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1 Introduction

We begin by presenting some basic definitions from effective model theory. A
recursive structure is one with a recursive domain and uniformly recursive
atomic relations. Without lost of generality, we can always suppose that the
domain of every recursive structure is the set of all naturall numbers ω and
that its language does not contain function symbols. If a structure A is
isomorphic to a recursive structure B, then A is recursively presentable
and B is a recursive presentation of A. Let σ be an effective signature.
Let σ0 ⊂ σ1 ⊂ σ2 ⊂ . . . be an effective sequence of finite signatures such
that σ =

⋃
t σt. It is clear that a structure A of signature σ is recursive if

and only if there exists an effective sequence A0 ⊂ A1 ⊂ A2 ⊂ . . . of finite
structures such that for each i the domain of Ai is {0, . . . , ti}, the function
i→ ti is recursive, Ai is a structure of signature σi, Ai+1 is an expansion and
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extension of Ai, and the structure A is the union
⋃
iAi. The domain of A is

denoted by A. For a structure A of signature σ we write PA to denote the
interpretation of the predicate symbol P ∈ σ in A. When it does not cause

confusion, we write P instead of PA. In this paper we only deal with finite
or countable structures.

A basic question in recursive model theory is whether a given first order
theory T has a recursive model. A standard Henkin type construction shows
that each decidable theory has a recursive model. Moreover the satisfaction
predicate for this model is recursive. Such recursive models are called decid-
able. Constructing recursive (decidable) presentations for specific models of
T has been an intensive area of research in effective model theory [2], [9], [4].
For example, the recursiveness of homogeneous models, in particular of prime
and saturated models has been well studied. In [2], [9] it is proved that the
saturated model of T has a decidable presentation if and only if there exists
a procedure which uniformly computes the set of all types of T . Goncharov
[4] and Harrington [8] gave criteria for prime models to have decidable pre-
sentations. It is also known that the decidability of the saturated model of T
implies the existence of a decidable presentation of the prime model of T [2],
[12]. Thus, a general question arises as to how recursive models of undecid-
able theories behave in comparison to recursive models of decidable theories.
In this paper we investigate recursive models of complete theories with “few
countable models” (M. Morley [12]). Examples of such theories are theories
with countably many countable models such as ω1–categorical theories and
theories with finitely many countable models (Ehrenfeucht theories).

In [1] Baldwin and Lachlan developed the theory of ω1–categoricity in
terms of strongly minimal sets. They settled affirmatively Vaught’s con-
jecture for ω1–categorical complete theories by proving that each complete
ω1–categorical theory has either exactly one or ω many countable models up
to isomorphisms. Their paper also shows that all the countable models of
any ω1–categorical theory T can be listed in an ω + 1 chain:

chain(T ) : A0 � A1 � . . . � An � . . .Aω

of elementary embeddings with A0 and Aω being the prime and saturated
models of T , respectively [1]. The results of Baldwin and Lachlan lead one
to investiagte the effective content of ω1–categorical theories and their mod-
els. Based on the theory developed by Baldwin and Lachlan, Harrington
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[8] and Khissamiev [6] proved that every countable model of each decidable
ω1-categorical theory T has a decidable presentation.

This result of Harrington and Khissamiev motivated the study of recursive
models of ω1–categorical undecidable theories. In 1972, S. Goncharov [3] con-
structed an example of an ω1–categorical but not ω–categorical theory T for
which the only model with a recursive presentation is the prime model, that
is the first element of chain(T ). Later in 1980, K.Kudeiberganov [7] modi-
fied Goncharov’s construction to provide an example of an ω1–categorical but
not ω–categorical theory T with exactly n recursive models. These models
are the first n elements of chain(T ). These results lead to the following two
questions which have remained open:

Question 1.1 (S.Goncharov [5]) If an ω1–categorical but not ω–categorical
theory T has a recursive model, is the prime model of T recursively pre-
sentable?

