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Abstract. Halin [1965] proved that if a graph has (a set of) n many disjoint rays for each
n then it has (a set of) infinitely many disjoint rays. We analyze the complexity of this and
other similar results in terms of computable and proof theoretic complexity. The statement
of Halin’s theorem and the construction proving it seem very much like standard versions
of compactness arguments such as König’s Lemma. Those results while not computable
are relatively simple. They only use arithmetic procedures or, equivalently, finitely many
iterations of the Turing jump. We show that several Halin type theorems are much more
complicated. They are among the theorems of hyperarithmetic analysis. Such theorems
imply the ability to iterate the Turing jump along any computable well ordering. Several
important logical principles in this class have been extensively studied beginning with work
of Kreisel, H. Friedman, Steel and others in the 1960s and 1970s. Until now, only one purely
mathematical example was known. Our work provides many more and so answers Question
30 of Montalbán’s Open Questions in Reverse Mathematics [2011]. Some of these theorems
including ones in Halin [1965] are also shown to have unusual proof theoretic strength as
well.

1. Introduction

In this paper we analyze the complexity of several results in infinite graph theory. These
theorems are said to be ones of Halin type or, more generally, of ubiquity theory. The
classical example is a theorem of Halin [11]: If a countable graph G contains, for each n, a
sequence 〈R0, . . . Rn−1〉 of disjoint rays (a ray is a sequence 〈xi|i ∈ N〉 of distinct vertices such
that there is an edge between each xi and xi+1) then it contains an infinite such sequence
of rays. (Halin actually deals with arbitrary graphs and formulates the result differently.
The uncountable cases, however, are essentially just counting arguments. We deal only
with countable structures but discuss his formulation in §6.) This standard formulation of
his theorem seems like a typical compactness theorem going from arbitrarily many finitely
many objects to an infinite collection. The archetypical example here is König’s Lemma:
If a finitely branching tree has paths of length n for every n then it has a branch, i.e.
an infinite path. In outline, a modern proof of Halin’s theorem for countable graphs (due
to Andreae but see Diestel [5, Theorem 8.2.5(i)]) seems much like that of König’s Lemma
(and many others in infinite graph theory). The construction of the desired sequence of
rays proceeds by a recursion through the natural numbers in which each step is a relatively
simple procedure. While the procedure is much more delicate than for König’s Lemma, it
is basically of the same complexity. It uses Menger’s theorem for finite graphs at each step
but this represents a computable procedure (for finite graphs) and the other parts of the
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step depend on the same type of information as in König’s Lemma which ask, for example,
if various sets (computable in the given graph) are nonempty or infinite. Nonetheless, we
prove that the complexity of this construction and theorem are much higher than that for
König’s Lemma or other applications of compactness. (The definitions from graph theory,
computability theory and proof theory/reverse mathematics that we need for our analysis
are given in §3. Basic references for other terminology, background and standard results
not otherwise attributed are Diestel [5] for graph theory; Rogers [23] and Sacks [25] for
computability theory; and for reverse mathematics Simpson [29] with a view from proof
theory and Hirschfeldt [13] with one from computability.)

We follow two well established procedures for measuring the complexity of constructions
and theorems. The first is basically computability theoretic. It has its formal beginnings in
the 1950s but has much earlier roots in constructive or computable mathematics reaching
back to antiquity. (See Ershov et al. [6] for history and surveys of the approach in several
areas of combinatorics, algebra and analysis.) The measuring rod here is relative computabil-
ity. We say a set A is (Turing) computable from one B, A ≤T B, if there is an algorithm
(say on a Turing machine or any other reasonable model of general computation) that, when
given access to all membership facts about B (an oracle for B) computes membership in
A. The standard hierarchies of complexity here are based on iterations of the Turing jump.
This operator takes B to B′, the halting problem relativized to B, i.e. the set of programs
with oracle for B, ΦB

e , such that ΦB
e halts on input e. For example, if the tree of König’s

Lemma is computable in B then there is a branch computable in the double jump B′′ of B.
The second approach is proof theoretic. It measures the complexity of a theorem by the

logical strength of the axioms needed to prove it. This approach also has a long history
but the formal subject, now called reverse mathematics, starts with H. Friedman’s work in
the 1970s (e.g. [7, 8]). (Simpson [29] is now the basic reference.) One compares axiomatic
systems S and T by saying that T is stronger than S, T ` S (T proves S) if one can prove
every sentence Θ ∈ S from the axioms of T . Of course, we know what it means for Θ to be
provable in S. The goal here is to characterize to the extent possible the axioms needed to
prove a given mathematical theorem Θ. To this end, one begins with a weak base theory.
Then one wants to find a system S such that not only does S ` Θ but also Θ (with the weak
base theory) proves all the axioms of S. Hence the name reverse mathematics as we seek
to prove the “axioms” of S from the theorem Θ. Typically, the systems here are formalized
in arithmetic with quantification over sets as well as numbers. The standard base theory
(RCA0) corresponds to the axioms needed to do computable constructions. Stronger systems
are then usually generated by adding comprehension axioms which assert the existence of
specific families of sets. For example, a very important system is ACA0. It is equivalent
in the sense of reverse mathematics just described to König’s Lemma. Formally, it asserts
that every subset of N defined by a formula that quantifies only over N (and not its subsets)
exists. This is also equivalent to asserting that for every set B, the set B′ exists and so each
iteration B(n) for n ∈ N exists.

The early decades of reverse mathematics were marked by a large variety of results
characterizing a wide array of theorems and constructions as being one of five or so spe-
cific levels of complexity including RCA0 and ACA0. Each of these systems (Simpson’s
“big five”) have corresponding specific recursion theoretic construction principles. In more
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recent decades, there has been a proliferation of results placing theorems and construc-
tions outside the big five. Sometimes inserted linearly and sometimes with incompara-
bilities. They are now collectively often called the “zoo” of reverse mathematics. (See
https://rmzoo.math.uconn.edu/diagrams/ for pictures.).

Theorems and constructions in combinatorics in general, and graph theory in particular,
have been a rich source of such denizens of this zoo. Almost all of them have fallen below
ACA0 (König’s Lemma) and so have the objects they seek constructible computably in finitely
many iterations of the Turing jump. Ramsey theory, in particular, has provided a very large
class of constructions and theorems of distinct complexity. One example of the infinite
version of a classical theorem of finite graph theory that is computationally and reverse
mathematically strictly stronger than ACA0 is König’s Duality Theorem (KDT) for infinite
or even countable graphs. (Every bipartite graph has a matching and a cover consisting of
one vertex from each edge of the matching.) The proofs of this theorem for infinite graphs
(Podewski and Steffens [22] for countable and Aharoni [1] for arbitrary ones) are not just
technically difficult but explicitly used both transfinite recursions and well orderings of all
subsets of the given graph). These techniques lie far beyond ACA0. Aharoni, Magidor and
Shore [2] proved that this theorem is of great computational strength in that there are
computable graphs for which the required matching and cover compute all the iterations
of the Turing jump through all computable well-orderings. They also showed that it was
strong reverse mathematically as it implied ATR0, the standard system above ACA0 used to
deal with such transfinite recursions. Some of the lemmas used in each of the then known
proofs were shown to be equivalent to the next and final of the big five systems, Π1

1-CA0

and of corresponding computational strength. (Simpson [28] later provided a new proof of
the theorem using logical methods that avoided these lemmas and showed that the theorem
itself is equivalent to ATR0 and so strictly weaker than the lemmas both computationally
and in terms of reverse mathematics.)

The situation for the theorems of Halin type that we study here is quite different. The
standard proofs do not seem to use such strong methods. Nonetheless, as we mentioned
above the theorems are much stronger than ACA0 with some versions not even provable in
ATR0. We prove that these theorems occupy a few houses in the area of the reverse math-
ematics zoo devoted to what are called theorems (or theories) of hyperarithmetic analysis,
THA (Definition 3.13). Computationally, for each computable well ordering α, there is a
computable instance of any THA which has all of its required objects Turing above 0(α),
the αth iteration of the Turing jump. On the other hand, they are computationally and
proof theoretically much weaker than ATR0 and so KDT. (Remember, there is a single com-
putable graph such that the matching and cover required by KDT lies above 0(α) for all
the computable well-orderings α. While for each computable instance of a THA there is a
computable well-ordering α such that 0(α) computes the desired object. In our cases, the
instances are graphs with arbitrarily many disjoint rays and the desired object is an infinite
sequence of disjoint rays.)

Beginning with work of Kreisel [15], H. Friedman [9], Steel [30] and others in the 1960s
and 1970s and continuing into the last decade (by Montalbán [16, 17, 19], Neeman [20, 21]
and others), several axiomatic systems and logical theorems were found to be THA and
proven to lie in a number of distinct classes in terms of proof theoretic complexity. Until
now, however, there has been only one mathematical but not logical example, i.e. one not
mentioning classes of first order formulas or their syntactic complexity. This was a result
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(INDEC) about indecomposability of linear orderings in Jullien’s thesis [14] (see Rosenstein
[24, Lemma 10.3]). It was shown to be a THA by Montalbán [16].

The natural quest then became to find out if there are any other THA in the standard
mathematical literature. The issue was raised explicitly in Montalbán’s “Open Questions in
Reverse Mathematics” [18, Q30]. As our answer, we provide many examples. Most of them
are provable in a well known system above ACA0 gotten by adding on a weak form of the
axiom of choice (Σ1

1-AC0).
Several of the basic Halin type theorems (Definition 6.1) have versions like those appearing

in the original papers that show that there are always families of disjoint rays of maximal
cardinality which are of the same computational strength as the versions described above
(Proposition 6.3 and Corollary 6.4). On the other hand, they are strictly stronger proof
theoretically because they imply more induction than is available in Σ1

1-AC0 (Theorem 6.8
and Corollary 6.9). Two of the variations we consider are as yet open problems of graph
theory. We show that if we restrict the class of graphs (to directed forests) the principles
are not only provable but reverse mathematically equivalent to Σ1

1-AC0 + IΣ1
1. Note that as

ATR0 0 IΣ1
1, these theorems are not provable even in ATR0 or from KDT (Corollary 6.14).

We do not know of other mathematical but nonlogical theorems of this strength. Other
versions that require maximal sets of rays are much stronger and, in fact, equivalent to
Π1

1-CA0 (Theorem 6.18).

2. Outline of Paper

Section 3 contains basic definitions and background information. The first subsection
(3.1) provides the concepts that we need from graph theory. Almost all the definitions are
standard. At times we give slight variations that are equivalent to the standard ones but
make dealing with the computability and proof theoretic analysis easier. We also state the
theorems of Halin and some variants that are the main targets of our analysis.

The second subsection (3.2), assumes an intuitive view of computability of functions
f : N→ N such as having an algorithm given by a program in any standard computer
language. It then supplies all the definitions and a few standard theorems needed to follow
our analysis of the computational complexity of the graph theoretic theorems we study. In
particular, it defines the Turing jump operator and its iterations along countable well or-
derings. These are our primary computational measuring rods. The final subsection (3.3)
provides the syntax and semantics for the formal systems of arithmetic that are used to
measure proof theoretic complexity. It also describes the standard basic axiomatic systems
and their connections to the computational measures of the previous subsection. It includes
the formal definition of the class of theorems which includes most of our graph theoretic ex-
amples, the THA, Theorems (or Theories) of Hyperarithmetic Analysis. These are defined
in terms of the transfinite iterations of the Turing jump and the hyperarithmetic sets of the
previous subsection. In addition it defines Σ1

1-AC0 a weak version of the axiom of choice that
is an early well known example of such theories which plays a crucial role in our analysis.

Section 4 provides the proof that Halin’s original theorem IRT (Definition 3.4) is computa-
tionally very complicated. For example, given any iteration 0(α) of the Turing jump, there is
a computable graph satisfying the hypotheses of IRT such that any instance of its conclusion
computes 0(α). Indeed, IRT is a THA. At times, theorems or lemmas are stated in terms of
the formal systems of §3.3, but the proofs rely only on the computational notions of §3.2.
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Section 5 studies several variations IRTXYZ of Halin’s IRT where we consider directed as
well as undirected graphs, edge rather than vertex disjointness for the rays and double as
well as single rays. (See Definitions 3.1 and 3.2 and the discussion after Definition 3.4.) We
provide reductions over RCA0 between many of the pairs of the eight possible variants. The
proofs of these reductions proceed purely combinatorially by providing one computational
process that takes an instance of some IRTXYZ, i.e. a graph satisfying its hypotheses, and
produces a graph satisfying the hypotheses of another IRTX′Y′Z′ and another computable
process that takes any solution to the IRTX′Y′Z′ instance, i.e. any sequence of rays satisfying
the conclusion of IRTX′Y′Z′ , and produces a solution to the original instance of IRTXYZ. (See
Propositions 5.3, 5.5 and 5.7 and the associated Lemmas. An additional reduction using a
stronger base theory is given in the next section (Theorem 6.15).)

We then show that five of the eight possible variants of IRT are THA (Theorem 5.1). Of
the remaining three, two are still open problems in graph theory but we do have an analysis
of their restrictions to special classes of graphs in Theorem 5.16 and §6.1. The last of the
variations, IRTUED, has been proven more recently by Bowler, Carmesin, Pott [3] using more
sophisticated methods than the other results. We have some lower bounds (Theorem 5.9)
but we have yet to fully analyze the complexity of their construction.

In the next section (§6) we study some variations of IRT that ask for different types of
maximality for the solutions. The first sort actually follow the original formulation of IRT
in Halin [11]: IRT∗: In any graph there is a set of disjoint rays of maximum cardinality. For
uncountable graphs this amounts to a basic counting argument on uncountable cardinals
as all rays are countable. When restricted to countable graphs this is easily seen to be
equivalent to our more modern formulation by induction. Technically, the induction used is
for Σ1

1 formulas (IΣ1
1) which is not available in RCA0. More specifically we show (Proposition

6.3) that IRTXYZ + IΣ1
1 and IRT∗XYZ + IΣ1

1 are equivalent (over RCA0). As the definition of
THA only depends on standard models where full induction holds, if IRTXYZ is a THA then
so is IRT∗XYZ.

We then prove that these maximal cardinality variants IRT∗XYZ are strictly stronger proof
theoretically than the basic IRTXYZ (when they are known to be provable in Σ1

1-AC0). This
is done by showing (Theorem 6.8 and the Remark that follows it) that the relevant IRT∗XYZ

all imply weaker versions of IΣ1
1 that are analogous to the restrictions of Σ1

1-AC0 embodied
in weak (or unique)-Σ1

1-AC0 and finite-Σ1
1-AC0 (Definitions 7.1 and 7.2). In all the cases, it

is enough induction to prove (with the apparatus of the basic IRTXYZ) the consistency of
Σ1

1-AC0 and so by Gödel’s second incompleteness theorem they cannot be proved in Σ1
1-AC0

(Corollary 6.9).
As for proving full Σ1

1 induction from an IRT∗XYZ we are in much the same situation
mentioned above for Σ1

1-AC0 and IRTXYZ. In particular, IRT∗DVD and IRT∗DED for directed
forests each proves IΣ1

1 as well as Σ1
1-AC0 (Theorems 6.12 and 6.13) and so are equivalent to

IΣ1
1 + Σ1

1-AC0. As before, this shows that they are strictly stronger than Σ1
1-AC0 (Corollary

6.14). Indeed, as mentioned at the end of §1, they are not even provable in ATR0. We do not
know of any other mathematical theorems with this level of reverse mathematical strength.

The second variation of maximality, MIRTXYZ, studied in §6.2 is also mentioned in the
original Halin paper [11]. It asks for a set of disjoint rays which is maximal in the sense
of set containment. Of course, this follows immediately from Zorn’s Lemma for all graphs.
For countable graphs we provide a reverse mathematical analysis, showing that each of the
MIRTXYZ is equivalent to Π1

1-CA0 (Theorem 6.18).
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In §7, we discuss the reverse mathematical relationships between the THAs associated
with variations of Halin’s theorem and previously studied THAs as well as one new logical
one (finite-Σ1

1-AC0 of Definition 7.1). Basically, all the IRT∗XYZ (and so IRTXYZ + IΣ1
1) imply

H. Friedman’s ABW0 (Definition 7.4) by Theorem 7.7 and finite-Σ1
1-AC0 (Theorem 7.3). On

the other hand, none of them are implied by it (Theorem 7.10) or by ∆1
1-CA0 (Definition

7.8 and Theorem 7.9). ABW0 + IΣ1
1 does, however, imply finite-Σ1

1-AC0 which is not implied
by weak (unique)-Σ1

1-AC0 (Goh [10]). Figure 4 here summarizes the known relations with
references.

In the penultimate section (§8) we study the only use of Σ1
1-AC0 in each of our proofs

of IRTXYZ. It consists of SCRXYZ which says we can go from the hypothesis that there are
arbitrarily many disjoint rays to a sequence (Xk)k each of which is a sequence of k many
disjoint rays. We analyze the strength of the SCRXYZ and the weakenings WIRTXYZ of IRTXYZ

which each take the existence of such a sequence (Xk)k as its hypothesis in place of there
being arbitrarily many disjoint rays. For example, for all the IRTXYZ which are consequences
of Σ1

1-AC0 and so are THAs, IRTXYZ is equivalent to SCRXYZ over RCA0 (Corollary 8.5) and
so all of them are also THAs. For the same choices of XYZ, ACA0 proves WIRTXYZ over
RCA0. While a natural strengthening of WIRTXYZ does imply ACA0 and indeed is equivalent
to it (Theorem 8.9), we do not know if WIRTXYZ itself implies ACA0. All we can prove is
that it is not a consequence of RCA0 (Theorem 8.10).

