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Abstract

Jockusch, Li and Yang (TAMS 356 (2004), 2557-2568) showed that the Lown

and Low1 r.e. degrees are not elementarily equivalent for n > 1. We answer a
question they raise by using the results of Nies, Shore and Slaman (PLMS (3) 77
(1998), 241-291) to show that the Lown and Lowm r.e. degrees are not elementarily
equivalent for n > m > 1.

1 Introduction

Decision problems were the motivating force in the search for a formal definition of
algorithm that constituted the beginnings of recursion (computability) theory. In the
abstract, given a set A, the decision problem for A consists of finding an algorithm
which, given input n, decides whether or not n is in A. The classic decision problem for
logic is whether a particular sentence is a theorem of a given theory T . Other examples
arise in almost all branches of mathematics. In most settings one is almost immediately
confronted by the notion of a recursively (or computably) enumerable set (the sets which
can be listed (i.e. enumerated) by a computable (i.e. recursive) function): the theorems
of a axiomatized theory, the solvable Diophantine equations, the true equations between
words in a finitely presented group, etc. Typically, such decision problems amount to
deciding if a particular r.e. set is computable (recursive). Indeed, the first examples of
unsolvable decision problems provided examples of nonrecursive r.e. sets: the theorems
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of predicate logic, the word problem for groups, the halting problem. (For technical
convenience, we code all expressions in formal languages, groups, etc. as natural numbers
and so restrict our attention to sets of natural numbers.)

One can say that all these sets are simply noncomputable. Another view sees them
as more complicated or harder to compute than the recursive sets. This is the view that
leads to the notion of relative computability (reducibility) introduced by Turing [1936],
[1939] and Post [1936], [1944]. The equivalence classes under this notion of relative
computability were first called the degrees of recursive unsolvability. As Church’s Thesis
identifying the recursive functions with the (intuitively) calculable ones became widely
accepted, the word “recursive” was dropped and they became simply the degrees of
unsolvability. As Turing’s model of computation became the standard one, they became
the Turing degrees. In view of the centrality of Turing’s notion as the basic general
definition of computability, the unqualified notion of degree eventually became that of
Turing degrees. (We typically denote the degree of a set A by a.)

The starting point for the investigation of this fundamental notion of relative com-
putability was the r.e. degrees (those equivalence classes containing r.e. sets). The classic
results of logic (such as Gödel’s incompleteness theorem, Church’s proof of the undecid-
ability of predicate logic and Turing’s unsolvability of the Halting problem) each proved
that there was a nonrecursive r.e. degree. The construction of r.e. sets of incomparable
degree by Friedberg [1957] and Muchnik [1956] began an intensive study of the internal
structure of R, the r.e. degrees with ≤. (See Shore [1999] for a general introduction and
survey.)

Over the past two decades, much of the research into this structure (as well as that of
all the Turing degrees) has been directly devoted to, or viewed as directed at, the study
of global properties of these degree structures with the partial order induced by relative
computability, ≤T . (In fact, the ordering is an upper semilattice with join denoted by
∨.) The primary topics of investigation have been determining the complexity of their
theories, restricting the action of possible automorphisms and the delineation of the
relations definable in the structures. A common subtext of these investigations has been
the relation between these questions, more specific structural results and the complexity
of definitions of the sets themselves in arithmetic.

Within the degrees, the marker of syntactic complexity of the definition of a set in
arithmetic is the Turing jump. Given a set A, its Turing jump, A′, is {e|φA

e (e) converges}.
This set of indices is the halting problem for machines φA

e with index e and an oracle
for A, i.e. direct access to information about the membership of numbers in A. This
operation on sets is easily seen to preserve the Turing order and so to be well defined on
degrees. It corresponds to one additional alternation of quantifiers in the definition of A.
The jump of a degree a is denoted by a′ and its nth iteration by a(n). The degree of the
recursive sets is denoted by 0 and so that of the halting problem by 0′.