Question 1.2 If all models A0, A1, . . ., Ai, . . ., i ∈ ω, in chain(T ) of an
ω1–categorical but not ω–categorical theory T , have recursive presentations,
is the saturated model Aω of T recursively presentable?

The above result of Harrington and Khissamiev also inspired Nerode to
ask whether the hypothesis of ω1–categoricity of T can be replaced by the
hypothesis that T has only finitely many countable models, that is whether
every countable model of a decidable Ehrenfeucht theory has a decidable
presentation. Morley noted that if the countable saturated model of a such
theory is decidable, then the theory has at least three recursive models [12].
Lachlan answered Nerode’s question by giving an example of a decidable
theory with exactly 6 models of which only the prime one has a recursive
presentation. Later, for each natural number n > 3, Peretyatkin constructed
an example of decidable theory with exactly n models such that the prime
model of the theory is recursive and none of the other models of the theory has
recursive presentations [13]. In [7] Kudeiberganov constructed an example of
a theory with exactly 3 models such that the theory has only one recursive
model and that model is prime. The saturated model of the theory can not
be decidable since, otherwise, all 3 model of the theory would have recursive
presentations. These results lead Morley to ask as whether any countable
model of a decidable Ehrenfeucht theory T with a decidable saturated model
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has a decidable presentation [12]. There is a natural anolog of this question
for recursive models:

Question 1.3 If the saturated model of an Ehrenfeucht theory is recursive,
does there exist a nonsaturated, recursive model of the theory?

In this paper we answer the above three questions by providing appro-
priate counterexamples. Our examples of models which answer the first two
questions have infinite signatures. However these questions remain open for
theories of finite signatures.

The general problem suggested by these results is to characterize the
spectrum of recursive models of ω1–categorical theories: Let T be an
ω1–categorical but not ω–categorical complete theory. Consider chain(T ).
The spectrum of recursive models of T , denoted by SRM(T ), is the
set

{i ≤ ω| the model Ai in chain(T ) has a recursive presentation } .

Problem. Describe all subsets of ω which are of the form SRM(T ) for
some ω1–categorical theory T .

The result of Harrington and Khissamiev shows that if T is decidable,
then SRM(T )= ω

⋃
{ω}. The results of Goncharov and Kudeiberganov

show that the sets {1, . . . , n}, where n ∈ ω, are spectra of recursive models
of ω1–categorical theories. In this paper we show that the sets ω−{0}

⋃
{ω}

and ω are also spectra of recursive models of ω1–categorical theories.

2 Main Results

The results of this paper are based on the idea of coding Σ0
2 or Π0

2 sets with
certain recursion-theoretic properties into ω1–categorical theories. Our first
result is the following theorem which answers Question 1.1.

Theorem 2.1 There exists an ω1–categorical but not ω categorical theory T
such that all the countable models of T except its prime model have recursive
presentations (and so SRM(T )= ω − {0}

⋃
{ω}).
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Before proving this theorem we would like to give the basic idea of our
proof. For an infinite subset S ⊂ ω we construct a structure AS of infinite
signature (P0, P1, P2, . . .), where each Pi is a binary predicate symbol. We
will show that the theory TS of the structure AS is ω1–categorical and AS is
the prime model of TS. The countable models of TS will have the following
property: Every non prime model A of TS has a recursive presentation if and
only if the set S is a Σ0

2–set. The existence of a recursive presentation of
the prime model will imply that the set S has a certain recursion-theoretic
property. Our recursion-theoretic lemma (Lemma 2.1.) will show that there
exists a Σ0

2–set S which does not have this properties.

The Construction of Cubes. Let n be a nonzero natural number. Let
σn = (P0, . . . , Pn−1) be a signature such that each Pi is a binary predicate
symbol. For each nonzero natural number n we define a finite structure of
signature σn, called an n–cube, as follows.

A 1–cube C1 is a structure ({a, b}, P0) such that P0(x, y) holds in C1 if
and only if x = a and y = b or y = a and x = b.