In the last section (§9), we mention some open problems.

3. Basic Notions and Background

We begin with basic notions and terminology from graph theory. At times we use for-
malizations that are clearly equivalent to more standard ones but are easier to work with
computationally or proof-theoretically. The following two subsections supply background
and basic information about the standard computational and logical/proof theoretic notions
that we use here to measure the complexity of the graph theorems and constructions that
we analyze in the rest of this paper.

3.1. Graph Theoretic Notions.

Definition 3.1. A graph H is a pair 〈V,E〉 consisting of a set V (of vertices) and a set
E of unordered pairs {u, v} with u 6= v from V (called edges). These structures are also
called undirected graphs (or here U-graphs). A structure H of the form 〈V,E〉 as above is a
directed graph (or here D-graph) if E consists of ordered pairs 〈u, v〉 of vertices with u 6= v.
To handle both cases simultaneously, we often use X to stand for undirected (U) or directed
(D). We then use (u, v) to stand for the appropriate kind of edge, i.e. {u, v} or 〈u, v〉.

An X-subgraph of the X-graph H is an X-graph H ′ = 〈V ′, E ′〉 such that V ′ ⊆ V and
E ′ ⊆ E. It is an induced X-subgraph if E ′ = {(u, v)|u, v ∈ V ′ & (u, v) ∈ E}.

Definition 3.2. An X-ray in H is a pair consisting of an X-subgraph H ′ = 〈V ′, E ′〉 of H
and an isomorphism fH′ from N with edges (n, n + 1) for n ∈ N to H ′. We say that the
ray begins at f(0). We also describe this situation by saying that H contains the X-ray
〈H ′, fH′〉. We sometimes abuse notation by saying that the sequence 〈f(n)〉 of vertices is
an X-ray in H. Similarly we consider double X-rays where the isomorphism fH′ is from
Z = {−n, n|n ∈ N} with edges (z, z + 1) for z ∈ Z. We use Z-ray to stand for either a
(single) ray (Z = S) or double ray (Z = D) and so we have, in general, Z-X-rays or just
Z-rays if the type of graph (U or D) is already established. For brevity, when we describe
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rays we will often only list their vertices in order instead of defining H ′ and f explicitly.
However the reader should be aware that we always have H ′ and f in the background.
H contains k many Z-X-rays for k ∈ N if there is a sequence 〈Hi, fi〉i<k such that each
〈Hi, fi〉 is a Z-X-ray in H (with Hi = 〈Vi, Ei〉).
H contains k many disjoint (or vertex-disjoint) Z-X-rays if the Vi are pairwise disjoint.

H contains k many edge-disjoint Z-X-rays if the Ei are pairwise disjoint. We often use Y
to stand for either vertex (V) or edge (E) as in the following definitions.

An X-graph H contains arbitrarily many Y-disjoint Z-X-rays if it contains k many such
rays for every k ∈ N.

An X-graph H contains infinitely many Y-disjoint Z-X-rays if there is an X-subgraph
H ′ = 〈V ′, E ′〉 of H and a sequence 〈Hi, fi〉i∈N such that each 〈Hi, fi〉 is a Z-X-ray in H
(with Hi = 〈Vi, Ei〉) such that the Vi or Ei, respectively for Y = V,E, are pairwise disjoint
and V ′ = ∪Vi and E ′ = ∪Ei.

Definition 3.3. An X-path P in an X-graph H is defined similarly to single rays except
that the domain of f is a proper initial segment of N instead of N itself. Thus they are
finite sequences of distinct vertices with edges between successive vertices in the sequence.
If P = 〈x0, . . . , xn〉 is a path, we say it is a path of length n between x0 and xn. Our notation
for truncating and combining paths P = 〈x0, . . . , xn〉, Q = 〈y0, . . . , ym〉 and R = 〈z0, . . . , zl〉
is as follows: xiP = 〈xi, . . . , xn〉, Pxi = 〈x0, . . . , xi〉, and we use concatenation in the natural
way, e.g., if the union of Px, xQy and yR is a path, we denote it by PxQyR. We treat rays
as we do paths in this notation, as long as it makes sense, writing, for example, xiR for the
ray which is gotten by starting R at an element xi of R; Rxi is the path which is the initial
segment of R ending in xi and we use concatenation as for paths as well.

The starting point of the work in this paper is a theorem of Halin [11] that we call the
infinite ray theorem as expressed in Diestel [5, Theorem 8.2.5(i)].

Definition 3.4 (Halin’s Theorem). IRT, the infinite ray theorem, is the principle that every
graph H which contains arbitrarily many disjoint rays contains infinitely many.

The versions of Halin’s theorem which we consider in this paper allow for H to be an
undirected or a directed graph and for the disjointness requirement to be vertex or edge. We
also allow the rays to be single or double. The corresponding versions of Halin’s Theorem
are labeled as IRTXYZ for appropriate values of X, Y and Z to indicate whether the graphs
are undirected or directed (X = U or D); whether the disjointness refers to the vertices or
edges (Y = V or E) and whether the rays are single or double (Z = S or D), respectively,
in the obvious way. We often state a theorem for several or all XY Z and then in the proof
use “graph”, “edge” and “disjoint” unmodified with the intention that the proof can be read
for any of the cases. This is convenient for minimizing repetition in some of our arguments.

We will also consider restrictions of these theorems to specific families of graphs. We need
a few more notions to define them.

Definition 3.5. A tree is a graph T with a designated element r called its root such that
for each vertex v 6= r there is a unique path from r to v. A branch in T is a ray that
begins at its root. We denote the set of its branches by [T ] and say that T is well-founded
if [T ] = ∅ and otherwise it is ill-founded. A forest is an effective disjoint union of trees, or
more formally, a graph with a designated set R (of vertices called roots) such that for each
vertex v there is a unique r ∈ R such that there is a path from r to v and, moreover, there
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is only one such path. (Here we conflate the set of roots R with the usual indexing set for a
typical effective disjoint union so that we continue to have a designated set of the roots.) In
general, the effectiveness we assume when we take disjoint unions of graphs means that we
can effectively (i.e. computably) identify each vertex in the union with the original vertex
(and the graph to which it belongs) which it represents in the disjoint union.

A directed tree is a directed graph T = 〈V,E〉 such that its underlying graph T̂ = 〈V, Ê〉
where Ê = {{u, v}|〈u, v〉 ∈ E ∨ 〈v, u〉 ∈ E} is a tree. A directed forest is a directed graph
whose underlying graph is a forest.

Definition 3.6. An X-graph H is locally finite if, for each u ∈ V , the set {v ∈ E|(u, v) ∈
E ∨ (v, u) ∈ E} of neighbors of u is finite. A locally finite X-tree is also called finitely
branching. (Note this does not mean there are finitely many branches in the tree.)

Of course, there are many well known equivalent definitions of trees and associated notions.
We have given one possible set of graph theoretic ones. In the case of undirected graphs our
definition is equivalent to all the standard ones. Readers are welcome to think in terms of
their favorite definition. Note, however, we are restricting ourselves to what would (in set
theory) be called countable trees with all nodes of finite rank. Thus, we typically think of
trees as subtrees of N<N, i.e. the sets of finite strings of numbers (as vertices) with an edge
between σ and τ if and only if they differ by one being an extension of the other by one
element, e.g. σ_k = τ .

It does not seem as if there is a single standard definition for directed graphs being directed
trees. We have picked one that seems to be at least fairly common and works for the only
situations for which we consider them in Theorems 5.16, 6.12, and 6.13 and Corollary 6.14.

3.2. Computability Hierarchies. While we may cite results about uncountable graphs,
all sets and structures actually studied in this paper will be countable. Thus for purposes
of defining their complexity, we can think of all of them as being subsets of, or relations or
functions on, N.

We do not give a formal stand alone definition of computability for sets or functions but
assume an at least intuitive grasp of some model of computation such as by a Turing or
Register machine that has unbounded memory and is allowed to run for unboundedly many
steps. (We do provide in §3.3 a definition via definability in arithmetic that is equivalent
to the formal versions of machine model definitions.) Thus we say a function f : N → N is
computable if there is a program for one of these machines that computes f(n) as output
when given input n. A set X is computable if its characteristic function N → {0, 1} is
computable. Note that as the alphabets or our languages are finite, there are only countably
many programs and as our formation rules are effective, we have a computable list of the
programs and hence one, Φe, of the partial functions they compute. (They are only partial
as, of course, some programs fail to halt on some inputs.)

Fundamental to measuring the relative computational complexity of sets or functions is
the notion of machines with oracles and Turing reduction. Given a set X or function f
we consider machines augmented by the ability to produce X(n) or f(n) if it has already
produced n. We say that such a machine is one with an oracle for X or f . We then say that
X is computable from (or Turing reducible to) Y if there is a machine with oracle Y which
computes X via some reduction ΦX

e . We write this as X ≤T Y . We say X is of the same
(Turing) degree as Y , X ≡T Y , if X ≤T Y and Y ≤T X. We use all the same terminology
and notations for functions.
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The first level beyond the computable in our basic hierarchy of computable complexity
is given by the halting problem H = {e|Φe(e) converges} that is H is the set of e such
that the computation of the eth machine Φe on input e eventually halts. We then define an
operator on sets X 7−→ X ′ = {e|ΦX

e (e) converges} that is X ′ is the set of e such that the
computation of the eth machine with oracle X, ΦX

e on input e eventually halts. (It is easy
to see that H ≡T ∅′.) The crucial fact here is the undecidability of the halting problem (for
every oracle), i.e. for every X, X ′ is strictly above X in terms of Turing computability. The
other basic fact that we need about ∅′ is that it is computably enumerable, i.e. there is a
computable function f whose range is ∅′. If f(s) = x we say that x is enumerated in, or
enters, 0′ at (stage) s. If we view H as defined by using the empty oracle ∅, the procedure
that takes us from the halting problem to the Turing jump by replacing ∅ as oracle by X is
an instance of a general procedure called relativization. It takes any computable function or
proof about computable functions or degrees (i.e. ones with oracle ∅) to the same function,
or proof about functions, computable in X (or degrees above that of X). Almost always
this procedure trivially transforms correct proofs with oracle ∅ to ones with arbitrary oracle
X. Typically, this transformation keeps the same programs doing the required work with
any oracle. For example, X ′ is computably enumerable in X (or relative to X), i.e. there
is a function ΦX

e whose range is X ′ and this can be taken to be the same e such that
Φ∅e enumerates ∅′. We also use X ′s to denote the set of numbers enumerated in (or that
have entered) X ′ by stage s. This phenomena of the procedure or result not depending on
the particular oracle or depending in a fixed computable way on some other parameters is
described as it being uniform in the oracle or other parameters. We describe an important
example of uniformity in Remark 3.9.

We can now generate a hierarchy of computational complexity by iterating the jump
operator beginning with any set X: X(0) = X; X(n+1) = (Xn)′. While the finite iterations
of the jump capture most construction techniques and theorems in graph theory (and most
other areas of classical countable/separable mathematics), we will be interested in ones that
go beyond such techniques and proofs. The basic idea is that we continue the hierarchy by
iteration into the transfinite while still tying the iteration to computable procedures.

Definition 3.7. We represent well-orderings or ordinals α as well-ordered relations on N.
Typically such ordinal notations are endowed with various additional structure such as identi-
fying 0, successor and limit ordinals and specifying cofinal ω-sequences for the limit ordinals.
If we have a representation of α then restricting the well-ordering to numbers in its domain
provides representations of each ordinal β < α. We generally simply work with ordinals and
omit concerns about translating standard relations and procedures to the representation. An
ordinal is computable (in a set X) if it has a computable (in X) representation. For a set
X and ordinal (notation) α computable from X, we define the transfinite iterations X(β) of
the Turing jump of X by transfinite induction on β ≤ α: X(0) = X; X(β+1) = (Xβ)′ and for
a limit ordinal λ, X(λ) = ⊕{X(β)|β < λ} = ∪{β ×X(β)|β < λ} (or as the effective disjoint
sum over the X(β) in the specified cofinal sequence in λ).

Definition 3.8. HYP(X), the collection of all sets hyperarithmetic in X consists of those sets
computable in some X(α) for α an ordinal computable in X. We say that Y is hyperarithmetic
in X or hyperarithmetically reducible to X, Y ≤h X if Y ∈ HYP(X).
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These sets too, will be characterized by a definability class in arithmetic in §3.3. For now
we just note that they clearly go far beyond the sets computable from the finite iterations
of the jump.

The computational strength of our graph theoretic theorems such as IRT is measured by
this hierarchy as we will show that, for every set X and every set Y hyperarithmetic in X,
there is a graph G computable from X which satisfies the hypotheses of IRT but for which
any collection of rays satisfying its conclusion computes Y . On the other hand, placing an
upper bound on the strength of IRT requires analyzing its proof and the principles used in it.
The relevant one is a form of the axiom of choice. We define it in the next subsection along
with a general class of such principles, the theorems/theories of hyperarithmetic analysis
which are, computationally, the primary objects of our analysis in this paper.

We note one important well known basic fact relating the jumps of X to trees computable
from X. We will need it for our proofs that IRT and its variants are computationally complex
enough to compute all the sets hyperarithmetic in any given set X (as the instances of the
graphs range over graphs computable from X).

Remark 3.9. For any set X and any ordinal α computable from X, there is a sequence
〈Tβ|β < α〉 computable from X of trees (necessarily) computable from X such that each
tree has exactly one branch Pβ and Pβ is of the same complexity as X(β), i.e. Pβ ≡T X(β).
The procedure for computing this sequence is uniform in X and the index for the program
computing the well ordering α from X, i.e. there is one computable function that when
given an oracle for X, an index for α (i.e. the i such that ΦX

i is the well ordering α) and a β
in the ordering, computes the whole sequence 〈Tβ|β < α〉 and the indices for the reductions
between Pβ and X(β). (See, e.g. [27, Theorem 2.3]). We may also easily assure that the Tβ
are effectively disjoint so that their union is a forest.

Some versions of the variations on IRT (see §6.2) that call for types of maximality for the
infinite set of disjoint rays are stronger both computationally and proof theoretically than
the IRTXYZ described above. Their computational strength is captured by a kind of jump
operator that goes beyond all the hyperarithmetic ones. It captures the ability to tell if a
computable ordering is a well-ordering.

Definition 3.10. The hyperjump of X, OX , is the set {e|ΦX
e is (the characteristic function

of) a subtree of N<N which is well-founded}.

This operator also corresponds to a syntactically defined level of comprehension as we
note in §3.3.

3.3. Logical and Axiomatic Hierarchies. The basic notions from logic that we need here
are those of languages, structures and axiomatic systems and proofs. As we will deal only
with countable sets and structures, we can assume that we are dealing just with the natural
numbers with a way to define and use sets and functions on them. Thus, at the beginning,
we have in mind the natural numbers N along with the usual apparatus of the language of
(first order) arithmetic, say +,×, <, 0 and 1 along with the syntax of standard first order
logic (the Boolean connectives ∨,∧ and ¬; the variables such as x and y ranging over the
numbers with the usual quantifiers ∀x and ∃y as well as the equality relation =). A structure
for this language is a set N along with elements for 0 and 1, binary functions for + and ×
and a binary relation for <. We also need a way of talking about subsets of (or functions
on) the numbers. We follow the standard practice in reverse mathematics of using sets and
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defining functions in terms of their graphs. So we expand our language by adding on new
classes of (second order) variables such as X and Y and the associated quantifiers ∀X and
∃Y along with a new relation symbol ∈ between numbers and sets.

A structure for this language is one of the formN = 〈N,S,+,×, <, 0, 1,∈〉 where 〈N,+,×, <, 0, 1〉
is a structure for first order arithmetic; S ⊆ 2N is a specified collection of subsets of N , the
set of “numbers” of N , over which the second order quantifiers and variables of our language
range. It is called the second order part of N . The usual membership symbol ∈ always
denotes the standard membership relation between elements of N and subsets of N that are
in S. So a sentence Θ is true in N , N � Θ, if first order quantification is interpreted as
ranging over N , second order quantification ranges over S and the relations and functions
of the language are as described. This specifies the semantics for second order arithmetic.

Proof theoretic notions deal with all possible structures for the language and axiom systems
to specify what we need in any particular argument. For most of our purposes and all of the
computational ones, one can restrict attention to standard models of arithmetic, i.e. ones N
with N = N and some S ⊆ 2N with the usual interpretations of the functions and relations.
We generally abbreviate these structures as 〈N, S〉 with S ⊆ 2N as all the functions and
relations are then fixed.

We view the use of a second kind of variable as a short hand for a typical first order
language with predicates RN and SN for the two parts (N and S) so that, e.g. ∃xφ(x)
means ∃x(φ(x) ∧ RN (x)) and ∃Xφ(X) means ∃X(φ(X) ∧ SN (X)). We can thus assume
any standard proof theoretic system for basic first order logic. This generates the provability
notion ` used above to define our notion of logical strength and equivalences of theories (sets
of sentences often called axioms) as above. We now define the standard weak base theory
RCA0 used to define the logical strength of mathematical theorems as described above. We
then define a few other common systems that will be used later.

