Halin's Infinite Ray Theorems: Complexity and Reverse Mathematics: Version E*

James S. Barnes
Department of Mathematics
Yale University
New Haven CT 06520

Jun Le Goh
Department of Mathematics
National University of Singapore
Singapore 119076

Richard A. Shore
Department of Mathematics
Cornell University
Ithaca NY 14853

August 27, 2023

Abstract

Halin [1965] proved that if a graph has n many pairwise disjoint rays for each n then it has infinitely many pairwise disjoint rays. We analyze the complexity of this and other similar results in terms of computable and proof theoretic complexity. The statement of Halin's theorem and the construction proving it seem very much like standard versions of compactness arguments such as König's Lemma. Those results, while not computable, are relatively simple. They only use arithmetic procedures or, equivalently, finitely many iterations of the Turing jump. We show that several Halin type theorems are much more complicated. They are among the theorems of hyperarithmetic analysis. Such theorems imply the ability to iterate the Turing jump along any computable well ordering. Several important logical principles in this class have been extensively studied beginning with work of Kreisel, H. Friedman, Steel and others in the 1960s and 1970s. Until now, only one purely mathematical example was known. Our work provides many more and so answers Question 30 of Montalbán's Open Questions in Reverse Mathematics [2011]. Some of these theorems including ones in Halin [1965] are also shown to have unusual proof theoretic strength as well.

Mathematics Subject Classification 2020: Primary 05C63, 03D55, 03B30; Secondary 03D80, 03F35, 05C38, 05C69, 05C70

[^0]
1 Introduction

In this paper we analyze the complexity of several results in infinite graph theory. These theorems are said to be ones of Halin type or, more generally, of ubiquity theory. The classical example is a theorem of Halin [11]: If a countable graph G contains, for each n, a sequence $\left\langle R_{0}, \ldots, R_{n-1}\right\rangle$ of disjoint rays (a ray is a sequence $\left\langle x_{i} \mid i \in N\right\rangle$ of distinct vertices such that there is an edge between each x_{i} and x_{i+1}) then it contains an infinite such sequence of rays. (Note: As will be described in Definition 3.2, when we talk about disjoint rays we always mean pairwise disjoint.) Halin actually deals with arbitrary graphs and formulates the result differently. The uncountable cases, however, are essentially just counting arguments. We deal only with countable structures but discuss his formulation in §6. This standard formulation of his theorem seems like a typical compactness theorem going from arbitrarily large finite collections of objects to an infinite collection. The archetypical example here is König's Lemma: If a finitely branching tree has paths of length n for every n then it has a branch, i.e. an infinite path. In outline, a modern proof of Halin's theorem for countable graphs (due to Andreae, see [5, Theorem 8.2.5(i)]) seems much like that of König's Lemma (and many others in infinite graph theory). The construction of the desired sequence of rays proceeds by a recursion through the natural numbers in which each step is a simple procedure. While the procedure is much more delicate than for König's Lemma, it is basically of the same complexity. It uses Menger's theorem for finite graphs at each step but this represents a computable procedure (for finite graphs). The other parts of the step depend on the same type of information as in König's Lemma. They ask, for example, if various sets (computable in the given graph) are nonempty or infinite. Nonetheless, we prove that the complexity of this construction and theorem are much higher than that for König's Lemma or other applications of compactness. The concepts from graph theory, computability theory and proof theory/reverse mathematics that we need for our analysis are discussed in $\$ 3$. Basic references for terminology, background and standard results not explicitly stated or otherwise attributed are Diestel [5] for graph theory; Rogers [23] and Sacks [25] for computability theory; and for reverse mathematics Simpson [29] with an approach which is primarily in terms of formal systems and Hirschfeldt [13] with one primarily emphasizing computability.

We follow two well established procedures for measuring the complexity of constructions and theorems. The first is basically computability theoretic. It has its formal beginnings in the 1950s but has much earlier roots in constructive or computable mathematics reaching back to antiquity. (See Ershov et al. [6] for history and surveys of the approach in several areas of combinatorics, algebra and analysis.) The measuring rod here is relative computability. We say a set A of natural numbers is (Turing) computable from a set B, $A \leq_{T} B$, if there is an algorithm (say on a Turing machine or any other reasonable model of general computation) that, when given access to all membership facts about B (an oracle for B) computes membership in A. The standard hierarchies of complexity here are based on iterations of the Turing jump. This operator takes B to B^{\prime}, the halting problem relativized to B, i.e. the set of programs with oracle for B, Φ_{e}^{B}, such that Φ_{e}^{B} halts on input e. For example, if the tree of König's Lemma is computable in B then there is a branch computable in the double jump $B^{\prime \prime}$ of B.

The second approach is proof theoretic. It measures the complexity of a theorem by the
logical strength of the axioms needed to prove it. This approach also has a long history but the formal subject, now called reverse mathematics, starts with H. Friedman's work in the 1970s (e.g. [7, 8]). One compares axiomatic systems S and T by saying that T is stronger than $S, T \vdash S(T$ proves $S)$ if one can prove every sentence $\Theta \in S$ from the axioms of T. Of course, we know what it means for Θ to be provable in S. The goal here is to characterize to the extent possible the axioms needed to prove a given mathematical theorem Θ. To this end, one begins with a weak base theory. Then one wants to find a system S such that not only does $S \vdash \Theta$ but also Θ (with the weak base theory) proves all the axioms of S. Hence the name reverse mathematics as we seek to prove the "axioms" of S from the theorem Θ. Typically, the systems here are formalized in arithmetic with quantification over sets as well as numbers. The standard base theory $\left(\mathrm{RCA}_{0}\right)$ corresponds to the axioms needed to do computable constructions. Stronger systems are then usually generated by adding comprehension axioms which assert the existence of specific families of sets. For example, a very important system is ACA_{0}. It is equivalent in the sense of reverse mathematics just described to König's Lemma. Formally, it asserts that every subset of the natural numbers defined by a formula that quantifies only over numbers (and not sets) exists. This is also equivalent to asserting that for every set B, the set B^{\prime} exists.

The early decades of reverse mathematics were marked by a large variety of results characterizing a wide array of theorems and constructions as being one of five specific levels of complexity including RCA_{0} and ACA_{0}. Each of these systems (Simpson's "big five") have corresponding specific recursion theoretic construction principles. In more recent decades, there has been a proliferation of results placing theorems and constructions outside the big five. Sometimes these are inserted linearly and sometimes with incomparabilities. They are now collectively often called the "zoo" of reverse mathematics. (See https://rmzoo.math.uconn.edu/diagrams/ for pictures.)

Theorems and constructions in combinatorics in general, and graph theory in particular, have been a rich source of such denizens of this zoo. Almost all of them have fallen below ACA_{0} (König's Lemma) and so have the objects they seek constructible computably in finitely many iterations of the Turing jump. Ramsey theory, in particular, has provided a very large class of constructions and theorems of distinct complexity. One example of the infinite version of a classical theorem of finite graph theory that is computationally and reverse mathematically strictly stronger than ACA $_{0}$ is König's Duality Theorem (KDT) for countable graphs. (Every bipartite graph has a matching and a cover consisting of one vertex from each edge of the matching.) The proofs of this theorem for infinite graphs (Podewski and Steffens [22] for countable and Aharoni [1] for arbitrary ones) are not just technically difficult but explicitly used both transfinite recursions and well orderings of all subsets of the given graph. These techniques lie far beyond ACA_{0}. Aharoni, Magidor and Shore [2] proved that this theorem is of great computational strength in that there are computable graphs for which the required matching and cover compute all the iterations of the Turing jump through all computable well-orderings. They also showed that it was strong reverse mathematically as it implied ATR $_{0}$, the standard system above ACA $_{0}$ used to deal with such transfinite recursions. Some of the lemmas used in each of the then known proofs were shown to be equivalent to the next and final of the big five systems, $\Pi_{1}^{1}-\mathrm{CA}_{0}$ and of corresponding computational strength. Simpson [28] later provided a new proof of the theorem using logical methods that avoided these lemmas and showed that the theorem itself is equivalent to ATR_{0} and so strictly weaker
than the lemmas both computationally and in terms of reverse mathematics.
The situation for the theorems of Halin type that we study here is quite different. The standard proofs do not seem to use such strong methods. Nonetheless, as we mentioned above, the theorems are much stronger than $A C A_{0}$ with some versions not even provable in $A T R_{0}$. We prove that these theorems occupy a few houses in the area of the reverse mathematics zoo devoted to what are called theorems (or theories) of hyperarithmetic analysis, THAs (Definition 3.13). Computationally, for each computable well ordering α, there is a computable instance of any THA which has all of its required objects Turing above $0^{(\alpha)}$, the α th iteration of the Turing jump. On the other hand, they are computationally and proof theoretically much weaker than ATR_{0} and so KDT. The point here is that there is a single computable graph such that the matching and cover required by KDT lies above $0^{(\alpha)}$ for all the computable well-orderings α, while for each computable instance of a THA there is a computable well-ordering α such that $0^{(\alpha)}$ computes the desired object. In our cases, the instances are graphs with arbitrarily many disjoint rays and the desired object is an infinite sequence of disjoint rays. (The general usage of terms like instances and solutions of a theorem or principle is described at the end of $\S 3$.)

Beginning with work of Kreisel [15], H. Friedman [9], Steel 30] and others in the 1960s and 1970s and continuing into the last decade (by Montalbán [16, 17, 19], Neeman [20, 21] and others), several axiomatic systems and logical theorems were found to be THAs and proven to lie in a number of distinct classes in terms of proof theoretic complexity. Until now, however, there has been only one mathematical but not logical example, i.e. one not mentioning classes of first order formulas or their syntactic complexity. This was a result (INDEC) about indecomposability of linear orderings in Jullien's thesis [14] (see Rosenstein [24, Lemma 10.3]). It was shown to be a THA by Montalbán [16].

The natural quest then became to find out if there are any other THAs in the standard mathematical literature. The issue was raised explicitly in Montalbán's "Open Questions in Reverse Mathematics" [18, Q30]. As our answer, we provide many examples. Most of them are provable in a well known system above $A C A_{0}$ gotten by adding on a weak form of the axiom of choice $\left(\Sigma_{1}^{1}-\mathrm{AC}_{0}\right)$.

Several of the basic Halin type theorems (the IRT ${ }_{\mathrm{XYZ}}$ defined after Definition 3.4) have versions (the $I R T_{\mathrm{XYZ}}^{*}$ of Definition 6.1) like those appearing in the original papers that show that there are always families of disjoint rays of maximal cardinality which are of the same computational strength as the basic versions (Proposition 6.3 and Corollary 6.4). On the other hand, the $I R T_{X Y Z}^{*}$ are strictly stronger proof theoretically than the $I R T_{X Y Z}$ because they imply more induction than is available in $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ (Theorem 6.8 and Corollary 6.9). Two of the variations we consider are as yet open problems of graph theory ([3] and Bowler, personal communication). We show that if we restrict the class of graphs to directed forests the principles are not only provable but reverse mathematically equivalent to $\Sigma_{1}^{1}-A C_{0}+I \Sigma_{1}^{1}$. Note that as $\mathrm{ATR}_{0} \nvdash \mathrm{I} \Sigma_{1}^{1}$ [29, IX.4.7], these theorems are not provable even in ATR_{0} or from KDT (Corollary 6.14). We do not know of other mathematical but nonlogical theorems of this strength. Other versions that require maximal sets of rays (Definition 6.17) are much stronger and, in fact, equivalent to $\Pi_{1}^{1}-\mathrm{CA}_{0}$ (Theorem 6.18).

2 Outline of Paper

Section 3 discusses basic concepts and background information. The first subsection (3.1) provides what we need from graph theory. Almost all the definitions are standard. At times we give slight variations that are equivalent to the standard ones but make dealing with the computability and proof theoretic analysis easier. We also state the theorems of Halin and some variants that are the main targets of our analysis.

The second subsection (3.2), assumes an intuitive view of computability of functions $f: N \rightarrow N$ such as having an algorithm given by a program in any standard computer language (possibly with access to an "oracle" providing information about a given set or function). It then gives the standard notions and theorems that can be found in basic texts on computability theory needed to follow our analysis of the computational complexity of the graph theoretic theorems we study. In particular, it notes the Turing jump operator and its iterations along countable well orderings. These are our primary computational measuring rods. The final subsection (3.3) provides the syntax and semantics for the formal systems of arithmetic that are used to measure proof theoretic complexity. It also describes the standard basic axiomatic systems and their connections to the computational measures of the previous subsection. It includes the formal definition of the class of theorems which includes most of our graph theoretic examples, the THAs, Theorems (or Theories) of Hyperarithmetic Analysis. These are defined in terms of the transfinite iterations of the Turing jump and the hyperarithmetic sets of the previous subsection. In addition it defines $\Sigma_{1}^{1}-A C_{0}$ a weak version of the axiom of choice that is an early well known example of such theories and plays a crucial role in our analysis.

Section 4 provides the proof that Halin's original theorem IRT (Definition 3.4) is computationally very complicated. For example, given any iteration $0^{(\alpha)}$ of the Turing jump, there is a computable graph satisfying the hypotheses of IRT such that any instance of its conclusion computes $0^{(\alpha)}$. Indeed, IRT is a THA. At times, theorems or lemmas are stated in terms of the formal systems of $\$ 3.3$, but the proofs rely only on the computational notions of $\$ 3.2$.

Section 5 studies several variations $\mathrm{IRT}_{\mathrm{XYZ}}$ of Halin's IRT where we consider directed as well as undirected graphs, edge rather than vertex disjointness for the rays and double as well as single rays. (See Definitions 3.1 and 3.2 and the discussion after Definition 3.4.) We provide reductions over RCA_{0} between many of the pairs of the eight possible variants. The proofs of these reductions proceed purely combinatorially by providing one computational process that takes an instance of some $I R T_{\mathrm{XYZ}}$, i.e. a graph satisfying its hypotheses, and produces a graph satisfying the hypotheses of another $I R T_{X^{\prime} Y^{\prime} Z^{\prime}}$ and another computable process that takes any solution to the $I R T_{X^{\prime} Y^{\prime} Z^{\prime}}$ instance, i.e. any sequence of rays satisfying the conclusion of $I R T_{X^{\prime} Y^{\prime} Z^{\prime}}$, and produces a solution to the original instance of $I R T_{X Y Z}$. (See Propositions 5.3, 5.5 and 5.7 and the associated Lemmas. An additional reduction using a stronger base theory is given in the next section (Theorem 6.15).)

We then show that five of the eight possible variants of IRT are THAs (Theorem 5.1). As mentioned in §1, of the remaining three, two are still open problems in graph theory. We do, however, have an analysis of their restrictions to special classes of graphs in Theorem 5.16 and §6.1. The last of the variations, IRT $_{\text {UED }}$, has been proven more recently by Bowler, Carmesin, Pott [3] using more sophisticated methods than the other results. We have some lower bounds
(Theorem 5.9) but we have yet to fully analyze the complexity of their construction.
In the next section (\$6) we study some variations of IRT that ask for different types of maximality for the solutions. The first sort actually follow the original formulation of IRT in Halin [11]: In any graph there is a set of disjoint rays of maximum cardinality. For uncountable graphs this amounts to a basic counting argument on uncountable cardinals as all rays are countable. When restricted to countable graphs these variations, IRT ${ }_{\text {XYZ }}^{*}$, are easily seen to be equivalent to our more modern formulation by induction. Technically, the induction used is for Σ_{1}^{1} formulas ($I \Sigma_{1}^{1}$) which is not available in $R C A_{0}$. More specifically we show (Proposition 6.3) that $\mathrm{IR} \mathrm{T}_{\mathrm{XYZ}}+\mathrm{I} \Sigma_{1}^{1}$ and $\mathrm{IR} \mathrm{T}_{\mathrm{XYZ}}^{*}+\mathrm{I} \Sigma_{1}^{1}$ are equivalent (over RCA_{0}). As the definition of THAs only depends on standard models where full induction holds, if $I R T_{X Y Z}$ is a THA then so is $I R T_{X Y Z}^{*}$.

We then prove that these maximal cardinality variants $I R T_{\mathrm{XYZ}}^{*}$ are strictly stronger proof theoretically than the basic IRT XYZ^{\prime} (when they are known to be provable in $\Sigma_{1}^{1}-\mathrm{AC}_{0}$). This is done by showing (Theorem 6.8 and the Remark that follows it) that the relevant IRT ${ }_{\text {XYZ }}^{*}$ all imply weaker versions of $I \Sigma_{1}^{1}$ that are analogous to the restrictions of $\Sigma_{1}^{1}-A C_{0}$ embodied in weak (or unique) $-\Sigma_{1}^{1}-\mathrm{AC}_{0}$ and finite $-\Sigma_{1}^{1}-\mathrm{AC}_{0}$ (Definitions 7.1 and 7.2). In all the cases, it is enough induction to prove (with the apparatus of the basic $\operatorname{IR} T_{\mathrm{XYZ}}$) the consistency of $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ and so by Gödel's second incompleteness theorem they cannot be proved in $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ (Corollary 6.9).

As for proving full Σ_{1}^{1} induction from an $I R T_{X Y Z}^{*}$ we are in much the same situation mentioned above for $\Sigma_{1}^{1}-A C_{0}$ and $I R T_{\text {XYZ }}$. In particular, $I R T_{D V D}^{*}$ and $I R T_{D E D}^{*}$ for directed forests each proves $I \Sigma_{1}^{1}$ as well as $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ (Theorems 6.12 and 6.13) and so are equivalent to $I \Sigma_{1}^{1}+\Sigma_{1}^{1}-\mathrm{AC}_{0}$. As before, this shows that they are strictly stronger than $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ (Corollary 6.14). Indeed, as mentioned at the end of $\$ 1$, they are not even provable in $A T R_{0}$. We do not know of any other mathematical theorem with this level of reverse mathematical strength.

The second variation of maximality, $\mathrm{MIRT}_{\mathrm{XYZ}}$, studied in $\$ 6.2$ is also mentioned in the original Halin paper [11]. It asks for a set of disjoint rays which is maximal in the sense of set containment. Of course, this follows immediately from Zorn's Lemma for all graphs. For countable graphs we provide a reverse mathematical analysis, showing that each of the MIRT ${ }_{\mathrm{XYZ}}$ is equivalent to $\Pi_{1}^{1}-\mathrm{CA}_{0}$ (Theorem 6.18).

In §7, we discuss the reverse mathematical relationships between the THAs associated with variations of Halin's theorem and previously studied THAs as well as one new logical THA (finite- $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ of Definition 7.1). Basically, all the $\mathrm{IRT} \mathrm{XYZ}^{*}$ (and so $\mathrm{IR} \mathrm{T}_{\mathrm{XYZ}}+\mathrm{I} \Sigma_{1}^{1}$) imply H. Friedman's ABW ${ }_{0}$ (Definition 7.4) by Theorem 7.7 and finite- $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ (Theorem 7.3). On the other hand, none of them are implied by it (Theorem 7.10) or by $\Delta_{1}^{1}-\mathrm{CA}_{0}$ (Definition 7.8 and Theorem 7.9). $\mathrm{ABW}_{0}+\mathrm{I} \Sigma_{1}^{1}$ does, however, imply finite $-\Sigma_{1}^{1}-\mathrm{AC}_{0}$ which is not implied by weak (unique) $-\Sigma_{1}^{1}-\mathrm{AC}_{0}$ (Goh [10]). Figure 4 summarizes many of the known relations with references.

In the penultimate section ($\$ 8$) we study the only use of $\Sigma_{1}^{1}-A C_{0}$ in each of our proofs of $\operatorname{IR} T_{\mathrm{XYZ}}$. It consists of $\mathrm{SCR}_{\mathrm{XYZ}}$ which says we can go from the hypothesis that there are arbitrarily many disjoint rays to a sequence $\left\langle X_{k}\right\rangle_{k}$ in which each X_{k} is a sequence of k many disjoint rays. We analyze the strength of the SCR $_{\mathrm{XYZ}}$ and the weakenings $\mathrm{WIRT}_{\mathrm{XYZ}}$ of $\mathrm{IRT}_{\mathrm{XYZ}}$ which each take the existence of such a sequence $\left\langle X_{k}\right\rangle_{k}$ as its hypothesis in place of there being arbitrarily many disjoint rays. For example, for all the $I R T_{X Y Z}$ which are consequences of $\Sigma_{1}^{1}-A C_{0}$ and so are THAs, IRT XYZ is equivalent to $\mathrm{SCR}_{\mathrm{XYZ}}$ over $R C A_{0}$ (Corollary 8.5) and
so all of them are also THAs. For the same choices of $X Y Z$, ACA $_{0}$ proves WIRT $_{\mathrm{XYZ}}$ over $R C A_{0}$. While a natural strengthening of WIRT $T_{X Y Z}$ does imply $A C A_{0}$ and indeed is equivalent to it (Theorem 8.9), we do not know if WIRT ${ }_{\mathrm{XYZ}}$ itself implies ACA_{0}. All we can prove is that it is not a consequence of RCA_{0} (Theorem 8.10).

In the last section ($\S 9$), we mention some open problems.

3 Basic Notions and Background

We begin with basic notions and terminology from graph theory. At times we use formalizations that are clearly equivalent to more standard ones but are easier to work with computationally or proof-theoretically. The following two subsections supply background and basic information about the standard computational and logical/proof theoretic notions that we use here to measure the complexity of the graph theorems and constructions that we analyze in the rest of this paper. Note that we denote the set of natural numbers by N when we may be thinking of them in a model of arithmetic as in 3.3 and by \mathbb{N} when we emphasize that we specifically want the standard natural numbers.

3.1 Graph Theoretic Notions

Definition 3.1. A graph H is a pair $\langle V, E\rangle$ consisting of a set V (of vertices) and a set E of unordered pairs $\{u, v\}$ with $u \neq v$ from V (called edges). These structures are also called undirected graphs (or here U-graphs). A structure H of the form $\langle V, E\rangle$ as above is a directed graph (or here D-graph) if E consists of ordered pairs $\langle u, v\rangle$ of vertices with $u \neq v$. To handle both cases simultaneously, we often use X to stand for undirected (U) or directed (D). We then use (u, v) to stand for the appropriate kind of edge, i.e. $\{u, v\}$ or $\langle u, v\rangle$.

An X-subgraph of the X-graph H is an X-graph $H^{\prime}=\left\langle V^{\prime}, E^{\prime}\right\rangle$ such that $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. It is an induced X-subgraph if $E^{\prime}=\left\{(u, v) \mid u, v \in V^{\prime} \wedge(u, v) \in E\right\}$.

Definition 3.2. An X-ray in H is a pair consisting of an X-subgraph $H^{\prime}=\left\langle V^{\prime}, E^{\prime}\right\rangle$ of H and an isomorphism f from N with edges $(n, n+1)$ for $n \in N$ to H^{\prime}. (Note that this implies that the range of f is the set V^{\prime}.) We say that the ray begins at $f(0)$. We also describe this situation by saying that H contains the X-ray $\left\langle H^{\prime}, f\right\rangle$. We sometimes abuse notation by saying that the sequence $\langle f(n)\rangle$ of vertices is an X-ray in H. A tail of an X-ray is a final segment of said X-ray. Similarly we consider double X-rays where the isomorphism f is from the integers $\mathcal{Z}=\{-n, n \mid n \in N\}$ with edges $(z, z+1)$ for $z \in \mathcal{Z}$. A tail of a double X-ray is a final segment of said X-ray, or an initial segment of said X-ray considered in reverse order.

We use Z-ray to stand for either a (single) ray $(Z=\mathrm{S})$ or double ray $(Z=\mathrm{D})$ and so we have, in general, Z - X-rays or just Z-rays if the type of graph (U or D) is already established. For brevity, when we describe rays we will often only list their vertices in order instead of defining H^{\prime} and f explicitly. However the reader should be aware that we always have H^{\prime} and f in the background.
H contains k many Z - X-rays for $k \in N$ if there is a sequence $\left\langle H_{i}, f_{i}\right\rangle_{i<k}$ such that each $\left\langle H_{i}, f_{i}\right\rangle$ is a Z - X-ray in H (with $H_{i}=\left\langle V_{i}, E_{i}\right\rangle$). H contains k many disjoint (or vertex-disjoint) Z - X-rays if the V_{i} are pairwise disjoint. H contains k many edge-disjoint
Z - X-rays if the E_{i} are pairwise disjoint. We often use Y to stand for either vertex (V) or edge (E) as in the following definitions.

An X-graph H contains arbitrarily many Y-disjoint Z - X-rays if it contains k many such rays for every $k \in N$.

An X-graph H contains infinitely many Y-disjoint Z - X-rays if there is an X-subgraph $H^{\prime}=\left\langle V^{\prime}, E^{\prime}\right\rangle$ of H and a sequence $\left\langle H_{i}, f_{i}\right\rangle_{i \in N}$ such that each $\left\langle H_{i}, f_{i}\right\rangle$ is a Z - X-ray in H (with $H_{i}=\left\langle V_{i}, E_{i}\right\rangle$) such that the V_{i} or E_{i}, respectively for $Y=V, E$, are pairwise disjoint and $V^{\prime}=\bigcup V_{i}$ and $E^{\prime}=\bigcup E_{i}$.