Suppose that n-cubes have been defined. Let A = (A,PA0 , . . . , PAn−1) and

B = (B,PB0 , . . . , PBn−1) be n-cubes such that A
⋂
B = ∅. These two n–cubes

are isomorphic. Let f be an isomorphism from A to B. Then a n+ 1–cube
Cn+1 is

(A
⋃
B,PA0

⋃
PB0 , . . . , PAn−1

⋃
PBn−1, Pn),

where Pn(x, y) holds if and only if f(x) = y or f−1(x) = y. It follows that
we can naturally define an ω–cube Cω =

⋃
i∈ω Ci as an increasing union of

n–cubes formed in this way.
An ω–cube Cω is a structure of the infinite signature σ = (P0, P2, . . .).

From these definitions of cubes it follows

Claim 2.1 For each n ≤ ω any two n–cubes are isomorphic. 2

Each binary predicate Pi in any cube A is a partial function and sets
up a one-to-one mapping from dom(Pi) onto range(Pi). Therefore we can
also write Pi(x) = y instead Pi(x, y). Moreover by the definition of Pi,
dom(Pi) = range(Pi).
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Construction of AS. For each natural number n ∈ ω consider an n–
cube denoted by An. Assume that An

⋂
At = ∅ for all n 6= t. Let S be a

subset of ω. Define a structure AS by

AS =
⋃
n∈S

An.

Thus the structure AS is the disjoint union of all cubes An, n ∈ S, with the
natural interpretations of predicate symbols of signature σ. Let TS be the
theory of the structure AS .

Claim 2.2 If S is an infinite set, then the theory TS is ω1 categorical but
not ω–categorical.

Proof. The model AS satisfies the following list of statements. It is
easy to see that this list of statements can be written as an (infinite) set of
statements in the first order logic.

1. ∀x∃yP0(x, y) and for each n, Pn is a partial one to one function.

2. For all n 6= m and for all x, Pn(x) 6= Pm(x).

3. For each n and for all x if Pn(x) is defined, then P0(x), P1(x), . . .,
Pn−1(x) are also defined.

4. For all n,m and for all x if Pn(x) and Pm(Pn(x)) are defined, then
Pm(Pn(x)) = Pn(Pm(x)).

5. For all k, n > n1 ≥ n2 ≥ . . . ≥ nk−1 ≥ nk, for all elements x,
Pn1(. . . (Pnk(x) . . .) 6= Pn(x).

6. For each n ∈ ω, n ∈ S if and only if there exists exactly one n–cube
which is not contained in an n+ 1–cube.

LetM be a model which satisfies all the above statements. Then for each
n ∈ S, M must have an n–cube which is not contained in an n + 1–cube.
Moreover if an x ∈M does not belong to any n–cube for n ∈ S, then x is in
an ω–cube. Note that each ω–cube is countable. Using the previous claim it
can be seen that any two models which satisfy the above list of axioms are
isomorphic if and only if these two models have the same number of ω–cubes.
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Suppose that M1 and M2 are models of TS and their cardinalities are ω1.
Since each cube is a countable set it follows that the number of ω–cubes in
M1 andM2 is ω1. Therefore the modelsM1 andM2 are isomorphic. Hence
TS is an ω1–categorical but not ω–categorical theory. 2

Claim 2.3 The set S is in Σ0
2 if and only if every nonprime model of TS

possesses a recursive presentation.

Proof. Each ω–cube has a recursive presentation. Therefore it suffices to
prove that S ∈ Σ0

2 if and only if the nonprime model M of TS with exactly
one ω–cube has a recursive presentation. IfM is recursive, then s ∈ S if and
only if ∃x∃y∀z(Ps(x, y)&¬Ps+1(x, z)). Therefore S ∈ Σ0

2.
Now suppose that S ∈ Σ0

2. There exists a recursive function f such that
for every n ∈ ω, n ∈ S if and only if Wf(n) is finite. We construct an effective
sequence

M0 ⊂M1 ⊂M2 ⊂ . . .

of finite structures by stages such that

1. The model M is isomorphic to
⋃
nMn,

2. Each Mt has exactly t + 1 cubes and the function t → card(Mt) is
recursive,

3. Each Mt is a structure of signature (P0, . . . , Pni), where i → ni is a
recursive function.

Stage 0. Construct a 1–cube M0 and mark this structure with the
symbol 2ω.