Each axiomatic subsystem of second order arithmetic that we consider contains the stan-
dard basic axioms for +, ×, and < (which say that N is an ordered semiring). In addition,
they all include the usual extension axiom for sets and a form of induction that applies only
to sets (that belong to the model):

(EXT) (∀X, Y )(∀n(n ∈ X ↔ n ∈ Y )→ X = Y ).
(I0) (∀X)((0 ∈ X & ∀n (n ∈ X → n+ 1 ∈ X))→ ∀n (n ∈ X)).

We call the system consisting of EXT, I0 and the basic axioms of ordered semirings P0.
Typically axiom systems for second order arithmetic are defined by adding various types of
set existence axioms to P0 although at times additional induction axioms are used as well.
In order to define them we need to specify various standard syntactic classes of formulas
determined by quantifier complexity.

Definition 3.11. The Σ0
0 and Π0

0 formulas of second order arithmetic are just the ones with
no quantifiers. Proceeding inductively, a formula Φ is Σ0

n+1 (Π0
n+1) if it is of the form ∃xΨ

(∀xΨ) where Ψ is Π0
n (Σ0

n). We assume some computable coding of all these formulas (viewed
as strings of symbols from our language) by natural numbers. We say Φ is arithmetic if it is
Σ0
n or Π0

n for some n ∈ N. It is Σ1
1 (Π1

1) if it is of the form ∃XΨ (∀XΨ) where Ψ is arithmetic.
(One can continue to define Σ1

n and Π1
n in the natural way but we will not need to consider

such formulas here.) We say a set X is in one of these classes Γ (in or relative to Y , i.e.
with Y as a parameter) if there is a formula Ψ(n, Y ) ∈ Γ such that n ∈ X ⇔ Ψ(n, Y ). If X
is both Σi

n (in Y ) and Πi
n (in Y ) it is called ∆i

n (in Y ).
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We mention a few additional standard connections between the syntactic complexity of
the definition of a set X and X’s properties in terms of computability and graph theoretic
notions.

Remark 3.12. The sets Y (n) are Σ0
n in Y . A set X is computable (in Y ) if and only if it

is ∆0
1 (in Y ). More generally, it is computable in Y (n) iff and only if it is ∆0

n+1 (in Y ). It is
hyperarithmetic (in Y ) if and only if it is ∆1

1 (in Y ). There is a computable function f(e, n)
such that if X is Σ1

1 (in Y ) via the Σ1
1 formula with code e then for every n, ΦY

f(e,n) is (the

characteristic function of) a tree T such that n ∈ X ⇔ T has a branch.

The first system for analyzing the proof theoretic strength of theorems and theories in
reverse mathematics is just strong enough to prove the existence of the computable sets
and so supplies us with all the usual computable functions such as pairing 〈n,m〉 or more
generally those coding finite sequences as numbers. In particular, it provides the predicates
defining the (codes e of) the partial computable functions Φe and the relations saying the
computation ΦX

e (n) halts in s many steps with output y. Thus we have the basic tools to
define and discuss Turing reducibility and the Turing jump. It is our weak base theory and
is assumed to be included in every system we consider.

(RCA0) Recursive Comprehension Axioms: In addition to P0 its axioms include the schemes
of recursive (generally called ∆0

1) comprehension and Σ0
1 induction:

(∆1
1-CA0) ∀n (Φ(n)↔ Ψ(n))→ ∃X ∀n (n ∈ X ↔ Φ(n)) for all

Σ0
1 formulas Φ and Π0

1 formulas Ψ in which X is not free.
(IΣ0

1) (ϕ(0) &∀n (ϕ(n)→ ϕ(n+ 1)))→ ∀nϕ(n) for all Σ0
1 formulas ϕ.

Note that these formulas may have free set or number variables. As usual, the existence
assertion ∃X.... of the axiom is taken to mean that for each instantiation of the free variables
(by numbers or sets, as appropriate, called parameters) there is an X as described. We take
this for granted as well as the restriction that the X is not free in the rest of the formula in
all of the set existence axioms of any or our systems. The standard models of this theory
are just those whose second order part is closed under Turing reduction and disjoint union
(X ⊕ Y = {〈0, x〉 |x ∈ X} ∪ {〈1, y〉 |y ∈ Y }). Historically the computable (in Y ) sets which
are, as mentioned above, the ∆0

1 (in Y ) sets, have also been called the recursive (in Y ) sets.
Hence the terminology in RCA0.

We next move up to arithmetic comprehension.

(ACA0) Arithmetic Comprehension Axioms: ∃X ∀n (n ∈ X ↔ Φ(n)) for every arithmetic
formula Φ.

As mentioned above the X(n) are defined by a Σ0
n formula with X as a parameter. So

one can show that this system is equivalent (over RCA0) to the totality of the Turing jump
operator, i.e. for every X, X ′ exists. Its standard models are those of RCA0 whose second
order part is also closed under Turing jump. It is also equivalent (in the sense of reverse
mathematics) to König’s Lemma that every finitely branching tree with paths of arbitrarily
long length has a branch.

In general, we say one system of axioms S is logically or reverse mathematically reducible
to another T over one R if R ∪ T ` ψ for every sentence ψ ∈ S. Note that S and/or T
may be a single sentence or theorem. We say that S and T are equivalent over R if each is
reducible to the other. If no system R is specified we assume that RCA0 is intended.
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As we will not deal with it, we have omitted the formal definition of the usual system
(WKL0) which falls strictly between RCA0 and ACA0. It is characterized by the restriction
of König’s Lemma to trees that are subsets of 2<N , the tree of finite binary strings under
extension. Similarly, we omit the usual system (ATR0) which comes after ACA0. It says that
arithmetic comprehension can be iterated along any countable well-order and so implies the
existence of the sets hyperarithmetic in X for each X but is computationally stronger than
this assumption.

Instead, we describe the computationally defined class of theorems/theories that are the
main focus of this paper and include several variations of IRT. The definition is semantic,
not axiomatic and involves only standard models. (Indeed by Van Wesep [31], there can be
no axiomatic characterization of this class in second order arithmetic.)

Definition 3.13. A sentence (theory) T is a theorem (theory) of hyperarithmetic analysis
(THA) if

(1) For every X ⊆ N, (N,HYP(X)) � T and
(2) For every S ⊆ 2N, if (N, S) � T and X ∈ S then HYP(X) ⊆ S.

The last of the standard axiomatic systems is characterized by the comprehension axiom
for Π1

1 formulas:

(Π1
1-CA0) The Π1

1 comprehension axioms: ∃X ∀k (k ∈ X ↔ Φ(k)) for every Π1
1 formula

Φ(k).

Remark 3.14. The hyperjump, OX , is clearly a Π1
1 set with parameter X. In fact, every Π1

1

set with parameter X is reducible to OX : There is a computable function f(e, n) such that
for every index e for a Π1

1 formula Ψ(n) with parameter X and every n, Ψ(n)⇔ f(e, n) ∈ O.
Thus Π1

1-CA0 corresponds to closure under the hyperjump. We will see it appear as equivalent
to a version of IRT where we ask for a maximal set of disjoint rays in Theorem 6.18.

For this paper, the most important other existence axiom is a restricted form of the axiom
of choice.

(Σ1
1-AC0) ∀n∃XΦ(n,X)→ ∃X∀nΦ(n,X [n]) where Φ is arithmetic and X [n] = {m|〈n,m〉 ∈

X} is the nth column of X.

This axiom falls strictly between ACA0 and ATR0 and is well known to be a THA (essen-
tially in Kreisel [15]). It plays a crucial role in our analysis because we provide the upper
bound on the strength of most of our theorems by showing that they follow from Σ1

1-AC0.
This provides the computational upper bound for being a THA as any consequence of a
THA must satisfy Definition 3.13(1) as Σ1

1-AC0 is true in HYP(X). Thus the bulk of our
proofs for the computational complexity of the theorems we study consist of showing that
they imply Definition 3.13(2), i.e. closure under “hyperarithmetic in”.

Over the past fifty years, several other logical axioms have been shown to be THA. We
will discuss some of them in §7. However, as we discussed in §1, only one somewhat obscure
purely mathematical theorem was previously known to be a THA. We provide several more
in this paper (Theorem 5.1, Corollary 6.4 and Theorem 6.13). We also introduce a new
logical axiom, finite-Σ1

1-AC0 (Definition 7.2) which is a THA as well.
For those interested in the proof theory and so nonstandard models, we also at times

explicitly consider the induction axiom at the same Σ1
1 level.

(IΣ1
1) (Φ(0) ∧ ∀n(Φ(n)→ Φ(n+ 1))) → ∀nΦ(n) for every Σ1

1 formula Φ.
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This axiom does not imply the existence of any infinite sets and is, of course, true in every
standard model. Thus the readers interested only in the computational complexity of the
Halin type theorems can safely ignore these considerations.

4. IRT and Hyperarithmetic Analysis

We devote this section to the proof of

Theorem 4.1. IRT is a theorem of hyperarithmetic analysis.

In this section we consider only vertex-disjoint single rays in undirected graphs, as in the
statement of IRT. The proof of Theorem 4.1 will be split into two parts. The first part is

Theorem 4.2. Every standard model of RCA0 + IRT is closed under hyperarithmetic reduc-
tion.

Proof. Fix a standard model M of RCA0 + IRT. First, we show that M contains ∅′. By
relativizing the proof, it follows that M is closed under Turing jump.

For each n, consider the tree Tn ⊆ N<N consisting of all strings of the form s_0t such that
some number below n is enumerated into ∅′ at stage s, and either t ≤ s or ∅′s � n = ∅′t � n.
Observe that Tn has a unique computable branch s_0∞, where s is the smallest number such
that ∅′ � n = ∅′s � n.

Consider the disjoint union
⊔
n Tn. Observe that

⊔
n Tn satisfies the premise of IRT (in

M), because each Tn has a computable branch. Apply IRT to
⊔
n Tn to obtain a sequence

(Ri)i of disjoint rays in
⊔
n Tn. Each Ri is contained in some Tn. We can, uniformly in i,

extend or truncate Ri to the unique branch Pn of Tn. Hence (Ri)i computes a sequence
of infinitely many distinct branches Pn, which in turn computes longer and longer initial
segments of ∅′. This proves that M contains ∅′.

Next, we show that if M contains ∅(α) for each α < λ, then M contains ∅(λ). (Again
the desired result follows by relativization.) By Remark 3.9, there is a computable sequence
(Tβ)β<λ of trees such that each tree has exactly one branch Pβ ≡T ∅(β). Fix an increasing
sequence (αn)n which is cofinal in λ and consider the disjoint union

⊔
n Tαn . Observe that⊔

n Tαn satisfies the premise of IRT (in M): for each n, ∅(αn) computes the branches Pαm

for m ≤ n. Apply IRT to
⊔
n Tαn to obtain a sequence (Ri)i of disjoint rays in

⊔
n Tαn .

As before, (Ri)i computes a sequence of infinitely many distinct branches Pαn , and hence a
sequence of infinitely many distinct ∅(αn). Each ∅(αn) uniformly computes ∅(αm) for m ≤ n,
so we conclude that (Ri)i computes

⊕
m ∅(αm) as desired. �

It follows that IRT is not provable in ACA0, despite the apparent similarity between IRT
and a compactness result. Later we will show that IRT does imply ACA0 (Proposition 4.6)
but is not even provable in the theory of ∆1

1-comprehension (Theorem 7.9).
Next, we present the proof of IRT attributed to Andreae (see Diestel [5, Theorem 8.2.5

and bottom of pg. 275]), with emphasis on the axioms which can be used to formalize it.
We will then use this analysis to complete the proof of Theorem 4.1.

Given a graph which has arbitrarily many disjoint rays, we will build approximations
Rn

0 , . . . , R
n
n−1 to the desired infinite sequence of disjoint rays by induction. For each n,

Rn
0 , . . . , R

n
n−1 is a sequence of disjoint rays. As n grows, Rn

i and Rn+1
i will agree on a growing

initial segment. Hence for each i, limnR
n
i exists, and 〈limnR

n
i : i < N〉 will be an infinite

sequence of disjoint rays.
The key combinatorial lemma implicit in Andreae’s proof is:
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Lemma 4.3. Given n disjoint rays R0, . . . , Rn−1 and n2 + 1 disjoint rays S0, . . . , Sn2, there
are n + 1 disjoint rays R′0, . . . , R

′
n such that for each i < n, Ri and R′i start at the same

vertex.

On the face of it, constructing such R′0, . . . , R
′
n could be difficult; perhaps as difficult as

constructing a solution to a Σ1
1 predicate. However, Andreae’s proof actually constructs

R′0, . . . , R
′
n such that for each i ≤ n, R′i shares a tail with some Rj or Sj. We will see that

this lowers the complexity of constructing such rays considerably.
Before proving Lemma 4.3, let us use it to prove IRT.

Proof of IRT assuming Lemma 4.3. Suppose that we have constructed disjoint raysRn
0 , . . . , R

n
n−1.

We want to construct disjoint rays Rn+1
0 , . . . , Rn+1

n such that for each i < n, Rn
i and Rn+1

i

agree on their first n − i vertices. By assumption, let S0, . . . , Sf(n) be a finite sequence of
disjoint rays, where f(n) = n2 +

∑
i<n(n− i).

Next, discard all rays Sj which intersect the first n− i vertices of some Rn
i , if any. (By the

way that we have formalized rays, this can be done in RCA0.) There are at most
∑

i<n(n− i)
many of them, so by discarding and renumbering if necessary we are left with S0, . . . , Sn2 .

We are ready to apply Lemma 4.3. For each i < n, let xi denote the (n − i)th vertex on
Rn
i . Apply Lemma 4.3 to x0R

n
0 , . . . , xn−1R

n
n−1 and S0, . . . , Sn2 . We obtain n+ 1 disjoint rays

R′0, . . . , R
′
n such that for each i < n, R′i begins at vertex xi. Then, define Rn+1

i = Rn
i xiR

′
i for

i < n and define Rn+1
n = R′n. This completes the inductive step of the proof of IRT. �

It remains to prove Lemma 4.3. The key ingredient is Menger’s theorem for finite graphs
(see [5, Theorem 3.3.1]). If A and B are disjoint sets of vertices in a graph, we say that P
is an A-B path if P starts with some vertex in A and ends with some vertex in B. A set of
vertices S separates A and B if any A-B path passes through at least one vertex in S.

Theorem 4.4 (Menger). Let G be a finite graph. If A and B are disjoint sets of vertices
in G, then the minimum size of a set of vertices which separate A and B is equal to the
maximum size of a set of disjoint A-B paths.

It is easy to see that Menger’s theorem is provable in ACA0 (certainly even less is needed).
We now show that Lemma 4.3 is provable in ACA0.

Proof of Lemma 4.3. Suppose we are given n disjoint rays R0, . . . , Rn−1 and n2 + 1 disjoint
rays S0, . . . , Sn2 . First, use ACA0 to define the set

{〈i, q〉 : Ri intersects Sq}.

Then we perform the following recursive procedure. At each step, check if there is some
i < n such that R′i has not been defined and Ri intersects at most n many rays Sq which
have not been discarded. If there is no such i, we end the procedure. Otherwise, find the
least such i and do the following:

(1) discard all rays Sq which intersect Ri;
(2) define R′i = Ri.

After the procedure is complete, let I be the set of i < n for which R′i has not been defined.
Let R be the set of rays Sq which have not been discarded. Let m = |I|. We observe that
|R| ≥ m2 + 1, because

(n2 + 1)− (n−m)n = mn+ 1 ≥ m2 + 1.
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Next, for each i ∈ I, let zi be the first vertex on Ri such that Rizi meets exactly m many
rays in R. (Each zi exists by construction of I. By RCA0, {zi : i ∈ I} exists.)

Observe that the finite set
⋃
i∈I Rizi meets at most m2 many rays inR. Since |R| ≥ m2+1,

we may pick some ray in R which does not meet
⋃
i∈I Rizi. We define R′n to be said ray.

Then, discard all rays in R which do not meet
⋃
i∈I Rizi.

Finally, we use Menger’s theorem (Theorem 4.4) to define R′i for each i ∈ I. For each
i ∈ I, let xi denote the first vertex of Ri. For each q such that Sq remains in R, let yq be
the first vertex on Sq such that yqSq and

⋃
i∈I Rizi are disjoint. Then consider the following

finite sets of vertices (which exist, by ACA0):

X = {xi : i ∈ I}
Y = {yq : Sq ∈ R}

H =
⋃
i∈I

Rizi ∪
⋃
Sq∈R

Sqyq.

We want to apply Menger’s theorem to X, Y ⊆ H. Towards that end, we claim that X
cannot be separated from Y in H by fewer than m vertices.

Suppose that A ⊆ H and |A| < m. Since |I| = m and {Ri : i ∈ I} is disjoint, there is
some i ∈ I such that Ri does not meet A. Next, since Rizi meets m many disjoint rays in
R, there is some q such that Sq ∈ R and Rizi meets Sq, but Sq does not meet A. Let z be
any vertex in both Rizi and Sq. Then RizSqyq is a path in H from xi to yq which does not
meet A. This proves our claim.

By Menger’s theorem, there are m many disjoint X-Y paths in H. Then, for each i ∈ I,
define R′i by starting from xi, then following the X-Y path given by Menger’s theorem to
some yq, and finally following Sq.

