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Abstract

Halin [1965] proved that if a graph has n many pairwise disjoint rays for each n
then it has infinitely many pairwise disjoint rays. We analyze the complexity of this
and other similar results in terms of computable and proof theoretic complexity. The
statement of Halin’s theorem and the construction proving it seem very much like
standard versions of compactness arguments such as König’s Lemma. Those results,
while not computable, are relatively simple. They only use arithmetic procedures
or, equivalently, finitely many iterations of the Turing jump. We show that several
Halin type theorems are much more complicated. They are among the theorems of
hyperarithmetic analysis. Such theorems imply the ability to iterate the Turing jump
along any computable well ordering. Several important logical principles in this class
have been extensively studied beginning with work of Kreisel, H. Friedman, Steel and
others in the 1960s and 1970s. Until now, only one purely mathematical example was
known. Our work provides many more and so answers Question 30 of Montalbán’s
Open Questions in Reverse Mathematics [2011]. Some of these theorems including
ones in Halin [1965] are also shown to have unusual proof theoretic strength as well.

Mathematics Subject Classification 2020: Primary 05C63, 03D55, 03B30; Secondary
03D80, 03F35, 05C38, 05C69, 05C70

*All the authors were partially supported by NSF Grant DMS-1161175.

1



1 Introduction

In this paper we analyze the complexity of several results in infinite graph theory. These
theorems are said to be ones of Halin type or, more generally, of ubiquity theory. The
classical example is a theorem of Halin [11]: If a countable graph G contains, for each
n, a sequence ⟨R0, . . . , Rn−1⟩ of disjoint rays (a ray is a sequence ⟨xi | i ∈ N⟩ of distinct
vertices such that there is an edge between each xi and xi+1) then it contains an infinite
such sequence of rays. (Note: As will be described in Definition 3.2, when we talk about
disjoint rays we always mean pairwise disjoint.) Halin actually deals with arbitrary graphs
and formulates the result differently. The uncountable cases, however, are essentially just
counting arguments. We deal only with countable structures but discuss his formulation in
§5. This standard formulation of his theorem seems like a typical compactness theorem going
from arbitrarily large finite collections of objects to an infinite collection. The archetypical
example here is König’s Lemma: If a finitely branching tree has paths of length n for every
n then it has a branch, i.e. an infinite path. In outline, a modern proof of Halin’s theorem
for countable graphs (due to Andreae, see [6, Theorem 8.2.5(i)]) seems much like that of
König’s Lemma (and many others in infinite graph theory). The construction of the desired
sequence of rays proceeds by a recursion through the natural numbers in which each step is
a simple procedure. While the procedure is much more delicate than for König’s Lemma,
it is basically of the same complexity. It uses Menger’s theorem for finite graphs at each
step but this represents a computable procedure (for finite graphs). The other parts of the
step depend on the same type of information as in König’s Lemma. They ask, for example,
if various sets (computable in the given graph) are nonempty or infinite. Nonetheless, we
prove that the complexity of this construction and theorem are much higher than that for
König’s Lemma or other applications of compactness.

We follow two well established procedures for measuring the complexity of constructions
and theorems. The first is basically computability theoretic. It has its formal beginnings in
the 1950s but has much earlier roots in constructive or computable mathematics reaching
back to antiquity. The measuring rod here is relative computability. We say a set A of
natural numbers is (Turing) computable from a set B, A ≤T B, if there is an algorithm
(say on a Turing machine or any other reasonable model of general computation) that, when
given access to all membership facts about B (an oracle for B) computes membership in
A. The standard hierarchies of complexity here are based on iterations of the Turing jump.
This operator takes B to B′, the halting problem relativized to B, i.e. the set of programs
e with oracle for B, ΦB

e , such that ΦB
e halts on input e. The undecidability of the halting

problem tells us that B <T B
′. For example, if the tree of König’s Lemma is computable in

B then there is a branch computable in the double jump B′′ of B.
The second approach is proof theoretic. It measures the complexity of a theorem by the

logical strength of the axioms needed to prove it. This approach also has a long history but
the formal subject, now called reverse mathematics, starts with H. Friedman’s work in the
1970s (e.g. [7, 8]). One compares axiomatic systems S and T by saying that T is stronger
than S, T ⊢ S (T proves S) if one can prove every sentence Θ ∈ S from the axioms of
T . The goal here is to characterize to the extent possible the axioms needed to prove a
given mathematical theorem Θ. To this end, one begins with a weak base theory. Then
one wants to find a system S such that not only does S ⊢ Θ but also Θ (with the weak
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base theory) proves all the axioms of S. Hence the name reverse mathematics as we seek
to prove the “axioms” of S from the theorem Θ. Typically, the systems here are formalized
in arithmetic with quantification over sets as well as numbers. The standard base theory
(RCA0) corresponds to the axioms needed to do computable constructions. Stronger systems
are then usually generated by adding comprehension axioms which assert the existence of
specific families of sets. For example, a very important system is ACA0. It is equivalent in
the sense of reverse mathematics just described to König’s Lemma. Formally, it asserts that
every subset of the natural numbers defined by a formula that quantifies only over numbers
(and not sets) exists. This is also equivalent to asserting that for every set B, B′ exists.

The early decades of reverse mathematics were marked by a large variety of results
characterizing a wide array of theorems and constructions as being one of five specific
levels of complexity including RCA0 and ACA0. Each of these systems (Simpson’s “big
five”) have corresponding specific recursion theoretic construction principles. In more re-
cent decades, there has been a proliferation of results placing theorems and constructions
outside the big five. Sometimes these are inserted linearly and sometimes with incompa-
rabilities. They are now collectively often called the “zoo” of reverse mathematics. (See
https://rmzoo.math.uconn.edu/diagrams/ for pictures.)

Theorems and constructions in combinatorics in general, and graph theory in particular,
have been a rich source of such denizens of this zoo. Almost all of them have fallen below
ACA0 (König’s Lemma) and so have the objects they seek constructible computably in finitely
many iterations of the Turing jump. Ramsey theory, in particular, has provided a very large
class of constructions and theorems of distinct complexity. One example of the infinite
version of a classical theorem of finite graph theory that is computationally and reverse
mathematically strictly stronger than ACA0 is König’s Duality Theorem (KDT) for countable
graphs. (Every bipartite graph has a matching and a cover consisting of one vertex from
each edge of the matching.) The proofs of this theorem for infinite graphs (Podewski and
Steffens [20] for countable and Aharoni [1] for arbitrary ones) are not just technically difficult
but explicitly used both transfinite recursions and well orderings of all subsets of the given
graph. These techniques lie far beyond ACA0. Aharoni, Magidor and Shore [2] proved that
this theorem is of great computational strength in that there are computable graphs for which
the required matching and cover compute all the iterations of the Turing jump through all
computable well-orderings. They also showed that it was strong reverse mathematically as it
implied ATR0, the standard system above ACA0 used to deal with such transfinite recursions.
Some of the lemmas used in each of the then known proofs were shown to be equivalent to the
next and final of the big five systems, Π1

1-CA0 and of corresponding computational strength.
Simpson [27] later provided a new proof of the theorem using logical methods that avoided
these lemmas and showed that the theorem itself is equivalent to ATR0 and so strictly weaker
than the lemmas both computationally and in terms of reverse mathematics.

The situation for the theorems of Halin type that we study here is quite different. The
standard proofs do not seem to use such strong methods. Nonetheless, as we mentioned
above, the theorems are much stronger than ACA0 with some versions not even provable in
ATR0. We prove that these theorems occupy a few houses in the area of the reverse math-
ematics zoo devoted to what are called theorems (or theories) of hyperarithmetic analysis,
THAs (Definition 3.13). Computationally, for each computable well ordering α, there is a
computable instance of any THA which has all of its required objects Turing above 0(α),
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the αth iteration of the Turing jump. On the other hand, they are computationally and
proof theoretically much weaker than ATR0 and so KDT. The point here is that there is a
single computable graph such that the matching and cover required by KDT lies above 0(α)

for all the computable well-orderings α, while for each computable instance of a THA there
is a computable well-ordering α such that 0(α) computes the desired object. In our cases,
the instances are graphs with arbitrarily many disjoint rays and the desired object is an
infinite sequence of disjoint rays. (The general usage of terms like instances and solutions of
a theorem or principle is described in Remark 3.18.)

Beginning with work of Kreisel [14], H. Friedman [9], Steel [29] and others in the 1960s
and 1970s and continuing into the last decade (by Montalbán [15, 16], Neeman [18, 19]
and others), several axiomatic systems and logical theorems were found to be THAs and
proven to lie in a number of distinct classes in terms of proof theoretic complexity. Until
now, however, there has been only one mathematical but not logical example, i.e. one not
mentioning classes of first order formulas or their syntactic complexity. This was a result
(INDEC) about indecomposability of linear orderings in Jullien’s thesis [13] (see Rosenstein
[22, Lemma 10.3]). It was shown to be a THA by Montalbán [15].

The natural quest then became to find out if there are any other THAs in the standard
mathematical literature. The issue was raised explicitly in Montalbán’s “Open Questions in
Reverse Mathematics” [17, Q30]. As our answer, we provide many examples (Theorem 4.1
and Theorem 5.8). Most of them are provable in a well known system above ACA0 gotten by
adding on a weak form of the axiom of choice (Σ1

1-AC0) at times with additional induction.
Several of the basic Halin type theorems (the IRTXYZ defined after Definition 3.4) have

versions (the IRT∗
XYZ of Definition 3.15) like those appearing in the original papers that

show that there are always families of disjoint rays of maximal cardinality which are of the
same computational strength as the basic versions (Proposition 3.17). On the other hand,
the IRT∗

XYZ are strictly stronger proof theoretically than the IRTXYZ because they imply
more induction than is available in Σ1

1-AC0 (Theorem 5.3 and Corollary 5.4). Two of the
variations we consider are as yet open problems of graph theory ([4] and Bowler, personal
communication). We show (Theorem 5.8) that if we restrict the class of graphs to directed
forests the principles are not only provable in, but reverse mathematically equivalent to,
Σ1

1-AC0 + IΣ1
1. Note that as ATR0 ⊬ IΣ1

1 [28, IX.4.7], these theorems are not provable even in
ATR0 or from KDT (Corollary 5.9). We do not know of other mathematical but nonlogical
theorems of this strength. Other versions that require maximal sets of rays (Definition 5.13)
are much stronger and, in fact, equivalent to Π1

1-CA0 (Theorem 5.14).

2 Outline of Paper

Section 3 discusses basic concepts and background information from graph theory (§3.1),
computability theory (§3.2) and formal syntax, semantics and axiom systems (§3.3). In
particular, §3.1 states Halin’s theorem IRT and some variants IRTXYZ. These variants allow
for graphs to be directed, rays to be double and disjointness for edges rather then vertices.
Some additional ones, IRT∗

XYZ, that ask for sets of rays of maximal cardinality are introduced
in Definiton 3.15. These principles are the main targets of our analysis.

§3.2 describes the transfinite iterations of the Turing jump (Definitions 3.7 and 3.8).
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Along with the syntax and semantics of §3.3, these are used to define the theorems (theories)
of hyperarithmetic analysis (THAs) (Definition 3.13) which is our main object of study.

Section 4 proves (Theorem 4.11) that all sixteen variants of IRT are computationally
very complex principles that imply closure under transfinite iterations of the Turing jump.
A direct proof for IRT can be read off from those of Theorem 4.10 and Theorem 4.11 by
ignoring the other cases. A stand alone treatment is in [3, §4]. Upper bounds on the
computational complexity for ten of these variants are then provided that prove that they
are THAs (Theorem 4.1). Again, simpler proofs for IRT are in [3, §4]. As mentioned in
§1, of the remaining three versions of IRT, two are still open problems in graph theory. We
do, however, have an analysis of their restrictions to special classes of graphs in Theorem
4.24 and §5.1. The last of the variations, IRTUED, has been proven more recently by Bowler,
Carmesin, Pott [4] using more sophisticated methods than the other results but we have yet
to fully analyze the complexity of their construction.

Section 5.1 proves that the IRT∗
XYZ all imply a specific instance of IΣ1

1 that is strong
enough to let them prove the consistency of Σ1

1-AC0 and so by Gödel’s second incompleteness
theorem they cannot be proved in Σ1

1-AC0 (Corollary 5.4).
As for proving full Σ1

1 induction from an IRT∗
XYZ, we are in much the same situation

mentioned above for Σ1
1-AC0 and IRTXYZ. In particular, IRT∗

DVD and IRT∗
DED for directed

forests each proves IΣ1
1 as well as Σ1

1-AC0 (Theorems 5.7 and 5.8) and so are equivalent to
IΣ1

1 + Σ1
1-AC0. As before, this shows that they are strictly stronger than Σ1

1-AC0 (Corollary
5.9). Indeed, as mentioned in §1, they are not even provable in ATR0 and we do not know
of any other mathematical theorem with this level of reverse mathematical strength.

The second variation of maximality, MIRTXYZ, studied in §5.2 is also mentioned in the
original Halin paper [11]. It asks for a set of disjoint rays which is maximal in the sense
of set containment. Of course, this follows immediately from Zorn’s Lemma for all graphs.
For countable graphs we provide a reverse mathematical analysis, showing that each of the
MIRTXYZ is equivalent to Π1

1-CA0 (Theorem 5.14).
In §6, we discuss the reverse mathematical relationships between the variations of Halin’s

theorem which are THAs and previously studied THAs as well as one new logical THA,
finite-Σ1

1-AC0 (Definition 6.2). Basically, all the IRT∗
XYZ (and so IRTXYZ + IΣ1

1) imply H.
Friedman’s ABW0 (Definition 6.4) by Theorem 6.7 and finite-Σ1

1-AC0 (Theorem 6.3). On the
other hand, none of them are implied by ABW0 (Theorem 6.10) or by ∆1

1-CA0 (Definition 6.8
and Theorem 6.9). ABW0 + IΣ1

1 does, however, imply finite-Σ1
1-AC0 which is not implied by

weak (unique)-Σ1
1-AC0 (Goh [10]). Figure 4 summarizes many of the known relations with

references.
In the penultimate section (§7) we continue the study begun in §4 of the only use of

Σ1
1-AC0 in each of our proofs of IRTXYZ. It consists of SCRXYZ (Definition 4.12) which says

we can go from the hypothesis that there are arbitrarily many disjoint rays to a sequence
⟨Xk⟩k in which each Xk is a sequence of k many disjoint rays. We also continue to analyze
the weakenings WIRTXYZ (Definition 4.12) of IRTXYZ which each take the existence of such
a sequence ⟨Xk⟩k as its hypothesis in place of there being arbitrarily many disjoint rays. For
example, for all the IRTXYZ which are consequences of Σ1

1-AC0 and so are THAs, IRTXYZ is
equivalent to SCRXYZ over RCA0 (Corollary 7.2) and so all of them are also THAs. For the
same choices of XYZ, ACA0 proves WIRTXYZ over RCA0. While a natural strengthening of
WIRTXYZ does imply ACA0 and indeed is equivalent to it (Theorem 7.5), we do not know
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if WIRTXYZ itself implies ACA0. All we can prove is that it is not a consequence of RCA0

(Theorem 7.6).
In the last section (§8), we mention some open problems.

3 Basic Notions and Background

We begin with basic notions and terminology from graph theory (§3.1). At times we use
formalizations that are clearly equivalent to more standard ones but are easier to work with
computationally or proof-theoretically. The following two subsections supply information
about standard computational and logical/proof theoretic notions. Note that we denote the
set of natural numbers by N when we may be thinking of them in a model of arithmetic as in
§3.3 and by N when we emphasize that we specifically want the standard natural numbers.

Additional explanations can be found in [3]. Basic references for terminology, background
and standard results not explicitly stated are Diestel [6] for graph theory; Rogers [21] and
Sacks [23] for computability theory; and Simpson [28] for reverse mathematics.

3.1 Graph Theoretic Notions

Definition 3.1. A graph H is a pair ⟨V,E⟩ consisting of a set V (of vertices) and a set
E of unordered pairs {u, v} with u ̸= v from V (called edges). These structures are also
called undirected graphs (or here U-graphs). A structure H of the form ⟨V,E⟩ as above is a
directed graph (or here D-graph) if E consists of ordered pairs ⟨u, v⟩ of vertices with u ̸= v.
To handle both cases simultaneously, we often use X to stand for undirected (U) or directed
(D). We then use (u, v) to stand for the appropriate kind of edge, i.e. {u, v} or ⟨u, v⟩.