Stage s+1. Suppose thatMs has been constructed as the disjoint union

Ms,0

⋃
Ms,1

⋃
. . .
⋃
Ms,s

⋃
Ms,ω,

where eachMs,i, i ≤ s is a i–cube, andMs,ω is the cube marked with 2ω at
the previous stage. Compute Wf(0),s+1, . . .Wf(s),n+1,Wf(s+1),s+1. For each
i ≤ s+ 1 define Mi,s+1 and Ms+1,ω as follows:

1. If Wf(i),s+1 = Wf(i),s, then letMi,s+1 =Mi,s.
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2. If Wf(i),s+1 6= Wf(i),s, then construct a new i–cube and let Mi,s+1 be
this new cube.

3. Extend the cube Ms,ω to a finite cube denoted by Ms+1,ω such that
for each i ≤ s if Wf(i),s+1 6= Wf(i),s, thenMs+1,ω containsMs,i.

Let Ms+1 be Ms+1,0
⋃
Ms+1,1

⋃
. . .
⋃
Ms+1,s+1

⋃
Ms+1,ω. Define

Mω =
⋃
s

Ms.

By the construction, the structureMω is recursive. The construction ofMω

guarantees that the structure Mω is isomorphic to the model M. 2

Now we need the following definition and recursion theoretic lemma. We
will prove the lemma at the end of this section.

Definition 1 A function f is limitwise monotonic if there exists a recur-
sive function φ(x, t) such that φ(x, t) ≤ φ(x, t+1) for all x, t ∈ ω, limt φ(x, t)
exists for every x ∈ ω and f(x) = limt φ(x, t).

Lemma 2.1 (Recursion Theoretic Lemma) There exists a ∆0
2 set A

which is not the range of any limitwise monotonic function. 2

Proof of Theorem 2.1. We need the following

Lemma 2.2 If the prime model AS is recursive, then the set S is the range
of a limitwise monotonic function.

Proof. Let x ∈ AS . Note that each cube in AS is finite. Define φ(x)
to be an s such that x is in an s–cube and this cube is not contained in a
s + 1–cube. It is clear that φ witnesses that S is the range of a limitwise
monotonic function. 2

By the Recursion Theoretic Lemma there exists an S ∈ ∆0
2 which is not

the range of any limitwise monotonic function. Consider the structure AS
and its theory TS. The claims above and Lemma 2.2 show that TS is the
required theory and so prove Theorem 1.1. 2

Now we give an answer to Question 1.2. The idea of our proof is the
following. We take a Π0

2 but not Σ0
2 set S and code this set into a theory TS.
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The language of TS will contain infinitely many unary predicates P0, P1, . . .,
and infinitely many predicates of arity n for each n ∈ ω. We will prove that
TS is an ω1–categorical but not ω–categorical theory. Our construction of TS
guarantees that all the countable models of TS, except the saturated model,
have recursive presentations. The existence of a recursive presentation for
the saturated model will imply that the set S is a Σ0

2 set. This will contradict
with the choice of S.

Theorem 2.2 There exist an ω1–categorical but not ω–categorical theory T
such that all the countable models of T except the saturated model, have
recursive presentations.

Proof. We construct a structure of the infinite signature

(P0, P1, . . . , R1,0, R1,1, R1,2, . . . , Rk,0, Rk,1, Rk,2, . . .),

where each Pi is a unary predicate and each Rk,s is a predicate of arity k.
Let S be a (Π0

2 \ Σ0
2) set. There exists a recursive predicate H such that

n ∈ S if and only if ∀x∃yH(x, y, n) holds. Below we present a step by step
construction of a recursive structure denoted byAS and prove that the theory
TS of this structure satisfies the requirements of the theorem.