We have constructed a collection R′0, . . . , R
′
n of rays. It is straightforward to check that

they are disjoint, and that for each i < n, Ri and R′i start at the same vertex. �

We can now conclude that IRT follows from Σ1
1-AC0, which is known to be a theory of

hyperarithmetic analysis:

Theorem 4.5. Σ1
1-AC0 implies IRT. Hence for every Y ⊆ N, HYP(Y ) satisfies IRT.

Proof. Note that Σ1
1-AC0 proves ACA0. The proof of IRT presented above can be carried out

in ACA0, except for the following fact we used in the inductive step:

Let S0, . . . , Sf(n) be a finite sequence of disjoint rays, where f(n) = n2 +∑
i<n(n− i).

In order to carry out the proof, it is not sufficient to know that for each n, there is some
collection of disjoint rays of size f(n) + 1. Rather, we require that there is a single sequence
such that the nth entry of the sequence is a collection of disjoint rays of size f(n)+ 1. Such a
sequence can be obtained using the axiom of choice. In this case, since the predicate “there
exists f(n) + 1 many disjoint rays” is Σ1

1, such a sequence can be obtained using Σ1
1-AC0.

Therefore we can prove IRT using Σ1
1-AC0. �

Theorem 4.1 follows from Theorems 4.2 and 4.5.
We will establish some implications and nonimplications between IRT and other theorems

of hyperarithmetic analysis in §7. For now, we have

Proposition 4.6. IRT implies ACA0.
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Proof. We indicate how to formalize the first part of the proof of Theorem 4.2 in RCA0. For
each n, consider the tree Tn ⊆ N<N consisting of all strings of the form s_0t such that some
number below n is enumerated into ∅′ at stage s, and either t ≤ s or ∅′s � n = ∅′t � n. First
note that RCA0 proves that for each n, there is some s such that ∅′ � n = ∅′s � n. This
implies that for each n, Tm has a branch for all m ≤ n. Therefore the forest

⊔
n Tn contains

arbitrarily many disjoint rays.
By IRT,

⊔
n Tn contains infinitely many disjoint rays. In order to compute ∅′ from an

infinite sequence of disjoint rays, we want to show that for each n, the infinite sequence
contains some ray in some Tm for m ≥ n. It suffices to show that each Tn has at most one
branch (and hence contains at most one ray from the given sequence). Fix n. Any branch
on Tn must be of the form s_0∞. If s_0∞ lies on Tn, then no number below n is enumerated
into ∅′ after stage s. Hence if s′ > s, then s′_0∞ cannot be a branch on Tn. This shows that
Tn has at most one branch. �

5. Variants of IRT and Hyperarithmetic Analysis

In this section, we show that at least five of the eight principles IRTXYZ are theorems of
hyperarithmetic analysis:

Theorem 5.1. All single-ray variants of IRT (i.e., IRTXYS) and IRTUVD are theorems of
hyperarithmetic analysis.

IRTUVS and IRTUVD were proved by Halin [11, 12]. IRTUES is an exercise in [5, 8.2.5(ii)].
IRTDVS and IRTDES appear to be folklore.

Of the other three variants, IRTDED and IRTDVD are open problems of graph theory ([3]
and Bowler, personal communication). We do, however, have interesting results about these
principles when restricted to directed forests (Theorem 6.13, Corollary 6.14). The other one,
IRTUED, was proved by Bowler, Carmesin, Pott [3] using structural results about ends. We
hope to analyze its strength in future work.

The proof of Theorem 5.1 consists of several variations of the proof of Theorem 4.1. One
of which (IRTDES) requires some additional ideas.

In order to minimize repetition, we establish some implications between some variants of
IRT over RCA0. The proofs of each of these reductions follow the same basic plan. To deduce
IRTXYZ from IRTX′Y′Z′ we provide computable maps g, h and k which take X-graphs G to
X′-graphs G′, Y-disjoint Z-rays or sets of Y-disjoint Z-rays in G to Y′-disjoint Z′-rays or
sets of Y′-disjoint Z′-rays in G′, and Y′-disjoint Z′-rays or sets of Y′-disjoint Z′-rays in G′ to
Y-disjoint Z-rays or sets of Y-disjoint Z-rays in G, respectively. These functions are designed
to take witnesses of the hypothesis of IRTXYZ in G to witnesses of the hypothesis of IRTX′Y′Z′

in G′ and witnesses to the conclusion of IRTX′Y′Z′ in G′ to witnesses to the conclusion of
IRTXYZ in G. Clearly it suffices to provide such computable maps to establish the desired
reduction in RCA0.

Lemma 5.2. Given an undirected graph G, we can uniformly compute a directed graph G′

and mappings between Z-rays in G and Z-rays in G′ which preserve Y-disjointness.

Proof. We define a computable map g from undirected graphs G to directed graphs G′ as
follows. The set of vertices of G′ consists of the vertices of G, together with two new vertices
x = x(u, v) and y = y(u, v) for each edge {u, v} in G. The set of edges of G′ consists of five
edges 〈u, x〉, 〈v, x〉, 〈x, y〉, 〈y, u〉, 〈y, v〉 for each edge {u, v} in G.
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Next we define a computable map hS: given a ray u0, u1, . . . in G, hS maps it to the ray
u0, x(u0, u1), y(u0, u1), u1, . . . in G′. Conversely, we define a computable map kS from rays
R′ in G′ into rays R in G as follows. Observe that exactly one of the first three vertices in R′

is a vertex in G, because the only outgoing edges from a vertex y(u, v) lead to u or to v, and
the only outgoing edge from a vertex x(u, v) leads to y(u, v). We take this vertex (say u0) to
be the first vertex of R. Every outgoing edge from u0 leads to some x(u0, v). Combining the
above observations, we deduce that the tail u0R

′ has the form u0, x(u0, u1), y(u0, u1), u1, . . . .
Then kS maps R′ to the ray R = u0, u1, . . . in G.

Similarly, given a double ray . . . , u−1, u0, u1, . . . in G, hD maps it to the double ray
. . . , u−1, x(u−1, u0), y(u−1, u0), u0, x(u0, u1), y(u0, u1), u1, . . . in G′. We can show that ev-
ery double ray in G′ has this form by considering the incoming edges to each vertex in G′.
Therefore we can define a computable map from double rays in G′ to double rays in G by
kD = h−1D .

It is straightforward to check that hS, kS, hD and kD preserve Y-disjointness. �

Therefore we have

Proposition 5.3. The directed variants of IRT imply their corresponding undirected vari-
ants, i.e., IRTDYZ implies IRTUYZ for each value of Y and Z.

Lemma 5.4. Given a directed graph G, we can uniformly compute a directed graph G′ and
mappings between Z-rays in G and Z-rays in G′ which satisfy the following properties: if two
Z-rays in G are vertex-disjoint, then the corresponding Z-rays in G′ are edge-disjoint, and
if two Z-rays in G′ are edge-disjoint, then the corresponding Z-rays in G are vertex-disjoint.

Proof. We define a computable map g from directed graphs G = 〈V,E〉 to directed graphs
G′ as follows. The set of vertices of G′ is {xi, xo : x ∈ V }, where i and o stand for incoming
and outgoing respectively. The set of edges of G′ consists of 〈uo, vi〉 for each 〈u, v〉 ∈ E, and
〈xi, xo〉 for each x ∈ V .

Next we define a computable map hS: given a ray x0, x1, . . . in G, hS maps it to the ray
x0i , x

0
o, x

1
i , x

1
o, . . . in G′. Conversely, we define a computable map kS from rays R′ in G′ to

rays in G as follows. Given R′, the ray R visits the vertex x in G whenever 〈xi, xo〉 appears
in R′. (For example, we map x0i , x

0
o, x

1
i , x

1
o, . . . to x0, x1, . . . and we map x0o, x

1
i , x

1
o, . . . to

x1, x2, . . . .)
Similarly, hD maps a given double ray . . . , x−1, x0, x1, . . . in G to the double ray

. . . , x−1i , x−1o , x0i , x
0
o, x

1
i , x

1
o, . . .

in G′. Every double ray in G′ has this form, so we may define kD = h−1D .
It is straightforward to check that the above mappings have the desired properties. �

Therefore we have

Proposition 5.5. The directed edge-disjoint variants of IRT imply their corresponding di-
rected vertex-disjoint variants, i.e., IRTDEZ implies IRTDVZ for each value of Z.

Lemma 5.6. Given a directed graph G, we can uniformly compute a directed graph G′ and
mappings between sets of rays in G and sets of double rays in G′ which preserve cardinality,
vertex-disjointness, and edge-disjointness.

Proof. We define a computable map g from directed graphs G to directed graphs G′ as
follows. The vertex set of G′ contains the vertex set of G, and for each vertex x of G,
additional vertices xn for each n < 0. In G′, we also have an edge 〈xn−1, xn〉 for all n < 0.
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UVS

UVD UES

UED

DVS

DVD DES

DED

IΣ1
1

Figure 1. Known implications between variants of IRT. All implications are
over RCA0, except for the implication from UVD to UVS (Theorem 6.15).

Next we define a computable map h from sets of Y-disjoint rays in G to sets of Y-disjoint
double rays in G′ as follows. Given a set of Y-disjoint rays in G, we first ensure that each
ray begins at a different vertex, by replacing it with a tail if necessary. (This is only relevant
if the rays are edge-disjoint rather than vertex-disjoint.) Then for each ray x0, x1, . . . , we
consider the double ray . . . , x0−2, x

0
−1, x

0, x1, . . . in G′. This yields a set of double rays in G′

of the same cardinality.
Finally we define a computable map k from sets of Y-disjoint double rays in G′ to sets

of Y-disjoint rays in G. Given a double ray . . . , x−1, x0, x1, . . . in G′, we search for the
least n ≥ 0 such that xn is a vertex in G. Then we map the given double ray to the ray
xn, xn+1, . . . in G. This induces a cardinality-preserving map k from sets of double rays in
G′ to sets of rays in G.

It is straightforward to check that the above mappings preserve the desired disjointness
properties. �

Therefore we have

Proposition 5.7. The directed double ray variants of IRT imply their corresponding directed
single ray variants, i.e., IRTDYD implies IRTDYS for each value of Y .

Figure 1 summarizes the known implications between variants of IRT over RCA0. We will
show that IRTUVD implies IRTUVS over RCA0 + IΣ1

1 (Theorem 6.15).

Remark 5.8. Bowler, Carmesin, Pott [3, pg. 2 l. 3–7] describe an implication from IRTUVS

to IRTUES which appears to use Σ1
1-AC0. It turns out that the graph-theoretic principle

used to carry out the implication does not imply even ACA0 over RCA0 (and is hence much
weaker than Σ1

1-AC0), but when combined with ACA0, yields a theory of hyperarithmetic
analysis. It and several other principles with the same property (almost theorems/theories
of hyperarithmetic analysis) are analyzed in Shore [26].

We return to the goal of proving Theorem 5.1.

Theorem 5.9. For each choice of XYZ, IRTXYZ implies ACA0. Furthermore, every standard
model of RCA0 and IRTXYZ is closed under hyperarithmetic reduction.
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Proof. By Proposition 5.3, it suffices to prove the desired result for the undirected variants
of IRT. Theorem 4.2 and Proposition 4.6 together assert the desired result for IRTUVS. We
describe how to modify the proofs of Theorem 4.2 and Proposition 4.6 to prove the desired
result for the other variants of IRT.

Observe that in the aforementioned proofs, we only applied IRT to forests such that each
of the constituent trees has a unique branch. In such graphs, none of the constituent trees
can contain two rays which are edge-disjoint. Hence the aforementioned proofs establish the
desired result for IRTUES as well.

In order to prove the desired result for IRTUVD and IRTUED, we modify the aforementioned
proofs as follows. For each tree, we may modify it by adding a computable branch which
is not already on the tree. (For concreteness: increment every entry of every string in the
tree by 1, then add the branch 0∞ to the tree). The resulting tree satisfies the following
properties:

• it contains some double ray which is Turing equivalent to the branch on the original
tree;
• no two double rays in the tree can be vertex-disjoint or edge-disjoint;
• given any double ray in the tree, we can uniformly compute the branch on the original

tree.

It is straightforward to check that the modified proofs establish the desired result for IRTUVD

and IRTUED. �

Henceforth we will not explicitly mention uses of ACA0 whenever we are assuming any
IRTXYZ.

Next, we show that IRTUVD and IRTDES are provable in Σ1
1-AC0 (Theorems 5.10, 5.15). It

then follows from Propositions 5.3 and 5.5 that IRTUES, IRTDVS and IRTUVS are also provable
in Σ1

1-AC0, completing the proof of Theorem 5.1. Note that as Σ1
1-AC0 implies ACA0, we will

use ACA0 without explicit mention whenever we are assuming Σ1
1-AC0.

Theorem 5.10. Σ1
1-AC0 implies IRTUVD.

Proof. This proof is very similar to that of Theorem 4.5, except we need to grow our family
in “two directions”. We build the infinite family by induction. At stage s we will start with a
family of s many finite disjoint paths P s

1 , P
s
2 , . . . , P

s
s and disjoint double rays Rs

1, R
s
2, . . . , R

s
s

such that P s
i is a subpath of Rs

i for i = 1, . . . , s. At the end of the stage, we will have
extended each of the paths P s

i at both ends, begun a new path, and maintained that each of
our paths can be extended to a family of disjoint double rays. Our infinite family will have
members

⋃
s P

s
i for each i ∈ N .

If s = 0, then we start with nothing. Fix a double ray R1
1 in G and pick any two adjacent

vertices in R1
1 to be P 1

1 . If s > 0, then we have, by induction, disjoint paths P s
1 , . . . , P

s
s , all

of length at least two, and disjoint double rays Rs
1, . . . , R

s
s extending them, respectively. For

ease of reading, we omit the superscript s and write P s
i = Pi and Rs

i = Ri.
Pick a set R of |P1 ∪ · · · ∪ Ps| + 4n2 + 1 disjoint double rays. From R delete any double

rays that intersect any of the paths P1, . . . , Ps. By the pairwise disjointness of the members
of R, we delete at most |P1∪ · · ·∪Ps| many members from R. Hence, R has at least 4n2 + 1
many double rays remaining.

Now, choose and delete an edge in each path Pi (possible as each path is of length at

least two), which breaks Pi into two paths P f
i and P b

i (f for forward and b for backward).



HALIN’S INFINITE RAY THEOREMS: COMPLEXITY AND REVERSE MATHEMATICS 21

Remove the corresponding edge from Ri to obtain single-rays Rf
i and Rb

i extending P f
i and

P b
i , respectively.
Repeat the following step as often as possible: If there exists an i ∈ {1, . . . , s} and a

direction d ∈ {f, b} such that (Rd
i )
′ is undefined and the tail of Rd

i following P d
i meets

at most 2s many double rays currently in R, then delete those double rays from R, set
(Rd

i )
′ = Rd

i , and extend P d
i one step further down Rd

i to get (P d
i )′.

Let I be the subset of {1, . . . , s} × {f, b} for which we have not defined (Rd
i )
′, and let

m = |I|. Then R contains at least

4s2 + 1− (2s−m)2s = 2sm+ 1 ≥ m2 + 1

many double rays.
From the above, for every 〈i, d〉 ∈ I there are at least 2s many elements ofR that intersects

Rd
i . Let zdi be the first vertex on the mth ray R ∈ R that Rd

i meets (as Rd
i is a single ray this

definition makes sense). Also, let Qd
i be the portion of Rd

i between P d
i and zdi (but including

the endpoints), and let Z =
⋃

(i,d)∈I Q
d
i . The set Z meets at most m2 many members of R,

meaning that Z does not intersect at least one member of R. Pick such a double ray R, and
let Rs+1

s+1 = R and let P s+1
s+1 be any two adjacent vertices of Rs+1

s+1. Now, discard all such rays
from R, so that it only consists of those double rays that meet Z.

For each double ray R ∈ R remaining, choose a tail R′ of R that contains R ∩ Z. This is
possible as Z is finite. Now we are finally in the same situation as in the proof of Theorem
4.5, and we can thus use Menger’s theorem to define new rays (Rd

i )
′ that are pairwise disjoint,

extend the paths P d
i , and do not intersect Rs+1

s+1. Finally, we turn everything back into double
rays by replacing the removed edge between P b

i and P d
i and that same edge between (Rb

i)
′

and (Rf
i )′, which completes the induction step.

Analysis. As in with the proof of Theorem 4.5, one can use Σ1
1-AC0 to produce a single

set X such that the nth column of X is a set of n many pairwise disjoint double rays, as the
predicate “there exists a set of n many pairwise disjoint double rays in G” is arithmetical.
Other than this, all of the construction can be carried out in ACA0, as detecting intersections
between (single or double) rays is arithmetical in those rays. �

As for IRTDES, instead of following the proof of Theorem 4.5, we will reduce IRTDES to
the problem of finding an infinite sequence of vertex-disjoint rays in a certain locally finite
graph (see [3, pg. 2 l. 3–7]). To carry out this reduction, we define the line graph:

Definition 5.11 (RCA0). The line graph L(G) of an X-graph G is the X-graph whose vertices
are the edges of G and whose edges are the ((u, v), (v, w)), where (u, v) and (v, w) are edges
in G.