Definition 3.3. An X-path P in an X-graph H is defined similarly to single rays except that the domain of f is a proper initial segment of N instead of N itself. Thus they are finite sequences of distinct vertices with edges between successive vertices in the sequence. If $P=\left\langle x_{0}, \ldots, x_{n}\right\rangle$ is a path, we say it is a path of length n between x_{0} and x_{n}. Our notation for truncating and combining paths $P=\left\langle x_{0}, \ldots, x_{n}\right\rangle, Q=\left\langle y_{0}, \ldots, y_{m}\right\rangle$ and $R=\left\langle z_{0}, \ldots, z_{l}\right\rangle$ is as follows: $x_{i} P=\left\langle x_{i}, \ldots, x_{n}\right\rangle, P x_{i}=\left\langle x_{0}, \ldots, x_{i}\right\rangle$, and we use concatenation in the natural way, e.g., if the union of $P x, x Q y$ and $y R$ is a path, we denote it by $P x Q y R$. We treat rays as we do paths in this notation, as long as it makes sense, writing, for example, $x_{i} R$ for the ray which is gotten by starting R at an element x_{i} of $R ; R x_{i}$ is the path which is the initial segment of R ending in x_{i} and we use concatenation as for paths as well.

The starting point of the work in this paper is a theorem of Halin [11] that we call the infinite ray theorem as expressed in [5, Theorem 8.2.5(i)].

Definition 3.4 (Halin's Theorem). IRT, the infinite ray theorem, is the principle that every graph H which contains arbitrarily many disjoint rays contains infinitely many disjoint rays.

The versions of Halin's theorem which we consider in this paper allow for H to be an undirected or a directed graph and for the disjointness requirement to be vertex or edge. We also allow the rays to be single or double. The corresponding versions of Halin's Theorem are labeled as $\mathrm{IR}_{\mathrm{XYZ}}$ for appropriate values of X, Y and Z to indicate whether the graphs are undirected or directed ($X=\mathrm{U}$ or D); whether the disjointness refers to the vertices or edges $(Y=\mathrm{V}$ or E$)$ and whether the rays are single or double $(Z=\mathrm{S}$ or D$)$, respectively, in the obvious way. We often state a theorem for several or all $X Y Z$ and then in the proof use "graph", "edge" and "disjoint" unmodified with the intention that the proof can be read for any of the cases. This is convenient for minimizing repetition in some of our arguments.

We will also consider restrictions of these theorems to specific families of graphs. We need a few more notions to define them.

Definition 3.5. A tree is a graph T with a designated element r called its root such that for each vertex $v \neq r$ there is a unique path from r to v. A branch on (or in) T is a ray that begins at its root. We denote the set of its branches by $[T]$ and say that T is well-founded if $[T]=\emptyset$ and otherwise it is ill-founded. A forest is an effective disjoint union of trees, or more formally, a graph with a designated set R (of vertices called roots) such that for each vertex v there is a unique $r \in R$ such that there is a path from r to v and, moreover, there is only one such path. In general, the effectiveness we assume when we take effective disjoint unions of graphs means that we can effectively (i.e. computably) uniquely identify
each vertex in the union with the original vertex (and the graph to which it belongs) which it represents in the disjoint union.

A directed tree is a directed graph $T=\langle V, E\rangle$ such that its underlying graph $\hat{T}=\langle V, \hat{E}\rangle$ where $\hat{E}=\{\{u, v\} \mid\langle u, v\rangle \in E \vee\langle v, u\rangle \in E\}$ is a tree. A directed forest is a directed graph whose underlying graph is a forest.

Definition 3.6. An X-graph H is locally finite if, for each $u \in V$, the set $\{v \in E \mid(u, v) \in$ $E \vee(v, u) \in E\}$ of neighbors of u is finite. A locally finite X-tree is also called finitely branching. (Note this does not mean there are finitely many branches in the tree.)

Of course, there are many well known equivalent definitions of trees and associated notions. We have given one possible set of graph-theoretic definitions. In the case of undirected graphs our definition is equivalent to all the standard ones. Readers are welcome to think in terms of their favorite definition. Note, however, we are restricting ourselves to what would (in set theory) be called countable trees with all nodes of finite rank. Thus, we typically think of trees as subtrees of $N^{<N}$, i.e. the sets of finite strings of numbers (as vertices) with an edge between σ and τ if and only if they differ by one being an extension of the other by one element, e.g. $\sigma^{\curvearrowleft} k=\tau$.

It does not seem as if there is a single standard definition for directed graphs being directed trees. We have picked one that seems to be at least fairly common and works for the only situations for which we consider them in Theorems 5.16, 6.12, and 6.13 and Corollary 6.14.

3.2 Computability Hierarchies

While we may cite results about uncountable graphs, all sets and structures actually studied in this paper will be countable. Thus for purposes of defining their complexity, we can think of all of them as being subsets of, or relations or functions on, \mathbb{N}.

We do not give a formal stand alone definition of computability for sets or functions but assume an at least intuitive grasp of some model of computation such as by a Turing or Register machine that has unbounded memory and is allowed to run for unboundedly many steps. (We do provide in $\S 3.3$ a definition via definability in arithmetic that is equivalent to the formal versions of machine model definitions.) Thus we say a function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable if there is a program for one of these machines that computes $f(n)$ as output when given input n. A set X is computable if its characteristic function $\mathbb{N} \rightarrow\{0,1\}$ is computable. Note that as the alphabets or our languages are finite, there are only countably many programs and as our formation rules are effective, we have a computable list of the programs and hence one, Φ_{e}, of the partial functions they compute. (They are only partial as, of course, some programs fail to halt on some inputs.)

Fundamental to measuring the relative computational complexity of sets or functions is the notion of machines with oracles and Turing reduction. Given a set X or function f we consider machines augmented by the ability to produce $X(n)$ or $f(n)$ if it has already produced n. We say that such a machine is one with an oracle for X or f. We then say that X is computable from (or Turing reducible to) Y if there is a machine with oracle Y which computes X via some reduction Φ_{e}^{X}. We write this as $X \leq_{T} Y$. We say X is of the same
(Turing) degree as $Y, X \equiv_{T} Y$, if $X \leq_{T} Y$ and $Y \leq_{T} X$. We use all the same terminology and notations for functions.

The first level beyond the computable in our basic hierarchy of computable complexity is given by the halting problem $H=\left\{e \mid \Phi_{e}(e)\right.$ converges $\}$ that is H is set of e such that the computation of the e th machine Φ_{e} on input e eventually halts. We then define an operator on sets $X \longmapsto X^{\prime}=\left\{e \mid \Phi_{e}^{X}(e)\right.$ converges $\}$ that is X^{\prime} is the set of e such that the computation of the e th machine with oracle X, Φ_{e}^{X} on input e eventually halts. (It is easy to see that $H \equiv_{T} \emptyset^{\prime}$.) The crucial fact here is the undecidability of the halting problem (for every oracle), i.e. for every X, X^{\prime} is strictly above X in terms of Turing computability. The other basic fact that we need about \emptyset^{\prime} is that it is computably enumerable, i.e. there is a computable function f whose range is \emptyset^{\prime}. If $f(s)=x$ we say that x is enumerated in, or enters, 0^{\prime} at (stage) s. If we view H as defined by using the empty oracle \emptyset, the procedure that takes us from the halting problem to the Turing jump by replacing \emptyset as oracle by X is an instance of a general procedure called relativization. It takes any computable function or proof about computable functions or degrees (i.e. ones with oracle \emptyset) to the same function, or proof about functions, computable in X (or degrees above that of X). Almost always this procedure trivially transforms correct proofs with oracle \emptyset to ones with arbitrary oracle X. Typically, this transformation keeps the same programs doing the required work with any oracle. For example, X^{\prime} is computably enumerable in X (or relative to X), i.e. there is a function Φ_{e}^{X} whose range is X^{\prime} and this can be taken to be the same e such that Φ_{e}^{\emptyset} enumerates \emptyset^{\prime}. We also use X_{s}^{\prime} to denote the set of numbers enumerated in (or that have entered) X^{\prime} by stage s. This phenomena of the procedure or result not depending on the particular oracle or depending in a fixed computable way on some other parameters is described as its being uniform in the oracle or other parameters. We describe an important example of uniformity in Remark 3.9.

We can now generate a hierarchy of computational complexity by iterating the jump operator beginning with any set $X: X^{(0)}=X ; X^{(n+1)}=\left(X^{n}\right)^{\prime}$. While the finite iterations of the jump capture most construction techniques and theorems in graph theory (and most other areas of classical countable/separable mathematics), we will be interested in ones that go beyond such techniques and proofs. The basic idea is that we continue the hierarchy by iteration into the transfinite while still tying the iteration to computable procedures.

Definition 3.7. We represent well-orderings or ordinals α as well-ordered relations on \mathbb{N}. Typically such ordinal notations are endowed with various additional structure such as identifying 0 , successor and limit ordinals and specifying cofinal ω-sequences for the limit ordinals. If we have a representation of α then restricting the well-ordering to numbers in its domain provides representations of each ordinal $\beta<\alpha$. We generally simply work with ordinals and omit concerns about translating standard relations and procedures to the representation. An ordinal is recursive (in a set X) if it has a recursive (in X) representation. For a set X and ordinal (notation) α computable from X, we define the transfinite iterations $X^{(\beta)}$ of the Turing jump of X by transfinite induction on $\beta \leq \alpha: X^{(0)}=X ; X^{(\beta+1)}=\left(X^{\beta}\right)^{\prime}$ and for a limit ordinal $\lambda, X^{(\lambda)}=\oplus\left\{X^{(\beta)} \mid \beta<\lambda\right\}=\cup\left\{\beta \times X^{(\beta)} \mid \beta<\lambda\right\}$ (or as the effective disjoint sum over the $X^{(\beta)}$ in the specified cofinal sequence in λ).

Definition 3.8. $\mathrm{HYP}(X)$, the collection of all sets hyperarithmetic in X consists of those sets recursive in some $X^{(\alpha)}$ for α an ordinal recursive in X. We say that Y is hyperarithmetic
in X or hyperarithmetically reducible to $X, Y \leq_{h} X$ if $Y \in \operatorname{HYP}(X)$.
These sets too, will be characterized by a definability class in arithmetic in 83.3 . For now we just note that they clearly go far beyond the sets computable from the finite iterations of the jump.

The computational strength of our graph theoretic theorems such as IRT is measured by this hierarchy as we will show that, for every set X and every set Y hyperarithmetic in X, there is a graph G computable from X which satisfies the hypotheses of IRT but for which any collection of rays satisfying its conclusion computes Y. On the other hand, placing an upper bound on the strength of IRT requires analyzing its proof and the principles used in it. The relevant one is a form of the axiom of choice. We define it in the next subsection along with a general class of such principles, the theorems/theories of hyperarithmetic analysis which are, computationally, the primary objects of our analysis in this paper.

We note one important well known basic fact relating the jumps of X to trees computable from X. We will need it for our proofs that IRT and its variants are computationally complex enough to compute all the sets hyperarithmetic in any given set X (as the instances of the graphs range over graphs computable from X).

Remark 3.9. For any set X and any ordinal α computable from X, there is a sequence $\left\langle T_{\beta} \mid \beta<\alpha\right\rangle$ computable from X of trees (necessarily) computable from X such that each tree has exactly one branch P_{β} and P_{β} is of the same complexity as $X^{(\beta)}$, i.e. $P_{\beta} \equiv_{T} X^{(\beta)}$. The procedure for computing this sequence is uniform in X and the index for the program computing the well ordering α from X, i.e. there is one computable function that when given an oracle for X, an index for α (i.e. the i such that Φ_{i}^{X} is the well ordering α) and a β in the ordering, computes the whole sequence $\left\langle T_{\beta} \mid \beta<\alpha\right\rangle$ and the indices for the reductions between P_{β} and $X^{(\beta)}$. (See, e.g. [26, Theorem 2.3]). We may also easily assure that the T_{β} are effectively disjoint so that their union is a forest.

Some versions of the variations on IRT (see $\S 6.2$) that call for types of maximality for the infinite set of disjoint rays are stronger both computationally and proof theoretically than the $I R T_{\mathrm{XYZ}}$ described above. Their computational strength is captured by a kind of jump operator that goes beyond all the hyperarithmetic ones. It captures the ability to tell if a computable ordering is a well-ordering.

Definition 3.10. The hyperjump of X, \mathcal{O}^{X}, is the set $\left\{e \mid \Phi_{e}^{X}\right.$ is (the characteristic function of) a subtree of $\mathbb{N}<\mathbb{N}$ which is well-founded $\}$.

This operator also corresponds to a syntactically defined level of comprehension as we note in $\$ 3.3$.

3.3 Logical and Axiomatic Hierarchies

The basic notions from logic that we need here are those of languages, structures and axiomatic systems and proofs. As we will deal only with countable sets and structures, we can assume that we are dealing just with the natural numbers with a way to define and use sets and functions on them. Thus, at the beginning, we have in mind the natural numbers \mathbb{N} along with the usual apparatus of the language of (first order) arithmetic, say,$+ \times,<, 0$ and

1 along with the syntax of standard first order logic (the Boolean connectives \vee, \wedge and \neg; the variables such as x and y ranging over the numbers with the usual quantifiers $\forall x$ and $\exists y$ as well as the standard equality relation $=$). A structure for this language is a set N along with elements for 0 and 1, binary functions for + and \times and a binary relation for $<$. We also need a way of talking about subsets of (or functions on) the numbers. We follow the standard practice in reverse mathematics of using sets and defining functions in terms of their graphs. So we expand our language by adding on new classes of (second order) variables such as X and Y and the associated quantifiers $\forall X$ and $\exists Y$ along with a new relation symbol \in between numbers and sets.

A structure for this language is one of the form $\mathcal{N}=\langle N, S,+, \times,<, 0,1, \in\rangle$ where its restriction $\langle N,+, \times,<, 0,1\rangle$ is a structure for first order arithmetic and $S \subseteq 2^{N}$ is a specified nonempty collection of subsets of N disjoint from N, the set of "numbers" of \mathcal{N}, over which the second order quantifiers and variables of our language range. It is called the second order part of \mathcal{N}. The usual membership symbol \in always denotes the standard membership relation between elements of N and subsets of N that are in S and the language only allows atomic formulas using \in which are of the form $t \in X$ for t a term of the first order language and X is a second order variable. So a sentence Θ is true in $N, \mathcal{N} \vDash \Theta$, if first order quantification is interpreted as ranging over N, second order quantification ranges over S and the relations and functions of the language are as described. This specifies the semantics for second order arithmetic. Note that, following [29], we do not take equality for sets to be a primitive relation on this structure. The notation for it is viewed as being defined by $A=B \leftrightarrow \forall n(n \in A \leftrightarrow n \in B)$.

Proof theoretic notions deal with all possible structures for the language and axiom systems to specify what we need in any particular argument. For most of our purposes and all of the computational ones, one can restrict attention to standard models of arithmetic, i.e. ones \mathcal{N} with $N=\mathbb{N}$ and some $S \subseteq 2^{\mathbb{N}}$ with the usual interpretations of the functions and relations. We generally abbreviate these structures as $\langle\mathbb{N}, S\rangle$ with $S \subseteq 2^{\mathbb{N}}$, or simply S, as all the functions and relations are then fixed.

We view the syntax as one for a two sorted first order logic. So the (first order) variables x, y, \ldots range over the first sort (N) and the second order ones X, Y, \ldots over the second sort (S). We assume any standard proof theoretic system with the caveat that $=$ is interpreted as true equality with the equality axioms included only for N. For S it is a relation defined as above. This generates the provability notion \vdash used above to define our notion of logical strength and equivalences of theories (sets of sentences often called axioms) as above. We now define the standard weak base theory RCA_{0} used to define the logical strength of mathematical theorems as described above. We then define a few other common systems that will be used later. The formal details can be found in [29].

Each axiomatic subsystem of second order arithmetic that we consider contains the standard basic axioms for,$+ \times$, and $<$ (which say that N is a discrete ordered semiring) and an Induction Axiom:

$$
\left(\mathrm{I}_{0}\right) \quad(\forall X)((0 \in X \wedge \forall n(n \in X \rightarrow n+1 \in X)) \rightarrow \forall n(n \in X)) .
$$

Typically axiom systems for second order arithmetic are defined by adding various types of set existence axioms although at times additional induction axioms are used as well. In order to define them we need to specify various standard syntactic classes of formulas
determined by quantifier complexity. As usual, we add to our language bounded quantifiers $\forall x<t$ and $\exists x<t$ for first order (i.e. arithmetic) terms t defined in the standard way. We typically denote formulas by capital Greek letters except that the indexed Φ_{e} and Φ_{e}^{X} refer, as above, to our fixed enumeration of the Turing machines and associated partial functions.

Definition 3.11. The Σ_{0}^{0} and Π_{0}^{0} formulas of second order arithmetic are just the ones with only bounded quantifiers but we allow parameters for elements of either N or $S(\mathcal{N})$ when working with a structure \mathcal{N}. Proceeding inductively, a formula Φ is $\Sigma_{n+1}^{0}\left(\Pi_{n+1}^{0}\right)$ if it is of the form $\exists x \Psi(\forall x \Psi)$ where Ψ is $\Pi_{n}^{0}\left(\Sigma_{n}^{0}\right)$. We assume some computable coding of all these formulas (viewed as strings of symbols from our language) by natural numbers. We say Φ is arithmetic if it is Σ_{n}^{0} or Π_{n}^{0} for some $n \in \mathbb{N}$. It is $\Sigma_{1}^{1}\left(\Pi_{1}^{1}\right)$ if it is of the form $\exists X \Psi(\forall X \Psi)$ where Ψ is arithmetic. (One can continue to define Σ_{n}^{1} and Π_{n}^{1} in the natural way but we will not need to consider such formulas here.) We say a set X is in one of these classes Γ relative to A (i.e. with A as a parameter) if there is a formula $\Psi(n, A) \in \Gamma$ such that $n \in X \Leftrightarrow \Psi(n, A)$. If X is both \sum_{n}^{i} in A and Π_{n}^{i} in A it is called Δ_{n}^{i} in A.

We mention a few additional standard connections between the syntactic complexity of the definition of a set X and X 's properties in terms of computability and graph theoretic notions. They can all be found in [23].

Proposition 3.12. The sets $A^{(n)}$ are Σ_{n}^{0} in A. A set X is computable in A if and only if it is Δ_{1}^{0} in A. More generally, it is computable in $A^{(n)}$ if and only if it is Δ_{n+1}^{0} in A. It is hyperarithmetic in A if and only if it is Δ_{1}^{1} in A. There is a computable function $f(e, n)$ such that if X is Σ_{1}^{1} in A via the Σ_{1}^{1} formula with code e then for every $n, \Phi_{f(e, n)}^{A}$ is (the characteristic function of) a tree T such that $n \in X \Leftrightarrow T$ has a branch.

The first system for analyzing the proof theoretic strength of theorems and theories in reverse mathematics is just strong enough to prove the existence of the computable sets and so supplies us with all the usual computable functions such as pairing $\langle n, m\rangle$ or more generally those coding finite sequences as numbers. In particular, it provides the predicates defining the (codes e of) the partial computable functions Φ_{e}^{X} and the relations saying the computation $\Phi_{e}^{X}(n)$ halts in s many steps with output y. Thus we have the basic tools to define and discuss Turing reducibility and the Turing jump. It is our weak base theory and is assumed to be included in every system we consider.
$\left(\mathrm{RCA}_{0}\right)$ Recursive Comprehension Axioms: In addition to the ones mentioned above, its axioms include the schemes of recursive (generally called Δ_{1}^{0}) comprehension and Σ_{1}^{0} induction:

$$
\begin{aligned}
\left(\Delta_{1}^{0}-\mathrm{CA}\right) & \forall n(\Phi(n) \leftrightarrow \Psi(n)) \rightarrow \exists X \forall n(n \in X \leftrightarrow \Phi(n)) \text { for all } \\
& \Sigma_{1}^{0} \text { formulas } \Phi \text { and } \Pi_{1}^{0} \text { formulas } \Psi \text { in which } X \text { is not free. } \\
\left(\mathrm{I}_{1}^{0}\right) & (\Phi(0) \wedge \forall n(\Phi(n) \rightarrow \Phi(n+1))) \rightarrow \forall n \Phi(n) \text { for all } \Sigma_{1}^{0} \text { formulas } \Phi .
\end{aligned}
$$

Note that these formulas may have free set or number variables. As usual, the existence assertion $\exists X \ldots$ of the axiom is taken to mean that for each instantiation of the free variables (by numbers or sets, as appropriate, called parameters) there is an X as described. We take this for granted as well as the restriction that the X is not free in the rest of the formula in all of the set existence axioms of any of our systems.
RCA_{0} suffices to define and manipulate the basic notions of computability listed at the beginning of Section 3.2. The standard models of RCA_{0} are just those whose second order part is closed under Turing reduction and disjoint union $(X \oplus Y=\{\langle 0, x\rangle \mid x \in X\} \cup\{\langle 1, y\rangle \mid$ $y \in Y\}$). As suggested above what are now often called the computable in A sets which are, as mentioned above, the Δ_{1}^{0} in A sets, were originally called the sets recursive in A. Hence the terminology in RCA_{0}.

Any axiom system we consider from now on will be assumed to include $R C A_{0}$. If we have some axiom scheme or principle $A B C$ we typically denote the system formed by adding it to $R C A_{0}$ by $A B C_{0}$. We next move up to the arithmetic comprehension axiom and its system.
(ACA) $\exists X \forall n(n \in X \leftrightarrow \Phi(n))$ for every arithmetic formula Φ.
As mentioned above the $X^{(n)}$ are defined by a Σ_{n}^{0} formula with X as a parameter. So one can show that this system is equivalent (over RCA_{0}) to the totality of the Turing jump operator, i.e. for every X, X^{\prime} exists. Its standard models are those of RCA_{0} whose second order part is also closed under Turing jump. It is also equivalent (in the sense of reverse mathematics) to König's Lemma, which asserts that every finitely branching tree with paths of arbitrarily long length has a branch.

In general, we say one system of axioms S is logically or reverse mathematically reducible to another T over one R if $R \cup T \vdash \psi$ for every sentence $\psi \in S$. Note that S and/or T may be a single sentence or theorem. We say that S and T are equivalent over R if each is reducible to the other. If no system R is specified we assume that RCA_{0} is intended.

As we will not deal with it, we have omitted the formal definition of the usual system $W K L_{0}$ which falls strictly between $R C A_{0}$ and $A C A_{0}$. It is characterized by the restriction of König's Lemma to trees that are subsets of $2^{<N}$, the tree of finite binary strings under extension.

The next system of the five basic ones after $A C A_{0}$ is $A T R_{0}$. Its defining axiom says that arithmetic comprehension can be iterated along any countable well-order and so implies the existence of the sets hyperarithmetic in X for each X but is computationally stronger than this assumption. As usual the formal definition can be found in [29].

Instead, we formally describe the computationally defined class of theorems/theories that are the main focus of this paper and include several variations of IRT. The definition is semantic, not axiomatic and involves only standard models. (Indeed by Van Wesep [31, 2.2.2], there can be no axiomatic characterization of this class in second order arithmetic.)

Definition 3.13. A sentence (theory) T is a theorem (theory) of hyperarithmetic analysis (THA) if

1. For every $X \subseteq \mathbb{N},\langle\mathbb{N}, \operatorname{HYP}(X)\rangle \vDash T$ and
2. For every $S \subseteq 2^{\mathbb{N}}$, if $\langle\mathbb{N}, S\rangle \vDash T$ and $X \in S$ then $\operatorname{HYP}(X) \subseteq S$.

It is worth pointing out some of the relations between THAs and ATR $_{0}$. THAs are defined by only using standard models and iterations of the jump over true well orderings. ATR ${ }_{0}$ talks about all models of RCA_{0} and asserts the existence of iterates of the jump over all orderings that appear well-founded in the model. Thus for standard models it implies the second clause of the definition of THAs (Definition 3.13). On the other hand, there is a
recursive linear order with no hyperarithmetic infinite descending sequence and so it seems well-founded in HYP but it has a well-founded part longer than every recursive ordinal. Thus iterating the jump along this ordering would yield a set strictly Turing above every hyperarithmetic set. In particular, HYP is not a model of $A T R_{0}$ which therefore is not a THA. (See e.g. [29, V.2.6].)