An X-subgraph of the X-graph H is an X-graph H ′ = ⟨V ′, E ′⟩ such that V ′ ⊆ V and
E ′ ⊆ E. It is an induced X-subgraph if E ′ = {(u, v) | u, v ∈ V ′ ∧ (u, v) ∈ E}.

Definition 3.2. An X-ray in H is a pair consisting of an X-subgraph H ′ = ⟨V ′, E ′⟩ of H
and an isomorphism f from N with edges (n, n+1) for n ∈ N to H ′. (Note that this implies
that the range of f is the set V ′.) We say that the ray begins at f(0). We also describe
this situation by saying that H contains the X-ray ⟨H ′, f⟩. We sometimes abuse notation
by saying that the sequence ⟨f(n)⟩ of vertices is an X-ray in H. A tail of an X-ray is a
final segment of said X-ray. Similarly we consider double X-rays where the isomorphism f
is from the integers Z = {−n, n | n ∈ N} with edges (z, z + 1) for z ∈ Z. A tail of a double
X-ray R is a final segment of R or an initial segment of R considered in reverse order.

We use Z-ray to stand for either a (single) ray (Z = S) or double ray (Z = D) and so we
have, in general, Z-X-rays or just Z-rays if the type of graph (U or D) is already established.
For brevity, when we describe rays we will often only list their vertices in order instead of
defining H ′ and f explicitly.

H contains k many Z-X-rays for k ∈ N if there is a sequence ⟨Hi, fi⟩i<k such that
each ⟨Hi, fi⟩ is a Z-X-ray in H (with Hi = ⟨Vi, Ei⟩). H contains k many disjoint (or
vertex-disjoint) Z-X-rays if the Vi are pairwise disjoint. H contains k many edge-disjoint
Z-X-rays if the Ei are pairwise disjoint. We often use Y to stand for either vertex (V) or
edge (E) as in the following definitions.
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An X-graph H contains arbitrarily many Y-disjoint Z-X-rays if it contains k many such
rays for every k ∈ N .

An X-graph H contains infinitely many Y-disjoint Z-X-rays if there is an X-subgraph
H ′ = ⟨V ′, E ′⟩ of H and a sequence ⟨Hi, fi⟩i∈N such that each ⟨Hi, fi⟩ is a Z-X-ray in H
(with Hi = ⟨Vi, Ei⟩) such that the Vi or Ei, respectively for Y = V,E, are pairwise disjoint
and V ′ =

⋃
Vi and E

′ =
⋃
Ei.

Definition 3.3. An X-path P in an X-graph H is defined similarly to single rays except
that the domain of f is a proper initial segment of N instead of N itself. Thus they are
finite sequences of distinct vertices with edges between successive vertices in the sequence.
If P = ⟨x0, . . . , xn⟩ is a path, we say it is a path of length n between x0 and xn. Our notation
for truncating and combining paths P = ⟨x0, . . . , xn⟩, Q = ⟨y0, . . . , ym⟩ and R = ⟨z0, . . . , zl⟩
is as follows: xiP = ⟨xi, . . . , xn⟩, Pxi = ⟨x0, . . . , xi⟩, and we use concatenation in the natural
way, e.g., if the union of Px, xQy and yR is a path, we denote it by PxQyR. We treat rays
as we do paths in this notation, as long as it makes sense, writing, for example, xiR for the
ray which is gotten by starting R at an element xi of R; Rxi is the path which is the initial
segment of R ending in xi and we use concatenation as for paths as well.

The starting point of the work in this paper is a theorem of Halin [11] that we call the
infinite ray theorem as expressed in [6, Theorem 8.2.5(i)].

Definition 3.4 (Halin’s Theorem). IRT, the infinite ray theorem, is the principle that every
graph H which contains arbitrarily many disjoint rays contains infinitely many disjoint rays.

The versions of Halin’s theorem which we consider in this paper allow for H to be an
undirected or a directed graph and for the disjointness requirement to be vertex or edge. We
also allow the rays to be single or double. The corresponding versions of Halin’s Theorem
are labeled as IRTXYZ for appropriate values of X, Y and Z. We often state a theorem for
several or all XYZ and then in the proof use “graph”, “edge” and “disjoint” unmodified with
the intention that the proof can be read for any of the cases.

We also consider restrictions of these theorems to specific families of graphs. We need a
few more notions to define them.

Definition 3.5. A tree is a graph T with a designated element r called its root such that
for each vertex v ̸= r there is a unique path from r to v. A branch on (or in) T is a ray that
begins at its root. We denote the set of its branches by [T ] and say that T is well-founded
if [T ] = ∅ and otherwise it is ill-founded. A forest is an effective disjoint union of trees,
or more formally, a graph with a designated set R (of vertices called roots) such that for
each vertex v there is a unique r ∈ R such that there is a path from r to v and, moreover,
there is only one such path. In general, the effectiveness we assume when we take effective
disjoint unions of graphs means that we can effectively (i.e. computably) uniquely identify
each vertex in the union with the original vertex (and the graph to which it belongs) which
it represents in the disjoint union.

A directed tree is a directed graph T = ⟨V,E⟩ such that its underlying graph T̂ = ⟨V, Ê⟩
where Ê = {{u, v} | ⟨u, v⟩ ∈ E ∨ ⟨v, u⟩ ∈ E} is a tree. A directed forest is a directed graph
whose underlying graph is a forest.

7



Definition 3.6. An X-graph H is locally finite if, for each u ∈ V , the set {v ∈ E | (u, v) ∈
E ∨ (v, u) ∈ E} of neighbors of u is finite. A locally finite X-tree is also called finitely
branching. (Note this does not mean there are finitely many branches in the tree.)

Of course, there are many well known equivalent definitions of trees and associated no-
tions. We have given one possible set of graph-theoretic definitions. In the case of undirected
graphs our definition is equivalent to all the standard ones. Note, however, we are restrict-
ing ourselves to what would (in set theory) be called countable trees with all nodes of finite
rank. Thus, we typically think of trees as subtrees of N<N , i.e. the sets of finite strings of
numbers (as vertices) with an edge between σ and τ if and only if they differ by one being
an extension of the other by one element, e.g. σ⌢k = τ .

There does not seem to be a standard definition of graphs being directed trees and
associated notions. We have picked one that seems to be fairly common and works for the
situations for which we consider them in Theorems 4.24, 5.7, and 5.8 and Corollary 5.9.

3.2 Computability Hierarchies

As all sets and structures actually studied in this paper are countable, for analyzing their
complexity, we can think of all of them as being subsets of, or relations or functions on, N .

To set our notation, we fix an enumeration ΦA
e of the partial computable functions with

oracle A. We let A′
s be the set of the first s many numbers enumerated in a fixed one-one A-

computable enumeration of A′ = {e|ΦA
e (e) converges}. We frequently use two basic general

concepts: relativization and uniformity. The first typically entails noting that a theorem
about computable sets or procedures holds when we relativize computable to computable in
A for any A. The second typically says that when we specify some procedure that produces
(from some inputs) computable sets or Turing functions then we can uniformly (i.e. by a
fixed procedure) compute indices for the outputs from those of the inputs usually even when
oracles are involved. We describe an important example of uniformity in Remark 3.9.

The most fundamental hierarchy measuring the complexity of sets and functions is given
by the iterations of the Turing jump. While the finite iterations of the jump capture most
construction techniques and theorems in graph theory (and most other areas of classical
countable/separable mathematics), we will be interested in ones that go beyond such tech-
niques and proofs. The basic idea is that we continue the hierarchy by iteration into the
transfinite while still tying the iteration to computable procedures.

Definition 3.7. We represent well-orderings or ordinals α as well-ordered relations on N .
Typically such ordinal notations are endowed with various additional structure such as identi-
fying 0, successor and limit ordinals and specifying cofinal ω-sequences for the limit ordinals.
If we have a representation of α then restricting the well-ordering to numbers in its domain
provides representations of each ordinal β < α. We generally simply work with ordinals and
omit concerns about translating standard relations and procedures to the representation.
An ordinal is computable (in a set X) if it has a computable (in X) representation. For a
set X and ordinal (notation) α computable from X, we define the transfinite iterations X(β)

of the Turing jump of X by transfinite induction on β ≤ α: X(0) = X; X(β+1) = (X(β))′ and
for a limit ordinal λ, X(λ) =

⊕
{X(β) | β < λ} =

⋃
{{β} ×X(β) | β < λ} (or as the effective

disjoint sum over the X(β) in the specified cofinal sequence in λ).
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Definition 3.8. HYP(X), the collection of all sets hyperarithmetic in X consists of those sets
computable in someX(α) for α an ordinal computable inX. We say that Y is hyperarithmetic
in X or hyperarithmetically reducible to X, Y ≤h X, if Y ∈ HYP(X).

The computational strength of our graph theoretic theorems such as IRT is measured by
this hierarchy as we will show that for every set X and every set Y hyperarithmetic in X,
there is a graph G computable from X which satisfies the hypotheses of IRT but for which
any collection of rays satisfying its conclusion computes Y . Thus they clearly go far beyond
the common procedures computable in finitely many iterations of the Turing jump. We note
one important well known basic fact relating the jumps of X to trees computable from X
that we use in our proof that IRT has this computational complexity.

Proposition 3.9. For any set X and any ordinal α computable from X, there is a sequence
⟨Tβ | β < α⟩ computable from X of trees (necessarily) computable from X such that each
tree has exactly one branch Pβ and Pβ is of the same complexity as X(β), i.e. Pβ ≡T X(β).
The procedure for computing this sequence is uniform in X and the index for the program
computing the well ordering α from X, i.e. there is one computable functional that when given
an oracle for X, an index for α (i.e. the i such that ΦX

i is the well ordering α) computes
the whole sequence ⟨Tβ | β < α⟩ along with indices for each Tβ for β in the domain of the
ordering α and the reductions between Pβ and X(β). (See, e.g. [25, Theorem 2.3]). We may
also easily assure that the Tβ are effectively disjoint so that their union is a forest.

On the other hand, placing an upper bound on the strength of IRT requires analyzing its
proof and the principles used in it. The relevant one is a form of the axiom of choice defined
in the next subsection.

Some versions of the variations on IRT (see §5.2) that call for the maximality of the
infinite set of disjoint rays are stronger both computationally and proof theoretically than
the IRTXYZ described above. Their computational strength is captured by a kind of jump
operator that goes beyond all the hyperarithmetic ones. It captures the ability to tell if a
computable ordering is a well-ordering.

Definition 3.10. The hyperjump of X, TX , is the set {e | ΦX
e is (the characteristic function

of) a subtree of N<N which is well-founded}.

This operator is also often defined as OX in terms of a particular notation system and
gives sets computably isomorphic to TX uniformly in X [21, Corollary 16.XX(b)].

3.3 Logical and Axiomatic Hierarchies

The basic notions from logic that we need here are those of languages, structures and ax-
iomatic systems and proofs. As we will deal only with countable sets and structures, we can
assume that we are dealing just with the natural numbers with a way to define and use sets
and functions on them. Thus, at the beginning, we have in mind the natural numbers N
along with the usual apparatus of the language of (first order) arithmetic, say +,×, <,=, 0
and 1 along with the syntax of standard first order logic. A structure for this language is a
set N along with elements for 0 and 1, binary functions for + and × and a binary relation
for < along with the standard equality relation. We also need a way of talking about subsets
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of (or functions on) the numbers. We follow the usual practice in reverse mathematics of
using sets and defining functions in terms of their graphs. So we expand our language by
adding on new classes of (second order or set) variables such as X and Y and the associated
quantifiers ∀X and ∃Y along with a new relation symbol ∈. The syntax is as usual with
some caveats. The only terms are those of the first order structure (numerical terms) and
the relation symbols < and = only apply to terms. The only atomic formulas using ∈ are of
the form t ∈ X for t a term and X a second order variable. So, in particular, following [28],
we do not take equality for sets to be a primitive relation on this structure. The notation
A = B is defined by ∀n(n ∈ A↔ n ∈ B).

A structure for this language is one of the form N = ⟨N,S,+,×, <, 0, 1,∈⟩ where its
restriction ⟨N,+,×, <, 0, 1⟩ is a structure for first order arithmetic and S ⊆ 2N is a specified
nonempty collection of subsets of N disjoint from N . We call N the first order part of N
and S its second order part. The semantics here is as usual with the caveats that first order
variables range over the first order part and second order ones over the second order part.
Also the symbol ∈ always denotes the standard membership relation between elements of N
and subsets of N that are in S.

Proofs are defined as usual to generate the provability notion ⊢ used in §1 to define our
notion of logical strength and equivalences of theories (sets of sentences often called axioms).
Proof theoretic notions deal with all possible structures for the language and axiom systems
to specify what we need in any particular argument. For most of our purposes and all of the
computational ones, one can restrict attention to standard models of arithmetic, i.e. ones N
with N = N and some S ⊆ 2N with the usual interpretations of the functions and relations.
We generally abbreviate these structures as ⟨N, S⟩ with S ⊆ 2N, or simply S, as all the
functions and relations are then fixed.

We now define the standard weak base theory (RCA0) discussed in §1 and describe several
other common systems that we use. The formal details can be found in [28].

Each axiomatic subsystem of second order arithmetic that we consider contains the stan-
dard basic axioms for +, ×, and < (which say that N is a discrete ordered semiring) and an
Induction Axiom:

(I0) (∀X)((0 ∈ X ∧ ∀n (n ∈ X → n+ 1 ∈ X)) → ∀n (n ∈ X)).

Typically axiom systems for second order arithmetic are defined by adding various types
of set existence axioms although at times additional induction axioms are used as well.
In order to define them we need to specify various standard syntactic classes of formulas
determined by quantifier complexity. As usual, we add to our language bounded quantifiers
∀x < t and ∃x < t for (first order) terms t defined in the standard way. We typically denote
formulas by capital Greek letters except that the indexed Φe and ΦX

e refer, as above, to our
fixed enumeration of the Turing machines and associated partial functions.

Definition 3.11. The Σ0
0 and Π0

0 formulas of second order arithmetic are just the ones with
only bounded quantifiers but we allow parameters for elements of either N or S(N ) when
working with a structure N . Proceeding inductively, a formula Φ is Σ0

n+1 (Π0
n+1) if it is of

the form ∃xΨ (∀xΨ) where Ψ is Π0
n (Σ0

n). We say Φ is arithmetic if it is Σ0
n or Π0

n for some
n ∈ N. It is Σ1

1 (Π1
1) if it is of the form ∃XΨ (∀XΨ) where Ψ is arithmetic. We say a set

X is in one of these classes Γ relative to A (i.e. with A as a parameter) if there is a formula

10



Ψ(n,A) ∈ Γ such that n ∈ X ⇔ Ψ(n,A). If X is both Σi
n in A and Πi

n in A it is called ∆i
n

in A.

We mention a few additional standard connections between the syntactic complexity of
the definition of a set X and X’s properties in terms of computability and graph theoretic
notions. They can all be found in [21].

Proposition 3.12. The sets A(n) are Σ0
n in A. A set X is computable in A if and only if

it is ∆0
1 in A. More generally, it is computable in A(n) if and only if it is ∆0

n+1 in A. It
is hyperarithmetic in A if and only if it is ∆1

1 in A. There is a computable function f(e, n)
such that if X is Σ1

1 in A via the Σ1
1 formula with code e then for every n, ΦA

f(e,n) is (the

characteristic function of) a tree T such that n ∈ X ⇔ T has a branch.

The first system for analyzing the proof theoretic strength of theorems and theories in
reverse mathematics is just strong enough to prove the existence of the computable sets
and so supplies us with all the usual computable functions such as pairing ⟨n,m⟩ or more
generally those coding finite sequences as numbers and so a Gödel numbering of formulas.
In particular, it provides the predicates defining the (codes e of) the partial computable
functions ΦX

e and the relations saying the computation ΦX
e (n) halts in s many steps with

output y. Thus we have the basic tools to define and discuss Turing reducibility and the
Turing jump. It is our weak base theory and is assumed to be included in every system we
consider.