Stage 0. Let A0 = ({0}, P0), where P0(0) holds.

Stage t+1. The domain At+1 of At+1 is {0, . . . , t+ 1}. The signature of
At+1 is

σt+1 = (P0, . . . , Pt+1, R1,0, . . . , R1,t+1, . . . , Rt+1,0, . . . , Rt+1,t+1).

For each i ≤ t + 1 let Pi(x) hold if and only if x ≥ i. For k, s ≤ t+ 1, let
Rk,s(x1, . . . , xk) hold if and only if x1, . . . , xk are pairwise different and for
the maximal number j ≤ t+ 1 such that all Pj(x1), . . ., Pj(xk) hold we have
∀n ≤ s∃m ≤ jH(n,m, k). We have defined the model At+1.

Thus we have an effective sequence A0,A1,A2 . . . of finite structures
such that each Ai+1 is an extension and expansion of Ai. Therefore we can
define AS by

AS =
⋃
i

Ai.

It is clear that the model AS is recursive.
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Claim 2.4 The theory TS of the model AS is a ω1–categorical but not ω–
categorical.

Proof. The model AS satisfies the following list of properties which can
be written as an infinite set of stetements in the language of the first order
logic.

1. For all x if Pi+1(x) holds, then Pi(x) also holds. Moreover ∀xP0(x) is
true.

2. For each i ∈ ω there exists a unique x such that Pi(x)&¬Pi+1(x), i ∈ ω.

3. For all k, s ∈ ω, if Rk,s(x1, . . . , xk) holds, then x1, . . ., xk are pairwise
distinct.

4. Let k ∈ S. For every s ∈ ω there exists a j ∈ ω such that
∀n ≤ s∃m < jH(n,m, s). Let js be the minimal number which has this
property. Then for all pairwise distinct x1 . . . xk if Pjs(x1)& . . . Pjs(xk)
holds, then Rk,s(x1, . . . , xk) holds.

5. Let k 6∈ S. There exists an s0 such that for all s ≥ s0 and for all
x1, . . . , xk, Rk,s(x1, . . . , xk) does not hold.

Let A be a model of TS. Consider the set
⋂
i P
A
i . For any two elements

a, b ∈
⋂
i P
A
i there exists an automorphism α of the model A such that

α(a) = b. Thus a proof of ω1–categoricity can be based on the following
observation. Two models B and C of the theory TS are isomorphic if and

only if the cardinalities of the sets
⋂
i P
B
i and

⋂
i P
C
i are equal. Hence if B

and C are models of cardinality ω1, then both
⋂
i P
B
i and

⋂
i P
C
i have exactly

ω1 elements. It follows that B and C are isomorphic. 2

¿From the proof of Claim 2.4, it follows that if B is a countable unsatu-

rated model of the theory TS, then
⋂
PBi has a finite number of elements.

Claim 2.5 If C is a countable and unsaturated model of TS, then C has a
recursive presentation.

Proof. Let C be a countable, unsaturated model of TS. The set
⋂
i P
C
i

has a finite number of elements, say n. We construct a recursive presentation
of C by stages.
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Let a1, . . . , an be new symbols. In our construction of a recursive presen-

tation A of C we put the elements a1, . . . , an into
⋂
i P
A
i . Let p1, . . . , pn be

the all elements of S
⋂
{0, 1, . . . , n}.

Stage 0. Define A0 = ({0, a1, . . . , an}, P0), letting P0(0), P0(a1), . . .,
P0(an) hold.

Stage t+1. The domain At+1 of At+1 is {0, . . . , t + 1, a1, . . . , an}. The
signature of the At+1 is

σt+1 = (P0, . . . , Pt+1, R1,0, . . . , R1,t+1, . . . , Rt+1,0, . . . , Rt+1,t+1).