The last of the standard axiomatic systems, $\Pi_{1}^{1}-\mathrm{CA}_{0}$, is characterized by the comprehension axiom for Π_{1}^{1} formulas:
(Π_{1}^{1}-CA) $\exists X \forall k(k \in X \leftrightarrow \Phi(k))$ for every Π_{1}^{1} formula $\Phi(k)$.
Remark 3.14. The hyperjump, T^{X}, is clearly a Π_{1}^{1} set with parameter X. In fact, every Π_{1}^{1} set with parameter X is reducible to T^{X}. Indeed, there is a computable function $f(e, n)$ such that for every index e for a Π_{1}^{1} formula $\Psi(n)$ with parameter X and every $n, \Psi(n) \Leftrightarrow f(e, n) \in$ T^{X} [23, Corollary 16.XX(b)]. Thus $\Pi_{1}^{1}-\mathrm{CA}_{0}$ corresponds to closure under the hyperjump. We will see it appear as equivalent to a version of IRT where we ask for a maximal set of disjoint rays in Theorem 6.18.

For this paper, the most important other existence axiom is a restricted form of the axiom of choice.
$\left(\Sigma_{1}^{1}\right.$-AC) $\forall n \exists X \Phi(n, X) \rightarrow \exists X \forall n \Phi\left(n, X^{[n]}\right)$ where Φ is arithmetic and $X^{[n]}=\{m \mid$ $\langle n, m\rangle \in X\}$ is the nth column of X.

A more common but clearly equivalent version of this axiom allows Φ to be Σ_{1}^{1}. A variant commonly called weak- Σ_{1}^{1} - AC (introduced in Definition 7.1 as unique- $\Sigma_{1}^{1}-\mathrm{AC}$) requires the corresponding Φ to be arithmetic. To make these and other choice axioms uniform we have adopted the format required elsewhere and equivalent here to be used for all the variations. The system $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ is well known to be a THA (essentially in Kreisel [15]). Thus it is strictly stronger than $A C A_{0}$. On the other hand, it is strictly weaker than $A T R_{0}$. (It is known that $\mathrm{ATR}_{0} \vdash \Sigma_{1}^{1}-\mathrm{AC}_{0}[29, ~ V .8 .3]$ but the converse fails as $\Sigma_{1}^{1}-\mathrm{AC}$ is true in HYP while ATR_{0}, as we have pointed out, is not.) This choice axiom plays a crucial role in our analysis because we provide the upper bound on the strength of most of our theorems by showing that they follow from $\Sigma_{1}^{1}-\mathrm{AC}_{0}$. This provides the computational upper bound for being a THA as any consequence of a THA must also satisfy Definition 3.13(1). Thus the bulk of our proofs for the computational complexity of the theorems we study consist of showing that they imply Definition 3.13(2), i.e. closure under "hyperarithmetic in".

Over the past fifty years, several other logical axioms have been shown to be THA. We will discuss some of them in $\$ 7$. However, as we discussed in $\$ 1$, only one somewhat obscure purely mathematical theorem was previously known to be a THA. We provide several more in this paper (Theorem 5.1, Corollary 6.4 and Theorem 6.13). We also introduce a new logical axiom, finite- Σ_{1}^{1}-AC (Definition 7.2) which is a THA as well.

For those interested in the proof theory and so nonstandard models, we also at times explicitly consider the induction axiom at the same Σ_{1}^{1} level.
$\left(I \Sigma_{1}^{1}\right)(\Phi(0) \wedge \forall n(\Phi(n) \rightarrow \Phi(n+1))) \rightarrow \forall n \Phi(n)$ for every Σ_{1}^{1} formula Φ.
This axiom does not imply the existence of any infinite sets and is, of course, true in every standard model. Thus the readers interested only in the computational complexity of the Halin type theorems can safely ignore these considerations.

It is in the nature of reverse mathematics that sentences and sets of sentences of second order arithmetic are often viewed in several different ways. In different contexts they may be seen as mathematical or logical principles, axioms, axiom schemes, theories, theorems or the like. We point out what may be a less familiar terminology that is currently popular. What might be seen as a typical axiom or theorem asserting that for every X of some sort there is a Y with some relation to X, i.e. a sentence of the form $\forall X(\Phi(X) \rightarrow \exists Y \Psi(X, Y))$ may be called a principle. With this terminology come the notions of an instance of the principle, i.e. an X satisfying Φ and a solution for X, i.e. a Y such that $\Psi(X, Y)$ holds.

4 IRT and Hyperarithmetic Analysis

We devote this section to the proof of
Theorem 4.1. IRT is a theorem of hyperarithmetic analysis.
In this section we consider only vertex-disjoint single rays in undirected graphs, as in the statement of IRT. The proof of Theorem 4.1 will be split into two parts. The first part verifies that IRT satisfies the second clause of Definition 3.13 .

Theorem 4.2. Every standard model of $\mathrm{RCA}_{0}+$ IRT is closed under hyperarithmetic reduction.

Proof. Fix a standard model \mathcal{M} of $\mathrm{RCA}_{0}+\mathrm{IRT}$. First, we show that \mathcal{M} contains \emptyset^{\prime}. By relativizing the proof, it follows that \mathcal{M} is closed under Turing jump.

For each n, consider the tree $T_{n} \subseteq N^{<N}$ consisting of all strings of the form $s^{\sim} 0^{t}$ such that some number below n is enumerated into \emptyset^{\prime} at stage s, and either $t \leq s$ or $\emptyset_{s}^{\prime} \upharpoonright n=\emptyset_{t}^{\prime} \upharpoonright n$. Observe that T_{n} has a unique computable branch $\left\{s^{\wedge} 0^{t} \mid t \in N\right\}$, where s is the smallest number such that $\emptyset^{\prime} \upharpoonright n=\emptyset_{s}^{\prime} \upharpoonright n$.

Consider the disjoint union $\bigsqcup_{n} T_{n}$. Observe that $\bigsqcup_{n} T_{n}$ satisfies the premise of IRT (in \mathcal{M}), because each T_{n} has a computable branch. Apply IRT to $\bigsqcup_{n} T_{n}$ to obtain a sequence $\left\langle R_{i}\right\rangle_{i}$ of disjoint rays in $\bigsqcup_{n} T_{n}$. Each R_{i} is contained in some T_{n}. We can, uniformly in i, extend or truncate R_{i} to the unique branch P_{n} of T_{n}. Hence $\left\langle R_{i}\right\rangle_{i}$ computes a sequence of infinitely many distinct branches P_{n}, which in turn computes longer and longer initial segments of \emptyset^{\prime}. This proves that \mathcal{M} contains \emptyset^{\prime}.

Next we show that, for each computable limit ordinal λ, if \mathcal{M} contains $\emptyset^{(\alpha)}$ for every $\alpha<\lambda$ then \mathcal{M} contains $\emptyset^{(\lambda)}$. (Again the desired result follows by relativization.) By Proposition 3.9, there is a computable sequence $\left\langle T_{\beta}\right\rangle_{\beta<\lambda}$ of trees such that each tree has exactly one branch $P_{\beta} \equiv_{T} \emptyset^{(\beta)}$ with these reductions computed uniformly. Fix an increasing computable sequence $\left\langle\alpha_{n}\right\rangle_{n}$ which is cofinal in λ and consider the disjoint union $\bigsqcup_{n} T_{\alpha_{n}}$. Observe that $\bigsqcup_{n} T_{\alpha_{n}}$ satisfies the premise of IRT (in \mathcal{M}): for each n, $\emptyset^{\left(\alpha_{n}\right)}$ computes the branches $P_{\alpha_{m}}$ for $m \leq n$. Apply IRT to $\bigsqcup_{n} T_{\alpha_{n}}$ to obtain a sequence $\left\langle R_{i}\right\rangle_{i}$ of disjoint rays in $\bigsqcup_{n} T_{\alpha_{n}}$. As before, $\left\langle R_{i}\right\rangle_{i}$ computes a sequence of infinitely many distinct branches $P_{\alpha_{n}}$, and hence a sequence of infinitely many distinct $\emptyset^{\left(\alpha_{n}\right)}$. Each $\emptyset^{\left(\alpha_{n}\right)}$ uniformly computes $\emptyset^{\left(\alpha_{m}\right)}$ for $m \leq n$, so we conclude that $\left\langle R_{i}\right\rangle_{i}$ computes $\bigoplus_{m} \emptyset^{\left(\alpha_{m}\right)}$ as desired.

It follows that IRT is not provable in ACA_{0}, despite the apparent similarity between IRT and a compactness result. (Indeed, IRT is not even provable in $\Delta_{1}^{1}-\mathrm{CA}_{0}$ (Theorem 7.9).)

Next, we present essentially the proof of IRT attributed to Andreae (see [5, Theorem 8.2.5 and bottom of pg. 275]) and then analyze it with an eye to the axioms which can be used to formalize it. We then use this analysis to complete the proof of Theorem 4.1.

The key combinatorial lemma implicit in Andreae's proof is:
Lemma 4.3. Given disjoint rays $\left\langle R_{i}\right\rangle_{i<n}$ and disjoint rays $\left\langle S_{j}\right\rangle_{j<n^{2}+1}$ there are $n+1$ disjoint rays $R_{0}^{\prime}, \ldots, R_{n}^{\prime}$ such that for each $i<n, R_{i}$ and R_{i}^{\prime} start at the same vertex.

Before proving Lemma 4.3, let us use it to prove IRT.
Proof of IRT assuming Lemma 4.3. Given a graph which has arbitrarily many disjoint rays, we build by recursion on $n \geq 1$ sequences $\left\langle R_{i}^{n}\right\rangle_{i<n}$ of disjoint rays with initial segments P_{i}^{n} of length n such that P_{i}^{n+1} is P_{i}^{n} followed by one more vertex for $i<n$. The required infinite sequence of disjoint rays will then be given by $R_{i}=\bigcup\left\{P_{i}^{n} \mid n>0\right\}$.

Suppose that we have $\left\langle R_{i}^{n}\right\rangle_{i<n}$ and $\left\langle P_{i}^{n}\right\rangle_{i<n}$. By assumption, let $S_{0}, \ldots, S_{2 n^{2}}$ be a sequence of disjoint rays. Discard all rays S_{j} which contain a vertex of some P_{i}^{n}. There are at most n^{2} many of them, so by discarding and renumbering if necessary we are left with $S_{0}, \ldots, S_{n^{2}}$.

For each $i<n$, let x_{i} denote the first vertex on R_{i}^{n} after P_{i}^{n}. Apply Lemma 4.3 to $\left\langle x_{i} R_{i}^{n}\right\rangle_{i<n}$ and $S_{0}, \ldots, S_{n^{2}}$. We obtain $n+1$ disjoint rays $R_{0}^{\prime}, \ldots, R_{n}^{\prime}$ such that for each $i<n$, R_{i}^{\prime} begins at vertex x_{i}. Now let $R_{i}^{n+1}=P_{i}^{n} x_{i} R_{i}^{\prime}$ for $i<n$ and $R_{n}^{n+1}=R_{n}^{\prime}$. These are disjoint by construction. This completes the inductive step of the construction of the $R_{0}^{n}, \ldots, R_{n-1}^{n}$ and so provides the required witnesses for IRT.

It remains to prove Lemma 4.3. The key ingredient is Menger's theorem for finite graphs. If A and B are disjoint sets of vertices in a graph, we say that P is an $A-B$ path if P starts with some vertex in A and ends with some vertex in B. A set of vertices S separates A and B if any $A-B$ path contains at least one vertex in S.

Theorem 4.4 (Menger, see [5, Theorem 3.3.1]). Let G be a finite graph. If A and B are disjoint sets of vertices in G, then the minimum size of a set of vertices which separate A and B is equal to the maximum size of a set of disjoint $A-B$ paths.

We now present the proof of Lemma 4.3 .
Proof of Lemma 4.3. Suppose we are given n disjoint rays R_{0}, \ldots, R_{n-1} and $n^{2}+1$ disjoint rays $S_{0}, \ldots, S_{n^{2}}$. First, define the set

$$
\left\{\langle i, q\rangle \mid R_{i} \text { intersects } S_{q}\right\} .
$$

Then we perform the following recursive procedure. At each step, check if there is some $i<n$ such that R_{i}^{\prime} has not been defined and R_{i} intersects at most n many rays S_{q} which have not been discarded. If there is no such i, we end the procedure. Otherwise, find the least such i and do the following:

1. discard all rays S_{q} which intersect R_{i};
2. define $R_{i}^{\prime}=R_{i}$.

After the procedure is complete, let I be the set of $i<n$ for which R_{i}^{\prime} has not been defined. Let \mathcal{S} be the set of rays S_{q} which have not been discarded. Let $m=|I|$. We observe that $|\mathcal{S}| \geq m^{2}+1$, because

$$
\left(n^{2}+1\right)-(n-m) n=m n+1 \geq m^{2}+1
$$

Next, for each $i \in I$, let z_{i} be the first vertex on R_{i} such that $R_{i} z_{i}$ meets exactly m many rays in \mathcal{S}. (Each z_{i} exists by construction of I.)

Observe that the finite set $\bigcup_{i \in I} R_{i} z_{i}$ meets at most m^{2} many rays in \mathcal{S}. Since $|\mathcal{S}| \geq m^{2}+1$, we may pick some ray in \mathcal{S} which does not meet $\bigcup_{i \in I} R_{i} z_{i}$. We define R_{n}^{\prime} to be said ray. Then, discard all rays in \mathcal{S} which do not meet $\bigcup_{i \in I} R_{i} z_{i}$.

Finally, we use Menger's theorem to define R_{i}^{\prime} for each $i \in I$. For each $i \in I$, let x_{i} denote the first vertex of R_{i}. For each q such that S_{q} remains in \mathcal{S}, let y_{q} be the first vertex on S_{q} such that $y_{q} S_{q}$ and $\bigcup_{i \in I} R_{i} z_{i}$ are disjoint. Then consider the following finite sets of vertices:

$$
\begin{aligned}
X & =\left\{x_{i} \mid i \in I\right\} \\
Y & =\left\{y_{q} \mid S_{q} \in \mathcal{S}\right\} \\
H & =\bigcup_{i \in I} R_{i} z_{i} \cup \bigcup_{S_{q} \in \mathcal{S}} S_{q} y_{q} .
\end{aligned}
$$

We want to apply Menger's theorem to $X, Y \subseteq H$. Towards that end, we claim that X cannot be separated from Y in H by fewer than m vertices.

Suppose that $A \subseteq H$ and $|A|<m$. Since $|I|=m$ and $\left\{R_{i} \mid i \in I\right\}$ is disjoint, there is some $i \in I$ such that R_{i} does not meet A. Next, since $R_{i} z_{i}$ meets m many disjoint rays in \mathcal{S}, there is some q such that $S_{q} \in \mathcal{S}$ and $R_{i} z_{i}$ meets S_{q}, but S_{q} does not meet A. Let z be any vertex in both $R_{i} z_{i}$ and S_{q}. Then $R_{i} z S_{q} y_{q}$ is a path in H from x_{i} to y_{q} which does not meet A. This proves our claim.

By Menger's theorem, there are m many disjoint $X-Y$ paths in H. Then, for each $i \in I$, define R_{i}^{\prime} by starting from x_{i}, then following the $X-Y$ path given by Menger's theorem to some y_{q}, and finally following S_{q}.

We have constructed a collection $R_{0}^{\prime}, \ldots, R_{n}^{\prime}$ of rays. It is straightforward to check that they are disjoint, and that for each $i<n, R_{i}$ and R_{i}^{\prime} start at the same vertex.

We now analyze these proofs from a reverse mathematical perspective to show that IRT follows from the THA $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ and so also satisfies the first clause of Definition 3.13.

Theorem 4.5. i) IRT and $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ each implies ACA_{0}.
ii) $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ implies IRT. Hence for every $Y \subseteq \mathbb{N}$, $\operatorname{HYP}(Y)$ satisfies IRT.

Proof. i) The proof of the first part of Theorem 4.2 essentially shows that IRT implies ACA $_{0}$. One point to note is that for each n, RCA_{0} proves there is some s such that $\emptyset^{\prime} \upharpoonright n=\emptyset_{s}^{\prime} \upharpoonright n$ (using e.g. [29, II.3.9]). Now note that the same argument also proves the fact (essentially in [15]) that $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ implies ACA_{0} as it directly supplies the sequence of branches P_{n} in T_{n}.
ii) The proof of IRT presented above is easily seen to be one in ACA $_{0}$, except for two points. First, each step n of the induction assumed we had available a sequence $S_{0}, \ldots, S_{n^{2}}$ of disjoint rays in our graph. However, all we know is that for each n, there is some collection
of disjoint rays of size n. To access this information for each n in a recursive construction, we require that there is a single sequence R_{n} such that the nth entry of the sequence is a collection of disjoint rays of size n. Such a sequence can be obtained using the axiom of choice. In this case, since the predicate "there exists n many disjoint rays" is Σ_{1}^{1}, such a sequence can be obtained using $\Sigma_{1}^{1}-\mathrm{AC}_{0}$. Therefore we may assume we have a sequence $S=\left\langle\left\langle S_{j}^{n}\right\rangle_{j<n}\right\rangle_{n>0}$ with each $\left\langle S_{j}^{n}\right\rangle_{j<n}$ a sequence of disjoint rays and the graph G consisting of all the vertices and edges occurring in any S_{j}^{n}. We begin our construction with $R_{0}^{1}=S_{0}^{1}$.

The second point is the iterated application of Lemma 4.3. The proof of that Lemma can be done in ACA_{0}. (In particular, one can check that Menger's theorem is provable in RCA_{0} by following the first proof for it given in [5, Theorem 3.3.1].) However, here we need a bit more information as generally we cannot, in ACA_{0}, carry out recursive constructions that increase complexity (even by some fixed number of jumps) at each step. We can only carry out recursions where each step is done computably in some set of the model. So it suffices to show that the constructions for all the instances of Lemma 4.3 needed in its iterations in the proof can be done computably in $(G \oplus S)^{\prime}$.

The crucial observation is that, by an induction starting with $R_{0}^{1}=S_{0}^{1}$, we may take each R_{i}^{n} to be of the form $P Q$ where P is a finite path in G and Q is a tail of one of the S_{j}. To see this simply note that each ray $R_{k}^{\prime} \neq R_{k}$ constructed in the Lemma starts with an initial segment of some R_{i}; it continues with a finite path in G and ends with a tail of some $S_{j}^{2 n^{2}+1}$. Thus computably in $(G \oplus S)^{\prime}$ we can at every stage find one of these descriptions that provides the disjoint rays needed for the next stage of the recursion. Thus the sequences $\left\langle\left\langle R_{i}^{n}\right\rangle_{i<n}\right\rangle_{n>0}$ and $\left\langle\left\langle P_{i}^{n}\right\rangle_{i<n}\right\rangle_{n>0}$ are computable from $(G \oplus S)^{\prime}$. The sequence $\left\langle\bigcup\left\{P_{i}^{n} \mid n>0\right\}\right\rangle_{i \in N}$ is then also computable from $(G \oplus S)^{\prime}$ and computing the formal presentation of infinitely many disjoint rays then takes only one more jump. This completes the analysis of our proof of IRT in $\Sigma_{1}^{1}-\mathrm{AC}_{0}$.

Theorem 4.1 follows from Theorems 4.2 and 4.5 ,
We will establish some implications and nonimplications between IRT and other THAs in $\$ 7$.

5 Variants of IRT and Hyperarithmetic Analysis

In this section, we show that at least five of the eight principles IRT ${ }_{\text {XYZ }}$ are THAs:
Theorem 5.1. All single-ray variants of IRT (i.e., $\mathrm{IR}_{\mathrm{XYS}}$) and $\mathrm{IRT}_{\mathrm{UVD}}$ are theorems of hyperarithmetic analysis.
$\mathrm{IRT}_{\text {UVS }}$ and $\mathrm{IRT}_{\text {UVD }}$ were proved by Halin [11, 12]. $\mathrm{IRT}_{\text {UES }}$ is an exercise in [5, 8.2.5(ii)]. $I R T_{\text {DVS }}$ and $I R T_{\text {DES }}$ may be folklore.

Of the other three variants, $I R T_{\text {DED }}$ and $I R T_{\text {DVD }}$ are open problems of graph theory ([3] and Bowler, personal communication). We do, however, have interesting results about these principles when restricted to directed forests (Theorem6.13. Corollary 6.14. The other one, $\mathrm{IRT}_{\text {UED }}$, was proved by Bowler, Carmesin, Pott [3] using structural results about ends. We hope to analyze its strength in future work.

The proof of Theorem 5.1 consists of several variations of the proof of Theorem 4.1. One of which ($\mathrm{IRT}_{\mathrm{DES}}$) requires some additional ideas.

In order to minimize repetition, we establish some implications between some variants of IRT over RCA_{0}. The proofs of each of these reductions follow the same basic plan. To deduce $\operatorname{IR} \mathrm{T}_{\mathrm{XYZ}}$ from $\mathrm{IR} \mathrm{T}_{\mathrm{X}^{\prime} \mathrm{Y}^{\prime} Z^{\prime}}$ we provide computable maps g, h and k which, provably in RCA_{0}, take X-graphs G to X^{\prime}-graphs G^{\prime}, Y-disjoint Z-rays or sets of Y-disjoint Z-rays in G to Y^{\prime}-disjoint Z^{\prime}-rays or sets of Y^{\prime}-disjoint Z^{\prime}-rays in G^{\prime}, and Y^{\prime}-disjoint Z^{\prime}-rays or sets of Y^{\prime}-disjoint Z^{\prime}-rays in G^{\prime} to Y-disjoint Z-rays or sets of Y-disjoint Z-rays in G, respectively. These functions are designed to take witnesses of the hypothesis of IRT XYZ in G to witnesses of the hypothesis of $I R T_{X^{\prime} Y^{\prime} Z^{\prime}}$ in G^{\prime} and witnesses to the conclusion of $\mathrm{IR}_{\mathrm{X}^{\prime} \mathrm{Y}^{\prime} Z^{\prime}}$ in G^{\prime} to witnesses to the conclusion of IRT XYZ in G. Clearly it suffices to provide such computable maps to establish the desired reduction in RCA_{0}. (Those familiar with Weihrauch reducibility will recognize that these arguments establish Weihrauch reductions between certain problems corresponding to variants of IRT.)

Unless otherwise noted all definitions and proofs in this section are in $R C A_{0}$.
Lemma 5.2. Given an undirected graph G, we can uniformly compute a directed graph G^{\prime} and mappings between Z-rays in G and Z-rays in G^{\prime} which preserve Y-disjointness.

Proof. We define a computable map g from undirected graphs G to directed graphs G^{\prime} as follows. The set of vertices of G^{\prime} consists of the vertices of G, together with two new vertices $x=x(u, v)$ and $y=y(u, v)$ for each edge $\{u, v\}$ in G. The set of edges of G^{\prime} consists of five edges $\langle u, x\rangle,\langle v, x\rangle,\langle x, y\rangle,\langle y, u\rangle,\langle y, v\rangle$ for each edge $\{u, v\}$ in G.

Next we define a computable map h_{S} : given a ray u_{0}, u_{1}, \ldots in G, h_{S} maps it to the ray $u_{0}, x\left(u_{0}, u_{1}\right), y\left(u_{0}, u_{1}\right), u_{1}, \ldots$ in G^{\prime}. Conversely, we define a computable map k_{S} from rays R^{\prime} in G^{\prime} into rays R in G as follows. Observe that exactly one of the first three vertices in R^{\prime} is a vertex in G, because the only outgoing edges from a vertex $y(u, v)$ lead to u or to v, and the only outgoing edge from a vertex $x(u, v)$ leads to $y(u, v)$. We take this vertex (say u_{0}) to be the first vertex of R. Every outgoing edge from u_{0} leads to some $x\left(u_{0}, v\right)$. Combining the above observations, we deduce that the tail $u_{0} R^{\prime}$ has the form $u_{0}, x\left(u_{0}, u_{1}\right), y\left(u_{0}, u_{1}\right), u_{1}, \ldots$ Then k_{S} maps R^{\prime} to the ray $R=u_{0}, u_{1}, \ldots$ in G.

Similarly, given a double ray $\ldots, u_{-1}, u_{0}, u_{1}, \ldots$ in G, h_{D} maps it to the double ray $\ldots, u_{-1}, x\left(u_{-1}, u_{0}\right), y\left(u_{-1}, u_{0}\right), u_{0}, x\left(u_{0}, u_{1}\right), y\left(u_{0}, u_{1}\right), u_{1}, \ldots$ in G^{\prime}. We can show that every double ray in G^{\prime} has this form by considering the incoming edges to each vertex in G^{\prime}. Therefore we can define a computable map from double rays in G^{\prime} to double rays in G by $k_{\mathrm{D}}=h_{\mathrm{D}}^{-1}$.

It is straightforward to check that $h_{\mathrm{S}}, k_{\mathrm{S}}, h_{\mathrm{D}}$ and k_{D} preserve Y-disjointness.
Therefore we have
Proposition 5.3. The directed variants of IRT imply their corresponding undirected variants, i.e., $\mathrm{IRT}_{\mathrm{DYZ}}$ implies $\mathrm{IRT}_{\mathrm{UYZ}}$ for each value of Y and Z.