From now on, we restrict our attention to the r.e. degrees, R. Within this structure,
the classification induced by the action of the jump operator is given by the high/low
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hierarchy which measures the complexity of the jumps of a: a is highn, a ∈ Hn, if
a(n) = 0(n+1) (so the nth jump of a is as high as possible) and a is lown, a ∈ Ln, if
a(n) = 0(n) (so the nth jump of a is as low as possible). We follow common practice in
using high and low for high1 and low1. At least near the bottom and top, the position of
a set in this hierarchy is strongly connected to rates of growth of functions of its degree.
Thus, a well studied theme has been the connection between membership in these classes
and structural properties of the corresponding degrees. In particular, one is interested
in exploiting the complexity theoretic differences (as, for example, expressed by growth
rates or complexity of definition) to distinguish between the corresponding classes of
degrees.

At times, specific structural results provide natural examples of differences between
such classes of degrees. Otherwise, global results generally combine structural work with
coding methods. Some strong global results on the theory and definability using codings
are given in Nies, Shore and Slaman [1998]. They show, for example, that a standard
model of arithmetic is definable in the r.e. degrees as are all of the degree classes Ln+1

and Hn for n ≥ 1. An excellent recent example of natural differences being deduced
from specific structural results is Jockusch, Li and Yang [2004]. They use a sophisticated
priority argument to prove a very nice structural result:

Theorem 1.1. (Jockusch, Li and Yang [2004]) For any nonrecursive r.e. w there is an
r.e. a ∈ L2 such that (a ∨w) ∈ H1.

They then combine this result with one of Cholak, Groszek and Slaman [2001] to
produce an elementary (i.e. first order) difference between the Lown and the Low1 r.e.
degrees for every n > 1.

Theorem 1.2. (Cholak, Groszek and Slaman [2001]) There is a low nonrecursive r.e.
w such that, for any r.e. a ∈ L1, a ∨w ∈ L1.

Corollary 1.3. For n > 1, Ln 6≡ L1, i.e. there is a first order difference between the
Lown and Low1 r.e. degrees in the language of partial orderings. The sentence on which
they differ says that ∀w > 0∃a¬∃z(w, a ≤ z). It is true in Ln, for every n > 1, but false
in L1.

Jockusch, Li and Yang [2004] note that previous results show that Ln 6≡ L2 and
Ln 6≡ L1 for n > 2. We cite, for example, results of Shore and Slaman. Shore and
Slaman [1993] show that there are a,b and c nonrecursive and r.e. with a ∨ b ∨ c ∈ L3

such that, for any nonrecursive r.e. w ≤T a, c ≤T b ∨w. On the other hand, Shore and
Slaman [1990] show that there are no such a,b and c with a ∨ b ∨ c ∈ L2. (Note that
the Ln are not closed under join and so, in principle, one must phrase these results in
the language of partial orders. However, the join of any two degrees a and b both below
a fixed c ∈ Ln does exist in Ln and is the same as their join in the full structure. Thus
the desired sentence here asserts that there is a d below which there are a,b and c with
the indicated properties.) Jockusch, Li and Yang [2004] refer to Li [2006] for examples
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of instances of these elementary differences and new results showing that Hn 6≡ H1 for
n > 1. They also restate the very natural questions of Li [2003], [2006]:

1. Are there any n 6= m such that Hn ≡ Hm?

2. Are there any n 6= m such that Ln ≡ Lm?

The purpose of this paper is to point out how the results of Nies, Shore and Slaman
[1998] can be used to answer the second question:

Theorem 2.7. For all n > m > 1, Ln 6≡ Lm.