For each i ≤ t + 1 let Pi(x) hold if and only if x ≥ i or x ∈ {a1, . . . , an}.
For k, s ≤ t+ 1, let Rk,s(x1, . . . , xs) hold if and only if one of the followings
holds:

1. k ∈ {p1, . . . , pn}, (x1, . . . , xk) ∈ {a1, . . . , an}n, and x1, . . . , xk are pair-
wise distinct.

2. {x1, . . . , xk} \ {a1, . . . , an} 6= ∅, the elements x1, . . . , xk are pairwise
different, and for the maximal number j ≤ t + 1 such that all Pj(x1),
. . ., Pj(xk) hold we have ∀n ≤ s∃m ≤ jH(n,m, k).

Thus this stage defines the structure At+1. For each i ∈ ω Ai+1 is an
extension and expansion of Ai. Define A by A =

⋃
iAi. It is clear that the

structure A is recursive and isomorphic to the model C. 2

Claim 2.6 The countable saturated model B of T does not have a recursive
presentation.

Proof. Suppose that B is recursive. Since B is saturated the number of

elements in
⋂
i P
B
i is infinite. It can be checked that for each k ∈ ω, k ∈ S

if and only if there exist different elements y1, . . . , yk from
⋂
i P
B
i such that

for all s ≥ 1, Rk,s(y1, . . . , yk) holds. The set S would then be a Σ0
2–set. This

contradicts with our assumption that S ∈ Π0
2 \ Σ0

2. 2
These claims prove Theorem 3. 2

Thus the above theorems prove the following corollary about spectra of
recursive models (SRM) of ω1 categorical theories.

Corollary 2.1 1. There exists an ω1–categorical but not ω categorical
theory T such that SRM(T ) = ω − {0}

⋃
{ω}.
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2. There exists an ω1–categorical but not ω categorical theory T such that
SRM(T ) = ω. 2

In the next theorem, which answers Question 1.3, we provide an example
of a theory TS with exactly 3 countable models of which only the saturated
model is recursively presentable. To prove that TS has exactly 3 countable
models, we use the known ideas which show that the theory of the model
(Q,≤, c0, c1, . . .), where ≤ is the linear ordering of rationals, and the con-
stants are such that c0 > c1 > c2 > . . ., has exactly 3 countable models
[14].

Theorem 2.3 There exists a theory T with exactly 3 countable models such
that the only model of T which has a recursive presentation is the saturated
model.

Proof. Let Q be the set of all rational numbers. For each cardinal
number m ∈ ω

⋃
{ω} define a structure Q0(m) as follows. The domain of the

structure is
{q ∈ Q|1 ≤ q}

⋃
{cq,1, . . . , cq,m|q ∈ Q},

where {cq,i|q ∈ Q, 1 ≤ i ≤ m} is a set of new elements. The signature of the
model is (≤, f), where ≤ is a binary predicate and f is a unary function
symbol. The predicate ≤ and the function f are defined as follows. For all
x, y we have x ≤ y if and only if x, y ∈ Q and x is less or equal to y as
rational numbers. For all z, y define f(z) = y if and only if for some rational
number q, y = q and z ∈ {cq,1, . . . , cq,m} or y = z = q. Let Q(m) be the
structure obtained from Q0(m) by removing the elements 1, c1,1, . . ., c1,m

from the domain of Q0(m).
If A and B are isomorphic copies of the structures Q0(n) and Q0(m),

respectively, and A
⋂
B = ∅, then one can naturally define the isomorphism

type of the structure Q0(n) + Q0(m) as follows. The domain of the new
structure is A

⋃
B. The predicate ≤ in the new structure is the least partial

ordering which contains the partial orderings of A, the partial ordering of B,

and the relation {(x, y)|x ∈ A&fA(x) = x& y ∈ B&fB(y) = y}. The unary
function f in the new structure is the union of the unary operations of the
first and the second structures.
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If n0, n1, n2, . . . , ni, . . ., i < ω is a sequence of natural numbers, then as
above we can define the structure

Q0(n0) +Q0(n1) +Q0(n2) + . . . .