Lemma 5.4. Given a directed graph G, we can uniformly compute a directed graph G^{\prime} and mappings between Z-rays in G and Z-rays in G^{\prime} which satisfy the following properties: if two Z-rays in G are vertex-disjoint, then the corresponding Z-rays in G^{\prime} are edge-disjoint, and if two Z-rays in G^{\prime} are edge-disjoint, then the corresponding Z-rays in G are vertex-disjoint.

Proof. We define a computable map g from directed graphs $G=\langle V, E\rangle$ to directed graphs G^{\prime} as follows. The set of vertices of G^{\prime} is $\left\{x_{i}, x_{o} \mid x \in V\right\}$, where i and o stand for incoming and outgoing respectively. The set of edges of G^{\prime} consists of $\left\langle u_{o}, v_{i}\right\rangle$ for each $\langle u, v\rangle \in E$, and $\left\langle x_{i}, x_{o}\right\rangle$ for each $x \in V$.

Next we define a computable map h_{S} : given a ray x^{0}, x^{1}, \ldots in G, h_{S} maps it to the ray $x_{i}^{0}, x_{o}^{0}, x_{i}^{1}, x_{o}^{1}, \ldots$ in G^{\prime}. Conversely, we define a computable map k_{S} from rays R^{\prime} in G^{\prime} to rays R in G as follows. Given R^{\prime}, the ray R visits the vertex x in G whenever $\left\langle x_{i}, x_{o}\right\rangle$ appears in R^{\prime}. (For example, we map $x_{i}^{0}, x_{o}^{0}, x_{i}^{1}, x_{o}^{1}, \ldots$ to x^{0}, x^{1}, \ldots and we map $x_{o}^{0}, x_{i}^{1}, x_{o}^{1}, \ldots$ to x^{1}, x^{2}, \ldots)

Similarly, h_{D} maps a given double ray $\ldots, x^{-1}, x^{0}, x^{1}, \ldots$ in G to the double ray

$$
\ldots, x_{i}^{-1}, x_{o}^{-1}, x_{i}^{0}, x_{o}^{0}, x_{i}^{1}, x_{o}^{1}, \ldots
$$

in G^{\prime}. Every double ray in G^{\prime} has this form, so we may define $k_{\mathrm{D}}=h_{\mathrm{D}}^{-1}$.
It is straightforward to check that the above mappings have the desired properties.
Therefore we have
Proposition 5.5. The directed edge-disjoint variants of IRT imply their corresponding directed vertex-disjoint variants, i.e., $\mathrm{IR}^{\mathrm{DEZ}}$ implies $\mathrm{IR}_{\mathrm{DVZ}}$ for each value of Z.

Lemma 5.6. Given a directed graph G, we can uniformly compute a directed graph G^{\prime} and mappings between sets of Y-disjoint rays in G and sets of Y-disjoint double rays in G^{\prime} which preserve cardinality.

Proof. We define a computable map g from directed graphs G to directed graphs G^{\prime} containing G as follows. For each vertex x of G we add new vertices x_{n} for each $n<0$ and edges $\left\langle x_{-1}, x\right\rangle$ and $\left\langle x_{n-1}, x_{n}\right\rangle$ for all $n<0$.

Next we define a computable map h from sets of Y-disjoint rays in G to sets of Y-disjoint double rays in G^{\prime} as follows. Given a set of Y-disjoint rays in G, we first ensure that each ray begins at a different vertex, by replacing it with a tail if necessary. (This is only relevant if the rays are edge-disjoint rather than vertex-disjoint.) Then for each ray x^{0}, x^{1}, \ldots, we consider the double ray $\ldots, x_{-2}^{0}, x_{-1}^{0}, x^{0}, x^{1}, \ldots$ in G^{\prime}. This yields a set of Y-disjoint double rays in G^{\prime} of the same cardinality.

Finally we define a computable map k from sets of Y-disjoint double rays in G^{\prime} to sets of Y-disjoint rays in G. Given a double ray $\ldots, x^{-1}, x^{0}, x^{1}, \ldots$ in G^{\prime}, we search for the least $n \geq 0$ such that x^{n} is a vertex in G. (If none of these vertices were in G then as there are edges between them they would all have to be of the form y_{-n} for a single y in G. The only edges between these y_{-n} make them into a copy of the reverse order on N. This order cannot have any subsequence of order type N.) Now we map the given double ray to the ray x^{n}, x^{n+1}, \ldots in G. It is straight forward to check that this map induces a cardinality-preserving map k from sets of Y-disjoint double rays in G^{\prime} to sets of Y-disjoint rays in G.

Therefore we have
Proposition 5.7. The directed double ray variants of IRT imply their corresponding directed single ray variants, i.e., $\mathrm{IR}_{\mathrm{DYD}}$ implies $\mathrm{IR}_{\mathrm{DYS}}$ for each value of Y.

Figure 1: Known implications between variants of IRT. All implications are over RCA_{0}, except for the implication from UVD to UVS (Theorem 6.15).

Figure 1 summarizes the known implications between variants of IRT over RCA_{0}. We will show that IRT $T_{\text {UVD }}$ implies IRT $_{\text {UVS }}$ over $\mathrm{RCA}_{0}+I \Sigma_{1}^{1}$ (Theorem 6.15).

Remark 5.8. Bowler, Carmesin, Pott [3, pg. 2 l. 3-7] describe an implication from $\mathrm{IRT}_{\text {UVS }}$ to $\operatorname{IR} T_{\text {UES }}$ which appears to use $\Sigma_{1}^{1}-\mathrm{AC}_{0}$. It turns out that the graph-theoretic principle used to carry out the implication does not imply even ACA_{0} over $\mathrm{RCA} A_{0}$ (and is hence much weaker than $\Sigma_{1}^{1}-\mathrm{AC}_{0}$), but when combined with ACA_{0}, yields a THA. It and several other principles with the same property (almost theorems/theories of hyperarithmetic analysis) are analyzed in Shore [27].

We return to the goal of proving Theorem 5.1.
Theorem 5.9. For each choice of $X Y Z, \mathrm{IRT}_{\mathrm{XYZ}}$ implies ACA_{0}. Furthermore, every standard model of RCA_{0} and $\mathrm{IR} \mathrm{X}_{\mathrm{XYZ}}$ is closed under hyperarithmetic reduction.

Proof. By Proposition 5.3, it suffices to prove the desired result for the undirected variants of IRT. Theorems 4.2 and 4.5 (i) together assert the desired result for IRT. We describe how to modify the proofs of Theorems 4.2 and 4.5 (i) to prove the desired result for the other variants of IRT.

Observe that in the aforementioned proofs, we only applied IRT to forests such that each of the constituent trees has a unique branch. In such graphs, none of the constituent trees can contain two rays which are edge-disjoint. Hence the aforementioned proofs establish the desired result for IRT $_{\text {UES }}$ as well.

In order to prove the desired result for $\mathrm{IRT}_{\text {UVD }}$ and $\mathrm{IRT}_{\text {UED }}$, we modify the aforementioned proofs as follows. For each tree, we relabel as needed to then add one computable branch of new vertices (other than the root of the tree) such that the new branches are also disjoint. The resulting trees satisfy the following properties:

- Each tree contains some double ray which is Turing equivalent to the branch on the original tree.
- No two double rays in the tree can be vertex-disjoint or edge-disjoint.
- Given any double ray in the tree, we can uniformly compute the branch on the original tree.

It is straightforward to check that the modified proofs establish the desired result for $I R T_{\text {UVD }}$ and $\mathrm{IRT}_{\text {UED }}$.

Henceforth we will not explicitly mention uses of $A C A_{0}$ whenever we are assuming any $\mathrm{IRT}_{\mathrm{XYZ}}$ or $\Sigma_{1}^{1}-\mathrm{AC}_{0}$.

Next, we show that IRT UVD and $\operatorname{IR} T_{\text {DES }}$ are provable in $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ (Theorems 5.10, 5.15). It then follows from Propositions 5.3 and 5.5 that IRT ${ }_{\text {UES }}, ~ I R T_{\text {DVS }}$ and IRT $_{\text {UVS }}$ are also provable in $\Sigma_{1}^{1}-\mathrm{AC}_{0}$, completing the proof of Theorem 5.1.

Theorem 5.10. $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ implies $\mathrm{IRT}_{\text {UVD }}$.
Proof. The mathematical result is due to [11] and is Exercise 42 of Chapter 8 in [5]. Our proof is very similar to that of Theorem 4.5(ii) which follows [5, Theorem 8.2.5(i)] except we need to grow our family in "two directions".

Our plan is to construct, by recursion on n, sequences $\left\langle R_{i}^{n}\right\rangle_{i<n}$ and $\left\langle P_{i}^{n}\right\rangle_{i<n}$ such that the R_{i}^{n} are disjoint double rays with subpaths P_{i}^{n} of length $2 n$ such that, for $i<n, P_{i}^{n+1}$ is P_{i}^{n} extended by a new vertex at each end. Our required sequence of disjoint double rays is then $\left\langle\bigcup\left\{P_{i}^{n} \mid n \in N\right\}\right\rangle_{i \in N}$.

As we want to reuse the proof of Lemma 4.3, we want to decompose double rays into single rays. To that end we introduce some notation. If R and R_{i} are double rays we let $R_{f}=R$ and $R_{i, f}=R_{i}$ while R_{b} and $R_{i, b}$ are R and R_{i}, respectively, but with order reversed. We use d or d^{\prime} to stand for one of f or b. For single rays R we use ${ }^{*} R$ to denote the reverse sequence of vertices. So, for example, if (c, d) is an edge in a double ray R, we have ${ }^{*}\left(c R_{b}\right) d R_{f}=R$.

We note the changes needed in the proof of Theorem 4.5. Now our sequence $S=$ $\left\langle\left\langle S_{j}^{n}\right\rangle_{j<n}\right\rangle_{n>0}$ given by $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ consists of double rays and G is the corresponding graph. Our construction of the desired $\left\langle R_{i}^{n}\right\rangle_{i<n}$ and $\left\langle P_{i}^{n}\right\rangle_{i<n}$ again proceeds recursively in $(G \oplus S)^{\prime}$ and at the end uses one more jump to get the required sequence of double rays. We begin our recursion by setting $R_{0}^{1}=S_{0}^{1}$ and P_{0}^{1} as any subpath of length 2 . Here we note that by construction every R_{i}^{n} will be of the form $Q a P b R$ where P is a finite path in G while Q and R are each S_{f} or S_{b} for S some S_{j}^{n}. Again, finding each $\left\langle R_{i}^{n+1}\right\rangle_{i<n}$ and $\left\langle P_{i}^{n+1}\right\rangle_{i<n}$ in turn is recursive in $(G \oplus S)^{\prime}$ once we prove in ACA_{0} that it exists given $\left\langle R_{i}^{n}\right\rangle_{i<n}$ and $\left\langle P_{i}^{n}\right\rangle_{i<n}$.

Thus it suffices to prove an analog of Lemma 4.3 in ACA_{0} : Given $\left\langle R_{i}^{n}\right\rangle_{i<n}$ and $\left\langle P_{i}^{n}\right\rangle_{i<n}$ and $\left\langle S_{i}^{k}\right\rangle_{i<k}$ for $k=11 n^{2}+1$ we can construct $\left\langle R_{i}^{n+1}\right\rangle_{i<n+1}$ and $\left\langle P_{i}^{n+1}\right\rangle_{i<n+1}$ as required. To simplify the notation we omit the superscripts n and k. For $i<n$, let $x_{i, b}$ be the first vertex in R_{i} before P_{i} and $x_{i, f}$ be the first vertex in R_{i} after P_{i}. We will arrange for P_{i}^{n+1} to be P_{i} preceded by $x_{i, b}$ and followed by $x_{i, f}$ which will then also be $x_{i, b} R_{i}^{n+1} x_{i, f}$.

We first discard from $\left\{S_{j} \mid j<11 n^{2}+1\right\}$ any S_{j} sharing a vertex with any P_{i}. As there are $n(2 n+1) \leq 3 n^{2}$ such vertices we have at least $8 n^{2}+1$ many S_{j} remaining. We relabel these as S_{j} for $j<8 n^{2}+1$ and choose an edge $\left(c_{j, b}, c_{j, f}\right)$ in each S_{j}. We now essentially follow the proof of Lemma 4.3 but for the sets of single rays $\mathcal{R}=\left\{x_{i, f} R_{i, f}, x_{i, b} R_{i, b} \mid i<n\right\}$ and $\mathcal{S}=\left\{c_{j, f} S_{j, f}, c_{j, b} S_{j, b} \mid j<8 n^{2}+1\right\}$. Our goal for each $x_{i, d} R_{i, d} \in \mathcal{R}, i<n$ and $d \in\{b, f\}$, is to
find a suitable replacement (beginning with the same vertex while maintaining the required disjointness) so that we can assemble the R_{i}^{n+1} from them for $i<n$. We also want an S_{h} disjoint from all the double rays R_{i}^{n+1} with $i<n$ which will be R_{n}^{n+1}.

We follow the procedure described in the proof of Lemma 4.3 (using $2 n$ for n as \mathcal{R} has $2 n$ elements) to define single ray replacements $R_{\langle i, d\rangle}^{\prime}$ for the $x_{i, d} R_{i, d}$ from which we will construct the R_{i}^{n+1}. When in that procedure we would keep the old ray we do so here as well and let $R_{\langle i, f\rangle}^{\prime}=x_{i, f} R_{i, f}$. When the procedure is completed we let $I=\{\langle i, d\rangle \mid i<n, d \in\{b, f\}$ and we have not defined $\left.R_{\langle i, d\rangle}^{\prime}\right\}$ and let $m=|I|$. Clearly we have discarded at most $4 n^{2}$ many more of the rays in \mathcal{S}.

Now continue the construction for the $\langle i, d\rangle \in I$ and the first vertices $z_{i, d}$ on $x_{i, d} R_{i, d}$ such that $x_{i, d} R_{i, d} z_{i, d}$ meets exactly m many rays in \mathcal{S}. The union F of these finite paths meets at most $m \cdot 2 n \leq 4 n^{2}$ many rays in \mathcal{S} and so at most $4 n^{2}$ many double rays $S_{j}, j<8 n^{2}+1$. Thus there must be at least one S_{j} such that it does not meet F and no $c_{j, d} S_{j, d}$ was discarded during the process. We let one such be R_{n}^{n+1} and take any subpath of length $2 n+2$ as P_{n}^{n+1}.

Now discard all single rays S in \mathcal{S} not meeting F. For each $c_{j, d} S_{j, d}$ remaining in \mathcal{S} let $y_{j, d}$ be the first vertex on $c_{j, d} S_{j, d}$ such that $y_{j, d} S_{j, d}$ is disjoint from F. As in the proof of Lemma 4.3, we apply Menger's theorem to X, Y and H where

$$
\begin{aligned}
X & =\left\{x_{i, d} \mid\langle i, d\rangle \in I\right\} \\
Y & =\left\{y_{j, d} \mid c_{j, d} S_{j, d} \in \mathcal{S}\right\} \\
H & =F \cup \bigcup_{c_{j, d} S_{j, d} \in \mathcal{S}} c_{j, d} S_{j, d} y_{j, d}
\end{aligned}
$$

This produces a set of m disjoint paths $P_{i, d}$ in H from each $x_{i, d},\langle i, d\rangle \in I$, to a $y_{j, d^{\prime}}$ in $c_{j, d^{\prime}} S_{j, d^{\prime}} \in \mathcal{S}$. We can now define $R_{\langle i, d\rangle}^{\prime}$ for $\langle i, d\rangle \in I$ as the single ray beginning with $P_{i, d}$ and then continuing with $S_{j, d^{\prime}}$ after $y_{j, d^{\prime}}$.

We can now define the required double rays R_{i}^{n+1} for $i<n$ as ${ }^{*} R_{\langle i, b\rangle}^{\prime} P_{i}^{n} R_{\langle i, f\rangle}^{\prime}$ and check that these have all the desired properties.

As for $I R T_{\text {DES }}$, instead of following the proof of Theorem 4.5, we will reduce $\operatorname{IR} T_{\text {DES }}$ to the problem of finding an infinite sequence of vertex-disjoint rays in a certain locally finite graph (see [3, pg. 2 l. 3-7]). To carry out this reduction, we define the line graph:

Definition 5.11. The line graph $L(G)$ of an X-graph G is the X-graph whose vertices are the edges of G and whose edges are the $((u, v),(v, w))$, where (u, v) and (v, w) are edges in G.

Lemma 5.12. Let G be an X-graph. There is a computable mapping from rays in G to rays in $L(G)$ such that if two rays in G are edge-disjoint, then their images are vertex-disjoint.

Proof. Map $x_{0}, x_{1}, x_{2}, \ldots$ to $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots$.
However, vertex-disjoint rays in $L(G)$ do not always yield edge-disjoint rays in G. An extreme counterexample is what is called the (undirected) star graph which consists of a single vertex with infinitely many neighbors: It does not contain any rays yet its line graph
is isomorphic to the complete graph on N which contains infinitely many vertex-disjoint rays. Nonetheless, if G is locally finite, then vertex-disjoint rays in $L(G)$ do correspond to edge-disjoint rays in G :

Lemma $5.13\left(\mathrm{ACA}_{0}\right)$. Let G be a locally finite X-graph. There is a mapping from rays in $L(G)$ to rays in G such that if two rays in $L(G)$ are vertex-disjoint, then their images are edge-disjoint rays in G.

Proof. Given a ray $R=e_{0}, e_{1}, \ldots$ in $L(G)$, we construct a ray $S=y_{0}, y_{1}, \ldots$ in G by recursion. Say that $e_{i}=\left(u_{i}, v_{i}\right)$. Start by defining y_{0} to be u_{0}. Having defined y_{n}, we define y_{n+1} as follows. Let k_{n} be the largest k such that y_{n} is an endpoint of e_{k}. Such k exists because G is locally finite and R is a ray. We can find k_{n} by ACA_{0}. Then define y_{n+1} to be the endpoint of $e_{k_{n}}$ other than y_{n}. This completes the recursion. Note that the k_{n} are strictly increasing: $e_{k_{n}}=\left(y_{n}, y_{n+1}\right)$ as y_{n} is not an endpoint of $e_{k_{n}+1}$ by the maximality of k_{n}. The next edge then includes y_{n+1} and so $k_{n+1} \geq k_{n}+1$. Also note that if the graph is directed the e_{i} must be of the form $\left\langle x_{i}, x_{i+1}\right\rangle$ and the last occurrence of any x in an e_{i} must be as its first element. By construction S is infinite and contains no repeated vertices because of the maximality requirement, hence it is a ray. Observe that every edge in S is a vertex in R, so the above mapping maps vertex-disjoint rays in $L(G)$ to edge-disjoint rays in G.

It remains to show that we can restrict our attention to locally finite graphs. We accomplish this with the help of $\Sigma_{1}^{1}-\mathrm{AC}_{0}$. Given a directed graph G with arbitrarily many edge-disjoint rays, we can use $\Sigma_{1}^{1}-\mathrm{AC}$ 0 to choose a family $\left\langle\left\langle R_{j}^{k}\right\rangle_{j<k}\right\rangle_{k>0}$ where, for each $k>0$, the rays $\left\langle R_{j}^{k}\right\rangle_{j<k}$ are edge-disjoint. From this family, we may construct an appropriate locally finite subgraph of G :

Lemma 5.14. Suppose that G is an X-graph and there is some family $\left\langle\left\langle R_{j}^{k}\right\rangle_{j<k}\right\rangle_{k>0}$ of rays in G such that for each $k>0$, the rays $\left\langle R_{j}^{k}\right\rangle_{j<k}$ are edge-disjoint. Then there is some locally finite X-subgraph G^{\prime} of G and some family $\left\langle\left\langle S_{j}^{k}\right\rangle_{j<k}\right\rangle_{k>0}$ of rays in G^{\prime} such that for each $k>0$, the rays $\left\langle S_{j}^{k}\right\rangle_{j<k}$ are edge-disjoint.

Proof. Define the vertices of G^{\prime} to be the vertices of G, say $\left\{v_{i} \mid i \in N\right\}$. We specify the set of edges E^{\prime} of G^{\prime} by providing a recursive construction of sets E_{i} of edges putting in a set of edges at each step. We guarantee that each E_{i} is a union of finitely many finite sets of edge-disjoint rays in G and that after stage k no edge with a vertex v_{i} for $i<k$ as an endpoint is ever put into E^{\prime}.

Begin at stage 0 by putting all the edges in R_{0}^{1} into E_{1}. Proceeding recursively at stage $k>0$ we have E_{k} and consider the edge-disjoint rays $R_{j}^{k}, j<k$. For each $j<k$, say $R_{j}^{k}=x_{j, 0}^{k}, x_{j, 1}^{k}, \ldots$ Each v_{i} for $i<k$ appears at most once in R_{j}^{k} as R_{j}^{k} is a ray. For each $j<k$, since we have access to the set of vertices of R_{j}^{k}, we can decide whether R_{j}^{k} contains v_{i} and, if so, find the index n such that $v_{i}=x_{j, n}^{k}$. Call it $n_{i, j}^{k}$. If there is no such n, set $n_{i, j}^{k}=0$. Define S_{j}^{k} to be the tail of R_{j}^{k} after $x_{j, \max _{i<k} n_{i, j}^{k}}^{k}$. We put all the edges in $S_{j}^{k}, j<k$, into E_{k+1}. Let $E^{\prime}=\bigcup_{k} E_{k}$.

It remains to show that G^{\prime} is locally finite. Consider any vertex v_{k}. No edge containing v_{k} as an endpoint is put in after stage k. On the other hand, E_{k} is the union of finitely
many finite sets of edge-disjoint rays (all of which have been computed uniformly). Each set of edge-disjoint rays in this union has v_{k} appearing at most once in each of its rays. Thus at most two edges containing v_{k} appear in each of the finitely many rays in this set. Therefore there are only finitely many edges containing v_{k} in each of the finite sets of edge-disjoint rays making up E_{k}. All in all, only finitely many edges in G^{\prime} contain v_{k}.

We are ready to prove
Theorem 5.15. $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ implies $\mathrm{IRT}_{\mathrm{XES}}$ for each value of X.
Proof. Given an X-graph G with arbitrarily many edge-disjoint rays, we can use Σ_{1}^{1} - AC_{0} to choose a family $\left\langle\left\langle Q_{j}^{k}\right\rangle_{j<k}\right\rangle_{k>0}$ such that for each k, the rays $Q_{j}^{k}, j<k$, are edge-disjoint. By Lemma 5.14, there is a locally finite subgraph H of G and a family $\left\langle\left\langle R_{j}^{k}\right\rangle_{j<k}\right\rangle_{k>0}$ such that for each k, the $R_{j}^{k}, j<k$, are edge-disjoint rays in H. By Lemma 5.12 , there is a family $\left\langle\left\langle S_{j}^{k}\right\rangle_{j<k}\right\rangle_{k>0}$ such that for each $k>0$, the $S_{j}^{k}, j<k$, are vertex-disjoint rays in $L(H)$. By the second part of the proof of Theorem 4.5(ii) (which can be carried out in ACA_{0}), $L(H)$ has infinitely many vertex-disjoint rays. Finally by Lemma 5.13, H has infinitely many edge-disjoint rays. Hence G has infinitely many edge-disjoint rays.

By the discussion before Theorem 5.10, this completes the proof of Theorem 5.1.
Finally, we give a proof of $I R T_{\text {DED }}$ for directed forests using $\Sigma_{1}^{1}-A C_{0}$ (recall that $I R T_{\text {DED }}$ remains open). We will see that $\Sigma_{1}^{1}-A C_{0}$ and $I R T_{\text {DED }}$ for directed forests are equivalent over $R C A_{0}+I \Sigma_{1}^{1}$ but note that $\Sigma_{1}^{1}-A C_{0}$ does not imply $I \Sigma_{1}^{1}$. (See Theorem 6.13 and the comment following it).

Theorem 5.16. $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ implies $\mathrm{IRT}_{\mathrm{DED}}$ for directed forests.
We first prove two lemmas.
Lemma $5.17\left(\mathrm{ACA}_{0}\right)$. Let G be a directed forest and let $R_{0}=\left\langle x_{0, i} \mid i \in \mathcal{Z}\right\rangle, R_{1}=\left\langle x_{1, i} \mid i \in \mathcal{Z}\right\rangle$ be directed double rays in G. Suppose R_{0} and R_{1} have an edge $\langle u, v\rangle$ in common. Then there are vertices t and w such $t R_{0} w=t R_{1} w$ and R_{0}, R_{1} have no vertices in common outside of those in $t R_{0} w=t R_{1} w$. Note that we allow for the possibility that $t=-\infty$ and/or $w=+\infty$ in the sense that $(-\infty) R=R=R(+\infty)$ for any double ray R. We call $t R_{0} w=t R_{1} w$ the intersection of R_{0} and R_{1}.