Lemma 5.12. Let G be an X-graph. There is a computable mapping from rays in G to rays
in L(G) such that if two rays in G are edge-disjoint, then their images are vertex-disjoint.

Proof. Map x0, x1, x2, . . . to (x0, x1), (x1, x2), . . . . �

Vertex-disjoint rays in L(G) do not always yield edge-disjoint rays in G, however. An
extreme counterexample is what is called the (undirected) star graph which consists of a
single vertex with infinitely many neighbors: It does not contain any rays yet its line graph
is isomorphic to the complete graph on N, which contains infinitely many vertex-disjoint
rays. Nonetheless, if G is locally finite, then vertex-disjoint rays in L(G) do correspond to
edge-disjoint rays in G:
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Lemma 5.13 (ACA0). Let G be a locally finite X-graph. There is a mapping from rays in
L(G) to rays in G such that if two rays in L(G) are vertex-disjoint, then their images are
edge-disjoint rays in G.

Proof. Given a ray R = e0, e1, . . . in L(G), we construct a ray S = y0, y1, . . . in G by
recursion. Start by defining y0 to be the least vertex in e0. Having defined yn, we define
yn+1 as follows. Let k be the largest index such that yn is an endpoint of ek. Such k exists
because G is locally finite and R is a ray. We can find such k by ACA0. Then define yn+1

to be the endpoint of ek other than yn. This completes the recursion. By construction S is
infinite and contains no repeated vertices, hence it is a ray. Observe that every edge in S is
a vertex in R, so the above mapping maps vertex-disjoint rays in L(G) to edge-disjoint rays
in G. �

It remains to show that we can restrict our attention to locally finite graphs. We ac-
complish this with the help of Σ1

1-AC0. Given a directed graph G with arbitrarily many
edge-disjoint rays, we can use Σ1

1-AC0 to choose a family (Rk
j )j≤k where for each k, the rays

Rk
1 , R

k
2 , . . . , R

k
k are edge-disjoint. From this family, we may construct an appropriate locally

finite subgraph of G:

Lemma 5.14 (RCA0). Suppose that G is an X-graph and there is some family (Rk
j )j≤k

such that for each k, Rk
1 , R

k
2 , . . . , R

k
k are edge-disjoint rays in G. Then there is some locally

finite X-subgraph G′ of G and some family (Skj )j≤k such that for each k, Sk1 , S
k
2 , . . . , S

k
k are

edge-disjoint rays in G′.

Proof. Define the vertices of G′ to be the vertices of G, say {vi : i ∈ N}. We specify the set
of edges E ′ of G′ by providing a recursive construction of sets Ei of edges putting in a set of
edges at each step. We guarantee that each Ei is a union of finitely many sets of edge-disjoint
rays in G and that after stage k no edge with a vertex vi for i < k as an endpoint is ever
put into E ′ after stage k.

Begin at stage 0 by putting all the edges in R1
1 into E1. Proceeding recursively at stage

k we have Ek and consider the edge-disjoint rays Rk
1 , R

k
2 , . . . , R

k
k. For each i < k, say

Rk
i = xki,0, x

k
i,1, . . . . Each vj for j < k appears at most once in Rk

i as Rk
i is a ray. For each

j < k, since we have access to the set of vertices of Rk
i , we can decide whether Rk

i contains
vj and find the largest index n such that vj = xki,n. Call it nki,j. If there is no such n, set

nki,j = 0. Define Ski to be the tail of Rk
i after xk

i,maxj<k n
k
i,j

. We put all the edges in Ski into

Ek+1. Let E ′ =
⋃
k Ek.

It remains to show that G′ is locally finite. Consider any vertex vk. No edge containing vk
as an endpoint is put in after stage k. On the other hand, Ek is the union of finitely many
finite sets of edge-disjoint rays (all of which have been computed uniformly). Each set of
edge-disjoint rays in this union has vk appearing at most once in each of its rays. Thus at
most two edges containing vk appear in each of the finitely many rays in this set. Therefore
there are only finitely many edges containing vk in each of the finite sets of edge-disjoint rays
making up Ek. All in all, only finitely many edges in G′ contain vk. �

We are ready to prove

Theorem 5.15. Σ1
1-AC0 implies IRTXES for each value of X.

Proof. Given an X-graph G with arbitrarily many edge-disjoint rays, we can use Σ1
1-AC0 to

choose a family ((Qk
j )j≤k)k∈N such that for each k, the rays Qk

1, Q
k
2, . . . , Q

k
k are edge-disjoint.
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By Lemma 5.14, there is a locally finite subgraph H of G and a family (Rk
j )j≤k such that

for each k, Rk
1 , R

k
2 , . . . , R

k
k are edge-disjoint rays in H. By Lemma 5.12, there is a family

((Skj )j≤k)k∈N such that for each k, Sk1 , S
k
2 , . . . , S

k
k are vertex-disjoint rays in L(H). By the

second part of the proof of Theorem 4.5 (which can be carried out in ACA0), L(H) has
infinitely many vertex-disjoint rays. Finally by Lemma 5.13, H has infinitely many edge-
disjoint rays. Hence G has infinitely many edge-disjoint rays. �

By the discussion before Theorem 5.10, this completes the proof of Theorem 5.1.
Finally, we give a proof of IRTDED for directed forests using Σ1

1-AC0 (recall that IRTDED

remains open). We will see that Σ1
1-AC0 and IRTDED for directed forests are equivalent over

RCA0 + IΣ1
1 (Theorem 6.13).

Theorem 5.16. Σ1
1-AC0 implies IRTDED for directed forests.

We first prove two lemmas.

Lemma 5.17. Let G be a directed forest and let R0 = 〈x0,i|i ∈ Z〉 , R1 = 〈x1,i|i ∈ Z〉 be
directed double rays in G. If R0 and R1 have an edge in common, then there are [i, j] and
[k, l] with −∞ ≤ i < j ≤ +∞ and −∞ ≤ k < l ≤ +∞ such that R0 � [i, j] = R1 � [k, l]
and otherwise R0 and R1 have no vertex in common. We call R0 � [i, j] = R1 � [k, l] the
intersection of R0 and R1.

Proof. Suppose R0, R1 provide a counterexample. As their intersection contains an edge they
lie in the same directed tree T in G and can be viewed as (undirected) double rays in T̂ (the
underlying graph for T ). As they form a counterexample to the lemma, there are vertices
x0,i0 = x1,i1 ;x0,j0 = x1,j1 in both R0 and R1 with [x0,i0 , x0,j0 ] 6= [x1,i1 , x1,j1 ]. Thus there are

two different paths in T̂ from x0,i0 = x1,i1 to x0,j0 = x1,j1 contradicting T̂ ’s being a tree. �

Lemma 5.18. There is a computable function f such that given any sequence 〈Si|i < n〉
of DED rays in a directed tree T and sequence 〈Rj|j < f(n)〉 of DED rays in T , we can
construct a sequence 〈S ′i|i ≤ n〉 of DED rays in T such that Si � [−n, n] = S ′i � [−n, n] for
i < n. Indeed, we may take f(n) = 2n2 + 22nn! + 1.

Proof. First we remove all the Rj that contain an edge in any Si � [−n, n] at cost of at
most 2n2 many j. Consider any remaining Rj in the second sequence. By Lemma 5.17, its
intersections with the Si are intervals Qj,i of edges in Rj which are disjoint as the Si are.
By our first thinning of the Rj list, none of the Qj,i intersect any of the Si � [−n, n] so each
Qj,i must lie entirely above or entirely below Si � [−n, n]. We associate to each Rj a label
consisting of the set Cj = {i < n|Qj,i 6= ∅}; the elements i of Cj in the order in which the
Qj,i (for i ∈ Cj) appear in Rj (in terms of the ordering of Z) along with a + or − depending
on which side of [−n, n] it falls in Si. We write Qs

j,i for the starting vertex of Qj,i and Qe
j,i for

the ending one. Now there are, of course, at most finitely many such labels. In particular,
there are at most 2nn!2n such labels. Thus if we have 22nn! + 1 many Rj left at least two of
them, say Ra and Rb have the same label say with set C.

Claim: |C| < 2.

For the sake of a contradiction, assume we have k 6= l in C with k preceding l in the ordering
of C in the label. Say Ra is the ray such that Qa,k is before Qb,k in Sk. We consider two
cases: (1) Qa,l is before Qb,l in Sl and (2) Qb,l is before Qa,l in Sl. We now produce, for each
case, two vertices with two distinct sequences (i) and (ii) of adjacent edges in T connecting
them. These sequences are illustrated in Figures 2 and 3.
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Sk

...

Qa,k

Qb,k

...

Qe
a,k

Sl

...

Qa,l

Qb,l

...

Qs
b,l

Ra

...

Qa,k

Qa,l

...

Qe
a,k

Rb

...

Qb,k

Qb,l

...

Qs
b,l

Figure 2. (1i) follows the thick arrows in Ra and Sl. (1ii) follows the thick
arrows in Sk and Rb.

Sk

...

Qa,k

Qb,k

...

Qs
a,k

Sl

...

Qb,l

Qa,l

...

Qe
a,l

Ra

...

Qa,k

Qa,l

...

Qs
a,k

Qe
a,l

Rb

...

Qb,k

Qb,l

...

Figure 3. (2i) follows the thick arrows in Sk, Rb and Sl. (2ii) follows the
thick arrow in Ra.

(1i) Start at Qe
a,k in Ra and go to Qe

a,l then in Sl go to Qs
b,l.

(1ii) Start at Qe
a,k in Sk and go to Qs

b,k then go in Rb to Qs
b,l.

(2i) Start at Qs
a,k in Sk and go to Qe

b,k then in Rb go to Qe
b,l then in Sl go to Qe

a,l.

(2ii) Start at Qs
a,k in Ra and go to Qe

a,l.

To see that the two sequences of vertices are different, note for (1) that (1i) contains an
edge in Qa,l but (1ii) does not. For (2) note that (2i) contains an edge in Qb,k but (2ii) does
not. We now, in each case, view the associated two distinct sequences of vertices with the
same endpoints in the underlying tree T̂ . The only way one can have such sequences in a tree
is for one of the sequences to contain vertices uvu in order. However, any three successive
vertices in any of these sequences lie within one of the four rays being considered but no ray
can have a single vertex appear in two locations:

Case 1: (i) If u is any vertex in the sequence before Qs
a,l then vu is also in Ra. If u is in Qa,l

(and so in Sl) or later in the sequence then vu is also in Sl. (ii) If u is any vertex in the
sequence before Qs

b,k then vu is also in Sk. If u is in Qb,k or later in the sequence then it and
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vu are all in Rb.

Case 2: (i) If u is any vertex in the sequence before Qs
b,k then vu is also in Sk. If u is in Qb,k

(and so in Rb) or later in the sequence but before Qs
b,l then vu is also in Rb. If u is at or

after Qs
b,l then it and vu are in Sl. (ii) All of this route is in Ra and so has no repetitions of

vertices.

Knowing now that |C| is 0 or 1, we complete the proof of the Lemma. If |C| = 0, then
both Ra and Rb are disjoint from all the Si and so we may add on either one of them as S ′n
while keeping Si = S ′i for all i < n. Otherwise say C = {i}. Let c be the one of a or b such
that Qc,i is closer to Si � [−n, n]. (Remember that they are both on the same side of this
interval in Si by our fixing the label.) Now replace the tail of Si starting with Qc,i and going
away from Si � [−n, n] by the tail of Rc starting with Qc,i and going in the same direction.
Let this ray be S ′i. Note that it is disjoint from all the Sj, j 6= i as it contains only edges
that are in Si or Rc neither of which share any edges with such Sj. It is also disjoint from
Rd where d is the one of a, b which is not c since all of its edges are either in Rc or in Si
outside of Qd,i by our choice of Qc,i as closer to Si � [−n, n]. As Rd is also disjoint from all
the Sj for j 6= i by our fixing the label, we may define S

′
j = Sj for j < n, j 6= i and S ′n = Rd

to get the sequence required in the Lemma. �

Lemma 5.18 provides the inductive step for the following proof:

Proof of Theorem 5.16. Assume we are given a directed forest G with arbitrarily many DED
rays. By Σ1

1-AC0 we may take a sequence 〈Rk,i|k ∈ N〉 such that, for each k, 〈Rk,i|i < k〉 is
a sequence of k many DED rays in G. If there are infinitely many of the trees making up
Ĝ each of which contains some Rk,i then we are done. So we may assume that all of them
are in one directed tree T . We now wish to define 〈Sk,s|k ≤ s ∈ N〉 by recursion such that,
for each s, 〈Sk,s|k < s〉 is a sequence of s many DED rays and moreover, for each s ∈ N ,
Sk,s+1 � [−s, s] = Sk,s � [−s, s] so the Sk,s reach limits Sk which form an infinite sequence
of DED rays in T as required. Lemma 5.18 provides precisely the required inductive step
for the construction since we have the required sequences of DED rays

〈
Rf(n),i|i < f(n)

〉
at

each step n of the construction. �

6. Variations on Maximality

In this section, we consider variants of IRT whose solutions are required to be maximal in
terms of cardinality or maximal in terms of set inclusion.

6.1. Maximum Cardinality Variants of IRT.

Definition 6.1. Let IRT∗XYZ be the statement that every X-graph G has a set of Y-disjoint
Z-rays of maximum cardinality.

IRT∗UVS was proved by Halin [11], who also proved the corresponding statement for un-
countable graphs.

Remark 6.2. The notation in Definition 6.1 is inspired by the well known version ACA∗0 of
ACA0 which asserts the existence of A(n), the nth jump of A, for every n:

ACA∗0 : (∀A)(∀n)(∃W )(W [0] = A ∧ (∀i < n)(W [i+1] = W [i]′)).

This asserts (in addition to ACA0) particular instances of IΣ1
1. So too (in addition to IRTXYZ)

do the IRT∗XYZ as we are about to see.
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Proposition 6.3. For each choice of XYZ, IRT∗XYZ implies IRTXYZ over RCA0 and IRTXYZ

implies IRT∗XYZ over RCA0 + IΣ1
1. Therefore IRTXYZ and IRT∗XYZ are equivalent over RCA0 +

IΣ1
1. In particular, they have the same standard models.

Proof. The first implication holds because if an X-graph has arbitrarily many Y-disjoint Z-
rays, then any sequence of Y-disjoint Z-rays in the graph of maximum cardinality must be
infinite. To prove the second implication, let I be the set of m such that there is a sequence
of Y-disjoint Z-rays which is indexed by m in the given graph. Note that I is Σ1

1 in the given
graph. If I is closed under successor, then by IΣ1

1, the given graph satisfies the premise of
IRTXYZ. Then we may apply IRTXYZ to show that IRT∗XYZ is satisfied. If I is not closed
under successor, then IRT∗XYZ is trivially satisfied. �

It follows from Proposition 6.3 and Theorem 5.1 that

Corollary 6.4. IRT∗XYS and IRT∗UVD are theorems of hyperarithmetic analysis.

It follows from Proposition 6.3 and Theorem 5.9 that IRT∗XYZ implies ACA0, so we will not
explicitly mention uses of ACA0 whenever we are assuming any IRT∗XYZ.

Using Lemmas 5.2, 5.4 and 5.6, we can prove

Proposition 6.5. IRT∗DYZ implies IRT∗UYZ, IRT∗DEZ implies IRT∗DVZ and IRT∗DYD implies
IRT∗DYS.

Next, we show that IRT∗XYZ proves sufficient induction in order to transcend Σ1
1-AC0. This

implies that IRT∗XYZ is strictly stronger than IRTXYZ for certain choices of XYZ (Corollary
6.10). The connection between Σ1

1-AC0 and graphs is obtained by viewing the set of solutions
of an arithmetic predicate as the set of (projections of) branches on a subtree of N<N . In
detail:

Lemma 6.6 (Simpson [29, V.5.4]). If A(X) is an arithmetical formula, ACA0 proves that
there is a tree T ⊆ N<N such that

∀X(A(X)↔ ∃f(〈X, f〉 ∈ [T ])

and ∀X(∃ at most one f)(〈X, f〉 ∈ [T ]).

The following easy corollary will be useful.

Lemma 6.7. If A(n,X) is an arithmetical formula, ACA0 proves that there is a sequence of
subtrees (Tn)n of N<N such that for each n ∈ N ,

∀X(A(n,X)↔ ∃f(〈X, f〉 ∈ [Tn])

and ∀X(∃ at most one f)(〈X, f〉 ∈ [Tn]).

Proof. Say that B(Y ) holds if and only if A(Y (0), X) holds, where X is such that Y =
Y (0)_X. Apply Lemma 6.6 to the arithmetical formula B(Y ) to obtain a tree T ⊆ N<N .
For each n ∈ N , define Tn to be the set of all σ such that n_σ ∈ T . It is straightforward to
check that (Tn)n satisfies the desired properties. �

Theorem 6.8. IRT∗XYZ proves ACA∗0.

Before proving the above theorem, we derive some corollaries:

Corollary 6.9. IRT∗XYZ proves the consistency of Σ1
1-AC0. Therefore it is not provable in

Σ1
1-AC0.
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Proof. Simpson [29, IX.4.6] proves that ACA0 + IΣ1
1 implies the consistency of Σ1

1-AC0. The
only use of IΣ1

1 in Simpson’s proof is to establish ACA∗0, so Simpson’s proof shows that ACA∗0
implies the consistency of Σ1

1-AC0. The desired result then follows from Theorem 6.8 and
Gödel’s second incompleteness theorem. �

Corollary 6.10. IRT∗XYZ is strictly stronger than IRTXYZ for the following choices of XYZ:
XYS and UVD.