2 Coding to get elementary differences

The essence of the elementary difference between Ln and Lm for n > m > 1 is that
we can definably pick out a class of parameters that provide interpretations of N, the
standard model of arithmetic, in which we can control the complexity of sets coded by
other parameters in the structure. With the appropriate interpretation of arithmetic,
there will be, in Ln, (parameters defining) a model M (isomorphic to the standard model
N) and a set X coded in the model (by other parameters) such that X(m−2) is not in
Σm+1. On the other hand, every set X so coded in Lm will have X(m−2) ∈ Σm+1. We
now review the relevant results from Nies, Shore and Slaman [1998] (hereafter NSS) and
explain how they apply in any initial segment (i.e. downward closed subset) I of R that
contains L1. (Of course all the Ln are such initial segments of R.) We now fix such an I.

We intend to uniformly code models of some finitely axiomatized theory of arithmetic
into I. Formally, a scheme for coding objects of a certain type in I is given by a sequence
of formulas ϕ0, . . . , ϕk (in the language of partial orderings) with a common list p of
parameters and further free variables, as well as a formula ψ(p) called the correctness
condition. The first formula ϕ0 defines the domain of the interpreted structure and the
remaining formulas define its functions and relations. For our purposes, the domain can
be taken to be a subset of I and the interpretation of the equality relation can be taken
to be equality in I. The formula ψ typically says, at least, that the ϕi that are intended
to define functions actually do so and that the relations and functions defined by the ϕi

satisfy various axioms. Precise formulations of these notions can be found in W. Hodges
[1993, 5.3] We content ourselves with an example

Example 2.1. A scheme SM for coding models of some finitely axiomatized fragment
PA− of Peano arithmetic (in the language L (+,×)) is given by the formulas

ϕ0(x, p), ϕ1(x, y, z; p), ϕ2(x, y, z; p)
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and a correctness condition ψ(p) which says that ϕ1 and ϕ2 define binary functions on
the set {x : ϕ0(x; p)} which satisfy the finitely many axioms of PA−. In our applications,
the axioms ensure that M has a standard part.

The particular scheme that we need here is given by the notion of an effective successor
model of arithmetic (Definition 2.8 of NSS). It uses parameters p̄ = 〈p,q, r,b, l, e0, e1, f0, f1〉
to which we add t (the top of the model) intended to stand simply for a degree above all
those in the p̄ of NSS. We add on t so that in our formulas and discussions we can use
join restricted to the degrees below t even though we are working inside I. The domain
of the model M(p̄) coded by p̄ is a subset of the (Slaman-Woodin) set G defined by p̄.
The set G consists of those x ∈ [ b, r] which are the minimal elements of [b, r] such that
q ≤ x ∨ p (Definition 2.4 of NSS). The subset is defined as {x ∈G|x < f0 or x < f1}. The
operations of arithmetic are defined by formulas using the parameter l as well but their
specific form play no role in our considerations other than to note that they too quantify
only over degrees below t. The effectiveness of the model consists of the fact that it is
generated from its first element, g0, by using the additional parameters e0, e1, f0, f1 along
with join (below t) and infimum (understood to include the assertion that the greatest
lower bound of the degrees to which it is applied exists in the degrees below t):

for each i ∈ N, (g2i ∨ e1) ∧ f1 = g2i+1and (g2i+1 ∨ e0) ∧ f0 = g2i+2 (∗)

where gi is the element of G that, under the intended interpretation of arithmetic, cor-
responds to i ∈ N.

NSS can now be taken to add, to the usual correctness condition of Example 2.1, a
scheme saying that t is good via the given coded model M0, i.e. for any M1 with t1 < t0