Proof. Suppose R_{0}, R_{1} provide a counterexample. As they have an edge $\langle u, v\rangle$ in common, they lie in the same directed tree T in G and can be viewed as (undirected) double rays in \hat{T} (the underlying graph for T). As they form a counterexample to the lemma, there must be either a first $t \in R_{0}$ (i.e. earliest in the double ray R_{0}) such that $t R_{0} v=t R_{1} v$ or a last $w \in R_{0}$ such that $u R_{0} w=u R_{1} w$ but R_{0} and R_{1} have a vertex z in common outside the common interval. The situations are symmetric and we consider the second. The immediate successors x and y of w in R_{0} and R_{1}, respectively, must be different by our choice of w. Consider now the location of z in R_{0}. If it is after x then the paths from w to z in R_{0} and w to z in R_{1} (both considered now as undirected graphs within \hat{T}) are different as the immediate successor of w in R_{0} is x while in R_{1} it is either y or a vertex in $v R_{1} w$. Thus there are two different paths in \hat{T} from w to z contradicting \hat{T} 's being a tree. If, on the other hand z is before u in R_{0}, it must be before $t \in R_{0}$ and a similar argument provides different paths from t to z in R_{0} and R_{1}.

Lemma $5.18\left(\mathrm{ACA}_{0}\right)$. There is a computable function f such that given any sequence $\left\langle S_{i}\right\rangle_{i<n}$ of DED rays with subpaths $\left\langle P_{i}\right\rangle_{i<n}$ of length $2 n$ in a directed tree T and sequence $\left\langle R_{j}\right\rangle_{j<f(n)}$ of $D E D$ rays in T, we can construct a sequence $\left\langle S_{i}^{\prime}\right\rangle_{i \leq n}$ of $D E D$ rays with subpaths $\left\langle P_{i}^{\prime}\right\rangle_{i \leq n}$ of length $2 n+2$ in T such that P_{i}^{\prime} extends P_{i} at each end for $i<n$. Indeed, we may take $f(n)=2 n^{2}+2^{2 n} n!+1$.

Proof. First we remove all the R_{j} that contain an edge in any P_{i} at cost of at most $2 n^{2}$ many j. Consider any remaining R_{j} in the second sequence. By Lemma 5.17, its intersections with the S_{i} are intervals $Q_{j, i}$ of edges in R_{j} which are disjoint as the S_{i} are. By our first thinning of the R_{j} list, none of the $Q_{j, i}$ intersect any of the P_{i} so each $Q_{j, i}$ must lie entirely above or entirely below P_{i}. We associate to each R_{j} a label consisting of the set $C_{j}=\left\{i<n \mid Q_{j, i} \neq \emptyset\right\}$; the elements i of C_{j} in the order in which the $Q_{j, i}$ (for $i \in C_{j}$) appear in R_{j} (in terms of the ordering of \mathcal{Z}) along with $\mathrm{a}+$ or - depending on which side of P_{i} it falls in S_{i}. We write $Q_{j, i}^{s}$ for the starting vertex of $Q_{j, i}$ and $Q_{j, i}^{e}$ for the ending one. As above, we allow the values $\pm \infty$ for these endpoints if the intervals are infinite. Now there are, of course, at most finitely many such labels. In particular, there are at most $2^{n} n!2^{n}$ such labels. Thus if we have $2^{2 n} n!+1$ many R_{j} left at least two of them, say R_{a} and R_{e} have the same label say with set C.
Claim: $|C|<2$.
For the sake of a contradiction, assume we have $k \neq l$ in C with k preceding l in the ordering of C in the label. Say R_{a} is the ray such that $Q_{a, k}$ is before $Q_{e, k}$ in S_{k}. Note that $Q_{a, k}$ and $Q_{e, k}$ are edge disjoint as R_{a} and R_{e} are. We consider two cases: (1) $Q_{a, l}$ is before $Q_{e, l}$ in S_{l} and (2) $Q_{e, l}$ is before $Q_{a, l}$ in S_{l}. We now produce, for each case, two vertices with two distinct sequences (i) and (ii) of adjacent edges in T connecting these two vertices. These sequences are illustrated in Figures 2 and 3. Note that by our assumptions on the orderings of the intervals $Q_{c, d}$ (for $c \in\{a, e\}$ and $d \in\{k, l\}$) as displayed, all of the starting or ending points of $Q_{c, d}$ that appear in our sequences are vertices in one of the rays (i.e. none are $\pm \infty$):
(1i) Start at $Q_{a, k}^{e}$ in R_{a} and go to $Q_{a, l}^{e}$ then in S_{l} go to $Q_{e, l}^{s}$.
(1ii) Start at $Q_{a, k}^{e}$ in S_{k} and go to $Q_{e, k}^{s}$ then go in R_{e} to $Q_{e, l}^{s}$.
(2i) Start at $Q_{a, k}^{s}$ in S_{k} and go to $Q_{e, k}^{e}$ then in R_{e} go to $Q_{e, l}^{e}$ then in S_{l} go to $Q_{a, l}^{e}$.
(2ii) Start at $Q_{a, k}^{s}$ in R_{a} and go to $Q_{a, l}^{e}$.
To see that the two sequences of vertices are different, note for (1) that (1i) contains an edge in $Q_{a, l}$ but (1ii) does not. For (2) note that (2i) contains an edge in $Q_{e, k}$ but (2ii) does not. We now, in each case, view the associated two distinct sequences of vertices with the same endpoints in the underlying (undirected) tree \hat{T}. The only way one can have such sequences in a tree is for one of the sequences to contain some vertices $u v u$ in order. However, any three successive vertices in any of these sequences lie within one of the R_{j} or S_{i} or both and so cannot have two instances of the same vertex. The crucial point is that each $Q_{j, i}$ is in both R_{j} and S_{i} and has at least two vertices. Any transition along the sequence between an R_{j} and an S_{i} (in either order) goes through $Q_{j, i}$ and so any three consecutive vertices are all contained in one R_{j} or one S_{i} (or both).

Figure 2: (1i) follows the thick arrows in R_{a} and S_{l}. (1ii) follows the thick arrows in S_{k} and R_{e}.

Figure 3: (2i) follows the thick arrows in S_{k}, R_{e} and S_{l}. (2ii) follows the thick arrow in R_{a}.

Knowing now that $|C|$ is 0 or 1 , we complete the proof of the Lemma. If $|C|=0$, then both R_{a} and R_{e} are disjoint from all the S_{i} and so we may add on either one of them as S_{n}^{\prime} with P_{n}^{\prime} an arbitrary subpath of length $2 n+2$ while keeping $S_{i}=S_{i}^{\prime}$ and extending the P_{i}^{\prime} appropriately for all $i<n$. Otherwise say $C=\{i\}$. Let c be the one of a or e such that $Q_{c, i}$ is closer to P_{i}. (Remember that they are both on the same side of this interval in S_{i} by our fixing the label.) Now replace the tail of S_{i} starting with $Q_{c, i}$ and going away from P_{i} by the tail of R_{c} starting with $Q_{c, i}$ and going in the same direction. Let this ray be S_{i}^{\prime}. Note that it is disjoint from all the $S_{j}, j \neq i$ as it contains only edges that are in S_{i} or R_{c} neither of which share any edges with such S_{j}. It is also disjoint from R_{d} where d is the one of a, e which is not c since all the edges of S_{i}^{\prime} are either in R_{c} or in S_{i} outside of $Q_{d, i}$ by our choice of $Q_{c, i}$ as closer to P_{i}. As R_{d} is also disjoint from all the S_{j} for $j \neq i$ by our fixing the label, we may define $S_{j}^{\prime}=S_{j}$ and P_{j} appropriately for $j<n, j \neq i$ and $S_{n}^{\prime}=R_{d}$ and choosing P_{n}^{\prime} of length $2 n+2$ arbitrarily so as to get the sequence required in the Lemma.

Lemma 5.18 provides the inductive step for the following proof:
Proof of Theorem 5.16. Assume we are given a directed forest G with arbitrarily many DED rays. By $\Sigma_{1}^{1}-\mathrm{AC}$ we may take a sequence $\left\langle\left\langle R_{k, i}\right\rangle_{i<k}\right\rangle_{k \in N}$ such that, for each $k,\left\langle R_{k, i}\right\rangle_{i<k}$ is a sequence of k many DED rays in G. If there are infinitely many of the trees making up G each of which contains some $R_{k, i}$ then we are done. So we may assume that all of them are in one directed tree T. We now wish to define $\left\langle\left\langle S_{k, s}\right\rangle_{k<s}\right\rangle_{s \in N}$ by recursion such that, for each $s,\left\langle S_{k, s}\right\rangle_{k<s}$ is a sequence of s many DED rays with subpaths $P_{k, s}$ of length $2 s+1$ such that for each $s \in N, P_{k, s+1}$ extends $P_{k, s}$ at each end so that the $\lim _{s} P_{k, s}$ form an infinite sequence of DED rays in T as required. Lemma 5.18 provides precisely the required inductive step for the construction since we have the required sequences of DED rays $\left\langle R_{f(n), i} \mid i<f(n)\right\rangle$ at each step n of the construction. Once again we just have to note that Lemma 5.18 provides witnesses for the double rays that are composed of finite paths in T and final segments in one direction or the other of some of the $R_{k, i}$ and so they can be found recursively in $\left(T \oplus\left\langle\left\langle R_{k, i}\right\rangle_{i<k}\right\rangle_{k \in N}\right)^{\prime}$.

6 Variations on Maximality

In this section, we consider variants of IRT whose solutions are required to be maximal in terms of cardinality or maximal in terms of set inclusion.

6.1 Maximum Cardinality Variants of IRT

Definition 6.1. Let $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$ be the statement that every X-graph G has a set of Y-disjoint Z-rays of maximum cardinality, or more formally, the statement that for every X-graph G :

- there is no Z-ray in G, or
- there is some $n>0$ and some R such that $\left\langle R^{[i]} \mid i<n\right\rangle$ is a sequence of Y-disjoint Z-rays in G, and there is no R such that $\left\langle R^{[i]} \mid i<n+1\right\rangle$ is a sequence of Y-disjoint Z-rays in G, or
- there is some R such that $\left\langle R^{[i]} \mid i \in N\right\rangle$ is a sequence of Y-disjoint Z-rays in G.

When we talk about the cardinality of a (possibly empty) finite sequence $\left\langle R^{[i]} \mid i<n\right\rangle$ we mean the number n (which may be 0). Of course a sequence $\left\langle R^{[i]} \mid i \in N\right\rangle$ is said to have infinite cardinality.

IRT $T_{\text {UVS }}^{*}$ was proved by Halin [11], who also proved the corresponding statement for uncountable graphs.

Remark 6.2. The notation in Definition 6.1 is inspired by the well known version ACA_{0}^{*} of ACA_{0} which, for every A, asserts the existence of $A^{(n)}$, the nth jump of A, for every n :

$$
\mathrm{ACA}_{0}^{*}: \quad(\forall A)(\forall n)(\exists W)\left(W^{[0]}=A \wedge(\forall i<n)\left(W^{[i+1]}=W^{[i]^{\prime}}\right)\right)
$$

This asserts (in addition to ACA_{0}) particular instances of $\mathrm{I} \Sigma_{1}^{1}$. So too (in addition to $\operatorname{IR} T_{\mathrm{XYZ}}$) do the $\operatorname{IRT} \mathrm{X}_{\mathrm{XYZ}}^{*}$ as we are about to see.

Proposition 6.3. For each choice of $X Y Z$, $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$ implies $\mathrm{IRT}_{\mathrm{XYZ}}$ over RCA_{0} and $\mathrm{IRT}_{\mathrm{XYZ}}$ implies $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$ over $\mathrm{RCA}_{0}+\mathrm{I} \Sigma_{1}^{1}$. Therefore $\mathrm{IRT}_{\mathrm{XYZ}}$ and $\mathrm{IR}_{\mathrm{XYZ}}^{*}$ are equivalent over $\mathrm{RCA}_{0}+$ I_{1}^{1}. In particular, they have the same standard models.

Proof. The first implication holds because if an X-graph has arbitrarily many Y-disjoint Z rays, then any sequence of Y-disjoint Z-rays in the graph of maximum cardinality must be infinite. To prove the second implication, let G be an X-graph and $\Phi(n)$ be the Σ_{1}^{1} formula which says that there is a sequence of length n of Y-disjoint Z-rays in G. If $\forall n(\Phi(n) \rightarrow$ $\Phi(n+1)$), then by $I \Sigma_{1}^{1}, \forall n \Phi(n)$ holds and so by $\mathrm{IRT}_{\mathrm{XYZ}}$ there is a sequence $\left\langle R_{i}\right\rangle_{i \in N}$ of Y disjoint Z-rays in G as required. On the other hand, if there is an n such that $\Phi(n)$ holds but $\Phi(n+1)$ fails, then this n witnesses $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$.

It follows from Proposition 6.3 and Theorem 5.1 that
Corollary 6.4. $\mathrm{IRT}_{\mathrm{XYS}}^{*}$ and $\mathrm{IRT}_{\mathrm{UVD}}^{*}$ are theorems of hyperarithmetic analysis.
It follows from Proposition 6.3 and Theorem 5.9 that $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$ implies ACA_{0}, so we will not explicitly mention uses of ACA_{0} whenever we are assuming any IRT ${ }_{\text {XYZ }}^{*}$.

Using Lemmas 5.2, 5.4 and 5.6, we can prove
Proposition 6.5. $\operatorname{IR} T_{\mathrm{DYZ}}^{*}$ implies $I \mathrm{RT}_{\mathrm{UYZ}}^{*}$, $\mathrm{IRT}_{\mathrm{DEZ}}^{*}$ implies $\mathrm{IR} T_{\mathrm{DVZ}}^{*}$ and $\mid \mathrm{RT}_{\mathrm{DYD}}^{*}$ implies IRT DYS .

Next, we show that $I R T_{X Y Z}^{*}$ proves sufficient induction in order to transcend $\Sigma_{1}^{1}-A C_{0}$. This implies that $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$ is strictly stronger than $\mathrm{IRT}_{\mathrm{XYZ}}$ for certain choices of $X Y Z$ (Corollary 6.10). The connection between $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ and graphs is obtained by viewing the set of solutions of an arithmetic predicate as the set of (projections of) branches on a subtree of $N^{<N}$. In detail:

Lemma 6.6 ([29, V.5.4]). If $A(X)$ is an arithmetic formula, ACA $_{0}$ proves that there is a tree $T \subseteq N^{<N}$ such that

$$
\begin{gathered}
\forall X(A(X) \leftrightarrow \exists f(\langle X, f\rangle \in[T])) \\
\text { and } \forall X(\exists \text { at most one } f)(\langle X, f\rangle \in[T]) .
\end{gathered}
$$

In fact, as the proof in [29, V.5.4] shows, the required functions f are what are called the minimal Skolem functions and are arithmetically defined uniformly in X and the formula A.

The following easy corollary will be useful.
Lemma 6.7. If $A(n, X)$ is an arithmetic formula, ACA_{0} proves that there is a sequence of subtrees $\left\langle T_{n}\right\rangle_{n}$ of $N^{<N}$ such that for each $n \in N$,

$$
\begin{gathered}
\forall X\left(A(n, X) \leftrightarrow \exists f\left(\langle X, f\rangle \in\left[T_{n}\right]\right)\right) \\
\text { and } \forall X(\exists \text { at most one } f)\left(\langle X, f\rangle \in\left[T_{n}\right]\right) .
\end{gathered}
$$

Proof. Say that $B(Y)$ holds if and only if $A(Y(0), X)$ holds, where X is such that $Y=$ $Y(0)^{\wedge} X$. Apply Lemma 6.6 to the arithmetic formula $B(Y)$ to obtain a tree $T \subseteq N^{<N}$. For each $n \in N$, define T_{n} to be the set of all σ such that $n^{\complement} \sigma \in T$. It is straightforward to check that $\left\langle T_{n}\right\rangle_{n}$ satisfies the desired properties.

Theorem 6.8. $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$ proves ACA_{0}^{*}.
Before proving the above theorem, we derive some corollaries:
Corollary 6.9. IRT ${ }_{\mathrm{XYZ}}^{*}$ proves the consistency of $\Sigma_{1}^{1}-\mathrm{AC}_{0}$. Therefore it is not provable in $\Sigma_{1}^{1}-\mathrm{AC}_{0}$.

Proof. Simpson [29, IX.4.6] proves that $\mathrm{ACA}_{0}+\mathrm{I} \Sigma_{1}^{1}$ implies the consistency of $\Sigma_{1}^{1}-\mathrm{AC}_{0}$. The only use of $I \Sigma_{1}^{1}$ in Simpson's proof is to establish ACA_{0}^{*}, so Simpson's proof shows that ACA_{0}^{*} implies the consistency of $\Sigma_{1}^{1}-\mathrm{AC}_{0}$. The desired result then follows from Theorem 6.8 and Gödel's second incompleteness theorem.

Corollary 6.10. $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$ is strictly stronger than $\mathrm{IR}_{\mathrm{XYZ}}$ for the following choices of $X Y Z$: $X Y S$ and $U V D$.

Proof. We showed in $\S 5$ that the specified variants of IRT are provable in $\Sigma_{1}^{1}-\mathrm{AC}_{0}$. On the other hand, none of the IRT* are provable in $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ (Corollary 6.9).

We now prove Theorem 6.8;
Proof that $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$ implies ACA_{0}^{*}. By Proposition 6.5, it suffices to prove the desired result for $\mathrm{IRT}_{\mathrm{UYZ}}^{*}$. To prove ACA_{0}^{*} from $\mathrm{IRT}_{\mathrm{UYS}}^{*}$, begin by using Lemma 6.7 to define for each A a sequence of trees $\left\langle T_{n}\right\rangle_{n}$ such that for each n and W there is at most one f such that $\langle W, f\rangle \in\left[T_{n}\right]$ and

$$
\begin{aligned}
& (\exists f)\left(\langle W, f\rangle \in\left[T_{n}\right]\right) \\
\leftrightarrow & W^{[0]}=A \wedge(\forall i \leq n)\left(\left(W^{[i]}\right)^{\prime}=W^{[i+1]}\right) \wedge(\forall i>n)\left(W^{[i]}=\emptyset\right) .
\end{aligned}
$$

We want to show that each T_{n} is ill-founded. Note that if $m<n$ and T_{n} is ill-founded, then so is T_{m}. Therefore it suffices to show that for cofinally many n, T_{n} is ill-founded.

Apply $\mathrm{IRT}_{\mathrm{UYS}}^{*}$ to the disjoint union $\bigsqcup_{n} T_{n}$ to obtain a collection C of Y-disjoint rays of maximum cardinality. We prove that C is infinite. Suppose not. Then there is some
maximum m such that C contains a ray in T_{m}. A ray in T_{m} can be computably truncated or extended to a branch on T_{m}, so T_{m} is ill-founded. Hence T_{m+1} is ill-founded as well (by ACA_{0}). But then there is a collection of Y-disjoint rays in $\bigsqcup_{n} T_{n}$ which has cardinality greater than that of C, contradiction.

We have proved that C is infinite. Next we prove that each T_{n} has at most one branch. That would imply that each T_{n} contains at most one ray in C, so C contains rays in cofinally many T_{n}, as desired.

If T_{n} has two distinct branches $\left\langle W_{0}, f_{0}\right\rangle$ and $\left\langle W_{1}, f_{1}\right\rangle$, then $W_{0} \neq W_{1}$ by the "at most one" condition in the definition of the T_{n}. Consider the least i such that $W_{0}^{[i]} \neq W_{1}^{[i]}$. Such i exists by ACA_{0}. Note that $0<i \leq n$ because $W_{0}^{[0]}=A=W_{1}^{[0]}$ and $W_{0}^{[i]}=\emptyset=W_{1}^{[i]}$ for $i>n$. But then $W_{0}^{[i-1]}=W_{1}^{[i-1]}$ and $\left(W_{0}^{[i-1]}\right)^{\prime} \neq\left(W_{1}^{[i-1]}\right)^{\prime}$, contradiction.

This proves that $I R T_{\text {UYS }}^{*}$ implies $A C A_{0}^{*}$. In order to prove that $I R T_{\text {UYD }}^{*}$ implies $A C A_{0}^{*}$, we modify the above proof by adding to each T_{n} a computable branch consisting of new vertices to form a tree S_{n}. Apply IRT ${ }_{\text {UYD }}^{*}$ to $\bigsqcup_{n} S_{n}$ to obtain a collection C of Y-disjoint double rays of maximum cardinality. Following the above proof, we may prove that C is infinite and each S_{n} contains at most one double ray in C. So C contains double rays in cofinally many S_{n}, as desired.

Remark 6.11. The same proof shows that $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$ implies the following induction scheme: Suppose $\left\langle T_{n}\right\rangle_{n}$ is a sequence of trees such that

1. T_{0} has a unique branch;
2. for all n, the number of branches on T_{n+1} is the same as the number of branches on T_{n}.

Then for all n, there is a sequence $\left\langle P_{m}\right\rangle_{m<n}$ such that for each $m<n, P_{m}$ is the unique branch on T_{m}. It also shows that $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$ implies ACA_{0}^{+}(i.e. closure under the ω-jump) and much more. Indeed, similar ideas prove in Theorem 7.3 that $I R T_{\mathrm{XYZ}}^{*}$ implies unique- $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ (Definition 7.1). IRT ${ }_{\mathrm{XYZ}}^{*}$ also implies a similar induction scheme analogous to finite- $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ (Definition 7.2).

We can prove that even fragments of $I \mathrm{RT}_{\mathrm{DVD}}^{*}$ give more induction than the specific instances derived in Theorem 6.8.

Theorem 6.12. $\operatorname{IR} T_{\text {DVD }}^{*}$ (even for directed forests) implies I_{1}^{1} over RCA_{0}.
Proof. Suppose $\Psi(n)$ is a Σ_{1}^{1} formula such that $\Psi(0)$ and $\forall n(\Psi(n) \rightarrow \Psi(n+1))$ hold. Let $\left\langle S_{i}\right\rangle_{i \in N}$ be a sequence of subtrees of $N^{<N}$ such that S_{i} is ill-founded if and only if $\Psi(i)$ holds. Let $\left\langle T_{n}\right\rangle_{n \in N}$ be a sequence of subtrees of $N^{<N}$ such that for each n, T_{n} consists of all sequences $\left\langle\sigma_{i}: i \leq n\right\rangle$ where for each $i \leq n, \sigma_{i}$ is (a code for) a string in S_{i}. We order these sequences by component-wise extension. It is clear that T_{n} is ill-founded if and only if $(\forall i \leq n) \Psi(i)$ holds.

For each n, orient each edge in T_{n} towards its root and add a computable D-ray of new vertices which starts at its root. This forms a directed tree G_{n}. If G_{n} contains a double ray, T_{n} is ill-founded and $(\forall i \leq n) \Psi(i)$ holds. Furthermore, no two disjoint double rays can lie in the same G_{n}.

Let G be the directed forest $\bigsqcup_{n} G_{n}$. By $\mathrm{IRT}_{\mathrm{DVD}}^{*}$, there is a sequence $\left\langle R_{i}\right\rangle_{i}$ of disjoint double rays in G of maximum cardinality, so the sequence may be for $i<k$ for some k or $i \in N$. Since $\Psi(0)$ holds, $\left\langle R_{i}\right\rangle_{i}$ is nonempty. If $\left\langle R_{i}\right\rangle_{i}$ is finite, let n be maximal such that G_{n} contains some R_{i}. Then $\Psi(n)$ holds, so $\Psi(n+1)$ holds as well. It follows that G_{n+1} contains some double ray, which we can then add to $\left\langle R_{i}\right\rangle_{i}$ to obtain a larger sequence of disjoint double rays in G for the desired contradiction. Therefore $\left\langle R_{i}\right\rangle_{i}$ is infinite. Since each G_{n} contains at most one R_{i}, infinitely many G_{n} contain some R_{i}. Therefore $\Psi(n)$ holds for all n.

In fact, we have the following equivalences:
Theorem 6.13. The following are equivalent (over RCA_{0}):

1. $\Sigma_{1}^{1}-\mathrm{AC}_{0}+\mathrm{I} \Sigma_{1}^{1}$;
2. $\operatorname{IR} T_{\mathrm{DED}}$ for directed forests $+I \Sigma_{1}^{1}$;
3. $\mathrm{IRT}_{\mathrm{DED}}^{*}$ for directed forests;
4. $\mathrm{IRT}_{\mathrm{DVD}}^{*}$ for directed forests;
5. $\mathrm{IRT}_{\mathrm{DVD}}$ for directed forests $+\mathrm{I} \Sigma_{1}^{1}$.