Proof. We showed in §5 that the specified variants of IRT are provable in Σ1
1-AC0. On the

other hand, none of the IRT∗ are not provable in Σ1
1-AC0 (Corollary 6.9). �

We now prove Theorem 6.8:

Proof that IRT∗XYZ implies ACA∗0. By Proposition 6.5, it suffices to prove the desired result
for IRT∗UYZ. To prove ACA∗0 from IRT∗UYS, begin by using Lemma 6.7 to define a sequence of
trees (Tn)n such that for each n,

∀W ((W [0] = A ∧ (∀i < n)((W [i])′ = W [i+1]) ∧ (∀i > n)(W [i] = ∅))
↔ ∃f(〈W, f〉 ∈ [Tn]))

and ∀W (∃ at most one f)(〈W, f〉 ∈ [Tn]).
We want to show that each Tn is ill-founded. Note that if m < n and Tn is ill-founded,

then so is Tm. Therefore it suffices to show that for cofinally many n, Tn is ill-founded.
Apply IRT∗UYS to the disjoint union

⊔
n Tn to obtain a collection C of Y-disjoint rays

of maximum cardinality. We prove that C is infinite. Suppose not. Then there is some
maximum m such that C contains a ray in Tm. A ray in Tm can be computably truncated
or extended to a branch on Tm, so Tm is ill-founded. Hence Tm+1 is ill-founded as well
(by ACA0). But then there is a collection of Y-disjoint rays in

⊔
n Tn which has cardinality

greater than that of C, contradiction.
We have proved that C is infinite. Next we prove that each Tn has at most one branch.

That would imply that each Tn contains at most one ray in C, so C contains rays in cofinally
many Tn, as desired.

If Tn has two distinct branches 〈W0, f0〉 and 〈W1, f1〉, then W0 6= W1 by construction of

Tn. Consider the least i such that W
[i]
0 6= W

[i]
1 . Such i exists by ACA0. Note that 0 < i ≤ n

because W
[0]
0 = A = W

[0]
1 and W

[i]
0 = ∅ = W

[i]
1 for i > n. But then W

[i−1]
0 = W

[i−1]
1 and

(W
[i−1]
0 )′ 6= (W

[i−1]
1 )′, contradiction.

This proves that IRT∗UYS implies ACA∗0. In order to prove that IRT∗UYD implies ACA∗0, we
modify the above proof by adding a computable branch to each Tn to form a tree Sn. Apply
IRT∗UYD to

⊔
n Sn to obtain a collection C of Y-disjoint double rays of maximum cardinality.

Following the above proof, we may prove that C is infinite and each Sn contains at most one
double ray in C. So C contains double rays in cofinally many Sn, as desired. �

Remark 6.11. The same proof shows that IRT∗XYZ implies the following induction scheme:
Suppose (Tn)n is a sequence of trees such that

(1) T0 has a unique branch;
(2) for all n, the number of branches on Tn+1 is the same as the number of branches on

Tn.

Then for all n, there is a sequence (Pm)m<n such that for each m < n, Pm is the unique branch
on Tm. We will use similar ideas to prove that IRT∗XYZ implies unique-Σ1

1-AC0 (Definition 7.1)
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in §7. IRT∗XYZ also implies a similar induction scheme analogous to finite-Σ1
1-AC0 (Definition

7.2).

We can prove a stronger result for IRT∗DVD:

Theorem 6.12. IRT∗DVD (even for directed forests) implies IΣ1
1 over RCA0.

Proof. Suppose Ψ(n) is a Σ1
1 formula such that Ψ(0) and ∀n(Ψ(n) → Ψ(n + 1)) hold. Let

(Tn)n be a sequence of subtrees of N<N such that Tn is ill-founded if and only if (∀m ≤
n)Ψ(m) holds. For each n, orient each edge in Tn towards its root and add a computable
ray which starts at its root. This forms a directed tree Gn which contains a double ray if
and only if (∀m ≤ n)Ψ(m) holds. Furthermore, no two disjoint double rays can lie in the
same Gn.

Let G be the directed forest
⊔
nGn. By IRT∗DVD, there is a sequence (Ri)i of disjoint double

rays in G of maximum cardinality. Since Ψ(0) holds, (Ri)i is nonempty. If (Ri)i is finite, let
n be maximum such that Gn contains some Ri. Then Ψ(n) holds, so Ψ(n+ 1) holds as well.
It follows that Gn+1 contains some double ray, which we can then add to (Ri)i to obtain
a larger sequence of disjoint double rays in G. Contradiction. Therefore (Ri)i is infinite.
Since each Gn contains at most one Ri, it follows that infinitely many Gn contain some Ri.
Therefore Ψ(n) holds for all n. �

In fact, we have the following equivalences:

Theorem 6.13. The following are equivalent (over RCA0):

(1) Σ1
1-AC0 + IΣ1

1;
(2) IRTDED for directed forests + IΣ1

1;
(3) IRT∗DED for directed forests;
(4) IRT∗DVD for directed forests;
(5) IRTDVD for directed forests + IΣ1

1.

Proof. (1)→ (2) follows from Theorem 5.16. (2)→ (3) follows from the proof of Proposition
6.3. (3) → (4) follows from the observation that the mapping of graphs defined in Lemma
5.4 sends a directed forest to a directed forest. (4) → (5) follows from Theorem 6.12 and
the proof of Proposition 6.3.

To prove (5) → (1), suppose A(n,X) is an arithmetical formula such that ∀n∃XA(n,X).
By Lemma 6.7, there is a sequence (Tn)n of subtrees of N<N such that

∀n∀X(A(n,X)↔ ∃f(〈X, f〉 ∈ [Tn])

and ∀X(∃ at most one f)(〈X, f〉 ∈ [Tn]).

By assumption on A(n,X), each Tn is ill-founded. We use (Tn)n to construct a sequence
(Gn)n of directed trees as follows. First, for each n, we may construct a tree Sn whose
branches are joins of branches on Tm for m ≤ n, i.e., P0 ⊕ · · · ⊕ Pm is a branch on Sn if and
only if for each m ≤ n, Pm is a branch on Tm. Second, orient each edge in Sn towards its
root. Third, add to Sn a computable ray which starts at its root. This forms a directed tree
Gn.

By IΣ1
1, the directed forest

⊔
nGn contains arbitrarily many disjoint double rays. Therefore⊔

nGn contains infinitely many disjoint double rays (Rk)k, by IRTDVD. Note that any double
ray in any Gn must contain the computable ray we added, so any two double rays in the
same Gn must intersect. This implies that each Rk belongs to some distinct Gn. Therefore
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for every m, there is some k and some n > m such that Rk is a double ray in Gn. This
allows us to construct a sequence (Xn)n where each Xn is a branch on Tn. �

Since Σ1
1-AC0 (ATR0, even) does not prove IΣ1

1 (Simpson [29, IX.4.7]), it follows that

Corollary 6.14. IRT∗DYD (even for directed forests) is not provable in ATR0, and strictly
implies Σ1

1-AC0 over RCA0.

Next, we show that IRT∗UVD implies IRTUVS over RCA0 (see Figure 1).

Theorem 6.15. IRT∗UVD implies IRTUVS over RCA0. Therefore (1) IRTUVD implies IRTUVS

over RCA0+IΣ1
1; (2) if any standard model of RCA0 satisfies IRTUVD, then it satisfies IRTUVS

as well.

Proof. Let G be a graph which contains arbitrarily many disjoint single rays. By IRT∗UVD,
there is a sequence of disjoint double rays in G of maximum cardinality. If this sequence
is infinite, then there are infinitely many disjoint single rays in G as desired. Otherwise,
suppose that (Ri)i<j is a sequence of disjoint double rays in G of maximum cardinality j.
Let R be the subgraph of G consisting of the union of all Ri. Let H be the induced subgraph
of G consisting of all vertices which do not lie in R. Note that H does not contain any double
ray, otherwise G would contain j + 1 many disjoint double rays. Next, we expand H to the
graph H ′, defined below.

Decompose H into its connected components (Hi)i (there may only be finitely many).
Any two single rays in the same Hi must intersect, because if S0 and S1 are disjoint single
rays in the same Hi, then we can construct a double ray in Hi by connecting them (start
with a path between S0 and S1 of minimum length, then connect it to the tails of S0 and S1

which begin at the endpoints of the path).
For each i, define H ′i by adding a computable ray to Hi, which begins at the <N -least

vertex in Hi. Define H ′ to be the disjoint union
⊔
iH
′
i.

By IRT∗UVD, there is a sequence of disjoint double rays in H ′ of maximum cardinality.
Case 1. If this sequence is infinite, then G contains infinitely many disjoint single rays

because each double ray in the sequence has a tail which lies in H. In this case we are done.
Case 2. Otherwise, H ′ does not contain arbitrarily many disjoint double rays. Since any

two single rays in the same Hi must intersect, we can transform any collection of disjoint
single rays in H into a collection of disjoint double rays in H ′ of equal cardinality, by
connecting each single ray to the <N -least vertex in its connected component Hi and then
following the computable ray we added. It follows that H does not contain arbitrarily many
disjoint single rays. Fix l such that H does not contain l + 1 many disjoint single rays.

Towards a contradiction, we construct a collection of (j + 1)-many disjoint double rays in
G as follows. Fix a collection S of l + 2j + 4j(j + 1) many disjoint single rays in G. First,
at most 2j of these single rays lie in R. In fact at most 2j of these single rays can have
finite intersection with H, because given a collection of disjoint single rays each of which
have finite intersection with H, we can obtain a collection of disjoint single rays in R of
the same cardinality by replacing each ray with an appropriate tail. Second, by reasoning
analogous to the above, at most l of these single rays can have finite intersection with R.
Therefore, there are at least 4j(j + 1) many disjoint single rays in S each of which have
infinite intersection with both R and H.

Next, split each of the j double rays Ri into two single rays Rb
i and Rf

i . By the pigeonhole

principle, there is some single ray R of the form Rb
i or Rf

i , and at least 2(j+1) many disjoint
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single rays in S, each of which have infinite intersection with both R and H. Call these rays
S0, S1, . . . , S2(j+1)−1. Discard all the other rays in S. Below we describe how to connect pairs
of single rays Sk using segments of R, in order to form a collection of (j + 1)-many disjoint
double rays in G.

Let x0, x1, . . . denote the vertices of R. Since each single ray Sk has infinite intersection
with R, by the pigeonhole principle, there is a pair of disjoint rays Sk0 and Sl0 such that
for each tail R′ of R, there is a vertex in Sk0 ∩ R′ and a vertex in Sl0 ∩ R′ such that no Sk
intersects R between these two vertices. (Formally, we justify this by defining the following
coloring recursively. Start from the first vertex on R which intersects some Sk. Search for
the next vertex on R which intersects some Sl, l 6= k. Then we color 0 using the unordered
pair {k, l}. Next, we search for the next vertex on R which intersects some Sm, m 6= l and
color 1 using {l,m}, and so on. Some color {k0, l0} must appear infinitely often.) Then we
commit to connecting Sk0 and Sl0 (but we do not do so just yet). Applying the pigeonhole
principle again, there is a pair of disjoint rays Sk1 and Sl1 (k1, l1 6= k0, l0) such that for each
tail R′ of R, there is a vertex in Sk1 ∩ R′ and a vertex in Sl1 ∩ R′ such that no Sk, except
perhaps Sk0 or Sl0 , intersects R between these two vertices. Again we commit to connecting
Sk1 and Sl1 . Repeat this process until we have obtained j + 1 pairs of single rays.

Finally, we connect these pairs of single rays in the opposite order in which we defined
them: Start by picking some xj ∈ Skj ∩ R and some yj ∈ Slj ∩ R. Then we define a double
ray Dj by following Skj until xj, then following R until yj, and finally following Slj , i.e.,
Dj := Skjx

jRyjSlj . Having defined Dj, Dj−1, . . . , Di+1, define Di := Skix
iRyiSli , where

xi ∈ Ski ∩ R and yi ∈ Sli ∩ R are chosen as follows. Consider a tail R′ of R such that the
union of xjRyj, . . . , xi+1Ryi+1 is disjoint from (1) R′; (2) Skix for each x ∈ Ski ∩R′; (3) ySli
for each y ∈ Sli ∩R′. By choice of ki and li, there are vertices xi ∈ Ski ∩R′ and yi ∈ Sli ∩R′
such that none of Skj , . . . , Ski+1

or Slj , . . . , Sli+1
intersect xiRyi. It is straightforward to

check that Di is disjoint from Dj, Dj−1, . . . , Di+1. This process yields disjoint double rays
Dj, Dj−1, . . . , D0 in G, contradicting maximality of j. �

Using some of the ideas in the previous proof, we can prove

Theorem 6.16. IRT∗UYS for forests follows from IRT∗UYD for forests over RCA0. Therefore
IRTUYS for forests follows from IRTUYD for forests over RCA0 + IΣ1

1.

This result will be used in the proofs of Theorems 7.3, 7.7 and 7.10.

Proof. Let G be a forest. If G happens to have arbitrarily many disjoint double rays, then by
IRT∗UYD, G has infinitely many disjoint double rays. Therefore there is an infinite sequence
of disjoint single rays in G. Such a sequence has maximum cardinality, so we are done in
this case.

Suppose G does not have arbitrarily many disjoint double rays. By IRT∗UYD for forests,
there is a sequence (Ri)i<j of disjoint double rays in G of maximum cardinality. Following
the proof of Theorem 6.15, define the forests R, H, and H ′. There, we proved that no two
single rays in the same connected component Hi of H can be disjoint.

By IRT∗UYD for forests, there is a sequence of disjoint double rays in H ′ of maximum
cardinality. If this sequence is infinite, then there is an infinite sequence of disjoint single
rays in H because each double ray in the sequence has a tail which lies in H. This is a
sequence of disjoint single rays of maximum cardinality in G, so we are done in this case.

Otherwise, suppose (Sk)k<l is a disjoint sequence of double rays in H ′ of maximum car-
dinality. Consider the following disjoint sequence of single rays in G. First, for each k < l,



HALIN’S INFINITE RAY THEOREMS: COMPLEXITY AND REVERSE MATHEMATICS 31

consider the single ray formed by intersecting H and the double ray Sk. Second, for each
i < j, we can split the double ray Ri into a pair of disjoint single rays in G. This yields a
finite sequence (Qm)m<n of disjoint single rays in G.

We claim that (Qm)m<n is a sequence of disjoint single rays in G of maximum cardinality.
Suppose there is a larger sequence of disjoint single rays in G. Since G is a forest, any two
single rays in G which share infinitely many (at least two, even) edges or vertices must share
a tail. Therefore there is a single ray Q in this larger sequence which only shares finitely
many edges and vertices with each Qm. Then some tail of Q, say xQ, is vertex-disjoint from
each Qm. In particular, xQ is vertex-disjoint from each Ri, i.e., xQ lies in H. Extend xQ to
a double ray in H ′ by first connecting x to the <N -least vertex in its connected component
Hi, then following the computable ray which we added. The resulting double ray is disjoint
from every Sk, because no Sk can lie in the same H ′i as xQ (for xQ is vertex-disjoint from
Sk ∩H by construction). This contradicts maximality of l. �

6.2. Maximal Variants of IRT. Instead of sets of disjoint rays of maximum cardinality, we
could consider sets of disjoint rays which are maximal. For uncountable graphs, Halin [11]
observed that any uncountable maximal set of disjoint rays is in fact of maximum cardinality
(because rays are countable). This suggests another variant of IRT, which we call maximal
IRT:

Definition 6.17. Let MIRTXYZ be the statement that every X-graph G has a (possibly
finite) sequence (Ri)i of Y-disjoint Z-rays which is maximal, i.e., for any Z-ray R in G, there
is some i such that R and Ri are not Y-disjoint.

MIRTXYZ immediately follows from Zorn’s Lemma. It is straightforward to show that
MIRTXYZ implies Π1

1-CA0 (see the proof of Theorem 6.18 below), hence MIRTXYZ is much
stronger than IRTXYZ or even IRT∗XYZ. We show below that MIRTXYZ is equivalent to Π1

1-
CA0. This situation is reminiscent of König’s duality theorem: Even though ATR0 suffices
to construct a so-called König cover (Simpson [28]), the existence of a König cover with a
certain maximality property is equivalent to Π1

1-CA0 (Aharoni, Magidor, Shore [2]).

Theorem 6.18. MIRTXYZ is equivalent to Π1
1-CA0.

After proving the forward direction of the above theorem, we will present two proofs for
the backward direction. The first proof is for those familiar with hyperarithmetic theory.
The second proof is a standard reverse mathematical proof. Using MIRTXYZ, we will prove
a strong form of Σ1

1-AC0 which is known to be equivalent to Π1
1-CA0.

Proof that MIRTXYZ implies Π1
1-CA0. We prove that MIRTXYZ implies ACA0 by adapting the

proof of Theorem 5.9: If we apply MIRTXYZ instead of IRTXYZ to any of the forests con-
structed in the proof, we obtain a sequence containing a Z-ray in each tree which constitutes
the forest. This is more than sufficient for carrying out the remainder of the proof of Theorem
5.9.