(RCA0) Recursive Comprehension Axioms: In addition to the ones mentioned above,
its axioms include the schemes of recursive (generally called ∆0

1) comprehension and Σ0
1

induction:

(∆0
1-CA) ∀n (Φ(n) ↔ Ψ(n)) → ∃X ∀n (n ∈ X ↔ Φ(n)) for all

Σ0
1 formulas Φ and Π0

1 formulas Ψ in which X is not free.
(IΣ0

1) (Φ(0) ∧ ∀n (Φ(n) → Φ(n+ 1))) → ∀nΦ(n) for all Σ0
1 formulas Φ.

Note that these formulas may have free set or number variables. As usual, the existence
assertion ∃X.... of the axiom is taken to mean that for each instantiation of the free variables
(by numbers or sets, as appropriate, called parameters) there is an X as described. We take
this for granted as well as the restriction that the X is not free in the rest of the formula in
all of the set existence axioms of any of our systems.

The standard models of RCA0 are just those whose second order part is closed under
Turing reduction and disjoint union (X ⊕ Y = {⟨0, x⟩ | x ∈ X} ∪ {⟨1, y⟩ | y ∈ Y }). As
suggested above, what are now often called the computable in A sets which are the ∆0

1 in A
sets, were originally called the sets recursive in A. Hence the terminology RCA0.

If we have some axiom scheme or principle ABC we typically denote the system formed
by adding it to RCA0 by ABC0. We next move up to the arithmetic comprehension axiom
and its system.

(ACA) ∃X ∀n (n ∈ X ↔ Φ(n)) for every arithmetic formula Φ.

As mentioned above the X(n) are defined by a Σ0
n formula with X as a parameter. So one

can show that ACA0 is equivalent (over RCA0) to the totality of the Turing jump operator,
i.e. for every X, X ′ exists. Its standard models are those of RCA0 whose second order part
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is also closed under Turing jump. It is also equivalent (in the sense of reverse mathematics)
to König’s Lemma.

In general, we say one system of axioms S is logically or reverse mathematically reducible
to another T over one R if R ∪ T ⊢ ψ for every sentence ψ ∈ S. Note that S and/or T
may be a single sentence or theorem. We say that S and T are equivalent over R if each is
reducible to the other. If no system R is specified we assume that RCA0 is intended.

The standard system between RCA0 and ACA0 is WKL0. It is characterized by the re-
striction of König’s Lemma to trees that are subsets of 2<N , the tree of finite binary strings
under extension.

The next system of the five basic ones after ACA0 is ATR0. Its defining axiom says that
arithmetic comprehension can be iterated along any countable well-order and so implies the
existence of the sets hyperarithmetic in X for each X but is computationally stronger than
this assumption.

We formally describe the computationally defined class of theorems/theories that are the
main focus of this paper and include several variations of IRT. The definition is semantic,
not axiomatic, and involves only standard models. (Indeed by Van Wesep [30, 2.2.2], there
can be no axiomatic characterization of this class in second order arithmetic.)

Definition 3.13. A sentence (theory) T is a theorem (theory) of hyperarithmetic analysis
(THA) if

1. For every X ⊆ N, ⟨N,HYP(X)⟩ ⊨ T and

2. For every S ⊆ 2N, if ⟨N, S⟩ ⊨ T and X ∈ S then HYP(X) ⊆ S.

It is worth pointing out some of the relations between THAs and ATR0. THAs are defined
by only using standard models and iterations of the jump over true well orderings. ATR0

talks about all models of RCA0 and asserts the existence of iterates of the jump over all
orderings that appear well-founded in the model. Thus for standard models it implies the
second clause of the definition of THAs. On the other hand, there is a recursive linear order
with no hyperarithmetic infinite descending sequence and so it seems well-founded in HYP
but it has a well-founded part longer than every recursive ordinal. Thus iterating the jump
along this ordering would yield a set strictly Turing above every hyperarithmetic set. In
particular, HYP is not a model of ATR0 which therefore is not a THA. (See e.g. [28, V.2.6].)

The last of the standard axiomatic systems, Π1
1-CA0, is characterized by the comprehen-

sion axiom for Π1
1 formulas:

(Π1
1-CA) ∃X ∀k (k ∈ X ↔ Φ(k)) for every Π1

1 formula Φ(k).

Remark 3.14. The hyperjump, TX , is clearly a Π1
1 set with parameter X. In fact, every Π1

1

set with parameter X is reducible to TX . Indeed, there is a computable function f(e, n) such
that for every index e for a Π1

1 formula Ψ(n) with parameterX and every n, Ψ(n) ⇔ f(e, n) ∈
TX [21, Corollary 16.XX(b)]. Thus Π1

1-CA0 corresponds to closure under the hyperjump. By
Theorem 5.14, it is equivalent to a version of IRT asking for a maximal set of disjoint rays.

For this paper, the most important other existence axiom is a restricted form of the
axiom of choice.
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(Σ1
1-AC) ∀n∃XΦ(n,X) → ∃X∀nΦ(n,X [n]) where Φ is arithmetic and X [n] = {m |

⟨n,m⟩ ∈ X} is the nth column of X.

A more common but clearly equivalent version of this axiom allows Φ to be Σ1
1. A variant

commonly called weak-Σ1
1-AC (introduced in Definition 6.1 as unique-Σ1

1-AC) requires the
corresponding Φ to be arithmetic. To make these and other choice axioms uniform we have
adopted the format required elsewhere and equivalent here to be used for all the variations.
The system Σ1

1-AC0 is well known to be a THA (essentially in Kreisel [14]). Thus it is strictly
stronger than ACA0. On the other hand, it is strictly weaker than ATR0 [28, V.8.3-4]. This
choice axiom plays a crucial role in our analysis because we provide the upper bound on the
strength of most of our theorems by showing that they follow from Σ1

1-AC0. This provides
the computational upper bound for being a THA as any consequence of a THA must also
satisfy Definition 3.13(1). Thus the bulk of our proofs for the computational complexity
of the theorems we study consist of showing that they imply Definition 3.13(2), i.e. closure
under “hyperarithmetic in”. We also introduce another variant, finite-Σ1

1-AC (Definition 6.2)
which is a THA as well.

For those interested in the proof theory and so nonstandard models, we also at times
explicitly consider the induction axiom at the same Σ1

1 level.

(IΣ1
1) (Φ(0) ∧ ∀n(Φ(n) → Φ(n+ 1))) → ∀nΦ(n) for every Σ1

1 formula Φ.

This axiom does not imply the existence of any infinite sets and is, of course, true in
every standard model. Thus the readers interested only in the computational complexity
of the Halin type theorems can safely ignore these considerations of induction assumptions.
They are, however, closely tied to the original formulation of IRT in [11] (and its variants):

Definition 3.15. Let IRT∗
XYZ be the statement that every X-graph G has a set of Y -disjoint

Z-rays of maximum cardinality, or more formally, the statement that for every X-graph G:

� there is no Z-ray in G, or

� there is some n > 0 and some R such that ⟨R[i] | i < n⟩ is a sequence of Y -disjoint
Z-rays in G, and there is no R such that ⟨R[i] | i < n + 1⟩ is a sequence of Y -disjoint
Z-rays in G, or

� there is some R such that ⟨R[i] | i ∈ N⟩ is a sequence of Y -disjoint Z-rays in G.

When we talk about the cardinality of a (possibly empty) finite sequence ⟨R[i] | i < n⟩
we mean the number n (which may be 0). Of course a sequence ⟨R[i] | i ∈ N⟩ is said to have
infinite cardinality.

The notation in Definition 3.15 is inspired by the well known variant ACA∗
0 of ACA0 which

asserts the existence of A(n) for every set A and number n:

Definition 3.16.

ACA∗ : (∀A)(∀n)(∃W )(W [0] = A ∧ (∀i < n)(W [i+1] = W [i]′)).

Thus ACA∗
0 asserts (in addition to ACA0) particular instances of IΣ

1
1. So too (in addition to

IRTXYZ) do the IRT∗
XYZ:
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Proposition 3.17. For each choice of XYZ, IRT∗
XYZ implies IRTXYZ over RCA0 and IRTXYZ

implies IRT∗
XYZ over RCA0 + IΣ1

1. Therefore IRTXYZ and IRT∗
XYZ are equivalent over RCA0 +

IΣ1
1. In particular, they have the same standard models.

Proof. The first implication holds because if an X-graph has arbitrarily many Y -disjoint
Z-rays, then any sequence of Y -disjoint Z-rays in the graph of maximum cardinality must
be infinite. To prove the second, let G be an X-graph and Φ(n) be the Σ1

1 formula which
says that there is a sequence of length n of Y -disjoint Z-rays in G. If ∀n(Φ(n) → Φ(n+1)),
then by IΣ1

1, ∀nΦ(n) holds and so by IRTXYZ there is a sequence ⟨Ri⟩i∈N of Y -disjoint Z-rays
in G as required. On the other hand, if there is an n such that Φ(n) holds but Φ(n+1) fails,
then there is exactly one as Φ(n) → Φ(m) for m < n and this n witnesses IRT∗

XYZ.

Indeed we will show (Theorem 5.3) that each IRTXYZ implies ACA∗
0 (over RCA0) and that

this has important consequences for their reverse mathematical strength.

Remark 3.18. It is in the nature of reverse mathematics that sentences and sets of sentences
of second order arithmetic are often viewed in several different ways. In different contexts
they may be seen as mathematical or logical principles, axioms, axiom schemes, theories,
theorems or the like. We point out what may be a less familiar terminology that is currently
popular. What might be seen as a typical axiom or theorem asserting that for everyX of some
sort there is a Y with some relation toX, i.e. a sentence of the form ∀X(Φ(X) → ∃YΨ(X, Y ))
may be called a principle. With this terminology come the notions of an instance of the
principle, i.e. an X satisfying Φ and a solution for X, i.e. a Y such that Ψ(X, Y ) holds.

4 IRT and Hyperarithmetic Analysis

In this section we shall prove the following.

Theorem 4.1. IRTXYS, IRT
∗
XYS, IRTUVD and IRT∗

UVD are theorems of hyperarithmetic anal-
ysis.

IRTUVS and IRTUVD were proved by Halin [11, 12]. IRTUES is an exercise in [6, 8.2.5(ii)].
IRTDVS and IRTDES may be folklore (and so, similarly for the corresponding IRT∗

XYZ).
In order to minimize repetition we first note some implications between variants of IRT

over RCA0. The proofs of each of these reductions follow the same basic plan. To deduce
IRTXYZ from IRTX′Y′Z′ we provide computable maps g, h and k which, provably in RCA0,
take X-graphs G to X ′-graphs G′, Y -disjoint Z-rays or sets of Y -disjoint Z-rays in G to
Y ′-disjoint Z ′-rays or sets of Y ′-disjoint Z ′-rays in G′, and Y ′-disjoint Z ′-rays or sets of
Y ′-disjoint Z ′-rays in G′ to Y -disjoint Z-rays or sets of Y -disjoint Z-rays in G, respectively.
These functions are designed to take witnesses of the hypothesis of IRTXYZ in G to witnesses
of the hypothesis of IRTX′Y′Z′ in G′ and witnesses to the conclusion of IRTX′Y′Z′ in G′ to
witnesses to the conclusion of IRTXYZ in G. Clearly it suffices to provide such computable
maps to establish the desired reduction in RCA0. The constructions are straightforward and
we omit the details which can be found in [3]. (Those familiar with Weihrauch reducibility
will recognize that these arguments establish Weihrauch reductions between certain problems
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corresponding to variants of IRT.) They also supply the same results for the corresponding
IRT∗

XYZ.
Unless otherwise noted all definitions and proofs in this section are in RCA0.

Lemma 4.2. Given an undirected graph G, we can uniformly compute a directed graph G′

and mappings between Z-rays in G and Z-rays in G′ which preserve Y-disjointness.

Proof idea. For each edge {u, v} in G, add two new vertices x = x(u, v) and y = y(u, v) and
define five directed edges ⟨u, x⟩, ⟨v, x⟩, ⟨x, y⟩, ⟨y, u⟩, ⟨y, v⟩.

Proposition 4.3. IRTDYZ implies IRTUYZ, and IRT∗
DYZ implies IRT∗

UYZ, for each value of Y
and Z.

Lemma 4.4. Given a directed graph G, we can uniformly compute a directed graph G′ and
mappings between Z-rays in G and Z-rays in G′ which satisfy the following properties: if two
Z-rays in G are vertex-disjoint, then the corresponding Z-rays in G′ are edge-disjoint, and
if two Z-rays in G′ are edge-disjoint, then the corresponding Z-rays in G are vertex-disjoint.

Proof idea. The set of vertices of G′ is {xi, xo | x ∈ V }, where i and o stand for incoming
and outgoing respectively. The set of edges of G′ consists of ⟨uo, vi⟩ for each ⟨u, v⟩ ∈ E, and
⟨xi, xo⟩ for each x ∈ V .

Proposition 4.5. IRTDEZ implies IRTDVZ, and IRT∗
DEZ implies IRT∗

DVZ, for each value of Z.

Lemma 4.6. Given a directed graph G, we can uniformly compute a directed graph G′ and
mappings between sets of Y -disjoint rays in G and sets of Y -disjoint double rays in G′ which
preserve cardinality.

Proof idea. For each vertex x of G we add new vertices xn for each n < 0 and edges ⟨x−1, x⟩
and ⟨xn−1, xn⟩ for all n < 0.

Proposition 4.7. IRTDYD implies IRTDYS, and IRT∗
DYD implies IRT∗

DYS, for each value of
Y .

There does not seem to be an analog of the previous lemma for undirected graphs.
Nonetheless we have a related fact for certain undirected graphs.

Lemma 4.8. Suppose G is a connected (undirected) graph such that any two single rays in
G share a vertex. Then G computably embeds into a graph G′ such that any two double rays
in G′ must share a vertex. Furthermore, given a single ray in G, one can compute a double
ray in G′ and vice versa. All the aforementioned embeddings and computations are uniform.

Proof idea. Let v0 denote the <N -least vertex of G. Add new vertices vi for i > 0 to G and
add the edges {vi, vi+1} for i ∈ N to G.

Remark 4.9. Bowler, Carmesin, Pott [4, pg. 2 l. 3–7] describe an implication from IRTUVS

to IRTUES which appears to use Σ1
1-AC0. It turns out that the graph-theoretic principle used

to carry out the implication does not imply even ACA0 over RCA0 (and is hence much weaker
than Σ1

1-AC0), but when combined with ACA0, yields a THA. It and several other principles
with the same property (almost theorems/theories of hyperarithmetic analysis) are analyzed
in Shore [26].
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Figure 1: Known implications between variants of IRT. All implications are over RCA0,
except for the implication from UVD to UVS (Theorem 5.12).

We are now ready to give lower bounds for the complexity of IRTXYZ.

Theorem 4.10. IRTUYZ (even for forests) implies ACA0. Therefore IRT∗
UYZ (even for

forests), IRTDYZ and IRT∗
DYZ each imply ACA0.

Proof. It suffices to prove the first statement because of Propositions 4.3 and 3.17. First we
consider IRTUYS. For each n ∈ N , consider the tree Tn ⊆ N<N consisting of all strings of
the form s⌢0t such that some number below n is enumerated into ∅′ at stage s, and either
t ≤ s or ∅′s ↾ n = ∅′t ↾ n. Since RCA0 proves that for each n ∈ N , there is some s such that
∅′ ↾ n = ∅′s ↾ n, it follows that each Tn has a unique branch {s⌢0t | t ∈ N} (for the least
such s as above).

Consider the disjoint union
⊔

n Tn. It satisfies the premise of IRTUYS for forests. By
IRTUYS, there is a sequence ⟨Ri⟩i of disjoint rays in

⊔
n Tn. Each Ri is contained in some Tn,

and no two disjoint rays can lie in the same Tn. Therefore, we can, uniformly in i, extend
or truncate Ri to the unique branch Pn of Tn. Hence ⟨Pn⟩n exists and computes longer and
longer initial segments of ∅′, implying that ∅′ exists as well. The above argument relativizes
to prove that IRTUYS implies ACA0.

In order to prove the desired result for IRTUYD, apply IRTUYD to the forest
⊔

n T
′
n, where

T ′
n is defined from Tn using Lemma 4.8.

Henceforth we will not explicitly mention uses of ACA0 whenever we are assuming any
IRTXYZ or IRT∗

XYZ.

Theorem 4.11. Every standard model of IRTXYZ or IRT∗
XYZ is closed under hyperarithmetic

reduction.