Proof. (1) \rightarrow (2) follows from Theorem 5.16. (2) \rightarrow (3) follows from the proof of Proposition 6.3. (3) \rightarrow (4) follows from the observation that the mapping of graphs defined in Lemma 5.4 sends a directed forest to a directed forest. (4) \rightarrow (5) follows from Theorem 6.12 and the proof of Proposition 6.3.

To prove (5) $\rightarrow(1)$, suppose $A(n, X)$ is an arithmetic formula such that $\forall n \exists X A(n, X)$. By Lemma 6.7, there is a sequence $\left\langle T_{n}\right\rangle_{n}$ of subtrees of $N^{<N}$ such that

$$
\begin{aligned}
& \forall n \forall X\left(A(n, X) \leftrightarrow \exists f\left(\langle X, f\rangle \in\left[T_{n}\right]\right)\right) \\
& \text { and } \forall X(\exists \text { at most one } f)\left(\langle X, f\rangle \in\left[T_{n}\right]\right) .
\end{aligned}
$$

By assumption on $A(n, X)$, each T_{n} is ill-founded. We use $\left\langle T_{n}\right\rangle_{n}$ to construct a sequence $\left\langle G_{n}\right\rangle_{n}$ of directed trees as we did in the proof of Theorem 6.12 to construct T_{n} from the S_{i}.

By $I \Sigma_{1}^{1}$, the directed forest $\bigsqcup_{n} G_{n}$ contains arbitrarily many disjoint double rays. Therefore $\bigsqcup_{n} G_{n}$ contains infinitely many disjoint double rays $\left\langle R_{k}\right\rangle_{k}$, by $\operatorname{IRT} \mathrm{DVD}_{\text {. Note that any }}$ double ray in any G_{n} must contain the computable ray we added, so any two double rays in the same G_{n} must intersect. This implies that each R_{k} belongs to some distinct G_{n}. Therefore for every m, there is some k and some $n>m$ such that R_{k} is a double ray in G_{n}. When we remove the added computable ray from R_{k} we are left with a branch in T_{n} which is of the form $\langle X, f\rangle$ where X consists of witnesses X_{i} for $i<n$.

Since $\Sigma_{1}^{1}-\mathrm{AC}_{0}\left(\mathrm{ATR}_{0}\right.$, even) does not prove $\mathrm{I} \Sigma_{1}^{1}$ [29, IX.4.7], it follows that
Corollary 6.14. IRT DYD^{*} (even for directed forests) is not provable in ATR_{0}, and strictly implies $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ over RCA_{0}.

Next, we show that $I R T_{\text {UVD }}^{*}$ implies $I R T_{\text {UVS }}$ over RCA_{0} (see Figure 1).

Theorem 6.15. $\mathrm{IRT}_{\text {UVD }}^{*}$ implies $\mathrm{IRT}_{\text {UVS }}$ over RCA_{0}. Therefore (1) $\mathrm{IRT}_{\text {UVD }}$ implies $\mathrm{IRT}_{\text {UVS }}$ over $\mathrm{RCA}_{0}+\mathrm{I} \Sigma_{1}^{1}$; (2) if any standard model of RCA_{0} satisfies $\mathrm{IRT}_{\mathrm{UVD}}$, then it satisfies $\mathrm{IRT}_{\mathrm{UVS}}$ as well.

Proof. Let G be a graph which contains arbitrarily many disjoint single rays. By $\mathrm{IRT}_{\mathrm{UVD}}^{*}$, there is a sequence of disjoint double rays in G of maximum cardinality. If this sequence is infinite, then there are infinitely many disjoint single rays in G as desired. Otherwise, suppose that $\left\langle R_{i}\right\rangle_{i<j}$ is a sequence of disjoint double rays in G of maximum cardinality j. Let \mathcal{R} be the subgraph of G consisting of the union of all R_{i}. Let H be the induced subgraph of G consisting of all vertices which do not lie in \mathcal{R}. Note that H does not contain any double ray, otherwise G would contain $j+1$ many disjoint double rays. Next, we expand H to the graph H^{\prime}, defined below.

Decompose H into its connected components $\left\langle H_{i}\right\rangle_{i}$ (there may only be finitely many). Any two single rays in the same H_{i} must intersect, because if S_{0} and S_{1} are disjoint single rays in the same H_{i}, then we can construct a double ray in H_{i} by connecting them (start with a path between S_{0} and S_{1} of minimum length, then connect it to the tails of S_{0} and S_{1} which begin at the endpoints of the path).

For each i, define H_{i}^{\prime} by adding a computable ray of new vertices to H_{i}, which begins at the $<_{N}$-least vertex in H_{i}. Define H^{\prime} to be the disjoint union $\bigsqcup_{i} H_{i}^{\prime}$.

By $\mathrm{IR} \mathrm{T}_{\mathrm{UVD}}^{*}$, there is a sequence of disjoint double rays in H^{\prime} of maximum cardinality.
Case 1. If this sequence is infinite, then G contains infinitely many disjoint single rays because each double ray in the sequence has a tail which lies in H. In this case we are done.

Case 2. Otherwise, H^{\prime} does not contain arbitrarily many disjoint double rays. Since any two single rays in the same H_{i} must intersect, we can transform any collection of disjoint single rays in H into a collection of disjoint double rays in H^{\prime} of equal cardinality by connecting each single ray to the $<_{N}$-least vertex in its connected component H_{i} and then following the computable ray we added. It follows that H does not contain arbitrarily many disjoint single rays. Fix l such that H does not contain $l+1$ many disjoint single rays.

Towards a contradiction, we construct a collection of $(j+1)$-many disjoint double rays in G as follows. Fix a collection \mathcal{S} of $l+2 j+4 j(j+1)$ many disjoint single rays in G. First, at most $2 j$ of these single rays lie in \mathcal{R}. In fact at most $2 j$ of these single rays can have finite intersection with H, because given a collection of disjoint single rays each of which has finite intersection with H, we can obtain a collection of disjoint single rays in \mathcal{R} of the same cardinality by replacing each ray with an appropriate tail. Second, by reasoning analogous to the above, at most l of these single rays can have finite intersection with \mathcal{R}. Therefore, there are at least $4 j(j+1)$ many disjoint single rays in \mathcal{S} each of which have infinite intersection with both \mathcal{R} and H.

Next, choose an edge (u_{i}, v_{i}) in each R_{i} and split R_{i} into two single rays $u_{i} R_{i, b}$ and $v_{i} R_{i, f}$. By the pigeonhole principle, there is some single ray R of the form $u_{i} R_{i, b}$ or $v_{i} R_{i, f}$, and at least $2(j+1)$ many disjoint single rays in \mathcal{S}, each of which have infinite intersection with both R and H. Call these rays $S_{0}, S_{1}, \ldots, S_{2(j+1)-1}$. Discard all the other rays in \mathcal{S}. Below we describe how to connect pairs of single rays S_{k} using segments of R to form a collection of $(j+1)$-many disjoint double rays in G.

Let x_{0}, x_{1}, \ldots denote the vertices of R. Since each single ray S_{k} has infinite intersection with R, by the pigeonhole principle, there is a pair of disjoint rays $S_{k_{0}}$ and $S_{l_{0}}$ such that
for each tail R^{\prime} of R, there is a vertex in $S_{k_{0}} \cap R^{\prime}$ and a vertex in $S_{l_{0}} \cap R^{\prime}$ such that no S_{k} intersects R between these two vertices. (Formally, we justify this by defining the following coloring recursively. Start from the first vertex in R which is also in some S_{k}. Search for the next vertex on R which intersects some $S_{l}, l \neq k$. Then we color 0 with the unordered pair $\{k, l\}$. Then we search for the next vertex on R which intersects some $S_{m}, m \neq l$ and color 1 with $\{l, m\}$, and so on. Some color $\left\{k_{0}, l_{0}\right\}$ must appear infinitely often.) Then we commit to connecting $S_{k_{0}}$ and $S_{l_{0}}$ (but we do not do so just yet). Applying the pigeonhole principle again, there is a pair of disjoint rays $S_{k_{1}}$ and $S_{l_{1}}$ (with $k_{1}, l_{1}, k_{0}, l_{0}$ all distinct) such that for each tail R^{\prime} of R, there is a vertex x in $S_{k_{1}} \cap R^{\prime}$ and a first vertex y in $S_{l_{1}} \cap R^{\prime}$ (after x in R) such that no S_{k}, except perhaps $S_{k_{1}}, S_{k_{0}}$ or $S_{l_{0}}$, intersects R between these two vertices. We may eliminate any elements of $S_{k_{1}}$ by changing x (if necessary) to the last element of $R y$ in $S_{k_{1}}$. Again we commit to connecting $S_{k_{1}}$ and $S_{l_{1}}$. Repeat this process until we have obtained $j+1$ pairs of single rays. That is, when we have $S_{k_{i}}$ and $S_{l_{i}}$ for an $i<j$, we find $S_{k_{i+1}}$ and $S_{l_{i+1}}$ with k_{i+1} and l_{i+1} distinct from all previous k_{m} and l_{m} such that for each tail R^{\prime} of R there is a vertex $x \in S_{k_{i+1}} \cap R$ and a first $y \in S_{l_{i+1}} \cap R$ after x in R such that no S_{k}, except perhaps $S_{k_{m}}$ or $S_{l_{m}}$ for $m \leq i$, intersects R between these two vertices. This process stops when we define k_{j} and l_{j}.

Finally, we connect these pairs of single rays in the opposite order in which we defined them: Start by picking some $x^{j} \in S_{k_{j}} \cap R$ and some $y^{j} \in S_{l_{j}} \cap R$. Then we define a double ray D_{j} by following ${ }^{*} S_{k_{j}}$ until x^{j}, then following R until y^{j}, and finally following $S_{l_{j}}$, i.e., $D_{j}:={ }^{*}\left(x^{j} S_{k_{j}}\right) R y^{j} S_{l_{j}}$. Having defined $D_{j}, D_{j-1}, \ldots, D_{i+1}$, define $D_{i}:={ }^{*}\left(x^{i} S_{k_{i}}\right) R y^{i} S_{l_{i}}$, where $x^{i} \in S_{k_{i}} \cap R$ and $y^{i} \in S_{l_{i}} \cap R$ are chosen as follows: Consider a tail R^{\prime} of R such that the union of $x^{j} R y^{j}, \ldots, x^{i+1} R y^{i+1}$ is disjoint from (1) R^{\prime}; (2) $x S_{k_{i},}$ for each $x \in S_{k_{i}} \cap R^{\prime}$; (3) $y S_{l_{i}}$ for each $y \in S_{l_{i}} \cap R^{\prime}$. By choice of k_{i} and l_{i}, there are vertices $x^{i} \in S_{k_{i}} \cap R^{\prime}$ and $y^{i} \in S_{l_{i}} \cap R^{\prime}$ such that none of $S_{k_{j}}, \ldots, S_{k_{i+1}}$ or $S_{l_{j}}, \ldots, S_{l_{i+1}}$ intersect $x^{i} R y^{i}$.

It is straightforward to check that each of $D_{j}, D_{j-1}, \ldots, D_{i+1}$ is disjoint from D_{i}. This process yields disjoint double rays $D_{j}, D_{j-1}, \ldots, D_{0}$ in G, contradicting the maximality of j.

Using some of the ideas in the previous proof, we can prove
Theorem 6.16. $\mathrm{IRT}_{\mathrm{UYD}}^{*}$ for forests implies $\mathrm{IRT}_{\mathrm{UYS}}^{*}$ for forests over RCA_{0}. Therefore $\mathrm{IRT}_{\mathrm{UYD}}$ for forests implies $\mathrm{IRT}_{\mathrm{UYS}}$ for forests over $\mathrm{RCA}_{0}+\mathrm{I} \Sigma_{1}^{1}$.

This result will be used in the proofs of Theorems $7.3,7.7$ and 7.10 .
Proof. Let G be a forest. If G happens to have arbitrarily many disjoint double rays, then by $\mathrm{IRT}_{\text {UYD }}^{*}, G$ has infinitely many disjoint double rays. Therefore there is an infinite sequence of disjoint single rays in G. Such a sequence has maximum cardinality, so we are done in this case.

Suppose G does not have arbitrarily many disjoint double rays. By IRT ${ }_{\text {UYD }}^{*}$ for forests, there is a sequence $\left\langle R_{i}\right\rangle_{i<j}$ of disjoint double rays in G of maximum cardinality. Following the proof of Theorem 6.15, define the forests \mathcal{R}, H, and H^{\prime}. There, we proved that no two single rays in the same connected component H_{i} of H can be disjoint.

By $\mathrm{IRT}_{\mathrm{UYD}}^{*}$ for forests, there is a sequence of disjoint double rays in H^{\prime} of maximum cardinality. If this sequence is infinite, then there is an infinite sequence of disjoint single
rays in H because each double ray in the sequence has a tail which lies in H. This is a sequence of disjoint single rays of maximum cardinality in G, so we are done in this case.

Otherwise, suppose $\left\langle S_{k}\right\rangle_{k<l}$ is a disjoint sequence of double rays in H^{\prime} of maximum cardinality. Consider the following disjoint sequence of single rays in G. First, for each $k<l$, consider the single ray formed by intersecting H and the double ray S_{k}. Second, for each $i<j$, we can split the double ray R_{i} into a pair of disjoint single rays in G. This yields a finite sequence $\left\langle Q_{m}\right\rangle_{m<n}$ of disjoint single rays in G.

We claim that $\left\langle Q_{m}\right\rangle_{m<n}$ is a sequence of disjoint single rays in G of maximum cardinality. Suppose there is a larger sequence of disjoint single rays in G. Since G is a forest, any two single rays in G which share infinitely many edges or vertices must share a tail. Therefore there is a single ray Q in this larger sequence which only shares finitely many edges and vertices with each Q_{m}. Then some tail of Q, say $x Q$, is vertex-disjoint from each Q_{m}. In particular, $x Q$ is vertex-disjoint from each R_{i}, i.e. $x Q$ lies in H. Extend $x Q$ to a double ray in H^{\prime} by first connecting x to the $<_{N}$-least vertex in its connected component H_{i}, then following the computable ray which we added. The resulting double ray is disjoint from every S_{k}, because no S_{k} can lie in the same H_{i}^{\prime} as $x Q$ (for $x Q$ is vertex-disjoint from $S_{k} \cap H$ by construction). This contradicts the maximality of l.

6.2 Maximal Variants of IRT

Instead of sets of disjoint rays of maximum cardinality, we could consider sets of disjoint rays which are maximal with respect to set inclusion. For uncountable graphs, Halin [11] observed that any uncountable maximal set of disjoint rays is in fact of maximum cardinality (because rays are countable). This suggests another variant of IRT, which we call maximal IRT:

Definition 6.17. Let MIRT $_{\text {XYZ }}$ be the statement that every X-graph G has a (possibly finite) sequence $\left(R_{i}\right)_{i}$ of Y-disjoint Z-rays which is maximal, i.e., for any Z-ray R in G, there is some i such that R and R_{i} are not Y-disjoint.

MIRT ${ }_{\mathrm{XYZ}}$ immediately follows from Zorn's Lemma. It is straightforward to show that MIRT ${ }_{\text {XYZ }}$ implies $\Pi_{1}^{1}-\mathrm{CA}_{0}$ (see the proof of Theorem 6.18 below), hence $\mathrm{MIRT}_{\mathrm{XYZ}}$ is much stronger than $I R T_{\mathrm{XYZ}}$ or even $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$. We show below that $\mathrm{MIRT}_{\mathrm{XYZ}}$ is equivalent to $\Pi_{1}^{1}{ }^{-}$ CA_{0}. This situation is reminiscent of König's duality theorem for countable graphs. Aharoni, Magidor, Shore [2] proved that the theorem implies ATR_{0} and that $\Pi_{1}^{1}-\mathrm{CA}_{0}$ suffices to prove the required existence of a König cover. Simpson [28] later proved that ATR ${ }_{0}$ actually suffices. The covers produced in [2], and indeed in all then known proofs of this duality theorem actually had various maximality properties. Aharoni, Magidor, Shore proved that the existence of covers with any of a variety of maximality properties actually implies $\Pi_{1}^{1}-\mathrm{CA}_{0}$.

Theorem 6.18. $\Pi_{1}^{1}-\mathrm{CA}_{0}$ is equivalent to $\mathrm{MIRT}_{\mathrm{XYZ}}$.
Proof that $\mathrm{MIRT}_{\mathrm{XYZ}}$ implies $\Pi_{1}^{1}-\mathrm{CA}_{0}$. We first prove that $\mathrm{MIRT}_{\mathrm{XYZ}}$ implies ACA_{0} by adapting the proof of Theorem 5.9; If we apply MIRT ${ }_{X Y Z}$ instead of IRT $_{\mathrm{XYZ}}$ to any of the forests constructed in that proof, we obtain a sequence containing a Z-ray in each tree which constitutes the forest. This is more than sufficient for carrying out the remainder of the proof of Theorem 5.9.

To prove that $\mathrm{MIRT}_{\text {UVS }}$ implies $\Pi_{1}^{1}-\mathrm{CA}_{0}$, suppose we are given a set A. Consider the disjoint union of all A-computable trees (this exists, by ACA_{0}). Any maximal sequence of Y disjoint rays in this forest must contain a ray in each ill-founded A-computable tree. Hence its jump computes the hyperjump T^{A}. This shows that $\mathrm{MIRT}_{\text {UYS }}$ implies $\Pi_{1}^{1}-\mathrm{CA}_{0}$. To prove that the other MIRT ${ }_{\mathrm{XYZ}}$ imply $\Pi_{1}^{1}-\mathrm{CA}_{0}$, it suffices to exhibit a computable procedure which takes trees $T \subseteq N^{<N}$ to X-graphs T^{\prime} such that T is ill-founded if and only if T^{\prime} contains a Z-ray. For MIRT $_{\text {UYD }}$, it suffices to modify each tree by adding a computable branch which is not already on the tree (as we did in the proof of Theorem 5.9). For MIRT ${ }_{\text {DYZ }}$, it suffices to orient each of the graphs we constructed above in the obvious way.

Proof that $\Pi_{1}^{1}-\mathrm{CA}_{0}$ implies $\mathrm{MIRT}_{\mathrm{XYZ}}$. First, we give a mathematical proof for MIRT $\mathrm{XVZ}_{\text {I }}$ that is a direct construction not relying on Zorn's Lemma or the like. We will then explain how to modify it to apply to the other cases and then how to get it to work in $\Pi_{1}^{1}-\mathrm{CA}_{0}$.

Suppose we are given an X-graph G whose vertices are elements of N. We build a sequence of disjoint Z-rays in G by recursion. If there are none we are done. Otherwise start with R_{0} as any Z-ray in G. Suppose at stage n we have constructed disjoint Z-rays $\left\langle R_{i}\right\rangle_{i<m}$ for some $m \leq n$ such that for each i, R_{i} begins at x_{i}. If there is a Z-ray beginning at n which is disjoint from the R_{i} for $i<m$, choose one as R_{m+1}, if not move on to stage $n+1$. This construction produces a (possibly finite) sequence R_{i}, R_{i}, \ldots of disjoint Z-rays in G. We show that this sequence is maximal. If R is a Z-ray which is disjoint from every R_{i}, then go to stage n of the construction, where n is the first vertex of R. If we did insert some R_{m} during stage n, then R_{m} would not be disjoint from R. Hence we did not insert any Z-ray during stage n. But R is a Z-ray that begins at n and is disjoint from $\left\langle R_{i_{j}}\right\rangle_{i_{j}<n}$, contradiction.

To prove MIRT ${ }_{\text {XEZ }}$, we modify the above construction as follows. At stage $n=(u, v)$, we search for a Z-ray R which is disjoint from the previous rays and has (u, v) as its first edge. The rest of the proof proceeds as above.

The only real obstacle in formalizing the above proofs even in $A C A_{0}$ is being able to find out at stage n if there is an R as requested and, if so, choosing one. The question is Σ_{1}^{1} and so in $\Pi_{1}^{1}-\mathrm{CA}_{0}$ we can answer it and then perhaps use some construction or choice principle to produce it. As we only get a yes answer some of the time, $\Sigma_{1}^{1}-A C_{0}$ does not seem sufficient. Also later choices depend on previous ones. A computability argument using the Gandy basis theorem and its uniformities works but requires more background development. A choice principle that returns an element if there is one satisfying a Σ_{1}^{1} property (but may act arbitrarily otherwise) and that can be iterated in a recursion is strong Σ_{1}^{1} - DC_{0} which consists of the scheme

$$
(\exists W)(\forall n)(\forall Y)\left(\Phi\left(n, \bigoplus_{i<n} W^{[i]}, Y\right) \rightarrow \Phi\left(n, \bigoplus_{i<n} W^{[i]}, W^{[n]}\right)\right)
$$

for any Σ_{1}^{1} formula $\Phi(n, X, Y)$. It is known that strong Σ_{1}^{1} - DC_{0} and $\Pi_{1}^{1}-\mathrm{CA}_{0}$ are equivalent [29, VII.6.9]. This clearly has the right flavor and the only issue is defining the required $\Phi(n, X, Y)$ with parameter G. This is slightly fussy but not problematic. We provide the details: To define Φ, first recursively define a finite sequence $i_{0}, \ldots, i_{k}<n$. If i_{0}, \ldots, i_{j-1} have been defined, define i_{j} to be the least number (if any) above i_{j-1} and below n such
that $X^{\left[i_{j}\right]}$ is a Z-ray in G which is disjoint from $X^{\left[i_{0}\right]}, \ldots, X^{\left[i_{j-1}\right]}$. It is clear that there is an arithmetic formula with parameter G which defines i_{0}, \ldots, i_{k} from n and X. Next, we say that $\Phi(n, X, Y)$ holds if Y is a Z-ray in G which begins with n, and Y is disjoint from $X^{\left[i_{0}\right]}, \ldots, X^{\left[i_{k}\right]}$.

Apply strong $\Sigma_{1}^{1}-\mathrm{DC}_{0}$ for the formula Φ to obtain some set W. By Σ_{1}^{0}-comprehension with parameter $G \oplus W$, we may inductively define a (possibly finite) sequence i_{0}, i_{1}, \ldots, just as we did in the definition of Φ. Clearly $\left\langle W^{\left[i_{j}\right]}\right\rangle_{j}$ is a sequence of disjoint Z-rays in G. We claim that it is maximal.

Suppose that R is a Z-ray in G which is disjoint from every $Z^{\left[i_{j}\right]}$. Suppose that R begins with vertex n. Then R is disjoint from $W^{\left[i_{0}\right]}, \ldots, W^{\left[i_{k}\right]}$, where i_{k} is the largest i_{j} below n. It follows that $\Phi\left(n, \bigoplus_{i<n} W^{[i]}, R\right)$ holds. So $\Phi\left(n, \bigoplus_{i<n} W^{[i]}, W^{[n]}\right)$ holds, i.e., $W^{[n]}$ is a Z-ray which begins with n and $W^{[n]}$ is disjoint from $W^{\left[i_{0}\right]}, \ldots, W^{\left[i_{k}\right]}$. By definition of i_{k+1}, that means that $n=i_{k+1}$. But then R and $W^{\left[i_{k+1}\right]}$ are not disjoint, contradiction.

A slicker proof suggested by the referee requires perhaps more background in the metamathematics of Reverse Mathematics. It uses a "countable coded β-model" with the given graph G as an element. By $\Pi_{1}^{1}-\mathrm{CA}_{0}$, for any set G there is a set X such that $X^{[0]}=G$ and $B(X)=\left\langle N,\left\{X^{[i]} \mid i \in N\right\}\right\rangle$ is a β-model, i.e. any Σ_{1}^{1} formula Φ with parameters from among the $X^{[i]}$ is true if and only if it is true in $B(X)$ [29, VII.2.10]. Now one carries out the mathematical proof above but whenever one asks if there is a ray with some property one asks if there is one such among the $X^{[i]}$. This converts the Σ_{1}^{1} questions to ones of fixed arithmetic complexity in X. Then, if the answer is yes, finding an appropriate i is also arithmetic in X with fixed complexity. This converts the entire construction to one arithmetic in X (and so certainly in $\Pi_{1}^{1}-\mathrm{CA}_{0}$). Consider now the claim that the sequence of rays given by this construction over $B(X)$ is actually maximal. The existence of a counter-example R with first element n gives the same contradiction as before. The point is that, as $B(X)$ is a β-model, the answer to the question asked at stage n of the construction of whether there is a ray in $B(X)$ with first vertex n disjoint from the finite sequence is the same as the question as to whether there exists one at all. The only other point to note is that even though the sequence of rays R_{i} is constructed outside of $B(X)$ each finite initial segment is in $B(X)$ by an external induction and the fact that $B(X)$ is obviously a model of ACA_{0}. The argument with the adjustments for MIRT $_{\mathrm{XEZ}}$ is then the same.

