on
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Bi for x; y both in one Bi and otherwise (say x 2 Bi � A and y 2 B1�i � A) we set
x < y , 9a 2 A(x <Bi a & a <B1�i y). This relation is clearly transitive and we claim it
preserves both join and meet from each Bi. First, if x; y 2 Bi and x ^ y = z in Bi then z
is also the greatest lower bound of x and y in P. Clearly z � x; y. So suppose w � x; y
is in P. If w 2 Bi then, of course, w � z. If w 2 P � Bi then there are ax; ay 2 A such
that w < ax � x and w < ay � y so w � ax ^A ay � ax ^Bi ay � x ^Bi y = z. The
argument for preserving join is similar.

Now let C be the set of ideals of P, i.e. the subsets of P closed downward and under
join when de�ned in P. We �rst note that C is clearly a lattice with order given by
containment and the operations on X; Y 2 C given by X ^Y = X \Y and X _Y equals
the ideal in P generated by X [Y (i.e. we close downward and under join when de�ned).
Finally, we de�ne the required maps gi : Bi ! C as the restrictions (to Bi) of a single

one-one g : P ! C de�ned by sending p 2 P to fq 2 Pjq �P pg (the ideal generated by
p). We show that g preserves join and meet in P when they exist and so its restrictions
to Bi are lattice embeddings. If p ^ q = r in P then it is clear that g(p) \ g(q) = g(r) by
the de�nition of meet in P as required. As for join, if p_ q = r in P then g(r) is an ideal
of P that contains both g(p) and g(q). On the other hand, any ideal of P containing
both p and q must contain r by the de�nition of ideals in P. Thus g(r) = g(p)_C g(q) as
required.

6 Usls and other questions

There are now two obvious questions about the possible countable initial segments of the
hyperdegrees. The �rst asks about lattice initial segments.

Question 6.1. What are the lattice initial segments of Dh? In particular, are there any
which are not sublattices of some hyperarithmetic lattice?

We do not even have any candidates for additional lattices isomorphic to initial seg-
ments of Dh.
The second natural line of inquiry asks about usl initial segments. In DT , there is no

di¤erence in the results: Every countable usl is isomorphic to an initial segment of DT .
Of course, we have seen (Theorem 1.1) that not every countable lattice is isomorphic to
an initial segment of Dh. Given our Theorem 1.2, however, the conjecture might be that
every subuppersemilattice (susl) of a hyperarithmetic lattice is isomorphic to an initial
segment of Dh. Now our proof actually makes signi�cant use of the existence of in�ma
in L at various points. As it turns out, the assumption is essential, at least at this level
of generality even if we require L to be locally �nite as well.

Proposition 6.2. There is a susl L0 of a locally �nite recursive lattice L which is not
isomorphic to any initial segment of Dh.
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Proof. The construction is an elaboration of that referred to in Theorem 1.1 that exploits
the possibility of exact pairs for ideals in usls to make the initial lattice locally �nite. The
basic construction of the �nitely generated successor model of Shore [1981] as modi�ed
in Shore [2007], [2008] begins with special elements designated by d0; e0; e1;f0; f1; p and q.
They contain a sequence dn of elements of order type ! generated by the special elements
as follows:

(�) (d2n _ e0) ^ f1 = d2n+1 and

(��) (d2n+1 _ e1) ^ f0 = d2n+2.

In addition we require that p � q and p _ dn � q for each n. We then code a set X
by adding two additional special elements cX and �cX such that dn � cX for n 2 X,
dn ^ cX = 0 for n =2 X, dn � �cX for n =2 X and dn ^ �cX = 0 for n 2 X. (So, in particular,
9x(0 < x � dn; cX)! dn � cX and 9x(0 < x � dn; �cX)! dn � �cX .)
We adjust this procedure to make the lattice locally �nite. In place of d0 we have

a set of elements di;0 for i 2 !. For each i the sequence generated by the schemes (�)
and (��) now terminates after i steps producing sequences di;0; : : : ; di;i of length i + 1
by having (di;i _ e0) ^ f1 = 0 if i is even and (di;i _ e1) ^ f0 = 0 if i is odd. We now
require that p _ di;j � q for every j � i 2 ! and add on new elements p̂ � q̂ such that
p̂_ di;j � q̂ if and only if j = i. In place of cX and �cX we have one �xed pair c and �c that
are above all the di;0 and no other of the previously mentioned elements. We complete
this description to a lattice L in a way that respects the given ordering and speci�ed join
and meet relations and makes c ^ �c a minimal upper bound of the ideal generated by
the di;0 with no other nonzero elements below it. We give more details after we see what
properties are needed to make our coding of sets in a susl of L be su¢ ciently �exible to
show that some such are not isomorphic to initial segments of Dh.
Given a set X we want to code X into a susl K of L by taking the susl of L generated