To prove that MIRTUVS implies Π1
1-CA0, suppose we are given a set A. Consider the

disjoint union of all A-computable trees (this exists, by ACA0). Any maximal sequence of Y-
disjoint rays in this forest must contain a ray in each ill-founded X-computable tree. Hence it
computes OA. This shows that MIRTUYS implies Π1

1-CA0. To prove that the other MIRTXYZ

imply Π1
1-CA0, it suffices to exhibit a computable procedure which takes trees T ⊆ N<N to

X-graphs T ′ such that T is ill-founded if and only if T ′ contains a Z-ray. For MIRTUYD, it
suffices to modify each tree by adding a computable branch which is not already on the tree
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(as we did in the proof of Theorem 5.9). For MIRTDYZ, it suffices to orient each of the graphs
we constructed above in the obvious way. �

First proof that Π1
1-CA0 implies MIRTXYZ. First, we will prove MIRTXVZ using Π1

1-CA0. Then
we will describe how to modify the proof to prove MIRTXEZ. Suppose we are given an X-graph
G. We assume that G is computable; the proof for general graphs G follows by relativization.
We will use O to compute a maximal sequence of disjoint Z-rays in G, as follows. At stage
n, we attempt to add a Z-ray which begins at the vertex n and is disjoint from all of the rays
we have constructed thus far. We will maintain the fact that the hyperjump of the finite
sequence of Z-rays we have constructed is Turing equivalent to O.

Suppose we have constructed disjoint Z-rays (Rij)ij<n such that for each ij, Rij begins

at ij, and O(Rij
)ij<n ≡T O. First, O(Rij

)ij<n ≡T O can tell us whether there is a Z-ray in
G which begins at n and is disjoint from (Rij)ij<n. If not, then we end stage n without
constructing any ray. Otherwise, by the Gandy basis theorem, there is some such Z-ray R
such that O(Rij

)ij<n⊕R ≡T O. We add R to our sequence of disjoint Z-rays.
This construction produces a (possibly finite) sequence Ri0 , Ri1 , . . . of disjoint Z-rays in

G. We show that this sequence is maximal. If R is a Z-ray which is disjoint from every Rij ,
then go to stage n of the construction, where n is the first vertex of R. If we did construct
some Rij during stage n, then Rij would not be disjoint from R. Hence we did not construct
any Z-ray during stage n. But R is a Z-ray that begins at n and is disjoint from (Rij)ij<n,
contradiction.

To prove MIRTXEZ, we modify the above construction as follows. At stage (u, v), we
search for a Z-ray 〈H, f〉 such that (f(0), f(1)) = (u, v) and 〈H, f〉 is disjoint from all Z-rays
constructed thus far. The rest of the proof proceeds as above. �

Second proof that Π1
1-CA0 implies MIRTXYZ. We will prove that MIRTXYZ implies strong Σ1

1-
DC0, which consists of the scheme

(∃Z)(∀n)(∀Y )

(
η

(
n,
⊕
i<n

Z [i], Y

)
→ η

(
n,
⊕
i<n

Z [i], Z [n]

))
,

for any Σ1
1 formula η(n,X, Y ). It is known that strong Σ1

1-DC0 and Π1
1-CA0 are equivalent

(Simpson [29, VII.6.9]). Note that in contrast to Σ1
1-DC0, the premise of strong Σ1

1-DC0 does
not assume that for all n and X, there is some Y such that η(n,X, Y ) holds. Furthermore,
the conclusion of strong Σ1

1-DC0 does not place any restriction on Z [n], if there is no Y such
that η(n,

⊕
i<n Z

[i], Y ) holds.
We prove MIRTXVZ using strong Σ1

1-DC0 as follows. Given an X-graph G, we will define
an arithmetical formula η(n,X, Y ) with parameter G. First, we inductively define a finite
sequence i0, . . . , ik < n. If i0, . . . , ij−1 have been defined, define ij to be the least number
(if any) above ij−1 and below n such that X [ij ] is a Z-ray in G which is disjoint from
X [i0], . . . , X [ij−1]. It is clear that there is an arithmetical formula with parameter G which
defines i0, . . . , ik from n and X. Next, we say that η(n,X, Y ) holds if Y is a Z-ray in G
which begins with n, and Y is disjoint from X [i0], . . . , X [ik].

Apply strong Σ1
1-DC0 for the formula η to obtain some set Z. By Σ0

1-comprehension with
parameter G ⊕ Z, we may inductively define a (possibly finite) sequence i0, i1, . . . , just as
we did in the definition of η. Clearly (Z [ij ])j is a sequence of disjoint Z-rays in G. We claim
that it is maximal.
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Suppose that R is a Z-ray in G which is disjoint from every Z [ij ]. Suppose that R begins
with vertex n. Then R is disjoint from Z [i0], . . . , Z [ik], where ik is the largest ij below n. It
follows that η(n,

⊕
i<n Z

[i], R) holds. So η(n,
⊕

i<n Z
[i], Z [n]) holds, i.e., Z [n] is a Z-ray which

begins with n and Z [n] is disjoint from Z [i0], . . . , Z [ik]. By definition of ik+1, that means that
n = ik+1. But then R and Z [ik+1] are not disjoint, contradiction.

To prove MIRTXEZ, we modify the above construction as follows. We say that η((u, v), X, Y )
holds if Y is a Z-ray 〈H, f〉 in G such that (f(0), f(1)) = (u, v) and Y is disjoint from
X [i0], . . . , X [ik]. The rest of the proof proceeds as above. �

7. Relationships Between IRT and Other Theories of Hyperarithmetic
Analysis

In this section, we establish implications and nonimplications between variants of IRT and
theories of hyperarithmetic analysis other than Σ1

1-AC0. One such theory is as follows:

Definition 7.1. The theory unique-Σ1
1-AC0 consists of RCA0 and

(∀n)(∃!X)A(n,X)→ (∃(Xn)n)(∀n)A(n,Xn)

for each arithmetical formula A(n,X).

The above theory is typically known as weak-Σ1
1-AC0 (e.g., [29, VIII.4.12]). Our reason

for deviating from this terminology will soon be clear.
Let us sketch a proof that IRT∗UVS implies unique-Σ1

1-AC0. (We will modify this sketch to
prove a stronger result in Theorem 7.3.) By Lemma 6.7, it suffices to prove that for any
sequence (Tn)n of subtrees of N<N such that each Tn has a unique branch Pn, the sequence
(Pn)n exists. Analogously to the proof of (5) → (1) in Theorem 6.13, we may construct a
sequence of trees (Sn)n such that for each n, the unique branch on Sn is P0 ⊕ · · · ⊕ Pn. By
IRT∗UVS, there is a sequence (Rk)k of disjoint rays in

⊔
n Sn of maximum cardinality. We

claim that (Rk)k is infinite. If not, only finitely many Sn contain any Rk. Then we can
increase the cardinality of (Rk)k by adding any ray from any Sm which does not contain any
Rk, contradiction. Therefore (Rk)k is infinite. Since each Sn contains at most one Rk, it
follows that infinitely many Sn contain some Rk. Thus we may construct the sequence (Pn)n
(analogously to the proof of (5) → (1) in Theorem 6.13).

In the above sketch, we used the property that any two rays in some Sn must intersect,
which follows from the assumption that each Tn has a unique branch. We could carry out
the above sketch even if each Tn has finitely many branches, rather than a unique branch.
This motivates the following definition:

Definition 7.2. The theory finite-Σ1
1-AC0 consists of RCA0 and

(∀n)(∃ nonzero finitely many X)A(n,X)→ (∃(Xn)n)(∀n)A(n,Xn)

for each arithmetic formula A(n,X). Formally, “(∃ nonzero finitely many X)A(n,X)” means
that there is a nonempty sequence (Xi)i<j such that for each X, A(n,X) holds if and only
if X = Xi for some i < j.

Since Σ1
1-AC0 implies finite-Σ1

1-AC0 which in turn implies unique-Σ1
1-AC0, it follows that

finite-Σ1
1-AC0 is a THA. Goh [10] shows that finite-Σ1

1-AC0 is strictly stronger than unique-
Σ1

1-AC0.

Theorem 7.3. IRT∗XYZ implies finite-Σ1
1-AC0 over RCA0. (It follows that IRTXYZ implies

finite-Σ1
1-AC0 over RCA0 + IΣ1

1, but this is superseded by Theorem 7.7 below.)
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Proof. To prove the implication from IRT∗UYS, modify the sketch above by replacing “unique”
with “finitely many”. This shows that IRT∗UYS for forests implies finite-Σ1

1-AC0. By Theorem
6.16, it follows that IRT∗UYD for forests implies finite-Σ1

1-AC0. By Proposition 6.5, it follows
that IRT∗DYZ implies finite-Σ1

1-AC0 as well. �

Another theory of hyperarithmetic analysis which follows from IRT∗XYZ is arithmetic Bolzano-
Weierstrass (ABW0):

Definition 7.4. The theory ABW0 consists of RCA0 and the following statement: If A(X)
is an arithmetic predicate on 2N , either there are finitely many X such that A(X) holds, or
the set {X : A(X)} has an accumulation point.

Friedman [8] introduced ABW0 and asserted that it follows from Σ1
1-AC0 (with unrestricted

induction). Conidis [4] proved Friedman’s assertion and established relationships between
ABW0 and most known theories of hyperarithmetic analysis. Goh [10] shows that ABW0+IΣ1

1

implies finite-Σ1
1-AC0. We do not know if ABW0 is strictly stronger than finite-Σ1

1-AC0.
The following two lemmas will be useful in deriving ABW0 from IRT∗XYZ. The first lemma

describes a connection between sets of solutions of arithmetic predicates and disjoint rays in
trees.

Lemma 7.5 (ACA0). Suppose A(X) is an arithmetic predicate. Then there is a tree T ⊆
N<N such that if there is a sequence of distinct solutions of A(X), then there is a sequence
of Y-disjoint single rays in T of the same cardinality, and vice versa.

Proof. By Lemma 6.6, there is a tree T ⊆ N<N such that

∀X(A(X)↔ ∃f(〈X, f〉 ∈ [T ])

and ∀X(∃ at most one f)(〈X, f〉 ∈ [T ]).

If (Xi)i is a sequence of distinct solutions of A(X), then there is a sequence of distinct
branches (〈Xi, fi〉)i on T of the same cardinality. By taking an appropriate tail of each
branch, we obtain a sequence of vertex-disjoint (hence edge-disjoint) single rays in T of the
same cardinality.

Conversely, suppose there is a sequence (Ri)i of Y-disjoint single rays in T . For each Ri,
we define a branch on T which corresponds to it as follows. Let x be the vertex in Ri which
is closest to the root of T . Then we can extend xRi to the root to obtain a branch 〈Xi, fi〉 on
T . We claim that (Xi)i is a sequence of distinct solutions of A(X). For each i 6= j, since Ri

and Rj are Y-disjoint, they cannot share any tail. So 〈Xi, fi〉 and 〈Xj, fj〉 must be distinct.
Since for each X, there is at most one f such that 〈X, f〉 is a branch on T , it follows that
Xi 6= Xj as desired. �

The second lemma is essentially the well-known fact that the Bolzano-Weierstrass theorem
is provable in ACA0:

Lemma 7.6 (see Conidis [4, pg. 4476]). ACA0 proves that if (Xn)n is a sequence of distinct
elements of 2N , then there is some Z which is an accumulation point of {Xn : n ∈ N}.

Theorem 7.7. IRT∗XYZ implies ABW0 over RCA0. Therefore IRTXYZ implies ABW0 over
RCA0 + IΣ1

1.

Proof. By Proposition 6.5, it suffices to show that the undirected variants of IRT∗ imply
ABW0.
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Suppose A(X) is an arithmetic predicate on 2N which does not have finitely many so-
lutions. By Lemma 7.5, there is a tree T ⊆ N<N such that for any sequence of distinct
solutions of A(X), there is a sequence of Y-disjoint single rays in T of the same cardinality,
and vice versa.

By IRT∗UYS, or by IRT∗UYD and Theorem 6.16, there is a sequence of Y-disjoint single rays
in T of maximum cardinality. This yields a sequence of distinct solutions of A(X) of the
same cardinality.

If this sequence is finite, then there is a solution Y of A(X) not in the sequence, because
A(X) does not have finitely many solutions. Hence there is a sequence of distinct solutions
of A(X) of larger cardinality, which yields a sequence of Y-disjoint single rays in T of larger
cardinality. Contradiction.

Therefore there is an infinite sequence (Xn)n of distinct solutions of A. By Lemma 7.6,
there is an accumulation point of {Xn : n ∈ N}, which is of course an accumulation point
of {X : A(X)}, as desired. �

We turn our attention to nonimplications. One prominent theory of hyperarithmetic
analysis is the scheme of ∆1

1-comprehension (studied by Kreisel [15]):

Definition 7.8. The theory ∆1
1-CA0 consists of RCA0 and the statement

(∀n)(Φ(n)↔ ¬Ψ(n))→ ∃X(n ∈ X ↔ Φ(n))

for all Σ1
1 formulas Φ and Ψ.

Theorem 7.9. ∆1
1-CA0 0 IRTXYZ, IRT

∗
XYZ.

Proof. Conidis [4, Theorem 3.1] constructed a standard model which satisfies ∆1
1-CA0 but

not ABW0. By Theorem 7.7, this model does not satisfy IRT∗XYZ. Since standard models
satisfy full induction, this model does not satisfy IRTXYZ either (by Proposition 6.3). �

Theorem 7.10. ABW0 0 IRTXYZ, IRT
∗
XYZ.

Proof. By Propositions 5.3 and 6.3, it suffices to show that ABW0 0 IRTUYZ. Van Wesep [31,
I.1] constructed a standard model N which satisfies unique-Σ1

1-AC0 but not ∆1
1-CA0. Conidis

[4, Theorem 4.1] showed that N satisfies ABW0. We show below that N does not satisfy
IRTUYZ.

In order to define N , van Wesep constructed a tree TG and branches (fGi )i∈N of TG such
that (1) N contains TG and infinitely many (distinct) fGi (see [31, pg. 13 l. 1–11]); (2) N
does not contain any infinite sequence of distinct branches of TG (see [31, pg. 12 l. 7–9] and
Steel [30, Lemma 7].) Then TG is an instance of IRTUYS in N which has no solution in N .
This shows that N does not satisfy IRTUYS for trees.

Since N is a standard model, it satisfies full induction. By Theorem 6.16, it follows that
N does not satisfy IRTUYD for forests. �

Figure 4 illustrates some of our results. In order to simplify the diagram, we have omitted
all variants of IRT except IRTUVS.

8. Isolating the Use of Σ1
1-AC0 in Proving IRT

We isolate the use of Σ1
1-AC0 in our proofs of IRTXYS and IRTUVD (Theorems 4.5, 5.10,

5.15) by identifying the following principles:
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Σ1
1-AC0

Π1
1-SEP0

∆1
1-CA0

INDEC0

unique-Σ1
1-AC0

IRTUVS

ABW0

finite-Σ1
1-AC0

(1)

(2)

(3)

IΣ1
1

(4)

(5)

(6)IΣ1
1

IΣ1
1

|
(7)
|

Figure 4. Partial zoo of theories of hyperarithmetic analysis. Single arrows
indicate implication while double arrows indicate strict implication. The ref-
erences for the above results are as follows: (1, 2) Montalbán [17, Theorems
2.1, 3.1]; (3, 4) Montalbán [16, Theorem 2.2], Neeman [20, Theorems 1.2, 1.3,
1.4], see also Neeman [21, Theorem 1.1]; (5) Theorem 4.5; (6) Theorems 7.7,
7.10; (7) Conidis [4, Theorem 4.1]. All results concerning finite-Σ1

1-AC0 are in
Goh [10].

Definition 8.1. Let SCRXYZ be the assertion that if G is an X-graph with arbitrarily many
Y-disjoint Z-rays, then there is a sequence of sets (Xk)k such that for each k ∈ N , Xk is a
set of k Y-disjoint Z-rays in G.

Let WIRTXYZ be the assertion that if G is an X-graph and there is a sequence of sets (Xk)k
such that for each k ∈ N , Xk is a set of k Y-disjoint Z-rays in G, then G has infinitely many
Y-disjoint Z-rays.

SCR stands for Strongly Collecting Rays. WIRT stands for Weak Infinite Ray Theorem.
It is clear that Σ1

1-AC0 implies SCRXYZ and SCRXYZ + WIRTXYZ implies IRTXYZ. The
only use of Σ1

1-AC0 in our proofs of IRTXYS and IRTUVD is to prove SCRXYS and SCRUVD

respectively:

Theorem 8.2. ACA0 proves WIRTXYS and WIRTUVD.

Proof. For WIRTUVS, see the proof of Theorem 4.5. For WIRTUVD, see the proof of Theorem
5.10. For WIRTXES, see the proof of Theorem 5.15. The desired result for WIRTDVS then
follows from Lemma 5.4. �

Next we will use the above result to show that SCRXYS and SCRUVD are equivalent over
RCA0 to IRTXYS and IRTUVD respectively. First, observe that IRTXYZ implies SCRXYZ for
each choice of XYZ. Second, Lemmas 5.2, 5.4 and 5.6 imply

Proposition 8.3. SCRDYZ implies SCRUYZ, SCRDEZ implies SCRDVZ and SCRDYD implies
SCRDYS.