Proof. By Propositions 4.3 and 3.17 it suffices to consider IRTUYZ. Consider first a standard
model M of IRTUYS. We shall show that, for each computable limit ordinal λ, if M contains
∅(α) for every α < λ thenM contains ∅(λ). (Again the desired result follows by relativization.)
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By Proposition 3.9, there is a computable sequence ⟨Tβ⟩β<λ of trees such that each tree has
exactly one branch Pβ ≡T ∅(β) with these reductions computed uniformly. Fix an increasing
computable sequence ⟨αn⟩n which is cofinal in λ and consider the disjoint union

⊔
n Tαn .

Observe that
⊔

n Tαn satisfies the premise of IRTUYS (in M): for each n, ∅(αn) computes
the branches Pαm for m ≤ n. By IRTUYS, M contains a sequence ⟨Ri⟩i of disjoint rays
in

⊔
n Tαn . As in the proof of Theorem 4.10, ⟨Ri⟩i computes a sequence of infinitely many

distinct branches Pαn , and hence a sequence of infinitely many distinct ∅(αn). Each ∅(αn)

uniformly computes ∅(αm) for m ≤ n, so ⟨Ri⟩i computes
⊕

m ∅(αm) as desired.
In order to prove the desired result for IRTUYD, apply IRTUYD to the forest

⊔
n T

′
αn
, where

T ′
αn

is defined from Tαn using Lemma 4.8.

We turn now to upper bounds for the complexity of IRTXYS and IRTUVD. All proofs of
IRT in the literature begin by (implicitly) collecting a sequence of finite sequences of disjoint
rays in the given graph. We formalize this step as SCR (Strongly Collecting Rays) and the
rest of the proof as WIRTXYZ (Weak Infinite Ray Theorem):

Definition 4.12. Let SCRXYZ be the assertion that if G is an X-graph with arbitrarily many
Y -disjoint Z-rays, then there is a sequence of sets ⟨Xk⟩k such that for each k ∈ N , Xk is a
set of k Y -disjoint Z-rays in G.

Let WIRTXYZ be the assertion that if G is an X-graph and there is a sequence of sets
⟨Xk⟩k such that for each k ∈ N , Xk is a set of k Y -disjoint Z-rays in G, then G has infinitely
many Y -disjoint Z-rays.

First observe that Lemmas 4.2, 4.4 and 4.6 imply

Proposition 4.13. SCRDYZ implies SCRUYZ, SCRDEZ implies SCRDVZ and SCRDYD implies
SCRDYS. Analogous statements hold for WIRT.

It is clear that Σ1
1-AC0 implies SCRXYZ and that SCRXYZ + WIRTXYZ is equivalent to

IRTXYZ over RCA0. In all cases where IRTXYZ was a known theorem before [4] (i.e. IRTXYS and
IRTUVD), we shall prove that ACA0 implies WIRTXYZ. Since Σ

1
1-AC0 implies ACA0 (essentially

due to [14]; see also the proof of Theorem 4.10), it follows that the corresponding IRTXYZ

are provable in Σ1
1-AC0.

Theorem 4.14. ACA0 proves WIRTUVD. Therefore Σ1
1-AC0 proves IRTUVD.

Proof. The mathematical result is due to [11] and is Exercise 42 of Chapter 8 in [6]. The
idea is to follow [6, Theorem 8.2.5(i)] except we need to grow our family in “two directions”.
We shall use the following notation for decomposing double rays into single rays. If R and
Ri are double rays we let Rf = R and Ri,f = Ri while Rb and Ri,b are R and Ri, respectively,
but with order reversed. We use d or d′ to stand for one of f or b. For single rays R we use
∗R to denote the reverse sequence of vertices. So, for example, if (c, d) is an edge in a double
ray R, we have ∗(cRb)dRf = R.

Suppose we are given a graph G and a sequence Y = ⟨⟨Sn
j ⟩j<n⟩n>0 such that for each n,

⟨Sn
j ⟩j<n is a sequence of disjoint double rays. We shall construct, using a (G⊕Y )′-computable

recursion on n, sequences ⟨Rn
i ⟩i<n and ⟨P n

i ⟩i<n such that the Rn
i are disjoint double rays with
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subpaths P n
i of length 2n such that, for each i < n, P n+1

i extends P n
i by a new vertex at

each end. Our required sequence of disjoint double rays is then ⟨
⋃

{P n
i | n ∈ N}⟩i∈N .

We begin our recursion by setting R1
0 = S1

0 and P 1
0 as any subpath of length 2. Future

steps will use the following combinatorial lemma.

Lemma 4.15 (ACA0). Given disjoint double rays ⟨Ri⟩i<n with subpaths ⟨Pi⟩i<n, as well as a
sequence ⟨Sj⟩j<11n2+1 of disjoint double rays, there is a sequence ⟨R′

i⟩i<n+1 of disjoint double
rays such that (1) R′

i extends Pi for each i < n; (2) for each i < n + 1, R′
i has the form

QaPbR where P is a finite path while Q and R are each (Sj)f or (Sj)b for some j < 11n2+1.

Before we prove the lemma, we explain how we apply it. Suppose we are given ⟨Rn
i ⟩i<n

and ⟨P n
i ⟩i<n as above. For i < n, let xi,b be the first vertex in Rn

i before P n
i and xi,f be the

first vertex in Rn
i after P n

i . Define P
n+1
i = xi,bP

n
i xi,f for each i < n. Then, apply the lemma

to ⟨Rn
i ⟩i<n, ⟨P

n+1
i ⟩i<n, and ⟨S11n2+1

j ⟩j<11n2+1. By (2), we may use (G ⊕ Y )′ to search for

⟨R′
i⟩i<n+1 as in the lemma. Define Rn+1

i = R′
i for each i. To complete the recursion, define

P n+1
n to be any subpath of Rn+1

n of length 2n+ 2.
It remains to prove the lemma. In the following we will frequently need to determine if and

where two rays intersect, which can be done in ACA0. We first discard from {Sj | j < 11n2+1}
any Sj which intersects any Pi. As there are n(2n+ 1) ≤ 3n2 such vertices we have at least
8n2 + 1 many Sj remaining. We relabel these as Sj for j < 8n2 + 1 and choose an edge
(cj,b, cj,f ) in each Sj.

Let xi,b and xi,f denote the endpoints of Pi. We have sets of disjoint single rays R =
{xi,fRi,f , xi,bRi,b | i < n} and S = {cj,fSj,f , cj,bSj,b | j < 8n2 + 1}. Our goal for each
xi,dRi,d ∈ R, i < n and d ∈ {b, f}, is to find a suitable replacement R′

⟨i,d⟩ (beginning with

the same vertex while maintaining the required disjointness) so that we can assemble the R′
i

from R′
⟨i,b⟩ and R

′
⟨i,f⟩ for i < n. We also want a double ray Sj disjoint from all the double

rays R′
i with i < n which will be R′

n.
To that end we first thin out S as follows. Check if there is some ⟨i, d⟩ such that R′

⟨i,d⟩
has not been defined and xi,dRi,d intersects at most 2n many rays cj,d′Sj,d′ (which have
not been discarded). If there is no such ⟨i, d⟩, we end the procedure. Otherwise, find the
least such ⟨i, d⟩ and (1) discard all rays cj,d′Sj,d′ which intersect xi,dRi,d from S; (2) define
R′

⟨i,d⟩ = xi,dRi,d. Repeat the above check.

After the procedure ends, let I be the set of ⟨i, d⟩ for which R′
⟨i,d⟩ has not been defined.

Let m denote |I|. (Of course, m ≤ 2n.) Observe that at most (2n −m)(2n) ≤ 4n2 many
single rays were discarded from S.

Next, for each ⟨i, d⟩ ∈ I, let zi,d be the first vertex on xi,dRi,d such that xi,dRi,dzi,d meets
exactly m many rays in S. (Each zi,d exists by construction of I. By RCA0, {zi,d | ⟨i, d⟩ ∈ I}
exists.) Let F denote the finite set of vertices

⋃
⟨i,d⟩∈I xi,dRi,dzi,d. Since F meets at most m2

many single rays in S, and 8n2+1 > 4n2+m2, there must be some double ray Sj, j < 8n2+1
disjoint from F such that neither cj,bSj,b nor cj,fSj,f was discarded. We let one such double
ray be R′

n. Before defining R′
i for i < n, we discard all single rays in S not meeting F .

To complete the proof we shall use Menger’s theorem for finite graphs. If A and B are
disjoint sets of vertices in a graph, we say that P is an A–B path if P starts with some
vertex in A and ends with some vertex in B. A set of vertices C separates A and B if every
A–B path contains at least one vertex in C.

18



Theorem 4.16 (Menger, see [6, Theorem 3.3.1]). Let H be a finite graph. If A and B are
disjoint sets of vertices in H, then the minimum size of a set of vertices which separate A
and B is equal to the maximum size of a set of disjoint A–B paths.

One can check that Menger’s theorem is provable in RCA0 by following the first proof for
it given in [6, Theorem 3.3.1].

For each cj,dSj,d remaining in S let yj,d be the first vertex on cj,dSj,d such that yj,dSj,d

is disjoint from F . By ACA0, we may consider the following graph H and sets of vertices
A,B ⊆ H:

A = {xi,d | ⟨i, d⟩ ∈ I}, B = {yj,d | cj,dSj,d ∈ S}, H = F ∪
⋃

cj,dSj,d∈S

cj,dSj,dyj,d.

We claim that A cannot be separated from B in H by fewer than m vertices. Suppose
C ⊆ H and |C| < m. Since |I| = m and {xi,dRi,d : ⟨i, d⟩ ∈ I} is a disjoint collection of rays,
C is disjoint from xi,dRi,d for some ⟨i, d⟩ ∈ I. Next, since xi,dRi,dzi,d meets m many disjoint
rays in S, there is some cj,d′Sj,d′ in S which meets xi,dRi,dzi,d (say at vertex z) but is disjoint
from C. Then xi,dRi,dzSj,d′yj,d′ is a path in H from xi,d to yj,d′ which does not meet C. This
proves our claim.

By Menger’s theorem, there is a set of m disjoint paths Pi,d in H from each xi,d, ⟨i, d⟩ ∈ I,
to a yj,d′ in cj,d′Sj,d′ ∈ S. We can now define R′

⟨i,d⟩ for ⟨i, d⟩ ∈ I as the single ray beginning
with Pi,d and then continuing with Sj,d′ after yj,d′ . Finally, we can define the required double
rays R′

i for i < n as ∗R′
⟨i,b⟩PiR

′
⟨i,f⟩ and check that these have all the desired properties.

A similar but simpler argument proves WIRTUVS. We just state the crucial combinatorial
lemma which we extracted from the proof in [6, Theorem 8.2.5(i)]. For details see [3].

Lemma 4.17 (ACA0). Suppose G is an undirected graph. Given vertex-disjoint rays ⟨Ri⟩i<n

and vertex-disjoint rays ⟨Sj⟩j<n2+1 in G, there are vertex-disjoint rays ⟨R′
i⟩i<n+1 such that

(1) Ri and R
′
i start at the same vertex for each i < n; (2) for each i < n + 1, R′

i has the
form PaSj where P is a finite path, a is a vertex, and j < n2 + 1.

Theorem 4.18. ACA0 proves WIRTUVS.

The above theorem will be used in the proof of, and will be superseded by, Theorem
4.23. Indeed, our strategy for proving WIRTXES is to reduce it to the problem of finding an
infinite sequence of vertex-disjoint rays in a certain locally finite graph (see [4, pg. 2 l. 3–7]).
To carry out this reduction, we define the line graph:

Definition 4.19. The line graph L(G) of an X-graph G is the X-graph with vertices the
edges of G and edges ((u, v), (v, w)), where (u, v) and (v, w) are edges in G.

Lemma 4.20. Let G be an X-graph. There is a computable mapping from rays in G to rays
in L(G) such that if two rays in G are edge-disjoint, then their images are vertex-disjoint.

Proof. Map x0, x1, x2, . . . to (x0, x1), (x1, x2), . . . .
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However, vertex-disjoint rays in L(G) do not always yield edge-disjoint rays in G. An
extreme counterexample is the (undirected) star graph. It consists of a single vertex with
infinitely many neighbors. It does not contain any rays yet its line graph is isomorphic to
the complete graph on N which contains infinitely many vertex-disjoint rays. Nonetheless,
if G is locally finite, vertex-disjoint rays in L(G) do correspond to edge-disjoint rays in G:

Lemma 4.21 (ACA0). Let G be a locally finite X-graph. There is a mapping from rays in
L(G) to rays in G such that if two rays in L(G) are vertex-disjoint, then their images are
edge-disjoint rays in G.

Proof. Given a ray R = e0, e1, . . . in L(G), we construct a ray S = y0, y1, . . . in G by
recursion. Say ei = (ui, vi). Start by defining y0 to be u0. Having defined yn, we define
yn+1 as follows. Let kn be the largest k such that yn is an endpoint of ek. Such k exists
because G is locally finite and R is a ray. We can find kn by ACA0. Then define yn+1 to
be the endpoint of ekn other than yn. This completes the recursion. Note that the kn are
strictly increasing: ekn = (yn, yn+1) as yn is not an endpoint of ekn+1 by the maximality of
kn. The next edge then includes yn+1 and so kn+1 ≥ kn + 1. Also note that if the graph is
directed the ei must be of the form ⟨xi, xi+1⟩ and the last occurrence of any x in an ei must
be as its first element. By construction S is infinite and contains no repeated vertices by the
maximality requirement, hence it is a ray. Observe that every edge in S is a vertex in R, so
the above mapping maps vertex-disjoint rays in L(G) to edge-disjoint rays in G.

It remains to show that we can restrict our attention to locally finite graphs.

Lemma 4.22 (ACA0). Suppose that G is an X-graph and there is some family ⟨⟨Rk
j ⟩j<k⟩k>0

of rays in G such that for each k > 0, the rays ⟨Rk
j ⟩j<k are edge-disjoint. Then there is some

locally finite X-subgraph G′ of G and some family ⟨⟨Sk
j ⟩j<k⟩k>0 of rays in G′ such that for

each k > 0, the rays ⟨Sk
j ⟩j<k are edge-disjoint.

Proof. Define the vertices of G′ to be the vertices of G, say {vi | i ∈ N}. We specify the
set of edges E ′ of G′ by providing a recursive construction of sets Ei of edges putting in a
set of edges at each step. We guarantee that each Ei is a union of finitely many finite sets
of edge-disjoint rays in G and that after stage k no edge with a vertex vi for i < k as an
endpoint is ever put into E ′.

Begin at stage 0 by putting all the edges in R1
0 into E1. Proceeding recursively at stage

k > 0 we have Ek and consider the edge-disjoint rays Rk
j , j < k. For each j < k, say

Rk
j = xkj,0, x

k
j,1, . . . . Each vi for i < k appears at most once in Rk

j as Rk
j is a ray. For each

j < k, since we have access to the set of vertices of Rk
j , we can decide whether Rk

j contains
vi and, if so, find the index n such that vi = xkj,n. Call it nk

i,j. If there is no such n, set
nk
i,j = 0. Define Sk

j to be the tail of Rk
j after xk

j,maxi<k nk
i,j
. We put all the edges in Sk

j , j < k,

into Ek+1. Let E
′ =

⋃
k Ek.

It remains to show that G′ is locally finite. Consider any vertex vk. No edge containing
vk as an endpoint is put in after stage k. On the other hand, Ek is the union of finitely
many finite sets of edge-disjoint rays (all of which have been computed uniformly). Each set
of edge-disjoint rays in this union has vk appearing at most once in each of its rays. Thus at
most two edges containing vk appear in each of the finitely many rays in this set. Therefore
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there are only finitely many edges containing vk in each of the finite sets of edge-disjoint rays
making up Ek. All in all, only finitely many edges in G′ contain vk.

Theorem 4.23. ACA0 proves WIRTXES. Therefore Σ1
1-AC0 proves IRTXES.

Proof. The second statement follows from the first by the discussion before Theorem 4.14.
Given a family ⟨⟨Qk

j ⟩j<k⟩k>0 such that for each k, the rays Qk
j , j < k, are edge-disjoint,

there is a locally finite subgraph H of G and a family ⟨⟨Rk
j ⟩j<k⟩k>0 such that for each k,

the Rk
j , j < k, are edge-disjoint rays in H (Lemma 4.22). By Lemma 4.20, there is a family

⟨⟨Sk
j ⟩j<k⟩k>0 such that for each k > 0, the Sk

j , j < k, are vertex-disjoint rays in L(H). By
WIRTUVS (which is provable in ACA0 by Theorem 4.18), L(H) has infinitely many vertex-
disjoint rays. Finally by Lemma 4.21, H has infinitely many edge-disjoint rays. Hence G
has infinitely many edge-disjoint rays.