7 Relationships Between IRT and Other Theories of Hyperarithmetic Analysis

In this section, we establish implications and nonimplications between variants of IRT and THAs other than $\Sigma_{1}^{1}-\mathrm{AC}_{0}$. One such standard theory is as follows:

Definition 7.1. The theory unique $-\Sigma_{1}^{1}-\mathrm{AC}_{0}$ consists of RCA_{0} and the principle

$$
(\forall n)(\exists!X) A(n, X) \rightarrow(\exists Y)(\forall n) A\left(n, Y^{[n]}\right)
$$

for each arithmetic formula $A(n, X)$.

The above theory is typically known as weak- $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ (e.g., [29, VIII.4.12]). We deviate from this terminology to introduce a new choice principle where the requirement for unique solutions is replaced by one for finitely many solutions.

Definition 7.2. The theory finite- $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ consists of RCA_{0} and the principle

$$
(\forall n)(\exists \text { nonzero finitely many } X) A(n, X) \rightarrow(\exists Y)(\forall n) A\left(n, Y^{[n]}\right)
$$

for each arithmetic formula $A(n, X)$. Formally, " \exists nonzero finitely many $X) A(n, X)$ " means that there is a nonempty sequence $\left\langle X_{i}\right\rangle_{i<j}$ such that for each $X, A(n, X)$ holds if and only if $X=X_{i}$ for some $i<j$.

Similarly to $\Sigma_{1}^{1}-\mathrm{AC}$, each of these two choice principles are equivalent to ones where A is allowed to be of the form $(\exists!Y) B(n, X, Y)$ or (\exists nonzero finitely many $Y) B(n, X, Y)$, respectively. However, unlike $\Sigma_{1}^{1}-\mathrm{AC}$ neither of these two principle is equivalent to the version where A is allowed to be Σ_{1}^{1}. Not only would those versions fail to capture the idea that we are dealing with unique or finitely many witnesses and paths through trees but they should be stronger than the stated principles. It is easy to see, for example, that even the unique version with $A \Sigma_{1}^{1}$ implies Δ_{1}^{1}-CA (Definition 7.8) which is stronger than unique- Σ_{1}^{1} - AC by Van Wesep 31].

Since the THA $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ implies finite- $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ which in turn implies unique- $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ whose models are closed under hyperarithmetic reducibility by Proposition 3.9, it follows that finite-$\Sigma_{1}^{1}-\mathrm{AC}_{0}$ is a THA (as is unique- $\Sigma_{1}^{1}-\mathrm{AC}_{0}$). Goh [10] shows that finite- $\Sigma_{1}^{1}-\mathrm{AC} C_{0}$ is strictly stronger than unique- $\Sigma_{1}^{1}-\mathrm{AC}_{0}$. We were led to study this version of choice by realizing that a variant of our original proof that IRT $T_{\text {UVS }}^{*}$ implies unique- $\Sigma_{1}^{1}-A C_{0}$ worked for the finite version.

Theorem 7.3. IRT T_{XYZ}^{*} implies finite- $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ over RCA_{0}. (It follows that $\mathrm{IR} \mathrm{T}_{\mathrm{XYZ}}$ implies finite- $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ over $\mathrm{RCA}_{0}+I \Sigma_{1}^{1}$, but this is superseded by Theorem 7.7 below.)

Proof. We first prove that $\mathrm{IRT}_{\text {UYS }}^{*}$ for forests implies finite $-\Sigma_{1}^{1}-\mathrm{AC}_{0}$. By Lemma 6.7, it suffices to prove that for any sequence $\left\langle T_{n}\right\rangle_{n}$ of subtrees of $N^{<N}$ such that each T_{n} has finitely many branches, a sequence $\left\langle P_{n}\right\rangle_{n}$ exists with each $P_{n} \in\left[T_{n}\right]$. As in the proof of Theorem 6.12, we construct a sequence of trees $\left\langle S_{n}\right\rangle_{n}$ such that for each n, the branches on S_{n} are precisely those of the form $P_{0} \oplus \cdots \oplus P_{n}$ where P_{i} is a branch on T_{i} for $i \leq n$.

By $\mathrm{RRT}_{\text {UYS }}^{*}$ (for forests) there is a sequence $\left\langle R_{k}\right\rangle_{k}$ of Y-disjoint rays in $\bigsqcup_{n} S_{n}$ of maximum cardinality. We claim that $\left\langle R_{k}\right\rangle_{k}$ is infinite. If not, let m be least such that there is no R_{k} in S_{m}. Then we can increase the cardinality of $\left\langle R_{k}\right\rangle_{k}$ by adding any ray R from S_{m} while maintaining disjointness by our choice of n. The point here is that if $R \cap R_{k} \neq \emptyset$ for any k then they are both in S_{m} as the trees S_{n} are disjoint and there are no edges between them. Therefore $\left\langle R_{k}\right\rangle_{k}$ has a ray in infinitely many S_{n}. Thus we may construct the desired sequence $\left\langle P_{n}\right\rangle_{n}$ recursively by searching at stage n for an R_{k} in S_{m} for some $m>n$ and take P_{n} to be the branch in T_{n} which shares a tail with the nth coordinate of R_{k}.

Now, by Theorem 6.16, it follows that $\mathrm{IRT}_{\text {UYD }}^{*}$ for forests implies finite- $\Sigma_{1}^{1}-\mathrm{AC}_{0}$. By Proposition 6.5, it follows that $\mathrm{IRT}_{\text {DYZ }}^{*}$ implies finite $-\Sigma_{1}^{1}-\mathrm{AC}_{0}$ as well and so we are done.

Another theory of hyperarithmetic analysis which follows from $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$ is arithmetic Bolzano-Weierstrass (ABW $)_{0}$):

Definition 7.4. The theory ABW_{0} consists of RCA_{0} and the following principle: If $A(X)$ is an arithmetic predicate on 2^{N}, either there is a finite sequence $\left\langle X_{i}\right\rangle_{i}$ which contains every X such that $A(X)$ holds or there is an X such that every one of its neighborhoods has two Y such that $A(Y)$ holds. Such an X is called an accumulation point of the class $\{X \mid A(X)\}$.

Friedman [8] introduced ABW_{0} and asserted that it follows from $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ (with unrestricted induction). Conidis [4] proved Friedman's assertion and established relationships between ABW_{0} and most then known theories of hyperarithmetic analysis. Goh [10] shows that $A B W_{0}+I \Sigma_{1}^{1}$ implies finite $-\Sigma_{1}^{1}-A C_{0}$. We do not know if $A B W_{0}$ is strictly stronger than finite- $\Sigma_{1}^{1}-\mathrm{AC}_{0}$.

The following two lemmas will be useful in deriving ABW_{0} from $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$. The first lemma describes a connection between sets of solutions of arithmetic predicates and disjoint rays in trees.

Lemma $7.5\left(\mathrm{ACA}_{0}\right)$. Suppose $A(X)$ is an arithmetic predicate. Then there is a tree $T \subseteq$ $N^{<N}$ such that if there is a sequence of distinct solutions of $A(X)$, then there is a sequence of Y-disjoint single rays in T of the same cardinality, and vice versa.

Proof. By Lemma 6.6, there is a tree $T \subseteq N^{<N}$ such that

$$
\begin{aligned}
& \quad \forall X(A(X) \leftrightarrow \exists f(\langle X, f\rangle \in[T]) \\
& \text { and } \forall X(\exists \text { at most one } f)(\langle X, f\rangle \in[T]) \text {. }
\end{aligned}
$$

If $\left\langle X_{i}\right\rangle_{i}$ is a sequence of distinct solutions of $A(X)$, then, as the required f_{i} are arithmetic uniformly in the X_{i}, there is a sequence of distinct branches $\left\langle\left\langle X_{i}, f_{i}\right\rangle\right\rangle_{i}$ on T of the same cardinality.

By taking an appropriate tail of each branch, we obtain a sequence $\left\langle R_{i}\right\rangle_{i}$ of vertex-disjoint (hence edge-disjoint) single rays in T of the same cardinality with each one being a tail of $\left\langle X_{i}, f_{i}\right\rangle$: As no two distinct branches in a tree can have infinitely many vertices in common, simply take R_{n} to be the tail of $\left\langle X_{n}, f_{n}\right\rangle$ starting after all vertices it has in common with any $\left\langle X_{i}, f_{i}\right\rangle, i<n$.

Conversely, suppose there is a sequence $\left\langle R_{i}\right\rangle_{i}$ of Y-disjoint single rays in T. For each R_{i}, we define a branch on T which corresponds to it as follows. Let x be the vertex in R_{i} which is closest to the root of T. Then we can extend $x R_{i}$ to the root to obtain a branch $\left\langle X_{i}, f_{i}\right\rangle$ on T. We claim that $\left\langle X_{i}\right\rangle_{i}$ is a sequence of distinct solutions of $A(X)$. For each $i \neq j$, since R_{i} and R_{j} are Y-disjoint, they cannot share a tail. So $\left\langle X_{i}, f_{i}\right\rangle$ and $\left\langle X_{j}, f_{j}\right\rangle$ must be distinct. Since for each X, there is at most one f such that $\langle X, f\rangle$ is a branch on T, it follows that $X_{i} \neq X_{j}$ as desired.

The second lemma is essentially the well-known fact that the Bolzano-Weierstrass theorem is provable in ACA_{0} :

Lemma 7.6 ([29, III.2.7]). ACA $_{0}$ proves that if $\left\langle X_{n}\right\rangle_{n}$ is a sequence of distinct elements of 2^{N}, then there is some Z which is an accumulation point of $\left\{X_{n} \mid n \in N\right\}$.

Theorem 7.7. $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$ implies ABW_{0} over RCA_{0}. Therefore $\mathrm{IRT}_{\mathrm{XYZ}}$ implies ABW_{0} over $R C A_{0}+I \Sigma_{1}^{1}$.

Proof. By Proposition 6.5, it suffices to show that the undirected variants of IRT* imply ABW_{0}.

Suppose $A(X)$ is an arithmetic predicate on 2^{N} such that no finite sequence $\left\langle X_{i}\right\rangle_{i}$ contains every X such that $A(X)$ holds. By Lemma 7.5, there is a tree $T \subseteq N^{<N}$ such that for any sequence of distinct solutions of $A(X)$, there is a sequence of Y-disjoint single rays in T of the same cardinality, and vice versa.

By $\mathrm{RRT}_{\mathrm{UYS}}^{*}$, or by $\mathrm{IRT}_{\mathrm{UYD}}^{*}$ and Theorem 6.16, there is a sequence of Y-disjoint single rays in T of maximum cardinality. This yields a sequence of distinct solutions of $A(X)$ of the same cardinality.

If this sequence is finite, then there is a solution Y of $A(X)$ not in the sequence by our assumption. Hence there is a sequence of distinct solutions of $A(X)$ of larger cardinality, which yields a sequence of Y-disjoint single rays in T of larger cardinality for the desired contradiction.

Thus there is an infinite sequence $\left\langle X_{n}\right\rangle_{n}$ of distinct solutions of A. By Lemma 7.6, there is an accumulation point of $\left\{X_{n} \mid n \in N\right\}$, which is of course an accumulation point of $\{X \mid A(X)\}$, as desired.

We now turn our attention to nonimplications. One prominent theory of hyperarithmetic analysis is the scheme of Δ_{1}^{1}-comprehension (studied by Kreisel [15]):
Definition 7.8. The theory $\Delta_{1}^{1}-\mathrm{CA}_{0}$ consists of RCA_{0} and the principle

$$
(\forall n)(\Phi(n) \leftrightarrow \neg \Psi(n)) \rightarrow \exists X(n \in X \leftrightarrow \Phi(n))
$$

for all Σ_{1}^{1} formulas Φ and Ψ.
Theorem 7.9. $\Delta_{1}^{1}-\mathrm{CA}_{0} \nvdash \mathrm{IR} \mathrm{T}_{\mathrm{XYZ}}, \mathrm{IRT}_{\mathrm{XYZ}}^{*}$.
Proof. Conidis [4, Theorem 3.1] constructed a standard model which satisfies $\Delta_{1}^{1}-\mathrm{CA}_{0}$ but not ABW_{0}. By Theorem 7.7, this model does not satisfy $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$. Since standard models satisfy full induction, this model does not satisfy IRT ${ }_{\text {XYZ }}$ either (by Proposition 6.3).
Theorem 7.10. ABW $_{0} \nvdash I R T_{\mathrm{XYZ}}, \mathrm{IRT}_{\mathrm{XYZ}}^{*}$.
Proof. By Propositions 5.3 and 6.3 , it suffices to show that $\mathrm{ABW}_{0} \nvdash I R T_{\text {UYZ. Van }}$ Wesep 31, I.1] constructed a standard model \mathcal{N} which satisfies unique- $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ but not Δ_{1}^{1} - CA_{0}. Conidis [4. Theorem 4.1], using the approach of [20], showed that \mathcal{N} satisfies ABW_{0}. We show below that \mathcal{N} does not satisfy $\mathrm{IRT}_{\text {UYZ }}$.

In order to define \mathcal{N}, van Wesep constructed a tree T^{G} and branches $\left\langle f_{i}^{G}\right\rangle_{i \in \mathbb{N}}$ of T^{G} such that (1) \mathcal{N} contains T^{G} and infinitely many (distinct) f_{i}^{G} (see [31, pg. 13 1. 1-11]); (2) \mathcal{N} does not contain any infinite sequence of distinct branches of T^{G} (see [31, pg. 12 l. 7-9] and Steel [30, Lemma 7].) Then T^{G} is an instance of $\mathrm{IRT}_{\text {UYS }}$ in \mathcal{N} which has no solution in \mathcal{N}. This shows that \mathcal{N} does not satisfy $I R T_{\text {UYS }}$ for trees. (The reader who wants to follow the details of the proofs in [4] and [31, I.1] should look at the presentation of the basic methods in [20.)

Since \mathcal{N} is a standard model, it satisfies full induction. By Theorem 6.16, it follows that \mathcal{N} does not satisfy $\mathrm{IRT}_{\text {UYD }}$ for forests.

Figure 4 illustrates some of our results. In order to simplify the diagram, we have omitted all variants of IRT except $\mathrm{IRT}_{\text {UVS }}$.

Figure 4: Partial zoo of theories of hyperarithmetic analysis. Single arrows indicate implication while double arrows indicate strict implication. The references for the above results are as follows: $(1,2)$ Montalbán [17, Theorems 2.1, 3.1]; $(3,4)$ Montalbán [16, Theorem 2.2], Neeman [20, Theorems 1.2, 1.3, 1.4], see also Neeman [21, Theorem 1.1]; (5) Theorem 4.5; (6) Theorems 7.7, 7.10, (7) Conidis [4, Theorem 4.1]. All results concerning finite- $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ are in Goh [10].

8 Isolating the Use of $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ in Proving IRT

We isolate the use of $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ in our proofs of $I \mathrm{RT}_{\mathrm{XYS}}$ and $\mathrm{IRT}_{\mathrm{UVD}}$ (Theorems 4.5, 5.10, 5.15) by identifying the following principles:

Definition 8.1. Let $\mathrm{SCR}_{\mathrm{XYZ}}$ be the assertion that if G is an X-graph with arbitrarily many Y-disjoint Z-rays, then there is a sequence of sets $\left\langle X_{k}\right\rangle_{k}$ such that for each $k \in N, X_{k}$ is a set of $k Y$-disjoint Z-rays in G.

Let WIRT $_{\mathrm{XYZ}}$ be the assertion that if G is an X-graph and there is a sequence of sets $\left\langle X_{k}\right\rangle_{k}$ such that for each $k \in N, X_{k}$ is a set of $k Y$-disjoint Z-rays in G, then G has infinitely many Y-disjoint Z-rays.

SCR stands for Strongly Collecting Rays. WIRT stands for Weak Infinite Ray Theorem.
It is clear that $\Sigma_{1}^{1}-A_{0}$ implies $S^{\prime} R_{X Y Z}$ and $S_{X Y Z}+$ WIRT $_{X Y Z}$ implies $I R T_{X Y Z}$. The only use of $\Sigma_{1}^{1}-A C_{0}$ in our proofs of $I R T_{X Y S}$ and $I R T_{U V D}$ is to prove $S C R_{X Y S}$ and $S C R_{U V D}$ respectively:

Theorem 8.2. ACA $_{0}$ proves WIRT $_{\text {XYS }}$ and WIRT $_{\text {UVD }}$.
Proof. For $\mathrm{WIRT}_{\text {UVs }}$, see the proof of Theorem4.5(ii). In particular, note that the hypothesis of WIRT is exactly the instance of $\Sigma_{1}^{1}-\mathrm{AC}$ needed in that proof (and the one referenced there). From then on, the argument proceeds in ACA $_{0}$ to give the conclusion of IRT and so of WIRT as desired. Similarly, for WIRT $_{\text {UVD }}$, see the proof of Theorem 5.10 and for WIRT $_{\text {XES }}$, see the proof of Theorem 5.15. The desired result for WIRT $_{\text {DVS }}$ then follows from Lemma 5.4 .
 $R C A_{0}$ to $I R T_{X Y S}$ and $I R T_{\text {UVD }}$ respectively. First, observe that $I R T_{X Y Z}$ implies $S C R_{X Y Z}$ for each choice of $X Y Z$. Second, Lemmas $5.2,5.4$ and 5.6 imply

Proposition 8.3. $\mathrm{SCR}_{\mathrm{DYZ}}$ implies $\mathrm{SCR}_{\mathrm{UYZ}}, \mathrm{SCR}_{\mathrm{DEZ}}$ implies $\mathrm{SCR}_{\mathrm{DVZ}}$ and $\mathrm{SCR}_{\mathrm{DYD}}$ implies SCR ${ }_{\text {DYS }}$.

Proposition 8.4. $\mathrm{SCR}_{\mathrm{XYZ}}$ implies ACA_{0}.
Proof. By Proposition 8.3, it suffices to establish the desired result for the undirected variants of SCR. The proofs are almost identical to those of Theorems 4.5(i) and 5.9. There, we applied IRT UYZ to forests $G=\bigsqcup_{n} T_{n}$, where each T_{n} contains a Z-ray, and no two Z-rays in T_{n} can be Y-disjoint. Any infinite sequence of Y-disjoint Z-rays in G must contain a Z-ray in cofinally many graphs T_{n}. Therefore from such a sequence we can uniformly compute Z-rays in cofinally many graphs T_{n}, which establishes ACA_{0} by the construction of $\bigsqcup_{n} T_{n}$. If we assume $\mathrm{SCR}_{\mathrm{UYZ}}$ instead of $\mathrm{IRT}_{\mathrm{UYZ}}$, we only have access to a sequence $\left\langle X_{k}\right\rangle_{k \in N}$ such that for each k, X_{k} is a set of $k Y$-disjoint Z-rays in G. From such a sequence we can still uniformly compute Z-rays in cofinally many graphs T_{n}, because for any k, X_{k+1} must contain a Z-ray in some $T_{n}, n \geq k$.

By Theorem 8.2, Proposition 8.4, and the observation that $\mathrm{SCR}_{\mathrm{XYZ}}+\mathrm{WIRT}_{\mathrm{XYZ}} \vdash \mathrm{IR} T_{\mathrm{XYZ}}$, we obtain

Corollary 8.5. $\mathrm{SCR}_{\mathrm{XYZ}}$ and $\mathrm{IR} \mathrm{T}_{\mathrm{XYZ}}$ are equivalent over RCA_{0} for the following choices of XYZ: XYS and UVD.

We now turn our attention to WIRT ${ }_{\text {XYZ }}$. As usual, Lemmas 5.2 , 5.4 and 5.6 imply
Proposition 8.6. WIRT $_{\text {DYZ }}$ implies WIRT $_{\text {UYZ }}$, WIRT $_{\text {DEZ }}$ implies WIRT $_{\text {DVZ }}$ and WIRT $_{\text {DYD }}$ implies WIRT $_{\text {DYS }}$.

Recall that WIRT $_{\text {XYS }}$ and WIRT $_{\text {UVD }}$ are provable in ACA $_{0}$ (Theorem 8.2). WIRT $_{\text {DVD }}$ and WIRT DED are open, because $\Sigma_{1}^{1}-\mathrm{AC}_{0}+$ WIRT $_{\mathrm{XYZ}}$ implies $\operatorname{IR} T_{\mathrm{XYZ}}$, and $\mathrm{IRT}_{\text {DVD }}$ and IRT ${ }_{\text {DED }}$ are open (see comments after Theorem5.1). We do not have an upper bound on the prooftheoretic strength of WIRT $_{\text {UED }}$ (an upper bound on WIRT ${ }_{\text {UED }}$ would yield an upper bound on $\mathrm{IRT}_{\text {UED }}$, which we do not currently have).

We do not know if any WIRT ${ }_{\text {XYZ }}$ is equivalent to $A C A_{0}$. In an effort to clarify the situation, we define an apparent strengthening of WIRT ${ }_{X Y Z}$ and show that it implies $A C A_{0}$:

Definition 8.7. Let nonuniform-WIRT XYZ be the assertion that if G is an X-graph and there is a sequence of Z-rays R_{0}, R_{1}, \ldots in G such that for each k, there are i_{0}, \ldots, i_{k} such that $R_{i_{0}}, \ldots, R_{i_{k}}$ are Y-disjoint, then G has infinitely many Y-disjoint Z-rays.

Every instance of WIRT ${ }_{X Y Z}$ is also an instance of nonuniform-WIRT ${ }_{X Y Z}$, so nonuniformWIRT $_{\text {XYZ }}$ implies WIRT $_{\text {XYZ }}$. Conversely, we have

Proposition 8.8. ACA $_{0}+$ WIRT $_{\mathrm{XYZ}}$ implies nonuniform-WIRT $\mathrm{XYZ}_{\mathrm{XY}}$.

Proof．Suppose G is an instance of nonuniform－WIRT ${ }_{\text {XYZ }}$ ，i．e．，G is an X－graph and $\left\langle R_{n}\right\rangle_{n \in N}$ is a sequence of Z－rays in G such that for each k ，there are i_{0}, \ldots, i_{k} such that $R_{i_{0}}, \ldots, R_{i_{k}}$ are Y－disjoint．Then ACA_{0} can find such i_{0}, \ldots, i_{k} uniformly in k ．Therefore by ACA_{0}, G is an instance of WIRT $_{\mathrm{XYZ}}$ ．By WIRT $_{\mathrm{XYZ}}, G$ has infinitely many Y－disjoint Z－rays as desired．

Theorem 8．9．Nonuniform－WIRT ${ }_{\mathrm{XYZ}}$ implies ACA_{0} over RCA_{0} ．It follows that nonuniform－ WIRT $_{\text {XYS }}$ and nonuniform－WIRT UVD are both equivalent to ACA_{0} over RCA_{0} ．

Proof．By Proposition 8.8 and Theorem 8．2， ACA $_{0}$ implies nonuniform－WIRT ${ }_{\text {XYS }}$ and nonuniform－ WIRT $_{\text {UVD }}$ ．

Next，we show that nonuniform－WIRT ${ }_{\text {XYZ }}$ implies ACA $_{0}$ ．By Lemma 5．2，it suffices to consider the undirected versions of nonuniform－WIRT．First，we prove that nonuniform－ WIRT $T_{\text {UYS }}$ implies ACA $_{0}$ by constructing a computable instance of nonuniform－WIRT $T_{\text {UVS }}$ such that every nonuniform－WIRT $T_{\text {UES }}$ solution computes \emptyset^{\prime} ．（The desired result follows by rela－ tivization．）We use a variation of the graph used in the analogous result in Theorem4．2．

Construction of $G=(V, E): V=\left\{0^{n} \mid n>0\right\} \cup\left\{n \subsetneq s^{\frown} 0^{t} \mid n>0\right.$ and some number below n is enumerated into \emptyset^{\prime} at stage s ，and either $t \leq s$ or $\left.\emptyset_{s}^{\prime} \upharpoonright n=\emptyset_{t}^{\prime} \upharpoonright n\right\} . E=\left\{\left(0^{n}, 0^{n+1}\right) \mid\right.$
 $\left.n \frown s^{\frown} 0^{t+1} \notin V\right\} . G$ is clearly computable．

Verification：It is clear that there is exactly one ray $R_{\langle n, s\rangle}$ in G beginning with $n^{\sim} s$ for $n^{\wedge} s \in V$ and the sequence $\left\langle R_{\langle n, s\rangle}\right\rangle_{n^{\wedge} s \in V}$ is also computable．Note that if $\emptyset^{\prime} \upharpoonright n=\emptyset_{s}^{\prime} \upharpoonright n$ then
 each $k \in N,\left\{\langle n, i\rangle \mid i<n \leq k\right.$ and $\left.i \in \emptyset^{\prime}\right\}$ is Σ_{1}^{0} and contained in $k \times k$ and so is a set by bounded Σ_{1}^{0} comprehension［29，II．3．9］．Thus the finite function taking $n>l$（the least number in \emptyset^{\prime} ）to the last stage s_{n} at which an $i<n$ is enumerated in \emptyset^{\prime} is also（coded by）a finite set．So we have，for each k ，a sequence of V－disjoint rays $\left\langle R_{n, s_{n}}\right\rangle_{l<n \leq l+k}$ of length k as required for the hypothesis of nonuniform－WIRT ${ }_{\text {UVS }}$ ．

Suppose then that S_{i} is the sequence of rays in a solution for nonuniform－WIRT UES ．We wish to compute \emptyset^{\prime} from this solution．As the S_{i} are E－disjoint at most one of them contains the edge $(0,00)$ ．So by eliminating that one，we can assume none of the S_{i} contain $(0,00)$ ．If any of the remaining rays contain some edge of the form $\left(0^{j}, 0^{j+1}\right)$ for $j>0$ then（as it does not contain $(0,00))$ it must contain $\left(0^{k}, 0^{k+1}\right)$ for every $k \geq j$ ．Thus there can be at most one such ray among the remaining S_{i} and so we can discard it and assume there are no such rays in our list．No remaining ray can have 0 as its first vertex as if it did its second vertex would have to be of the form $n^{\wedge} s 0^{t}$ with $n^{\frown} s^{\Upsilon} 0^{t+1} \notin V$ ．Any continuation of this sequence would have to follow the $n^{\wedge} s^{\complement} 0^{r}$ with r descending from t and so would have to terminate at $n^{\complement} s$ and not be a ray．Thus all the remaining S_{i} are of the form $\left\langle n_{i}{ }^{〔} s_{i}{ }^{〔} 0^{t+j}\right\rangle_{j \in N}$ for some t with $n_{i} \neq n_{k}$ for $i \neq k$ ．So the remaining S_{i} witness the conclusion of nonuniform－WIRT ${ }_{\text {UVS }}$ as desired．

As we can replace the first vertex of S_{i} by the sequence beginning with $n^{〔} s$ and ending with its second vertex，we know that $\emptyset^{\prime} \upharpoonright n_{i}=\emptyset_{s}^{\prime} \upharpoonright n_{i}$ ．Since the sequence S_{i} and so that of the n_{i} is infinite，given any m we can find an $n_{i}>m$ and so compute $\emptyset^{\prime} \upharpoonright m$ as $\emptyset_{n_{i}}^{\prime} \upharpoonright m$ as required．

To show that nonuniform－WIRT UYD implies ACA_{0} ，define G as above．Consider the graph G^{\prime} gotten by adding on for each $n^{\wedge} s \in V$ new vertices $x_{n, s, k}$ for $k>0$ and edges（ $n^{\wedge} s, x_{n, s, 1}$ ） and $\left(x_{n, s, k}, x_{n, s, k+1}\right)$ for $k>0$ ．The witnesses for the hypothesis of nonuniform－WIRT UVS in
G supply ones for nonuniform-WIRT UVD by tacking on the $x_{n, s, k}$ before $n^{\wedge} s$ in reverse order. The witnesses for the conclusion of nonuniform-WIRT UED can be converted into ones for the conclusion of nonuniform-WIRT ${ }_{\text {UES }}$ in G by removing the new vertices. So once again we can compute \emptyset^{\prime}.