by the special elements c; �c; e0; e1;f0; f1; p; q; p̂ and q̂ and the di;j for i 2 X. In particular,
c and �c will now be an exact pair for the ideal generated by the di;0 for i 2 X. We want to
guarantee that n 2 X , there is a sequence x0; : : : ; xn with x0 � c; �c; x2m+1 � x2m_e0; f1
and x2m+2 � x2m+1 _ e1; f0 for 2m+1; 2m+2 � n; xm _ p � q for m � n and xn _ p̂ � q̂.
We claim that in this case X is �11 in the top G of any embedding of K as an initial

segment. As existential quanti�cation over sets hyperarithmetic in G and the relation
A �h B for sets given as hyperarithmetic in G are both �11 in G and the join operator
is recursive (on indices), it is clear that the speci�ed relation on n is �11(G) and that it
holds of every n 2 X. What remains to verify is that it holds only of n 2 X. So suppose
there are x0; : : : ; xn as described. For x0 � c; �c, we want x0 to be the join of �nitely many
di;0 by making these the only elements of K below both c and �c. Say for de�niteness that
x0 = di1;0_ � � �_dik;0. We also arrange our lattice so that (x0_ e0)^ f1 = di1;1_ � � �_dik;1
and so x1 � di1;1 _ � � � _ dik;1. In general, we arrange our lattice so that (x2n _ e0)^ f1 =
di1;2n+1_� � �_dik;2n+1 and (x2n+1_e1)^f0 = di1;2n+2_� � �_dik;2n+2 where we understand
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that for m > i, di;m = 0. Thus xm � di1;m_� � �_dik;m. The requirements that xm_p � q
guarantee that xm > 0 and, by making the di;j minimal elements of the lattice, they must
be above some nonzero dik;m. Finally, we guarantee that the only way such an xm can
join p̂ above q̂ is for it to be above some dik;ik but these elements are in K if and only if
ik 2 X as required.

Now to be more speci�c about the structure of L we specify its elements and the
order on them that will give a lattice with all the desired properties. We begin, of course,
with 0 and 1. The elements e0; e1; p; q; p̂; q̂ and di;j (for j � i 2 !) are minimal nonzero
elements of L. We extend the di;j freely to an usl L0 by taking all formal �nite joins. This
imposes a lattice structure on this set as well since each of the new elements has only
�nitely many elements below it. We next let p̂ act on the usl L0 as an order isomorphism
under join (so for x; y 2 L0, x _ p̂ � y _ p̂, x � y). Let L00 be the susl of L0 generated
by the di;j with j < i. For x 2 L00, no elements other than p̂ and those y � x are below
x _ p̂. For x 2 L0 � L00 we also put x _ p̂ � q̂. Joining e0 with members of L0 also
acts as an order isomorphism except that, for any m 2 ! and hiki; hjki 2 !m such that
8k < m(jk � ik), we make the following identi�cation:

e0 _
_
fdik;jk jk < mg = e0 _

_
fdik;jk jk < mg_

_
fdik;jk+1jk<m; jk < ik and jk is eveng:

We do the same for joining with e1 except that we change �even�to �odd�. We let
f0 (f1) be above the usl generated by the di;j for odd (even) j � i and put in a new
element c ^ �c (below both c and �c) which is above the usl generated by the di;0. Any
order relation x � y not dictated by these de�nitions is taken to be false. So for example,
e0 _ e1 = 1 = f0 _ f1, e0 ^ e1 = 0 = f0 ^ f1, x _ p = 1 for any x 6= 0, di;i _ p̂ = 1 for
every i, etc. It is tedious but straightforward to verify that the partial order so de�ned
imposes on the elements described a lattice structure L (i.e. for every x; y 2 L there is a
least upper bound and a greatest lower bound for the pair in the de�ned ordering) that
has all the desired properties.

If we now take X to be, for example, the complement of O, then the top of any
embedding of K as an initial segment would be above O and so the degrees below it
could not be isomorphic to K (as, for example, every countable partial order can be
embedded in Dh below deghO by Feferman [1965]).

On the other hand, there are initial segments of Dh which are not lattices. Indeed,
the usual proof that DT is not a lattice can be carried out for Dh by using Cohen forcing
in the hyperarithmetic setting to show that the degrees below O are not a lattice (as is
pointed out in Odifreddi [1983a, Proposition 8.3(b)]. Thus we have our next question.

Question 6.3. Which countable usls are isomorphic to initial segments of Dh?

This question seems wide open and, by the above Proposition, must need some new
construction technique. One attractive possibility would be a positive answer to the
following.
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Question 6.4. Is every hyperarithmetic usl isomorphic to an initial segment of Dh?

Here even the simplest example seems to need some new idea.

Question 6.5. Is the usl consisting precisely of an initial segment xn of type ! with an
exact pair x; y and their join (i.e. 0 = x0, 8n(xn < xn+1 � x; y) and x_y = 1) isomorphic
to an initial segment of Dh?

On the other hand, we have no particularly plausible candidate for a counterexample
to Question 6.4.
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