Finally, we give a proof of IRTDED for directed forests using Σ1
1-AC0 (recall that IRTDED

remains open). We will see that Σ1
1-AC0 and IRTDED for directed forests are equivalent over

RCA0 + IΣ1
1 but note that Σ1

1-AC0 does not imply IΣ1
1. (See Theorem 5.8 and the comment

following it).

Theorem 4.24. ACA0 proves WIRTDED for directed forests. Therefore Σ1
1-AC0 proves IRTDED

for directed forests.

Note the second statement follows from the first by the discussion before Theorem 4.14.
We first prove two lemmas.

Lemma 4.25 (ACA0). Let G be a directed forest and let R0 = ⟨x0,i | i ∈ Z⟩, R1 = ⟨x1,i | i ∈ Z⟩
be directed double rays in G. Suppose R0 and R1 have an edge ⟨u, v⟩ in common. Then there
are vertices t and w such tR0w = tR1w and R0, R1 have no vertices in common outside of
those in tR0w = tR1w. Note that we allow for the possibility that t = −∞ and/or w = +∞
in the sense that (−∞)R = R = R(+∞) for any double ray R. We call tR0w = tR1w the
intersection of R0 and R1.

Proof. Suppose R0, R1 provide a counterexample. As they have an edge ⟨u, v⟩ in common,
they lie in the same directed tree T in G and can be viewed as (undirected) double rays in
T̂ (the underlying graph for T ). As they form a counterexample to the lemma, there must
be either a first t ∈ R0 (i.e. earliest in the double ray R0) such that tR0v = tR1v or a last
w ∈ R0 such that uR0w = uR1w but R0 and R1 have a vertex z in common outside the
common interval. The situations are symmetric and we consider the second. The immediate
successors x and y of w in R0 and R1, respectively, must be different by our choice of w.
Consider now the location of z in R0. If it is after x then the paths from w to z in R0

and w to z in R1 (both considered now as undirected graphs within T̂ ) are different as the
immediate successor of w in R0 is x while in R1 it is either y or a vertex in vR1w. Thus
there are two different paths in T̂ from w to z contradicting T̂ ’s being a tree. If, on the other
hand z is before u in R0, it must be before t ∈ R0 and a similar argument provides different
paths from t to z in R0 and R1.

Lemma 4.26 (ACA0). There is a computable function f such that given any sequence ⟨Si⟩i<n

of DED rays with subpaths ⟨Pi⟩i<n of length 2n in a directed tree T and sequence ⟨Rj⟩j<f(n)
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of DED rays in T , we can construct a sequence ⟨S ′
i⟩i≤n of DED rays with subpaths ⟨P ′

i ⟩i≤n

of length 2n + 2 in T such that P ′
i extends Pi at each end for i < n. Indeed, we may take

f(n) = 2n2 + 22nn! + 1.

Proof. First we remove all the Rj that contain an edge in any Pi at a cost of at most
2n2 many j. Consider any remaining Rj in the second sequence. By Lemma 4.25, its
intersections with the Si are intervals Qj,i of edges in Rj which are disjoint as the Si are.
By our first thinning of the Rj list, none of the Qj,i intersect any of the Pi so each Qj,i must
lie entirely above or entirely below Pi. We associate to each Rj a label consisting of the set
Cj = {i < n | Qj,i ̸= ∅}; the elements i of Cj in the order in which the Qj,i (for i ∈ Cj)
appear in Rj (in the ordering of Z) along with a + or − depending on which side of Pi it
falls in Si. We write Qs

j,i for the starting vertex of Qj,i and Q
e
j,i for the ending one. As above,

we allow the values ±∞ for these endpoints if the intervals are infinite. There are at most
finitely many such labels. In particular, there are at most 2nn!2n such labels. Thus, if we
have 22nn! + 1 many Rj left, at least two of them, say Ra and Re have the same label say
with set C.

Claim: |C| < 2.

For the sake of a contradiction, assume we have k ̸= l in C with k preceding l in the ordering
of C in the label. Say Ra is the ray such that Qa,k is before Qe,k in Sk. Note that Qa,k and
Qe,k are edge disjoint as Ra and Re are. We consider two cases: (1) Qa,l is before Qe,l in
Sl and (2) Qe,l is before Qa,l in Sl. We now produce, for each case, two vertices with two
distinct sequences (i) and (ii) of adjacent edges in T connecting these two vertices. These
sequences are illustrated in Figures 2 and 3. Note that by our assumptions on the orderings
of the intervals Qc,d (for c ∈ {a, e} and d ∈ {k, l}) as displayed, all of the starting or ending
points of Qc,d that appear in our sequences are vertices in one of the rays (i.e. none are ±∞):

(1i) Start at Qe
a,k in Ra and go to Qe

a,l then in Sl go to Qs
e,l.

(1ii) Start at Qe
a,k in Sk and go to Qs

e,k then go in Re to Q
s
e,l.

(2i) Start at Qs
a,k in Sk and go to Qe

e,k then in Re go to Qe
e,l then in Sl go to Qe

a,l.

(2ii) Start at Qs
a,k in Ra and go to Qe

a,l.

To see that the two sequences of vertices are different, note for (1) that (1i) contains
an edge in Qa,l but (1ii) does not. For (2) note that (2i) contains an edge in Qe,k but (2ii)
does not. We now, in each case, view the associated two distinct sequences of vertices with
the same endpoints in the underlying (undirected) tree T̂ . The only way one can have such
sequences in a tree is for one of the sequences to contain some vertices uvu in order. However,
any three successive vertices in any of these sequences lie within one of the Rj or Si or both
and so cannot have two instances of the same vertex. The crucial point is that each Qj,i is
in both Rj and Si and has at least two vertices. Any transition along the sequence between
an Rj and an Si (in either order) goes through Qj,i and so any three consecutive vertices are
all contained in one Rj or one Si (or both).

Knowing now that |C| is 0 or 1, we complete the proof of the Lemma. If |C| = 0, then
both Ra and Re are disjoint from all the Si and so we may add on either one of them as S ′

n
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Sk

...

Qa,k

Qe,k

...

Qe
a,k

Sl

...

Qa,l

Qe,l

...

Qs
e,l

Ra

...

Qa,k

Qa,l

...

Qe
a,k

Re

...

Qe,k

Qe,l

...

Qs
e,l

Figure 2: (1i) follows the thick arrows in Ra and Sl. (1ii) follows the thick arrows in Sk and
Re.

Sk

...

Qa,k

Qe,k

...

Qs
a,k

Sl

...

Qe,l

Qa,l

...

Qe
a,l

Ra

...

Qa,k

Qa,l

...

Qs
a,k

Qe
a,l

Re

...

Qe,k

Qe,l

...

Figure 3: (2i) follows the thick arrows in Sk, Re and Sl. (2ii) follows the thick arrow in Ra.

with P ′
n an arbitrary subpath of length 2n + 2 while keeping Si = S ′

i and extending the P ′
i

appropriately for all i < n. Otherwise say C = {i}. Let c be the one of a or e such that Qc,i

is closer to Pi. (Remember that they are both on the same side of this interval in Si by our
fixing the label.) Now replace the tail of Si starting with Qc,i and going away from Pi by
the tail of Rc starting with Qc,i and going in the same direction. Let this ray be S ′

i. Note
that it is disjoint from all the Sj, j ̸= i as it contains only edges that are in Si or Rc neither
of which share any edges with such Sj. It is also disjoint from Rd where d is the one of a, e
which is not c since all the edges of S ′

i are either in Rc or in Si outside of Qd,i by our choice
of Qc,i as closer to Pi. As Rd is also disjoint from all the Sj for j ̸= i by our fixing the label,
we may define S

′
j = Sj and Pj appropriately for j < n, j ̸= i and S ′

n = Rd and choosing P ′
n

of length 2n+ 2 arbitrarily so as to get the sequence required in the Lemma.

Lemma 4.26 provides the inductive step for the following proof:

Proof of Theorem 4.24. Assume we are given a directed forestG and a sequence ⟨⟨Rk,i⟩i<k⟩k∈N
such that, for each k, ⟨Rk,i⟩i<k is a sequence of k many DED rays in G. If there are infinitely
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many of the trees making up G each of which contains some Rk,i then we are done. So we
may assume that all of them are in one directed tree T . We now wish to define ⟨⟨Sk,s⟩k<s⟩s∈N
by recursion such that, for each s, ⟨Sk,s⟩k<s is a sequence of s many DED rays with subpaths
Pk,s of length 2s + 1 such that for each s ∈ N , Pk,s+1 extends Pk,s at each end so that the
lims Pk,s form an infinite sequence of DED rays in T as required. Lemma 4.26 provides pre-
cisely the required inductive step for the construction since we have the required sequences
of DED rays

〈
Rf(n),i | i < f(n)

〉
at each step n of the construction. Once again we just have

to note that Lemma 4.26 provides witnesses for the double rays that are composed of finite
paths in T and final segments in one direction or the other of some of the Rk,i and so they
can be found recursively in (T ⊕ ⟨⟨Rk,i⟩i<k⟩k∈N)′.

For ease of reference we summarize our proof-theoretic upper bounds on IRT and WIRT
in the following theorem.

Theorem 4.27. The following principles are provable in ACA0: WIRTUVD, WIRTXYS, and
WIRTDED for directed forests. Therefore the following principles are provable in Σ1

1-AC0:
IRTUVD, IRTXYS, and IRTDED for directed forests.

Proof. Apply Theorems 4.14, 4.23, Proposition 4.13, and Theorem 4.24.

5 Variations on Maximality

5.1 Maximum Cardinality Variants of IRT

We show below that IRT∗
XYZ proves sufficient induction in order to transcend Σ1

1-AC0. This
implies that IRT∗

XYZ is strictly stronger than IRTXYZ for certain choices of XYZ (Corollary
5.5). The connection between Σ1

1-AC0 and graphs is obtained by viewing the set of solutions
of an arithmetic predicate as the set of (projections of) branches on a subtree of N<N :

Lemma 5.1 ([28, V.5.4]). If A(X) is an arithmetic formula, ACA0 proves that there is a
tree T ⊆ N<N such that

∀X(A(X) ↔ ∃f(⟨X, f⟩ ∈ [T ]))

and ∀X(∃ at most one f)(⟨X, f⟩ ∈ [T ]).

In fact, as the proof in [28, V.5.4] shows, the required functions f are what are called the
minimal Skolem functions and are arithmetically defined uniformly in X and the formula A.

The following easy corollary will be useful.

Lemma 5.2. If A(n,X) is an arithmetic formula, ACA0 proves that there is a sequence of
subtrees ⟨Tn⟩n of N<N such that for each n ∈ N ,

∀X(A(n,X) ↔ ∃f(⟨X, f⟩ ∈ [Tn]))

and ∀X(∃ at most one f)(⟨X, f⟩ ∈ [Tn]).
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Proof. Say that B(Y ) holds if and only if A(Y (0), X) holds, where X is such that Y =
Y (0)⌢X. Apply Lemma 5.1 to the arithmetic formula B(Y ) to obtain a tree T ⊆ N<N . For
each n ∈ N , define Tn to be the set of all σ such that n⌢σ ∈ T . It is straightforward to
check that ⟨Tn⟩n satisfies the desired properties.

Theorem 5.3. IRT∗
XYZ proves ACA∗

0.

Before proving the above theorem, we derive some corollaries:

Corollary 5.4. IRT∗
XYZ proves the consistency of Σ1

1-AC0. Therefore it is not provable in
Σ1

1-AC0.

Proof. Simpson [28, IX.4.6] proves that ACA0 + IΣ1
1 implies the consistency of Σ1

1-AC0. The
only use of IΣ1

1 in Simpson’s proof is to establish ACA∗
0, so Simpson’s proof shows that ACA∗

0

implies the consistency of Σ1
1-AC0. The desired result then follows from Theorem 5.3 and

Gödel’s second incompleteness theorem.

Corollary 5.5. IRT∗
XYZ is strictly stronger than IRTXYZ for the following choices of XYZ:

XYS and UVD.

Proof. We showed in §4 that the specified variants of IRT are provable in Σ1
1-AC0. On the

other hand, none of the IRT∗ are provable in Σ1
1-AC0 (Corollary 5.4).

We now prove Theorem 5.3:

Proof that IRT∗
XYZ implies ACA∗

0. By Proposition 4.3, it suffices to prove the desired result
for IRT∗

UYZ. To prove ACA∗
0 from IRT∗

UYS, begin by using Lemma 5.2 to define for each A
a sequence of trees ⟨Tn⟩n such that for each n and W there is at most one f such that
⟨W, f⟩ ∈ [Tn] and

(∃f)(⟨W, f⟩ ∈ [Tn])

↔ W [0] = A ∧ (∀i ≤ n)((W [i])′ = W [i+1]) ∧ (∀i > n)(W [i] = ∅).

We want to show that each Tn is ill-founded. Note that if m < n and Tn is ill-founded,
then so is Tm. Therefore it suffices to show that for cofinally many n, Tn is ill-founded.

Apply IRT∗
UYS to the disjoint union

⊔
n Tn to obtain a collection C of Y -disjoint rays

of maximum cardinality. We prove that C is infinite. Suppose not. Then there is some
maximum m such that C contains a ray in Tm. A ray in Tm can be computably truncated
or extended to a branch on Tm, so Tm is ill-founded. Hence Tm+1 is ill-founded as well
(by ACA0). But then there is a collection of Y -disjoint rays in

⊔
n Tn which has cardinality

greater than that of C, contradiction.
We have proved that C is infinite. Next we prove that each Tn has at most one branch.

That would imply that each Tn contains at most one ray in C, so C contains rays in cofinally
many Tn, as desired.

If Tn has two distinct branches ⟨W0, f0⟩ and ⟨W1, f1⟩, then W0 ̸= W1 by the “at most

one” condition in the definition of the Tn. Consider the least i such that W
[i]
0 ̸= W

[i]
1 . Such

i exists by ACA0. Note that 0 < i ≤ n because W
[0]
0 = A = W

[0]
1 and W

[i]
0 = ∅ = W

[i]
1 for

i > n. But then W
[i−1]
0 = W

[i−1]
1 and (W

[i−1]
0 )′ ̸= (W

[i−1]
1 )′, contradiction.
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This proves that IRT∗
UYS implies ACA∗

0. In order to prove that IRT∗
UYD implies ACA∗

0, we
modify the above proof by adding to each Tn a branch consisting of new vertices to form
a tree Sn. Apply IRT∗

UYD to
⊔

n Sn to obtain a collection C of Y -disjoint double rays of
maximum cardinality. Following the above proof, we may prove that C is infinite and each
Sn contains at most one double ray in C. So C contains double rays in cofinally many Sn,
as desired.

Remark 5.6. The same proof shows that IRT∗
XYZ implies the following induction scheme:

Suppose ⟨Tn⟩n is a sequence of trees such that

1. T0 has a unique branch;

2. for all n, the number of branches on Tn+1 is the same as the number of branches on
Tn.

Then for all n, there is a sequence ⟨Pm⟩m<n such that for each m < n, Pm is the unique
branch on Tm. It also shows that IRT∗

XYZ implies ACA+
0 (i.e. closure under the ω-jump) and

much more. Indeed, similar ideas prove in Theorem 6.3 that IRT∗
XYZ implies unique-Σ1

1-AC0

(Definition 6.1). IRT∗
XYZ also implies a similar induction scheme analogous to finite-Σ1

1-AC0

(Definition 6.2).

We can prove that even fragments of IRT∗
DVD give more induction than the specific in-

stances derived in Theorem 5.3.

Theorem 5.7. IRT∗
DVD (even for directed forests) implies IΣ1

1 over RCA0.