We are unable to show that WIRT $_{\text {XYZ }}$ implies ACA_{0}, but we can prove the following:
Theorem 8.10. WIRT ${ }_{\text {XYZ }}$ is not provable in RCA_{0}.
Proof. By Proposition 8.6, it suffices to consider the undirected variants of WIRT. For all these variants it suffices to construct a computable graph G on \mathbb{N} and a computable sequence $\left\langle\left\langle X_{i}^{k}\right\rangle_{i<k}\right\rangle_{k \in \mathbb{N}}$ such that (1) for each $k \in \mathbb{N}$, the X_{i}^{k} for $i<k$ are pairwise vertex-disjoint double rays in G and (2) there is no computable sequence $\left\langle R_{j}\right\rangle_{j \in \mathbb{N}}$ of edge-disjoint single rays in G. It is clear that the G constructed for this C is a counterexample to each WIRT $_{\text {UYZ }}$ in the standard model of RCA_{0} with second order part the recursive sets. Of course, as this model is standard, WIRT $X Y Z$ is not provable in RCA, $R C A_{0}$ plus induction for all formulas.

The computable construction will be a finite injury priority argument. At the end of stage s of our construction, for each $i<k \leq s$, we will have defined a path $P_{i, s+1}^{k}$ with lengths strictly increasing with s which is intended to be a segment of the double ray X_{i}^{k}. We think of these paths P_{s} as having domain a segment $[u, v]$ of \mathbb{Z} containing $[-s, s]$. Its endpoints are $P_{s}(u)$ and $P_{s}(v)$. The intention is that the $X_{i}^{k}=\bigcup_{s} P_{i, s}^{k}$ will be the desired double rays such that, for each k, the X_{i}^{k} for $i<k$ will be vertex-disjoint. We will also have put all numbers less than s in as vertices in at least one of these $P_{i, s}^{k}$. In future stages, we will not add any edges between vertices which are currently in any $P_{i, s}^{k}$ for $i<k$. Thus G will be a computable graph given by the union of the double rays $X_{i}^{k}=\bigcup_{s} P_{i, s}^{k}$. We let G_{s} be the graph defined so far, i.e. $\bigcup\left\{P_{i, s}^{k} \mid i<k<s\right\}$. We let $G_{s}^{>t}$ be its subgraph defined as the union of the $P_{0, s}^{k}, \ldots, P_{k-1, s}^{k}$ for $k>t$ and similarly for $k<t$ and other interval notations.

We say that the disjointness condition, d.c., holds at stage s if for every $m<s$ and distinct n and $n^{\prime}<m, P_{n, s}^{m}$ and $P_{n^{\prime}, s}^{m}$ are vertex-disjoint. Otherwise we say we have violated the d.c. Clearly, if we never violate the d.c. the X_{n}^{m} (for fixed m) are pairwise vertex-disjoint. We arrange the construction so that we obviously never violate the d.c.

So it suffices to also meet the following requirements:
Q_{e} : If R_{0}, R_{1}, \ldots is a computable sequence of single rays in G defined by Φ_{e},
i.e. $\Phi_{e}(i, n)=R_{i}(n)$ then the R_{i} are not edge-disjoint.

The requirements Q_{e} are listed in order of priority. During our construction, if all else fails, we will attempt to satisfy each Q_{e} at some stage s by merging certain rays X_{i}^{k} and X_{j}^{l} using vertices x and $y \neq x$ which are endpoints of $P_{i, s}^{k}$ and $P_{j, s}^{l}$, respectively. We do this by adding the least new number r (the merge point of this merger) as a vertex of G as well as edges (x, r) and (y, r) which are appended to each $P_{r, s}^{q}$ with x or y, respectively, as an endpoint. We also ensure that $P_{i, t}^{k}$ and $P_{j, t}^{l}$ henceforth agree after the vertex r as they grow in the corresponding directions.

Without loss of generality, and to simplify notation later, we make the assumption that if $\Phi_{e, s}(i, u)$ is convergent for any e, i and u then so is $\Phi_{e, s}\left(i, u^{\prime}\right)$ for every $u^{\prime}<u$.

Construction. At stage s of the construction, we are given a finite graph G_{s} consisting of, for each $k<s$, finite vertex-disjoint paths $P_{0, s}^{k}, \ldots, P_{k-1, s}^{k}$ as described above. We let $f_{s}(e)$ be the final stage before s at which Q_{e} was initialized. For notational convenience when s and e are specified we simply write f for $f_{s}(e)$.

First, we act for the requirement Q_{e} of highest priority with $e<s$ which requires attention as described below. All requirements Q_{e} are initialized and unsatisfied at stage 0 and are initialized and declared to be unsatisfied whenever we act for a $Q_{e^{\prime}}$ with $e^{\prime}<e$.

We say that Q_{e} requires attention at stage s if Q_{e} is not satisfied and there are $a, u, x, b, v, y<$ s such that $u>0, \Phi_{e, s}(a, u) \downarrow,\left\langle\Phi_{e, s}(a, n)\right\rangle_{n \leq u}$ is a path in G_{s} disjoint from $G_{s}^{<f}$ which can be extended in only one way to a maximal path in G_{s} and this extension eventually reaches an $x \notin G_{s}^{<f}$ which is an endpoint of some $P_{i, s}^{k}$ for $k \geq f$ and similarly for b, v and y for some $P_{j, s}^{l}$ such that x and y are not both endpoints of the same P_{r}^{q}. We also require that the merger using x and y would not violate the d.c. We then let $a(e, s)$ etc. be the associated witnesses for the least such computation. In this case, the actions for Q_{e} is to perform the merger using $x(e, s)$ and $y(e, s)$ as defined above and declare Q_{e} to be satisfied.

Finally, for each w, in turn, which is an endpoint of any the paths P_{i}^{k} as now defined we extend those paths by taking the least new number z which we append after w in each of these paths (and so add (w, z) as a new edge). For each $i<s$, in turn, we also take the next $2 s+1$ least new numbers and let the $P_{i}^{s}(n)$ be these numbers in order for $n \in[-s, s]$. This defines the $P_{i, s+1}^{k}$ for $i<k<s+1$ and completes stage s of the construction. As promised we let $X_{i}^{k}=\bigcup_{s} P_{i, s}^{k}$.

Verification. It is clear that, for each $i<k \in \mathbb{N}, X_{i}^{k}$ is a double ray and that G is a computable graph consisting of the union of these rays. It is also clear that by construction we never violate the d.c. and so for each k the X_{i}^{k} for $i<k$ are pairwise vertex disjoint as required. Thus we only need to prove that we meet each Q_{e}.

We now state a series of facts about G each of which follows immediately (or by simple inductions) from the construction and previous facts on the list.

Lemma 8.11. Every vertex r which is a merge point has exactly three neighbors and they are the x and y used in the merger and the z added on after r in the final part of the action at the merger stage. In addition, no endpoint of any $P_{i, s}^{k}$ is a merge point and every vertex which is not a merge point has exactly two neighbors.

If $u \in G_{s}$ and so $u \in P_{i, s}^{k}$ for some $i<k<s$, then for any $j<l, u \in X_{j}^{l} \Leftrightarrow u \in P_{j, s}^{l}$ and if so $l<s$.

If $(u, v) \in G_{s}$ then not both u and v are merge points. If neither are merge points then $\forall k \forall i<k\left(v \in P_{i, s}^{k} \Leftrightarrow u \in P_{i, s}^{k}\right)$. If one, say u, is a merge point r for a merger at some stage t necessarily less than s using some x and y with (r, z) the edge added on at the end of stage t, then the other (v) is x, y or $z ; \forall k \forall i<k\left(r \in P_{i, t+1}^{k} \Leftrightarrow x \in P_{i, t}^{k} \vee y \in P_{i, t}^{k}\right)$; $\forall k \forall i<k\left(r \in P_{i, t+1}^{k} \Leftrightarrow r \in P_{i, s}^{k} \Leftrightarrow z \in P_{i, t+1}^{k} \Leftrightarrow z \in P_{i, s}^{k}\right)$.

Any ray in G which begins in G_{s} remains in G_{s} until it reaches an endpoint of some $P_{i, s}^{k}$.
Each requirement acts at most once after the last time it is initialized. So, by induction, each requirement acts and is initialized only finitely often. Thus there is an infinite sequence w_{i} such that at each w_{i} we act for some Q_{e} and we never act for any $Q_{e^{\prime}}$ with $e^{\prime} \leq e$ afterwards. The observation to make here is that if there were a last stage w at which we act for any Q_{e} then there would be no mergers of any X_{i}^{k} and X_{j}^{l} for $k, l>w$. In this case all
the $X_{i}^{k}, i<k$ for $k>w$ would be disjoint. It is then easy to see from the observations above that at some stage after w we would act for $a Q_{e}$ with $e>w$ such that $\Phi_{e}(0, n)=X_{i}^{k}(n)$ and $\Phi_{e}(1, n)=X_{j}^{l}(n)$ for $k, l>w$.

If w is one of the w_{i} just defined, $z \in G^{<w}$ and $\left(z, z^{\prime}\right) \in G$ then $z^{\prime} \notin G^{\geq w}$. The point to notice here is that by construction no merger at a stage $s>w$ can use any $x \in G^{<w}$ as every Q_{e} which can act after w is initialized at w by the choice of the w_{i}. Thus any path in G which starts with $a z \in G^{<w}$ never enters $G^{\geq w}$.

Suppose now that Φ_{e} is total and defines a sequence of edge-disjoint single rays $\left\langle R_{i}\right\rangle_{i \in \mathbb{N}}$ in G. By Lemma 8.11, we may choose a $w=w_{c}$ for some c after which no $Q_{e^{\prime}}$ for $e^{\prime} \leq e$ ever acts again.

If Q_{e} is not satisfied at the end of stage w, we argue that we act for it later to get a contradiction. Once a ray begins in $G^{<w}$, it must stay there by Lemma 8.11 and once beyond all the (finitely many) merge points in $G^{<w}$ (none can be put in after stage w and no ray has repeated vertices) it remains in some X_{i}^{k} for $k<w$ with which it shares a tail (as each vertex which is not a merge point has exactly two neighbors). So by the edge-disjointness of the R_{i} there is an a such that $\Phi_{e}(a, 0)=R_{a}(0)$ is not in $G^{<w}$. It starts in $G^{<w^{\prime}}$ with $w^{\prime}=w_{c^{\prime}}$ for some $c^{\prime}>c$ and so shares a tail with some P_{j}^{k} with $w_{c} \leq k<w_{c^{\prime}}$. Similarly there is b such that R_{b} begins in some $G^{\geq w_{d}}$ with $d>c^{\prime}$ and shares a tail with some X_{j}^{l} with $w_{d} \leq l$. So eventually we have a stage s such that $\Phi_{e, s}(a, u) \downarrow$ and $\Phi_{e, s}(b, v) \downarrow$ define paths in G_{s} which go beyond the points by which R_{a} and R_{b} share tails with X_{i}^{k} and X_{j}^{l}, respectively, and after which neither tail contains a merge point and so these paths have unique extensions to paths in G_{s} (determined by the appropriate tails of X_{i}^{k} and X_{j}^{l}) ending with the endpoints of $P_{i, s}^{k}$ and $P_{j, s}^{l}$, respectively. Finally, note that the merger of X_{i}^{k} and X_{j}^{l} at s would not violate d.c. as by Lemma $8.11 P_{i, s}^{k}$ can share vertices only with $P_{n, s}^{m}$ with $w_{c} \leq m<w_{c^{\prime}}$ and $P_{j, s}^{l}$ can share vertices only with $P_{n^{\prime}, s}^{m}$ with $m \geq w_{d}>w_{c^{\prime}}$. Thus at stage s we would act to satisfy Q_{e} for the desired contradiction.

So Q_{e} is satisfied at w and was satisfied at some $s \leq w$. With the notations as at s, $\Phi_{e}(a, u)$ and $\Phi_{e}(b, v)$ define initial segments of R_{a} and R_{b} which can each be extended in only one way to maximal paths in G_{s} eventually reaching the vertices x and y, respectively, as described at s. The merger performed at s puts the merge point r in both $P_{i, s+1}^{k}$ and $P_{l, s+1}^{j}$ and so in R_{a} and R_{b} (as the successor of x and y, respectively, as by Lemma $8.11 r$ is the only neighbor in G of x other than its predecessor in R_{a} and similarly for y and R_{b}). We then add in (r, z) to G at stage s. By Lemma 8.11, the only neighbors of r are x, y and z so any continuation of R_{a} and R_{b} after r must produce a shared edge, as R_{a} can continue only with either (y, r) which is an edge of R_{b} or with (r, z) and R_{b} can continue only with (x, r) which is an edge of R_{a} or (r, z). This yields the final contradiction.

9 Open Questions

In addition to the variations of the Halin type theorems investigated here that remain open problems of graph theory ($\mathrm{IRT}_{\mathrm{DVD}}$ and $\mathrm{IRT}_{\text {DED }}$) the most intriguing computational and reverse mathematical questions are about either separating the variants or providing additional reductions or equivalences among the $\operatorname{IR} T_{\mathrm{XYZ}}$ and $\Sigma_{1}^{1}-\mathrm{AC}_{0}$. Clearly the most important issue
is deciding if any (or even all) the $I R T_{X Y Z}$ which are known to be provable in $\Sigma_{1}^{1}-A C_{0}$ are actually equivalent to it. We extend this problem to include the $I R T_{\text {XYZ }}^{*}$ and $I \Sigma_{1}^{1}$.

Question 9.1. Can one show that any of the $I R T_{X Y Z}$ which are provable in $\Sigma_{1}^{1}-\mathrm{AC}_{0}\left(I R T_{X Y S}\right.$ and $I R T_{\text {UVD }}$) do not imply $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ over RCA_{0} or even over $R C A_{0}+I \Sigma_{1}^{1}$? An intermediate result might be that IRT XYZ (for one of these versions) does not imply $\Sigma_{1}^{1}-A_{0}$ over RCA_{0}.

Should any of these $I R T_{X Y Z}$ be strictly weaker than $\Sigma_{1}^{1}-A C_{0}$, the question would then be to determine the relations among the $I R T_{X Y Z}$ and analogously the $I R T_{X Y Z}^{*}$.

Question 9.2. Can any additional arrows be added to Figure 1 over RCA_{0} or $\mathrm{RCA}_{0}+\mathrm{I} \Sigma_{1}^{1}$? (This includes the question of whether $\mathrm{RCA}_{0} \vdash I \mathrm{RT}_{\mathrm{UVD}} \rightarrow \mathrm{IRT}_{\text {UVS. }}$.)

As we noted in Remark 5.8 there is an apparent additional reduction in Bowler, Carmesin, Pott [3, pg. 2 l. 3-7]. They use an intermediate reduction to locally finite graphs in the sense of relying on the fact that if a graph has arbitrarily many disjoint rays it has a locally finite subgraph with arbitrarily many disjoint rays. This is the principle to which that Remark refers. It plus $A C A_{0}$ is a THA but over $R C A_{0}$ it does not imply $A C A_{0}$ and is provably very weak (in the sense of being highly conservative over RCA_{0}). Shore [27] proves these results and further analyzes this and many similar principles some related to the $\operatorname{IR} T_{\mathrm{XYZ}}$ and others to an array of classical logical principles.

Any reductions in RCA_{0} as requested in the Question above would, of course, provide the analogous ones for the $I R T_{\mathrm{XYZ}}^{*}$. However, it is possible that other implications can be proven for the $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$:

Question 9.3. Can any implications of the form $I R T_{X Y Z}^{*} \rightarrow I R T_{X^{\prime} Y^{\prime} Z^{\prime}}^{*}$ be proven in $R C A_{0}$ other than the ones known to hold for the IRT versions?

Probably more challenging is the problem of separating the principles.
Question 9.4. Can one prove any nonimplication over $R C A_{0}$ or over $R C A_{0}+I \Sigma_{1}^{1}$ for any pair of the $\mathrm{IRT}_{\mathrm{XYZ}}$?

Of course, any such separation for the $I R T_{X Y Z}$ of Question 9.1 would answer a case of that question by proving that at least one of these principles is strictly weaker than $\Sigma_{1}^{1}-A C_{0}$. In addition, a separation by standard models or even ones over $I \Sigma_{1}^{1}$ for the $I R T_{X Y Z}$ would give nonimplication for the corresponding $\mathrm{IRT}_{\mathrm{XYZ}}^{*}$ but it might be that nonstandard models could be used to separate one pair of versions but not the other.

The next natural question looks below ABW_{0} in Figure 4.
Question 9.5. Can one prove that finite- $\Sigma_{1}^{1}-A_{0}$ does not imply $A B W_{0}$ over $R C A_{0}$ or $R C A_{0}+$ $I \Sigma_{1}^{1}$?

The weaker versions, WIR $_{\mathrm{XYZ}}$, of the IRT $\mathrm{XYZ}_{\mathrm{X}}$, prompt a question about $A C A_{0}$.
Question 9.6. Do any of the WIRT ${ }_{X Y Z}$ (especially the ones provable from ACA $_{0}$) imply ACA_{0} ? An easier question might be whether they imply WKL_{0} ?

References

[1] Ron Aharoni. König's duality theorem for infinite bipartite graphs. J. London Math. Soc. (2), 29(1):1-12, 1984.
[2] Ron Aharoni, Menachem Magidor, and Richard A. Shore. On the strength of König's duality theorem for infinite bipartite graphs. J. Combin. Theory Ser. B, 54(2):257-290, 1992.
[3] Nathan Bowler, Johannes Carmesin, and Julian Pott. Edge-disjoint double rays in infinite graphs: a Halin type result. J. Combin. Theory Ser. B, 111:1-16, 2015.
[4] Chris J. Conidis. Comparing theorems of hyperarithmetic analysis with the arithmetic Bolzano-Weierstrass theorem. Trans. Amer. Math. Soc., 364(9):4465-4494, 2012.
[5] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, Berlin, fifth edition, 2017.
[6] Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, and V. W. Marek, editors. Handbook of recursive mathematics. Vol. 2, volume 139 of Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1998. Recursive algebra, analysis and combinatorics.
[7] Harvey Friedman. Algorithmic procedures, generalized Turing algorithms, and elementary recursion theory. In Logic Colloquium '69 (Proc. Summer School and Colloq., Manchester, 1969), pages 361-389, 1971.
[8] Harvey Friedman. Some systems of second order arithmetic and their use. Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, pages 235-242, 1975.
[9] Harvey M. Friedman. Subsystems of set theory and analysis. 1967. Thesis (Ph. D.)Massachusetts Institute of Technology, Dept. of Mathematics.
[10] Jun Le Goh. The strength of an axiom of finite choice for branches in trees. To appear in the Journal of Symbolic Logic.
[11] Rudolf Halin. Über die Maximalzahl fremder unendlicher Wege in Graphen. Math. Nachr., 30:63-85, 1965.
[12] Rudolf Halin. Die Maximalzahl fremder zweiseitig unendlicher Wege in Graphen. Mathematische Nachrichten, 44(1-6):119-127, 1970.
[13] Denis R. Hirschfeldt. Slicing the truth, volume 28 of Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. On the computable and reverse mathematics of combinatorial principles, Edited and with a foreword by Chitat Chong, Qi Feng, Theodore A. Slaman, W. Hugh Woodin and Yue Yang.
[14] Pierre Jullien. Contribution à l'étude des types d'ordres dispersés. 1968. Thesis (Ph.D.)Marseille.
[15] Georg Kreisel. The axiom of choice and the class of hyperarithmetic functions. Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math., 24:307-319, 1962.
[16] Antonio Montalbán. Indecomposable linear orderings and hyperarithmetic analysis. J. Math. Log., 6(1):89-120, 2006.
[17] Antonio Montalbán. On the Π_{1}^{1}-separation principle. MLQ Math. Log. Q., 54(6):563578, 2008.
[18] Antonio Montalbán. Open questions in reverse mathematics. Bull. Symbolic Logic, 17(3):431-454, 2011.
[19] Antonio Montalbán. Fraïssé's conjecture in Π_{1}^{1}-comprehension. J. Math. Log., 17(2):1750006, 12, 2017.
[20] Itay Neeman. The strength of Jullien's indecomposability theorem. J. Math. Log., 8(1):93-119, 2008.
[21] Itay Neeman. Necessary use of Σ_{1}^{1} induction in a reversal. J. Symbolic Logic, 76(2):561574, 2011.
[22] Klaus-Peter Podewski and Karsten Steffens. Injective choice functions for countable families. J. Combinatorial Theory Ser. B, 21(1):40-46, 1976.
[23] Hartley Rogers, Jr. Theory of recursive functions and effective computability. MIT Press, Cambridge, MA, second edition, 1987.
[24] Joseph G. Rosenstein. Linear orderings, volume 98 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982.
[25] Gerald E. Sacks. Higher recursion theory. Perspectives in Mathematical Logic. SpringerVerlag, Berlin, 1990.
[26] Richard A. Shore. On the strength of Fraïssé's conjecture. In Logical methods (Ithaca, NY, 1992), volume 12 of Progr. Comput. Sci. Appl. Logic, pages 782-813. Birkhäuser Boston, Boston, MA, 1993.
[27] Richard A. Shore. Almost theorems of hyperarithmetic analysis. J. Symbolic Logic, 88(2):664-696, 2023.
[28] Stephen G. Simpson. On the strength of König's duality theorem for countable bipartite graphs. J. Symbolic Logic, 59(1):113-123, 1994.
[29] Stephen G. Simpson. Subsystems of second order arithmetic. Perspectives in Logic. Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY, second edition, 2009.
[30] John R. Steel. Forcing with tagged trees. Ann. Math. Logic, 15(1):55-74, 1978.
[31] Robert Alan Van Wesep. Subsystems of Second-order Arithmetic, and Descriptive Set Theory under the Axiom of Determinateness. ProQuest LLC, Ann Arbor, MI, 1977. Thesis (Ph.D.)-University of California, Berkeley.

[^0]: *All the authors were partially supported by NSF Grant DMS-1161175.