Proposition 8.4. SCRXYZ implies ACA0.
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Proof. By Proposition 8.3, it suffices to establish the desired result for the undirected variants
of SCR. The proofs are almost identical to those of Proposition 4.6 and Theorem 5.9. There,
we applied IRTUYZ to forests G :=

⊔
nGn, where each Gn contains a Z-ray, and no two Z-rays

in Gn can be Y-disjoint. Any infinite sequence of Y-disjoint Z-rays in G must contain a Z-ray
in cofinally many graphs Gn. Therefore from such a sequence we can uniformly compute
Z-rays in cofinally many graphs Gn, which establishes ACA0 by the construction of

⊔
nGn. If

we assume SCRUYZ instead of IRTUYZ, we only have access to a sequence (Xk)k such that for
each k, Xk is a set of k Y-disjoint Z-rays in G. From such a sequence we can still uniformly
compute Z-rays in cofinally many graphs Gn, because for any k, Xk+1 must contain a Z-ray
in some Gn, n ≥ k. �

By Theorem 8.2, Proposition 8.4, and the observation that SCRXYZ +WIRTXYZ ` IRTXYZ,
we obtain

Corollary 8.5. SCRXYZ and IRTXYZ are equivalent over RCA0 for the following choices of
XYZ: XYS and UVD.

We now turn our attention to WIRTXYZ. As usual, Lemmas 5.2, 5.4 and 5.6 imply

Proposition 8.6. WIRTDYZ implies WIRTUYZ, WIRTDEZ implies WIRTDVZ and WIRTDYD

implies WIRTDYS.

Recall that WIRTXYS and WIRTUVD are provable in ACA0 (Theorem 8.2). WIRTDVD and
WIRTDED are open, because Σ1

1-AC0 + WIRTXYZ implies IRTXYZ, and IRTDVD and IRTDED

are open (see comments after Theorem 5.1). We do not have an upper bound on the proof-
theoretic strength of WIRTUED (an upper bound on WIRTUED would yield an upper bound
on IRTUED, which we do not currently have).

We do not know if any WIRTXYZ is equivalent to ACA0. In an effort to clarify the situation,
we define an apparent strengthening of WIRTXYZ and show that it implies ACA0:

Definition 8.7. Let nonuniform-WIRTXYZ be the assertion that if G is an X-graph and
there is a sequence of Z-rays R0, R1, . . . in G such that for each k, there are i0, . . . , ik such
that Ri0 , . . . , Rik are pairwise Y-disjoint, then G has infinitely many Y-disjoint Z-rays.

Every instance of WIRTXYZ is also an instance of nonuniform-WIRTXYZ, so nonuniform-
WIRTXYZ implies WIRTXYZ. Conversely, we have

Proposition 8.8. ACA0 + WIRTXYZ implies nonuniform-WIRTXYZ.

Proof. Suppose G is an instance of nonuniform-WIRTXYZ, i.e., G is an X-graph and (Rn)n
is a sequence of Z-rays in G such that for each k, there are i0, . . . , ik such that Ri0 , . . . , Rik

are pairwise Y-disjoint. Then ACA0 can find such i0, . . . , ik uniformly in k. Therefore by
ACA0, G is an instance of WIRTXYZ. By WIRTXYZ, G has infinitely many Y-disjoint Z-rays
as desired. �

Theorem 8.9. Nonuniform-WIRTXYZ implies ACA0 over RCA0. It follows that nonuniform-
WIRTXYS and nonuniform-WIRTUVD are both equivalent to ACA0 over RCA0.

Proof. By Proposition 8.8 and Theorem 8.2, ACA0 implies nonuniform-WIRTXYS and nonuniform-
WIRTUVD.

Next, we show that nonuniform-WIRTXYZ implies ACA0. By Lemma 5.2, it suffices to con-
sider the undirected versions of nonuniform-WIRT. First, we shall prove that nonuniform-
WIRTUYS implies ACA0 by constructing a computable instance of nonuniform-WIRTUYS such
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that every nonuniform-WIRTUYS solution computes ∅′. (The desired result follows by rela-
tivization.) We will compute ∅′ by computing, for each i, some stage n by which the standard
enumeration of ∅′ has enumerated all numbers in ∅′ which are less than i, i.e., ∅′n � i = ∅′ � i.

Construction of G = (V,E): Our graph G will be on N2. We construct E in stages as
follows. First, initialize the set of dead columns to be the empty set. At stage s, suppose i
enters ∅′. Let t < s be the most recent stage at which any number less than i enters ∅′ (if
no such stage exists, then t = 0). For all n such that t < n < s and column n is not dead:

(1) add the edge between 〈n, s〉 and 〈t, s+ 1〉 to E;
(2) declare column n to be dead.

For all other n such that column n is not dead, we add the edge between 〈n, s〉 and 〈n, s+1〉
to E. This completes stage s of the construction of E.

In order to construct the single rays Rn, observe that if column m is not dead at the
beginning of stage s, then, at the end of stage s, 〈m, s〉 is adjacent to 〈t, s + 1〉 for some
unique t. Furthermore, we can show by induction that column t is not dead at the beginning
of stage s + 1. So we can define Rn by starting at 〈n, 0〉 and recursively picking the unique
adjacent vertex at the next level. (Note that this ensures that any two Rn and Rm are
vertex-disjoint if and only if they are edge-disjoint.)

Verification: G and (Rn)n can be defined in RCA0. Observe that RCA0 proves that for
each i, there is some least stage ni such that ∅′ni

� i = ∅′ � i.
We claim that column ni is never dead. At stages s ≤ ni, we cannot declare column ni to

be dead. As for stages s > ni, suppose some j enters ∅′ at stage s. Since ∅′ni
� i = ∅′ � i, we

have j ≥ i. By minimality of ni, some number less than i (≤ j) entered ∅′ at stage ni. So
we would not declare column ni to be dead at stage s.

It follows that the vertices of Rni
are 〈ni, s〉, for s ∈ N . With this we can show that RCA0

proves that G is an instance of nonuniform-WIRTXYS: RCA0 proves that for each k, the
sequence n0, n1, . . . , nk−1 exists, and hence the sequence (Rni

)i<k exists (and is Y-disjoint).
Next, we shall prove that every column n which is not any ni is eventually declared dead.

RCA0 proves that there is some maximum i such that ∅′n � i = ∅′ � i. By choice of i and our
assumption on n, n > ni. Consider the stage s > n at which i enters ∅′. Then the most
recent stage t < s at which any number less than i enters ∅′ must be ni. So we declared
column n to be dead at stage s.

It is clear from the construction that if a ray R in G begins at some 〈n, s〉, then R can
only intersect columns m ∈ [ni, ni+1), where i is defined as in the previous paragraph. Since
column ni is the only column among [ni, ni+1) which is never declared dead, R must share a
tail with Rni

.
With the above, we can conclude the proof that nonuniform-WIRTXYS implies that ∅′

exists. By nonuniform-WIRTXYS, let (Si)i be an infinite sequence of Y-disjoint single rays in
G. For each i, define si to be the first coordinate of the first vertex of Si. By thinning out
(si)i if necessary, we may assume that s0 ≤ s1 ≤ . . . .

We shall prove by induction that for each i, si+1 ≥ ni (hence ∅′ � i = ∅′si+1
� i). The

base case is trivial. Suppose si ≥ ni−1. If si ≥ ni, then we have si+1 ≥ si ≥ ni as desired.
Otherwise, si ∈ [ni−1, ni). We cannot have si+1 ∈ [ni−1, ni) as well, because that would
imply that Rsi and Rsi+1

both share a tail with Rni−1
and are hence not Y-disjoint.

Therefore we can use the sequence (si)i to define ∅′, as desired.
To show that nonuniform-WIRTUYD implies ACA0, define G as above. Consider the graph

G′ on N ×Z which contains G and its “reflection about the x-axis”. For any single ray in G,



HALIN’S INFINITE RAY THEOREMS: COMPLEXITY AND REVERSE MATHEMATICS 39

we can consider its associated double ray in G′, obtained by joining the ray with its reflection.
This map from single rays in G to double rays in G′ preserves Y-disjointness. Therefore, since
G is an instance of nonuniform-WIRTUYS, it follows that G′ is an instance of nonuniform-
WIRTUYD. By nonuniform-WIRTUYD, let (Si)i be an infinite sequence of Y-disjoint double
rays in G′. As before, we can define (si)i and use it to compute ∅′. �

We are unable to show that WIRTXYZ implies ACA0, but we can prove

Theorem 8.10. WIRTXYZ is not provable in RCA0.

Proof. By Proposition 8.6, it suffices to consider the undirected variants of WIRT. We shall
present the proof for WIRTUYS before indicating how to modify it to obtain the proof for
WIRTUYD.

For WIRTUYS, it suffices to construct a computable graph G on N and a computable
sequence ((Xk

i )i<k)k such that (1) for each k ∈ N, the Xk
i for i < k are pairwise vertex-

disjoint single rays in G; (2) there is no computable sequence (Rj)j of edge-disjoint single
rays in G. This will be a finite injury priority argument. At the end of stage s of our
construction, for each i < k ≤ s, we will have defined a path P k

i containing at least s− k+ 1
vertices which is intended to be an initial segment of the single ray Xk

i . For each k ≤ s,
we will obey the disjointness rule, namely, the paths P k

0 , . . . , P
k
k−1 will be vertex-disjoint. In

future stages, we will not add any edges between vertices which are currently in P k
0 , . . . , P

k
k−1.

Thus G will be a computable graph given by the union of the single rays Xk
i .

Apart from the above stipulations, we will satisfy the requirements

Qe : if R0, R1, . . . is a sequence of single rays in G defined by Φe,

then R0, R1, . . . are not edge-disjoint.

Arrange the requirements Q0,Q1, . . . in order of priority. During our construction, we will
attempt to satisfy each Qe by merging certain rays Xk

i and X l
j, i.e., we take two new numbers

and append them consecutively to both P k
i and P l

j . We also ensure that P k
i and P l

j henceforth
agree.

Construction. At stage s of the construction, we are given a finite graph Gs consisting
of, for each k < s, finite vertex-disjoint paths P k

0 , . . . , P
k
k−1 which are intended to be initial

segments of the rays Xk
0 , . . . , X

k
k−1.

First, for each such path in order we extend it by taking the least new number and
appending it to the end of the path. (If some P k

i and P l
j have the same endpoint, we append

the same new vertex to both of those paths.) Second, for each i < s, in order, we take the
least new number and designate it as the first vertex of a new path P s

i . To complete stage
s of the construction, we will act for the requirement Qe of highest priority which requires
attention (if any), as defined below. We will attempt to satisfy each Qe in two phases.
Whenever Qe is initialized, it lies in phase 1. We say that Qe requires attention at stage s
if it has not been (permanently) satisfied and either of the following hold:

(1) Qe is in phase 1 and Φe(〈a, 0〉) converges and equals P k
i (m) for some a, i, k,m < s

which are greater than the last stage s0(e) at which Qe was initialized.
(2) Qe is in phase 2 and Φe(〈b, 0〉) converges and equals P l

j(n) for some b, j, l, n < s which
are greater than the last stage s1(e) at which Qe was in phase 1.

Our action for Qe in each case is as follows:
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(1) We initialize all requirements of priority lower than Qe which are not satisfied. We
also declare that Qe is in phase 2.

(2) We merge the rays Xk
i and X l

j by appending the least two new numbers to the end

of both P k
i and P l

j . (For any paths Pm
n which share an endpoint with P k

i or P l
j , we

append the same new vertices to Pm
n .) We also initialize all requirements of priority

lower than Qe which are not satisfied, and declare that Qe is (permanently) satisfied.

This completes stage s of the construction.
Verification. It is clear that, for each i < k, each Xk

i is a single ray and that G is a
computable graph consisting of the union of these rays. Each requirement acts at most twice
after each time it is initialized, so each requirement acts only finitely often, by induction.

To see that we never violate the disjointness rule, it suffices to show that we never merge
any distinct rays Xm

n and Xm
n′ , whether directly or indirectly. Suppose not. Consider the

least stage s at which we have done so, say via action of some Qe. We have s0(e) < s1(e) < s.
We analyze which rays can be merged by requirements at stages ≤ s. Requirements of

priority higher than Qe can only merge rays Xk
i and X l

j if k, l < s0(e), otherwise we would

initialize Qe at some stage between s0(e) and s. Next, the rays Xk
i and X l

j merged by Qe
satisfy s0(e) < k, l < s. Finally, requirements of priority lower than Qe can only merge rays
Xk
i and X l

j if k, l < s0(e), or s0(e) < k, l < s1(e), or s1(e) < k, l < s, because they are
initialized at stages s0(e) and s1(e).

We now consider cases depending on the value of m.
Case 1. m < s0(e). Then Xm

n can only be (directly or indirectly) merged with rays X l
j

where l ≤ s0(e). Likewise for Xm
n′ . So the merger performed by Qe at stage s (which merges

some Xk
i and X l

j, where k, l > s0(e)) cannot cause Xm
n and Xm

n′ to be merged, contradicting
minimality of s.

Case 2. s0(e) < m < s1(e). Then Xm
n and Xm

n′ can only be (directly or indirectly) merged
with rays X l

j where s0(e) < l < s1(e). The rest of the argument follows that in Case 1.
Case 3. s1(e) < m < s. Similar to Case 2.
Case 4. m = s0(e) or m = s1(e). Then Xm

n and Xm
n′ are never merged with any ray (at

stages ≤ s), contradicting our choice of Xm
n and Xm

n′ .
This proves that we never (directly or indirectly) merge distinct rays Xm

n and Xm
n′ .

In order to prove that each requirement Qe is satisfied, observe the following. Suppose a
ray R in G begins at some vertex in Xk

i which lies in Gs+1 −Gs.

(1) If Xk
i is never merged with any ray after stage s, then R shares a tail with Xk

i .
(2) Whenever Xk

i is merged with some ray after stage s, R has to pass through the edge
between the two vertices we added in the merger.

Now, suppose Φe is total. Consider the possible actions for Qe after (the final value of)
stage s0(e). If we never define s1(e), then every value of Φe(〈a, 0〉) for a > s0(e) lies in some
Xk
i , for i < k ≤ s0(e). In this case, there are a 6= a′ such that Φe(〈a, 0〉) and Φe(〈a′, 0〉)

lie in the same ray Xk
i . By observations (1) and (2) above, Φe cannot define a sequence of

edge-disjoint rays. If we never define s2(e), the same argument shows that Φe cannot define
a sequence of edge-disjoint rays. If we eventually define both s1(e) and s2(e), then our action
at that stage guarantees (by observation (2) above) that Φe does not define a sequence of
edge-disjoint rays.

To show that WIRTUYD is not provable in RCA0, modify the above proof by growing and
merging each path P k

i at both of its endpoints. �
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9. Open questions

In addition to the variations of the Halin type theorems investigated here that remain
open problems of graph theory (IRTDVD and IRTDED) the most intriguing computational
and reverse mathematical questions are about either separating the variants or providing
additional reductions or equivalences among the IRTXYZ.

Question 9.1. Can any additional arrows be added to Figure 1 over RCA0 or RCA0 + IΣ1
1?

(This includes the question of whether RCA0 ` IRTUVD → IRTUVS.)

As we noted in Remark 5.8 there is an apparent additional reduction in Bowler, Carmesin,
Pott [3, pg. 2 l. 3–7]. They use an intermediate reduction to locally finite graphs in the sense
of relying on the fact that if a graph has arbitrarily many disjoint rays it has a locally finite
subgraph with arbitrarily many disjoint rays. This is the principle to which that Remark
refers. It plus ACA0 is a THA but over RCA0 it does not imply ACA0 and is provably very
weak (in the sense of being highly conservative over RCA0). Shore [26] analyzes this and
many similar principles some related to the IRTXYZ and others to an array of classical logical
principles.

Any reductions in RCA0 as requested in the Question above would, of course, provide the
analogous ones for the IRT∗XYZ. However, it is possible that other implications can be proven
for the IRT∗XYZ:

Question 9.2. Can any implications of the form IRT∗XYZ → IRT∗X′Y′Z′ be proven in RCA0

other than the ones known to hold for the IRT versions?

Probably more challenging is the problem of separating the principles.

Question 9.3. Can one prove any nonimplication over RCA0 or over RCA0 + IΣ1
1 for any

pair of the IRTXYZ?

Of course a separation by standard models or even ones over IΣ1
1 for the IRTXYZ would

give nonimplication for the corresponding IRT∗XYZ but it might be that nonstandard models
could be used to separate one pair of versions but not the other.

The most natural separation questions involve Σ1
1-AC0.

Question 9.4. Can one show that any of the IRTXYZ which are provable in Σ1
1-AC0 (IRTXYS

and IRTUVD) do not imply Σ1
1-AC0 over RCA0 or even over RCA0 + IΣ1

1? An intermediate
result might be that IRT∗XYZ (for one of these versions) does not imply Σ1

1-AC0 over RCA0.

The next natural question looks below ABW0 in Figure 4.

Question 9.5. Can one prove that finite-Σ1
1-AC0 does not imply ABW0 over RCA0 or RCA0+

IΣ1
1?

The weaker versions, WIRTXYZ, of the IRTXYZ, prompt a question about ACA0.

Question 9.6. Do any of the WIRTXYZ (especially the ones provable from ACA0) imply
ACA0? An easier question might be whether they imply WKL0?
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