Proof. Suppose Ψ(n) is a Σ1
1 formula such that Ψ(0) and ∀n(Ψ(n) → Ψ(n + 1)) hold. Let

⟨Si⟩i∈N be a sequence of subtrees of N<N such that Si is ill-founded if and only if Ψ(i)
holds. Let ⟨Tn⟩n∈N be a sequence of subtrees of N<N such that for each n, Tn consists of
all sequences ⟨σi : i ≤ n⟩ where for each i ≤ n, σi is a vertex in Si. In Tn there is an edge
between ⟨σi : i ≤ n⟩ and ⟨τi : i ≤ n⟩ if and only if for all i ≤ n, there is an edge between σi
and τi in Si. It is clear that Tn is ill-founded if and only if (∀i ≤ n)Ψ(i) holds.

For each n, orient each edge in Tn towards its root and add a D-ray of new vertices
which starts at its root. This forms a directed tree Gn. If Gn contains a double ray, Tn is
ill-founded and (∀i ≤ n)Ψ(i) holds. Furthermore, no two disjoint double rays can lie in the
same Gn.

Let G be the directed forest
⊔

nGn. By IRT∗
DVD, there is a sequence ⟨Ri⟩i of disjoint

double rays in G of maximum cardinality, so the sequence may be for i < k for some k or
i ∈ N . Since Ψ(0) holds, ⟨Ri⟩i is nonempty. If ⟨Ri⟩i is finite, let n be maximal such that
Gn contains some Ri. Then Ψ(n) holds, so Ψ(n + 1) holds as well. It follows that Gn+1

contains some double ray, which we can then add to ⟨Ri⟩i to obtain a larger sequence of
disjoint double rays in G for the desired contradiction. Therefore ⟨Ri⟩i is infinite. Since each
Gn contains at most one Ri, infinitely many Gn contain some Ri. Thus Ψ(n) holds for all
n.

In fact, we have the following equivalences:

Theorem 5.8. The following are equivalent (over RCA0):
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1. Σ1
1-AC0 + IΣ1

1;

2. IRTDED for directed forests + IΣ1
1;

3. IRT∗
DED for directed forests;

4. IRT∗
DVD for directed forests;

5. IRTDVD for directed forests + IΣ1
1.

Proof. (1) → (2) follows from Theorem 4.24. (2) → (3) follows from the proof of Proposition
3.17. (3) → (4) follows from the observation that the mapping of graphs defined in Lemma
4.4 sends a directed forest to a directed forest. (4) → (5) follows from Theorem 5.7 and the
proof of Proposition 3.17.

To prove (5) → (1), suppose A(n,X) is an arithmetic formula such that ∀n∃XA(n,X).
By Lemma 5.2, there is a sequence ⟨Tn⟩n of subtrees of N<N such that

∀n∀X(A(n,X) ↔ ∃f(⟨X, f⟩ ∈ [Tn]))

and ∀X(∃ at most one f)(⟨X, f⟩ ∈ [Tn]).

By assumption on A(n,X), each Tn is ill-founded. We use ⟨Tn⟩n to construct a sequence
⟨Gn⟩n of directed trees as we did in the proof of Theorem 5.7 to construct Tn from the Si.

By IΣ1
1, the directed forest

⊔
nGn contains arbitrarily many disjoint double rays. There-

fore
⊔

nGn contains infinitely many disjoint double rays ⟨Rk⟩k, by IRTDVD. Note that any
double ray in any Gn must contain the ray we added, so any two double rays in the same Gn

must intersect. This implies that each Rk belongs to some distinct Gn. Therefore for every
m, there is some k and some n > m such that Rk is a double ray in Gn. When we remove
the added ray from Rk we are left with a branch in Tn which is of the form ⟨X, f⟩ where X
consists of witnesses Xi for i < n.

Since Σ1
1-AC0 (ATR0, even) does not prove IΣ1

1 [28, IX.4.7], it follows that

Corollary 5.9. IRT∗
DYD (even for directed forests) is not provable in ATR0, and strictly

implies Σ1
1-AC0 over RCA0.

In the rest of this section we prove implications from IRT∗
UYD for forests to IRT∗

UYS for
forests and from IRT∗

UYD to IRTUYS. These will be used in the next section. The following
lemma will be used in the two subsequent proofs.

Lemma 5.10 (ACA0). Suppose G is a graph and ⟨Ri⟩i is a (possibly finite) maximal sequence
of Y -disjoint double rays in G. Let H be the induced subgraph of G consisting of all vertices
which do not lie in any Ri. Then any two single rays in the same connected component of
H must share a vertex.

Proof. If S0 and S1 are disjoint single rays in the same connected component of H, then we
can construct a double ray disjoint from all Ri by connecting S0 and S1: Start with a path
between S0 and S1 of minimum length, then connect it to the tails of S0 and S1 which begin
at the endpoints of the path.
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Theorem 5.11. IRT∗
UYD for forests implies IRT∗

UYS for forests over RCA0. Therefore IRTUYD

for forests implies IRTUYS for forests over RCA0 + IΣ1
1.

Proof. Let G be a forest. If G happens to have arbitrarily many disjoint double rays, then by
IRT∗

UYD, G has infinitely many disjoint double rays. Therefore there is an infinite sequence
of disjoint single rays in G. Such a sequence has maximum cardinality, so we are done in
this case.

Suppose G does not have arbitrarily many disjoint double rays. By IRT∗
UYD for forests,

there is a sequence ⟨Ri⟩i<j of disjoint double rays in G of maximum cardinality (hence
maximal). Let R be the subgraph of G consisting of the union of all Ri. Let H be the
induced subgraph of G consisting of all vertices which do not lie in R. Decompose H into
its connected components ⟨Hi⟩i (there may only be finitely many). For each i, define H ′

i by
adding a ray of new vertices to Hi, which begins at the <N -least vertex in Hi. Define H

′ to
be the disjoint union

⊔
iH

′
i.

By IRT∗
UYD for forests, there is a sequence of disjoint double rays in H ′ of maximum

cardinality. If this sequence is infinite, then there is an infinite sequence of disjoint single
rays in H because each double ray in the sequence has a tail which lies in H. This is a
sequence of disjoint single rays of maximum cardinality in G, so we are done in this case.

Otherwise, suppose ⟨Sk⟩k<l is a disjoint sequence of double rays in H ′ of maximum
cardinality. Consider the following disjoint sequence of single rays in G. First, for each
k < l, consider the single ray formed by intersecting H and the double ray Sk. Second, for
each i < j, we can split the double ray Ri into a pair of disjoint single rays in G. This yields
a finite sequence ⟨Qm⟩m<n of disjoint single rays in G.

We claim that ⟨Qm⟩m<n is a sequence of disjoint single rays in G of maximum cardinality.
Suppose there is a larger sequence of disjoint single rays in G. Since G is a forest, any two
single rays in G which share infinitely many edges or vertices must share a tail. Therefore
there is a single ray Q in this larger sequence which only shares finitely many edges and
vertices with each Qm. Then some tail of Q, say xQ, is vertex-disjoint from each Qm. In
particular, xQ is vertex-disjoint from each Ri, i.e. xQ lies in H. We may extend xQ to a
double ray S in H ′. We claim that S is disjoint from every Sk. Indeed, since xQ and Sk ∩H
are disjoint by construction, they cannot lie in the same connected component of H ′ (Lemma
5.10). This contradicts the maximality of l.

Theorem 5.12. IRT∗
UVD implies IRTUVS over RCA0. Therefore (1) IRTUVD implies IRTUVS

over RCA0+ IΣ1
1; (2) if any standard model of RCA0 satisfies IRTUVD, then it satisfies IRTUVS

as well.

Proof. Let G be a graph which contains arbitrarily many disjoint single rays. By IRT∗
UVD,

there is a sequence of disjoint double rays in G of maximum cardinality. If this sequence
is infinite, then there are infinitely many disjoint single rays in G as desired. Otherwise,
suppose that ⟨Ri⟩i<j is a sequence of disjoint double rays in G of maximum cardinality j.
Following the proof of Theorem 5.11, define the graphs R, H and H ′. By IRT∗

UVD, there is
a sequence of disjoint double rays in H ′ of maximum cardinality.

Case 1. If this sequence is infinite, then G contains infinitely many disjoint single rays
because each double ray in the sequence has a tail which lies in H. In this case we are done.
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Case 2. Otherwise, H ′ does not contain arbitrarily many disjoint double rays. Since any
two single rays in the same Hi must intersect (Lemma 5.10), we can transform any collection
of disjoint single rays in H into a collection of disjoint double rays in H ′ of equal cardinality
by connecting each single ray to the <N -least vertex in its connected component Hi and then
following the ray we added. It follows thatH does not contain arbitrarily many disjoint single
rays. Fix l such that H does not contain l + 1 many disjoint single rays.

Towards a contradiction, we construct a collection of (j + 1)-many disjoint double rays
in G as follows. Fix a collection S of l+2j+4j(j+1) many disjoint single rays in G. First,
at most 2j of these single rays lie in R. In fact at most 2j of these single rays can have
finite intersection with H, because given a collection of disjoint single rays each of which has
finite intersection with H, we can obtain a collection of disjoint single rays in R of the same
cardinality by replacing each ray with an appropriate tail. Second, by reasoning analogous to
the above, at most l of these single rays can have finite intersection with R. Therefore, there
are at least 4j(j + 1) many disjoint single rays in S each of which have infinite intersection
with both R and H.

Next, choose an edge (ui, vi) in each Ri and split Ri into two single rays uiRi,b and viRi,f .
By the pigeonhole principle, there is some single ray R of the form uiRi,b or viRi,f , and at
least 2(j + 1) many disjoint single rays in S, each of which have infinite intersection with
both R and H. Call these rays S0, S1, . . . , S2(j+1)−1. Discard all the other rays in S. Below
we describe how to connect pairs of single rays Sk using segments of R to form a collection
of (j + 1)-many disjoint double rays in G.

Let x0, x1, . . . denote the vertices of R. Since each single ray Sk has infinite intersection
with R, by the pigeonhole principle, there is a pair of disjoint rays Sk0 and Sl0 such that
for each tail R′ of R, there is a vertex in Sk0 ∩ R′ and a vertex in Sl0 ∩ R′ such that no Sk

intersects R between these two vertices. (Formally, we justify this by defining the following
coloring recursively. Start from the first vertex in R which is also in some Sk. Search for the
next vertex on R which intersects some Sl, l ̸= k. Then we color 0 with the unordered pair
{k, l}. Then we search for the next vertex on R which intersects some Sm, m ̸= l and color
1 with {l,m}, and so on. Some color {k0, l0} must appear infinitely often.) Then we commit
to connecting Sk0 and Sl0 (but we do not do so just yet). Applying the pigeonhole principle
again, there is a pair of disjoint rays Sk1 and Sl1 (with k1, l1, k0, l0 all distinct) such that for
each tail R′ of R, there is a vertex x in Sk1 ∩ R′ and a first vertex y in Sl1 ∩ R′ (after x in
R) such that no Sk, except perhaps Sk1 , Sk0 or Sl0 , intersects R between these two vertices.
We may eliminate any elements of Sk1 by changing x (if necessary) to the last element of
Ry in Sk1 . Again we commit to connecting Sk1 and Sl1 . Repeat this process until we have
obtained j + 1 pairs of single rays. That is, when we have Ski and Sli for an i < j, we find
Ski+1

and Sli+1
with ki+1 and li+1 distinct from all previous km and lm such that for each tail

R′ of R there is a vertex x ∈ Ski+1
∩R and a first y ∈ Sli+1

∩R after x in R such that no Sk,
except perhaps Skm or Slm for m ≤ i, intersects R between these two vertices. This process
stops when we define kj and lj.

Finally, we connect these pairs of single rays in the opposite order in which we defined
them: Start by picking some xj ∈ Skj ∩ R and some yj ∈ Slj ∩ R. Then we define a double
ray Dj by following ∗Skj until xj, then following R until yj, and finally following Slj , i.e.,
Dj := ∗(xjSkj)Ry

jSlj . Having defined Dj, Dj−1, . . . , Di+1, define Di := ∗(xiSki)Ry
iSli ,

where xi ∈ Ski ∩R and yi ∈ Sli ∩R are chosen as follows: Consider a tail R′ of R such that
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the union of xjRyj, . . . , xi+1Ryi+1 is disjoint from (1) R′; (2) xSki, for each x ∈ Ski ∩ R′;
(3) ySli for each y ∈ Sli ∩ R′. By choice of ki and li, there are vertices xi ∈ Ski ∩ R′ and
yi ∈ Sli ∩R′ such that none of Skj , . . . , Ski+1

or Slj , . . . , Sli+1
intersect xiRyi.

It is straightforward to check that each of Dj, Dj−1, . . . , Di+1 is disjoint from Di. This
process yields disjoint double rays Dj, Dj−1, . . . , D0 in G, contradicting the maximality of
j.

5.2 Maximal Variants of IRT

Instead of sets of disjoint rays of maximum cardinality, we could consider sets of disjoint
rays which are maximal with respect to set inclusion. For uncountable graphs, Halin [11]
observed that any uncountable maximal set of disjoint rays is in fact of maximum cardinality
(because rays are countable). This suggests another variant of IRT, which we call maximal
IRT:

Definition 5.13. Let MIRTXYZ be the statement that every X-graph G has a (possibly
finite) sequence ⟨Ri⟩i of Y -disjoint Z-rays which is maximal, i.e., for any Z-ray R in G, there
is some i such that R and Ri are not Y -disjoint.

We easily show below that MIRTXYZ implies Π1
1-CA0, hence MIRTXYZ is much stronger

than IRTXYZ or even IRT∗
XYZ. For the other direction, MIRTXYZ immediately follows from

Zorn’s Lemma. This situation is reminiscent of a couple of other maximality results in graph
theory often proved using Zorn’s Lemma that are equivalent to Π1

1-CA0 (as in [2]). Our
original proofs here of MIRTXYZ from Π1

1-CA0 (described in [3]) as those in other cases were
ad hoc. Formulations of versions of Zorn’s Lemma that can be used as in the standard
mathematical proofs of these results and are equivalent to Π1

1-CA0 will appear in [24]. The
referee suggested a slicker approach not using Zorn’s lemma than the ones we had. We give
it below.

Theorem 5.14. Π1
1-CA0 is equivalent to MIRTXYZ.

Proof that MIRTXYZ implies Π1
1-CA0. We first prove thatMIRTXYZ implies ACA0 by adapting

the proof of Theorem 4.10. If we apply MIRTXYZ instead of IRTXYZ to any of the forests
constructed in that proof, we obtain a sequence containing a Z-ray in each tree which
constitutes the forest. This is more than sufficient for carrying out the remainder of the
proof of Theorem 4.10.

To prove that MIRTUVS implies Π1
1-CA0, suppose we are given a set A. Consider the

disjoint union of all A-computable trees (this exists, by ACA0). Any maximal sequence of Y -
disjoint rays in this forest must contain a ray in each ill-founded A-computable tree. Hence
its jump computes the hyperjump TA. This shows that MIRTUYS implies Π1

1-CA0. To prove
that the other MIRTXYZ imply Π1

1-CA0, it suffices to exhibit a computable procedure which
takes trees T ⊆ N<N to X-graphs T ′ such that T is ill-founded if and only if T ′ contains
a Z-ray. For MIRTUYD, it suffices to apply the construction of Lemma 4.8 to each tree.
For MIRTDYZ, it suffices to orient each of the graphs we constructed above in the obvious
way.
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Proof that Π1
1-CA0 implies MIRTXYZ. Suppose we are given an X-graph G in a model N of

MIRTXVZ. By [28, VII.2.10] there is a setX such thatX [0] = G andB(X) =
〈
N, {X [i]|i ∈ N}

〉
is a β-model in N , i.e. any Σ1

1 formula Φ with parameters from B(X), i.e. from among the
X [i], has a witness in N if and only some X [j] is such a witness. In N we build, recursively
in X ′′, a sequence of disjoint Z-rays in G with each initial segment in B(X). If there are no
Z-rays in N we are done. Otherwise, by our choice of X there is a j such that X [j] is a Z-ray
let one such be R0. Suppose at stage n we have constructed a sequence ⟨Ri⟩i<mn

in B(X) of

disjoint Z-rays for some mn ≤ n. If there is a j such that X [j] is a Z-ray containing n as a
vertex which is disjoint from the Ri for i < mn, choose one as Rmn and set mn+1 = mn + 1.
Otherwise, let mn+1 = mn and move on to stage n+1. This construction is clearly recursive
in X

′′
. It produces in N (a possibly finite) sequence ⟨Ri⟩ of disjoint Z-rays in G. We show

that this sequence is maximal. If R is a Z-ray in N which is disjoint from every Ri, then go
to stage n of the construction, where n is a vertex of R. If we inserted some Rmn during stage
n, then R would not be disjoint from ⟨Ri⟩. Hence we did not insert any Z-ray during stage
n. However, R is a Z-ray in N that contains n and is disjoint from ⟨Ri⟩i<mn

contradicting
B(X) being a β-model in N .