and any given initial segment of (the ordering of) M0 there is a map uniformly defined by
specified formulas taking the given initial segment of M0 isomorphically onto an initial
segment of M1. Now the formula that defines the required maps between initial segments
of M0 and ones of M1 asks for a third coded model M (but without the effectiveness
condition (∗)) satisfying various conditions of comparability and incomparability (in the
sense of ≤T ) between (codes for) numbers in M0 and M and between ones in M1 and M .
Lemma 2.6 (a special case of Theorem 5.1) of NSS states that the required parameters
defining M can always be taken to have a low top. Otherwise, it only deals with (Turing)
comparability between elements of the different models or with formulas representing
arithmetic operations within a single model (which, as we have noted, are all restricted
to the degrees below the top of the model). Thus, the formula has the same meaning in I
as in R. In particular, Theorems 2.5 and 2.7(i) of NSS say that any M(p̄) satisfying this
correctness condition is standard and so this remains true inside I. Moreover, the proofs
there show that every standard M(p̄) with low top satisfies this extended correctness
condition. From now on, we include this correctness condition in our formula defining a
model M from parameters p̄. Theorem 6.1 of NSS shows that there is such a standard
model which is nice, i.e. its top t is low and its “numbers” are uniformly recursive in t
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and uniformly r.e. Thus, in I, we have a definable class of parameters p̄ each of which
defines a standard model of arithmetic in I one of which is nice.

We next turn to representing sets in models M with top t ∈ I. The coding (Definition
2.9 of NSS) uses two additional parameters c and d:

Definition 2.2. Let t be the top of a standard model M coded in I and let a ≥ t. A set
X ⊆ ω is represented in M below a if there are further parameters c,d ≤ a such that

X = {i : c ≤ gi ∨ d}.

The crucial bound on the complexity of coded sets is given by the proof of Lemma
2.13 of NSS (just note that we are assuming a ≥ t and relativize the argument to a).

Theorem 2.3. If X is represented in M below a then X ∈ ΣA
3 .

Corollary 2.4. For X represented in a model M below an a ∈ Lm, X(m−2) ∈ Σm+1.

Proof. By the theorem, X ∈ ΣA
3 and so X(m−2) ∈ ΣA

m+1 while a ∈ Lm implies that
ΣA

m+1 ⊆ Σm+1. (The hypothesis on a says directly that A(m) ≤T 0(m). Of course, ΣA
m+1

consists of the sets r.e. in A(m) which are then r.e. in 0(m) and so in Σm+1.)

At the other end, Theorem 7.1 of NSS and the fact that there is a nice M , lets us
represent all sets allowed by Theorem 2.3.

Theorem 2.5. (Theorem 7.1 of NSS ) If M is a nice model with top t ≤T a ∈ I , then
every X ∈ ΣA

3 can be represented in M below a.

Thus we have our difference between the initial segments Ln and Lm:

Corollary 2.6. There is a model M with top t ≤T a ∈ Ln and an X represented in M
below a such that X(m−2) /∈ Σm+1.

Proof. Let M be a nice model and a be any degree above its low top t. By the theorem,
A(3) = X is represented in M below a. If A(m+1) = X(m−2) ∈ Σm+1 then a ∈ Lm. (This
fact means that (A(m))′ is r.e. in 0(m) and, of course, 0(m) ≤T A(m) and so A(m) ≤T 0(m)

by the basic properties of the jump operator Soare [1987, III.2.3].) Thus, we only need to
know that above every low t there is an a which is in Ln−Lm. This follows immediately
from, for example, the fact that there is a z ∈ Ln − Lm (essentially by the Sacks jump
theorem [1963] as in Soare [1987, VIII.3.4]) and the Robinson Interpolation Theorem
[1971] applied to [t,0′] and z′ to produce an a ≥ t with a′ = z′ and so a in exactly the
same jump classes as z.

As all this takes place inside (coded) standard models, we actually have an elementary
difference.
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Theorem 2.7. For all n > m > 1, Ln 6≡ Lm.

Proof. Fix n > m > 1. Our desired sentence θ says that there are parameters p̄ which
code a standard model M of arithmetic with top t and an a ≥T t with a set X represented
in M below a such that M satisfies the (translation of the) sentence of arithmetic that
says that X(m−2) is not Σm+1. (There is clearly a sentence of arithmetic with added
predicate for X that says that X(m−2) /∈ Σm+1. We can talk about X in M as if we had
a predicate for it added to the language of arithmetic by replacing i ∈ X by c ≤ gi ∨d.)
This sentence θ is true in Ln by Corollary 2.6 but false in Lm by Corollary 2.4.
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