To prove MIRTXEZ, at stage n = (u, v), we ask for an X [j] which is a Z-ray R edge disjoint
from the previous rays and has (u, v) as an edge. The rest of the proof is as above.

Remark 5.15. It is easy to see that the variants of IRTXYZ asking for a set of rays which is
both of maximum cardinality and maximal (MIRT∗

XYZ) for XYS and UVD are each equivalent
to Π1

1-CA0.

6 Relationships Between IRT and Other Theories of

Hyperarithmetic Analysis

In this section, we establish implications and nonimplications between variants of IRT and
THAs other than Σ1

1-AC0. One such standard theory is as follows:

Definition 6.1. The theory unique-Σ1
1-AC0 consists of RCA0 and the principle

(∀n)(∃!X)A(n,X) → (∃Y )(∀n)A(n, Y [n])

for each arithmetic formula A(n,X).

The above theory is typically known as weak-Σ1
1-AC0 (e.g., [28, VIII.4.12]). We deviate

from this terminology to introduce a new choice principle where the requirement for unique
solutions is replaced by one for finitely many solutions.

Definition 6.2. The theory finite-Σ1
1-AC0 consists of RCA0 and the principle

(∀n)(∃ nonzero finitely many X)A(n,X) → (∃Y )(∀n)A(n, Y [n])

for each arithmetic formula A(n,X). Formally, “(∃ nonzero finitely many X)A(n,X)” means
that there is a nonempty sequence ⟨Xi⟩i<j such that for each X, A(n,X) holds if and only
if X = Xi for some i < j.
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Similarly to Σ1
1-AC, each of these two choice principles are equivalent to ones where A

is allowed to be of the form (∃!Y )B(n,X, Y ) or (∃ nonzero finitely many Y )B(n,X, Y ),
respectively. However, unlike Σ1

1-AC neither of these two principles is equivalent to the
version where A is allowed to be Σ1

1. Not only would those versions fail to capture the
idea that we are dealing with unique or finitely many witnesses and paths through trees
but they should be stronger than the stated principles. It is easy to see, for example, that
even the unique version with A Σ1

1 implies ∆1
1-CA0 (Definition 6.8) which is stronger than

unique-Σ1
1-AC by van Wesep [30].

Since the THA Σ1
1-AC0 implies finite-Σ1

1-AC0 which in turn implies unique-Σ1
1-AC0 whose

models are closed under hyperarithmetic reducibility by Proposition 3.9, it follows that finite-
Σ1

1-AC0 is a THA (as is unique-Σ1
1-AC0). Goh [10] shows that finite-Σ1

1-AC0 is strictly stronger
than unique-Σ1

1-AC0. We were led to study this version of choice by realizing that a variant
of our original proof that IRT∗

UVS implies unique-Σ1
1-AC0 worked for the finite version.

Theorem 6.3. IRT∗
XYZ implies finite-Σ1

1-AC0 over RCA0. (It follows that IRTXYZ implies
finite-Σ1

1-AC0 over RCA0 + IΣ1
1, but this is superseded by Theorem 6.7 below.)

Proof. By Proposition 4.3 and Theorem 5.11, it suffices to prove that IRT∗
UYS for forests

implies finite-Σ1
1-AC0. By Lemma 5.2, it suffices to prove that for any sequence ⟨Tn⟩n of

subtrees of N<N such that each Tn has finitely many branches, a sequence ⟨Pn⟩n exists with
each Pn ∈ [Tn]. As in the proof of Theorem 5.7, we construct a sequence of trees ⟨Sn⟩n such
that for each n, the branches on Sn are precisely those of the form P0 ⊕ · · · ⊕ Pn where Pi

is a branch on Ti for i ≤ n.
By IRT∗

UYS for forests there is a sequence ⟨Rk⟩k of Y -disjoint rays in
⊔

n Sn of maximum
cardinality. We claim that ⟨Rk⟩k is infinite. If not, let m be least such that there is no Rk

in Sm. Then we can increase the cardinality of ⟨Rk⟩k by adding any ray R from Sm while
maintaining disjointness by our choice of n. The point here is that if R ∩ Rk ̸= ∅ for any k
then they are both in Sm as the trees Sn are disjoint and there are no edges between them.
Therefore ⟨Rk⟩k has a ray in infinitely many Sn. Thus we may construct the desired sequence
⟨Pn⟩n recursively by searching at stage n for an Rk in Sm for some m > n and take Pn to be
the branch in Tn which shares a tail with the nth coordinate of Rk.

Another THA which follows from IRT∗
XYZ is arithmetic Bolzano-Weierstrass (ABW0).

Definition 6.4. The theory ABW0 consists of RCA0 and the following principle: If A(X) is
an arithmetic predicate on 2N , either there is a finite sequence ⟨Xi⟩i which contains every X
such that A(X) holds or there is an X such that every one of its neighborhoods has two Y
such that A(Y ) holds. Such an X is called an accumulation point of the class {X | A(X)}.

Friedman [8] introduced ABW0 and asserted that it follows from Σ1
1-AC0 (with unre-

stricted induction). Conidis [5] proved Friedman’s assertion and established relationships
between ABW0 and most then known THAs. Goh [10] shows that ABW0 + IΣ1

1 implies
finite-Σ1

1-AC0. We do not know if ABW0 is strictly stronger than finite-Σ1
1-AC0.

The following lemmas will be useful in deriving ABW0 from IRT∗
XYZ. We first describe a

connection between sets of solutions of arithmetic predicates and rays in trees.

32



Lemma 6.5 (ACA0). Suppose A(X) is an arithmetic predicate. Then there is a tree T ⊆
N<N such that if there is a sequence of distinct solutions of A(X), then there is a sequence
of Y-disjoint single rays in T of the same cardinality, and vice versa.

Proof. By Lemma 5.1, there is a tree T ⊆ N<N such that

∀X(A(X) ↔ ∃f(⟨X, f⟩ ∈ [T ])

and ∀X(∃ at most one f)(⟨X, f⟩ ∈ [T ]).

If ⟨Xi⟩i is a sequence of distinct solutions of A(X), then, as the required fi are arithmetic
uniformly in the Xi, there is a sequence of distinct branches ⟨⟨Xi, fi⟩⟩i on T of the same
cardinality.

By taking an appropriate tail of each branch, we obtain a sequence ⟨Ri⟩i of vertex-disjoint
(hence edge-disjoint) single rays in T of the same cardinality with each one being a tail of
⟨Xi, fi⟩: As no two distinct branches in a tree can have infinitely many vertices in common,
simply take Rn to be the tail of ⟨Xn, fn⟩ starting after all vertices it has in common with
any ⟨Xi, fi⟩, i < n.

Conversely, suppose there is a sequence ⟨Ri⟩i of Y -disjoint single rays in T . For each Ri,
we define a branch on T which corresponds to it as follows. Let x be the vertex in Ri which
is closest to the root of T . Then we can extend xRi to the root to obtain a branch ⟨Xi, fi⟩
on T . We claim that ⟨Xi⟩i is a sequence of distinct solutions of A(X). For each i ̸= j, since
Ri and Rj are Y -disjoint, they cannot share a tail. So ⟨Xi, fi⟩ and ⟨Xj, fj⟩ must be distinct.
Since for each X, there is at most one f such that ⟨X, f⟩ is a branch on T , it follows that
Xi ̸= Xj as desired.

The second lemma is essentially the well-known fact that the Bolzano-Weierstrass theo-
rem is provable in ACA0:

Lemma 6.6 ([28, III.2.7]). ACA0 proves that if ⟨Xn⟩n is a sequence of distinct elements of
2N , then there is some Z which is an accumulation point of {Xn | n ∈ N}.
Theorem 6.7. IRT∗

XYZ implies ABW0 over RCA0. Therefore IRTXYZ implies ABW0 over
RCA0 + IΣ1

1.

Proof. By Proposition 4.3, it suffices to show that the undirected variants of IRT∗ imply
ABW0. Suppose A(X) is an arithmetic predicate on 2N such that no finite sequence ⟨Xi⟩i
contains every X such that A(X) holds. By Lemma 6.5, there is a tree T ⊆ N<N such that
for any sequence of distinct solutions of A(X), there is a sequence of Y -disjoint single rays
in T of the same cardinality, and vice versa.

By IRT∗
UYS, or by IRT∗

UYD and Theorem 5.11, there is a sequence of Y -disjoint single rays
in T of maximum cardinality. This yields a sequence of distinct solutions of A(X) of the
same cardinality.

If this sequence is finite, then there is a solution Y of A(X) not in the sequence by our
assumption. Hence there is a sequence of distinct solutions of A(X) of larger cardinality,
which yields a sequence of Y -disjoint single rays in T of larger cardinality for the desired
contradiction.

Thus there is an infinite sequence ⟨Xn⟩n of distinct solutions of A. By Lemma 6.6, there
is an accumulation point of {Xn | n ∈ N}, which is of course an accumulation point of
{X | A(X)}, as desired.
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We now turn our attention to nonimplications. One prominent theory of hyperarithmetic
analysis is the scheme of ∆1

1-comprehension (studied by Kreisel [14]):

Definition 6.8. The theory ∆1
1-CA0 consists of RCA0 and the principle

(∀n)(Φ(n) ↔ ¬Ψ(n)) → ∃X(n ∈ X ↔ Φ(n))

for all Σ1
1 formulas Φ and Ψ.

Theorem 6.9. ∆1
1-CA0 ⊬ IRTXYZ, IRT

∗
XYZ.

Proof. Conidis [5, Theorem 3.1] constructed a standard model which satisfies ∆1
1-CA0 but

not ABW0. By Theorem 6.7, this model does not satisfy IRT∗
XYZ. Since standard models

satisfy full induction, this model does not satisfy IRTXYZ either (by Proposition 3.17).

Theorem 6.10. ABW0 ⊬ IRTXYZ, IRT
∗
XYZ.

Proof. By Propositions 4.3 and 3.17, it suffices to show that ABW0 ⊬ IRTUYZ. Van Wesep
[30, I.1] constructed a standard model N which satisfies unique-Σ1

1-AC0 but not ∆1
1-CA0.

Conidis [5, Theorem 4.1], using the approach of [18], showed that N satisfies ABW0. We
show below that N does not satisfy IRTUYZ.

In order to define N , van Wesep constructed a tree TG and branches ⟨fG
i ⟩i∈N of TG such

that (1) N contains TG and infinitely many (distinct) fG
i (see [30, pg. 13 l. 1–11]); (2) N

does not contain any infinite sequence of distinct branches of TG (see [30, pg. 12 l. 7–9] and
Steel [29, Lemma 7].) Then TG is an instance of IRTUYS in N which has no solution in N .
This shows that N does not satisfy IRTUYS for trees. (The reader who wants to follow the
details of the proofs in [5] and [30, I.1] should look at the presentation of the basic methods
in [18].)

Since N is a standard model, it satisfies full induction. By Theorem 5.11, it follows that
N does not satisfy IRTUYD for forests.

Figure 4 illustrates some of our results. In order to simplify the diagram, we have omitted
all variants of IRT except IRTUVS.

7 Isolating the Use of Σ1
1-AC0 in Proving IRT

In this section we present further proof-theoretic results on SCR and WIRT (Definition 4.12).

Proposition 7.1. SCRXYZ implies ACA0.

Proof. By Proposition 4.13, it suffices to establish the desired result for the undirected
variants of SCR. The proofs are almost identical to that of Theorem 4.10. There, we applied
IRTUYZ to forests G =

⊔
n Tn, where each Tn contains a Z-ray, and no two Z-rays in Tn

can be Y -disjoint. Any infinite sequence of Y -disjoint Z-rays in G must contain a Z-ray in
cofinally many graphs Tn. Therefore from such a sequence we can uniformly compute Z-rays
in cofinally many graphs Tn, which establishes ACA0 by the construction of

⊔
n Tn. If we

assume SCRUYZ instead of IRTUYZ, we only have access to a sequence ⟨Xk⟩k∈N such that for
each k, Xk is a set of k Y -disjoint Z-rays in G. From such a sequence we can still uniformly
compute Z-rays in cofinally many graphs Tn, because for any k, Xk+1 must contain a Z-ray
in some Tn, n ≥ k.
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1

IΣ1
1

|
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Figure 4: Partial zoo of theories of hyperarithmetic analysis. Single arrows indicate implica-
tion while double arrows indicate strict implication. The references for the above results are
as follows: (1, 2) Montalbán [16, Theorems 2.1, 3.1]; (3, 4) Montalbán [15, Theorem 2.2],
Neeman [18, Theorems 1.2, 1.3, 1.4], see also Neeman [19, Theorem 1.1]; (5) Theorem 4.18;
(6) Theorems 6.7, 6.10; (7) Conidis [5, Theorem 4.1]. All results concerning finite-Σ1

1-AC0

are in Goh [10].

By Theorem 4.27, Proposition 7.1, and the observation that SCRXYZ + WIRTXYZ and
IRTXYZ are equivalent over RCA0, we obtain

Corollary 7.2. SCRXYZ and IRTXYZ are equivalent over RCA0 for the following choices of
XYZ: XYS and UVD.

We now turn our attention to WIRTXYZ. We know that WIRTXYS and WIRTUVD are
provable in ACA0 (Theorem 4.27). On the other hand WIRTDVD and WIRTDED are open,
because Σ1

1-AC0+WIRTXYZ implies IRTXYZ, and IRTDVD and IRTDED are open (see comments
after Theorem 4.1). We do not have an upper bound on the proof-theoretic strength of
WIRTUED (an upper bound on WIRTUED would yield an upper bound on IRTUED, which we
do not currently have).

We do not know if any WIRTXYZ is equivalent to ACA0. In an effort to clarify the
situation, we define an apparent strengthening of WIRTXYZ and show that it implies ACA0:

Definition 7.3. Let nonuniform-WIRTXYZ be the assertion that if G is an X-graph and
there is a sequence of Z-rays R0, R1, . . . in G such that for each k, there are i0, . . . , ik such
that Ri0 , . . . , Rik are Y -disjoint, then G has infinitely many Y -disjoint Z-rays.

Every instance of WIRTXYZ is also an instance of nonuniform-WIRTXYZ, so nonuniform-
WIRTXYZ implies WIRTXYZ. Conversely, we have

Proposition 7.4. ACA0 +WIRTXYZ implies nonuniform-WIRTXYZ.

Proof. Suppose G is an instance of nonuniform-WIRTXYZ, i.e., G is an X-graph and ⟨Rn⟩n∈N
is a sequence of Z-rays in G such that for each k, there are i0, . . . , ik such that Ri0 , . . . , Rik are
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Y -disjoint. Then ACA0 can find such i0, . . . , ik uniformly in k. Therefore by ACA0, G is an
instance of WIRTXYZ. By WIRTXYZ, G has infinitely many Y -disjoint Z-rays as desired.

Theorem 7.5. Nonuniform-WIRTXYZ implies ACA0 over RCA0. It follows that nonuniform-
WIRTXYS and nonuniform-WIRTUVD are both equivalent to ACA0 over RCA0.

Proof. By Theorem 4.27 and Proposition 7.4, ACA0 implies nonuniform-WIRTXYS and nonuniform-
WIRTUVD. To show that nonuniform-WIRTXYZ implies ACA0, it suffices to consider the
undirected versions of nonuniform-WIRT (by Lemma 4.2). First, we prove that nonuniform-
WIRTUYS implies ACA0 by constructing a computable instance of nonuniform-WIRTUVS such
that every nonuniform-WIRTUES solution computes ∅′. (The desired result follows by rela-
tivization.) We use a variation of the graph used in the analogous result in Theorem 4.10.

Construction of G = (V,E): V = {0n | n > 0}∪{n⌢s⌢0t | n > 0 and some number below
n is enumerated into ∅′ at stage s, and either t ≤ s or ∅′s ↾ n = ∅′t ↾ n}. E = {(0n, 0n+1) |
n > 0} ∪ {(n⌢s⌢0t, n⌢s⌢0t+1) | n⌢s⌢0t, n⌢s⌢0t+1 ∈ V } ∪ {(n⌢s⌢0t, 0) | n⌢s⌢0t ∈ V and
n⌢s⌢0t+1 /∈ V }. G is clearly computable.

Verification: It is clear that there is exactly one ray R⟨n,s⟩ in G beginning with n⌢s for
n⌢s ∈ V and the sequence ⟨R⟨n,s⟩⟩n⌢s∈V is also computable. Note that if ∅′ ↾ n = ∅′s ↾ n then
this ray is ⟨n⌢s⌢0t⟩t∈N . Otherwise, it is ⟨n⌢s⌢0t⟩n⌢s⌢0t∈V

⌢ ⟨0n⟩n>0. Next observe that for
each k ∈ N , {⟨n, i⟩ | i < n ≤ k and i ∈ ∅′} is Σ0

1 and contained in k × k and so is a set
by bounded Σ0

1 comprehension [28, II.3.9]. Thus the finite function taking n > l (the least
number in ∅′) to the last stage sn at which an i < n is enumerated in ∅′ is also (coded by) a
finite set. So we have, for each k, a sequence of V-disjoint rays ⟨Rn,sn⟩l<n≤l+k of length k as
required for the hypothesis of nonuniform-WIRTUVS.

Suppose then that Si is the sequence of rays in a solution for nonuniform-WIRTUES. We
wish to compute ∅′ from this solution. As the Si are E-disjoint at most one of them contains
the edge (0, 00). So by eliminating that one, we can assume none of the Si contain (0, 00). If
any of the remaining rays contain some edge of the form (0j, 0j+1) for j > 0 then (as it does
not contain (0, 00)) it must contain (0k, 0k+1) for every k ≥ j. Thus there can be at most
one such ray among the remaining Si and so we can discard it and assume there are no such
rays in our list. No remaining ray can have 0 as its first vertex as if it did its second vertex
would have to be of the form n⌢s⌢0t with n⌢s⌢0t+1 /∈ V . Any continuation of this sequence
would have to follow the n⌢s⌢0r with r descending from t and so would have to terminate at
n⌢s and not be a ray. Thus all the remaining Si are of the form ⟨ni

⌢si
⌢0t+j⟩j∈N for some t

with ni ̸= nk for i ̸= k. So the remaining Si witness the conclusion of nonuniform-WIRTUVS

as desired.
As we can replace the first vertex of Si by the sequence beginning with n⌢s and ending

with its second vertex, we know that ∅′ ↾ ni = ∅′s ↾ ni. Since the sequence Si and so that of
the ni is infinite, given any m we can find an ni > m and so compute ∅′ ↾ m as ∅′ni

↾ m as
required.

To show that nonuniform-WIRTUYD implies ACA0, define G as above. Consider the graph
G′ gotten by adding on for each n⌢s ∈ V new vertices xn,s,k for k > 0 and edges (n⌢s, xn,s,1)
and (xn,s,k, xn,s,k+1) for k > 0. The witnesses for the hypothesis of nonuniform-WIRTUVS in
G supply ones for nonuniform-WIRTUVD by tacking on the xn,s,k before n⌢s in reverse order.
The witnesses for the conclusion of nonuniform-WIRTUED can be converted into ones for the
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conclusion of nonuniform-WIRTUES in G by removing the new vertices. So once again we
can compute ∅′.

We are unable to show that WIRTXYZ implies ACA0, but we can prove the following:

Theorem 7.6. WIRTXYZ is not provable in RCA0.

Proof. By Proposition 4.13, it suffices to consider the undirected variants of WIRT. For all
these variants it suffices to construct a computable graph G on N and a computable sequence〈〈
Xk

i

〉
i<k

〉
k∈N

such that (1) for each k ∈ N, the Xk
i for i < k are pairwise vertex-disjoint

double rays in G and (2) there is no computable sequence ⟨Rj⟩j∈N of edge-disjoint single rays
in G. It is clear that the G constructed for this C is a counterexample to each WIRTUYZ

in the standard model of RCA0 with second order part the recursive sets. Of course, as this
model is standard, WIRTXYZ is not provable in RCA, RCA0 plus induction for all formulas.

The computable construction will be a finite injury priority argument. At the end of
stage s of our construction, for each i < k ≤ s, we will have defined a path P k

i,s+1 with
lengths strictly increasing with s which is intended to be a segment of the double ray Xk

i .
We think of these paths Ps as having domain a segment [u, v] of Z containing [−s, s]. Its
endpoints are Ps(u) and Ps(v). The intention is that the Xk

i =
⋃

s P
k
i,s will be the desired

double rays such that, for each k, the Xk
i for i < k will be vertex-disjoint. We will also have

put all numbers less than s in as vertices in at least one of these P k
i,s. In future stages, we

will not add any edges between vertices which are currently in any P k
i,s for i < k. Thus G

will be a computable graph given by the union of the double rays Xk
i =

⋃
s P

k
i,s. We let Gs be

the graph defined so far, i.e.
⋃
{P k

i,s | i < k < s}. We let G>t
s be its subgraph defined as the

union of the P k
0,s, . . . , P

k
k−1,s for k > t and similarly for k < t and other interval notations.

We say that the disjointness condition, d.c., holds at stage s if for every m < s and
distinct n and n′ < m, Pm

n,s and P
m
n′,s are vertex-disjoint. Otherwise we say we have violated

the d.c. Clearly, if we never violate the d.c. the Xm
n (for fixed m) are pairwise vertex-disjoint.

We arrange the construction so that we obviously never violate the d.c.
So it suffices to also meet the following requirements:

Qe : If R0, R1, . . . is a computable sequence of single rays in G defined by Φe,

i.e. Φe(i, n) = Ri(n) then the Ri are not edge-disjoint.

The requirements Qe are listed in order of priority. During our construction, if all else fails,
we will attempt to satisfy each Qe at some stage s by merging certain rays Xk

i and X l
j using

vertices x and y ̸= x which are endpoints of P k
i,s and P

l
j,s, respectively. We do this by adding

the least new number r (the merge point of this merger) as a vertex of G as well as edges
(x, r) and (y, r) which are appended to each P q

r,s with x or y, respectively, as an endpoint.
We also ensure that P k

i,t and P l
j,t henceforth agree after the vertex r as they grow in the

corresponding directions.
Without loss of generality, and to simplify notation later, we make the assumption that

if Φe,s(i, u) is convergent for any e, i and u then so is Φe,s(i, u
′) for every u′ < u.

Construction. At stage s of the construction, we are given a finite graph Gs consisting of,
for each k < s, finite vertex-disjoint paths P k

0,s, . . . , P
k
k−1,s as described above. We let fs(e)
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be the final stage before s at which Qe was initialized. For notational convenience when s
and e are specified we simply write f for fs(e).

First, we act for the requirementQe of highest priority with e < s which requires attention
as described below. All requirements Qe are initialized and unsatisfied at stage 0 and are
initialized and declared to be unsatisfied whenever we act for a Qe′ with e

′ < e.
We say thatQe requires attention at stage s ifQe is not satisfied and there are a, u, x, b, v, y <

s such that u > 0, Φe,s(a, u) ↓, ⟨Φe,s(a, n)⟩n≤u is a path in Gs disjoint from G<f
s which can

be extended in only one way to a maximal path in Gs and this extension eventually reaches
an x /∈ G<f

s which is an endpoint of some P k
i,s for k ≥ f and similarly for b, v and y for some

P l
j,s such that x and y are not both endpoints of the same P q

r . We also require that the
merger using x and y would not violate the d.c. We then let a(e, s) etc. be the associated
witnesses for the least such computation. In this case, the actions for Qe is to perform the
merger using x(e, s) and y(e, s) as defined above and declare Qe to be satisfied.

Finally, for each w, in turn, which is an endpoint of any the paths P k
i as now defined we

extend those paths by taking the least new number z which we append after w in each of
these paths (and so add (w, z) as a new edge). For each i < s, in turn, we also take the next
2s+ 1 least new numbers and let the P s

i (n) be these numbers in order for n ∈ [−s, s]. This
defines the P k

i,s+1 for i < k < s + 1 and completes stage s of the construction. As promised
we let Xk

i =
⋃

s P
k
i,s.

Verification. It is clear that, for each i < k ∈ N, Xk
i is a double ray and that G is a

computable graph consisting of the union of these rays. It is also clear that by construction
we never violate the d.c. and so for each k the Xk

i for i < k are pairwise vertex disjoint as
required. Thus we only need to prove that we meet each Qe.

We now state a series of facts about G each of which follows immediately (or by simple
inductions) from the construction and previous facts on the list.

Lemma 7.7. Every vertex r which is a merge point has exactly three neighbors and they are
the x and y used in the merger and the z added on after r in the final part of the action
at the merger stage. In addition, no endpoint of any P k

i,s is a merge point and every vertex
which is not a merge point has exactly two neighbors.

If u ∈ Gs and so u ∈ P k
i,s for some i < k < s, then for any j < l, u ∈ X l

j ⇔ u ∈ P l
j,s and

if so l < s.
If (u, v) ∈ Gs then not both u and v are merge points. If neither are merge points then

∀k∀i < k(v ∈ P k
i,s ⇔ u ∈ P k

i,s). If one, say u, is a merge point r for a merger at some
stage t necessarily less than s using some x and y with (r, z) the edge added on at the end
of stage t, then the other (v) is x, y or z; ∀k∀i < k(r ∈ P k

i,t+1 ⇔ x ∈ P k
i,t ∨ y ∈ P k

i,t);
∀k∀i < k(r ∈ P k

i,t+1 ⇔ r ∈ P k
i,s ⇔ z ∈ P k

i,t+1 ⇔ z ∈ P k
i,s).

Any ray in G which begins in Gs remains in Gs until it reaches an endpoint of some P k
i,s.

Each requirement acts at most once after the last time it is initialized. So, by induction,
each requirement acts and is initialized only finitely often. Thus there is an infinite sequence
wi such that at each wi we act for some Qe and we never act for any Qe′ with e′ ≤ e
afterwards. The observation to make here is that if there were a last stage w at which we act
for any Qe then there would be no mergers of any Xk

i and X l
j for k, l > w. In this case all

the Xk
i , i < k for k > w would be disjoint. It is then easy to see from the observations above

that at some stage after w we would act for a Qe with e > w such that Φe(0, n) = Xk
i (n) and
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Φe(1, n) = X l
j(n) for k, l > w.

If w is one of the wi just defined, z ∈ G<w and (z, z′) ∈ G then z′ /∈ G≥w. The point
to notice here is that by construction no merger at a stage s > w can use any x ∈ G<w as
every Qe which can act after w is initialized at w by the choice of the wi. Thus any path in
G which starts with a z ∈ G<w never enters G≥w. □

Suppose now that Φe is total and defines a sequence of edge-disjoint single rays ⟨Ri⟩i∈N
in G. By Lemma 7.7, we may choose a w = wc for some c after which no Qe′ for e

′ ≤ e ever
acts again.

If Qe is not satisfied at the end of stage w, we argue that we act for it later to get a
contradiction. Once a ray begins in G<w, it must stay there by Lemma 7.7 and once beyond
all the (finitely many) merge points in G<w (none can be put in after stage w and no ray has
repeated vertices) it remains in some Xk

i for k < w with which it shares a tail (as each vertex
which is not a merge point has exactly two neighbors). So by the edge-disjointness of the Ri

there is an a such that Φe(a, 0) = Ra(0) is not in G
<w. It starts in G<w′

with w′ = wc′ for
some c′ > c and so shares a tail with some P k

j with wc ≤ k < wc′ . Similarly there is b such
that Rb begins in some G≥wd with d > c′ and shares a tail with some X l

j with wd ≤ l. So
eventually we have a stage s such that Φe,s(a, u) ↓ and Φe,s(b, v) ↓ define paths in Gs which
go beyond the points by which Ra and Rb share tails with X

k
i and X l

j, respectively, and after
which neither tail contains a merge point and so these paths have unique extensions to paths
in Gs (determined by the appropriate tails of Xk

i and X l
j) ending with the endpoints of P k

i,s

and P l
j,s, respectively. Finally, note that the merger of Xk

i and X l
j at s would not violate

d.c. as by Lemma 7.7 P k
i,s can share vertices only with Pm

n,s with wc ≤ m < wc′ and P
l
j,s can

share vertices only with Pm
n′,s with m ≥ wd > wc′ . Thus at stage s we would act to satisfy

Qe for the desired contradiction.
So Qe is satisfied at w and was satisfied at some s ≤ w. With the notations as at s,

Φe(a, u) and Φe(b, v) define initial segments of Ra and Rb which can each be extended in
only one way to maximal paths in Gs eventually reaching the vertices x and y, respectively,
as described at s. The merger performed at s puts the merge point r in both P k

i,s+1 and

P j
l,s+1 and so in Ra and Rb (as the successor of x and y, respectively, as by Lemma 7.7 r is

the only neighbor in G of x other than its predecessor in Ra and similarly for y and Rb). We
then add in (r, z) to G at stage s. By Lemma 7.7, the only neighbors of r are x, y and z so
any continuation of Ra and Rb after r must produce a shared edge, as Ra can continue only
with either (y, r) which is an edge of Rb or with (r, z) and Rb can continue only with (x, r)
which is an edge of Ra or (r, z). This yields the final contradiction.

8 Open Questions

In addition to the variations of the Halin type theorems investigated here that remain open
problems of graph theory (IRTDVD and IRTDED) the most intriguing computational and re-
verse mathematical questions are about either separating the variants or providing additional
reductions or equivalences among the IRTXYZ and Σ1

1-AC0. Clearly the most important issue
is deciding if any (or even all) the IRTXYZ which are known to be provable in Σ1

1-AC0 are
actually equivalent to it. We extend this problem to include the IRT∗

XYZ and IΣ1
1.
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Question 8.1. Can one show that any of the IRTXYZ which are provable in Σ1
1-AC0 (IRTXYS

and IRTUVD) do not imply Σ1
1-AC0 over RCA0 or even over RCA0 + IΣ1

1? An intermediate
result might be that IRT∗

XYZ (for one of these versions) does not imply Σ1
1-AC0 over RCA0.

Should any of these IRTXYZ be strictly weaker than Σ1
1-AC0, the question would then be

to determine the relations among the IRTXYZ and analogously the IRT∗
XYZ.

Question 8.2. Can any additional arrows be added to Figure 1 over RCA0 or RCA0 + IΣ1
1?

(This includes the question of whether RCA0 ⊢ IRTUVD → IRTUVS.)

As we noted in Remark 4.9 there is an apparent additional reduction in Bowler, Carmesin,
Pott [4, pg. 2 l. 3–7]. They use an intermediate reduction to locally finite graphs in the sense
of relying on the fact that if a graph has arbitrarily many disjoint rays it has a locally finite
subgraph with arbitrarily many disjoint rays. This is the principle to which that Remark
refers. It plus ACA0 is a THA but over RCA0 it does not imply ACA0 and is provably very
weak (in the sense of being highly conservative over RCA0). Shore [26] proves these results
and further analyzes this and many similar principles some related to the IRTXYZ and others
to an array of classical logical principles.

Any reductions in RCA0 as requested in the Question above would, of course, provide the
analogous ones for the IRT∗

XYZ. However, it is possible that other implications can be proven
for the IRT∗

XYZ:

Question 8.3. Can any implications of the form IRT∗
XYZ → IRT∗

X′Y′Z′ be proven in RCA0

other than the ones known to hold for the IRT versions?

Probably more challenging is the problem of separating the principles.

Question 8.4. Can one prove any nonimplication over RCA0 or over RCA0 + IΣ1
1 for any

pair of the IRTXYZ?

Of course, any such separation for the IRTXYZ of Question 8.1 would answer a case of
that question by proving that at least one of these principles is strictly weaker than Σ1

1-AC0.
In addition, a separation by standard models or even ones over IΣ1

1 for the IRTXYZ would
give nonimplication for the corresponding IRT∗

XYZ but it might be that nonstandard models
could be used to separate one pair of versions but not the other.

The next natural question looks below ABW0 in Figure 4.

Question 8.5. Can one prove that finite-Σ1
1-AC0 does not imply ABW0 over RCA0 or RCA0+

IΣ1
1?

The weaker versions, WIRTXYZ, of the IRTXYZ, prompt a question about ACA0.

Question 8.6. Do any of the WIRTXYZ (especially the ones provable from ACA0) imply
ACA0? An easier question might be whether they imply WKL0?
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