Let S be a set in ∆0
2 which is not the range of a limitwise monotonic

function. There exists a recursive function g such that, for all n h(n) =
lims g(n, s) exists and range(h) = S. Consider the model Q0(S) defined by

Q0(h(0)) + Q0(h(1)) +Q0(h(2)) + . . . .

Define the theory TS to be the theory of the structue Q0(S).

Claim 2.7 . The theory TS has exactly three countable models.

Proof. The first model of TS is Q0(S). This model is the prime model
of the theory TS. The second model of TS is

Q′(S) = Q0(h(0)) +Q0(h(1)) +Q0(h(2)) + . . . +Q0(ω).

The third model M of TS is

Q(h(0)) +Q0(h(1)) +Q0(h(2)) + . . .+Q(ω).

These structures are indeed models of TS. To see this, note that Q0(S) is a
submodel of Q′(S), and Q′(S) is a submodel of M. It can be checked that
for any formula ∃xφ(x, a1, . . . , an) and all a1, . . . , an ∈ Q0(S) (a1, . . . , an ∈
Q′(S)) if the formula ∃xφ(x, a1, . . . , an) is true in Q′(S) (inM) then there
exists a b ∈ Q0(S) ( b ∈ Q′(S) ) such that φ(b, a1, . . . , an) is true in Q0(S)
(in Q′(S)). Therefore the embeddings are elementary.

We have to prove that any countable model of TS is isomorphic to one of
the three models described above. Let A be a model of TS. For each i ∈ ω
we define by induction an element ai ∈ A as follows.

The element a0 is the minimal element with respect to the partial ordering
in A. Note that the set {b|b 6= a0&f(b) = a0} has exactly h(0) elements.
Also put k0 = 0.

Suppose that the elements a0, . . ., ai−1 ∈ A and the numbers k0, . . . , ki−1

have been defined. Let ki be the least element such that h(ki) 6= h(kj) for
j = 1, . . . , i− 1. The element ai is the one such that the following properties
hold:

13



1. The set {b|b 6= ai&f(b) = ai} has exactly h(ki) elements,

2. For each x < ai the cardinality of the set {b|b 6= x&f(b) = x} is in
{h(k0), . . . , h(ki−1}.

Consider the sequence a0, a1, a2, . . .. Clearly a0 < a1 < a2 < . . .. Thus we
have three cases:

Case 1. limi ai does not exists and for any x ∈ A such that f(x) = x
there exists an i such that ai ≥ x,

Case 2. limi ai exists,
Case 3. limiai does not exists and there exists an x such that f(x) = x

and x ≥ ai for all ai.
In the first case A is isomorphic to Q0(S). In the second case A is

ismorphic to Q′(S). In the third case A is isomorphic to M. Note that
Q0(S) is the prime model. The model Q′(S) is not saturated since it does
not realize the type containing {x > ai&c > x|i ∈ ω}, where c = limiai.
HenceM is the saturated model of TS. 2

Claim 2.8 The unsaturated models of the theory TS do not have recursive
presentations.

Proof. Consider the prime model Q0(S). Suppose Q0(S) is a recursive
model. Then it can be easily checked that the set S is the range of a limitwise
monotonic function. This contradicts the assumption on S. If the other
unsaturated model

Q′(S) = Q0(h(0)) +Q0(h(1)) +Q0(h(2)) + . . .+Q0(ω)

were recursive, then Q0(S) would be a recursively enumerable submodel of
the model Q′(S). Hence Q0(S) would have a recursive presentation. This is
again a contradiction. 2

Claim 2.9 The saturated model M of the theory T has a recursive presen-
tation.

Proof. We present a constuction of the saturated model M by stages.
The construction will clearly show that the saturated model has a recursive
presentation.
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Stage 0. Consider the structure Q0(g(0, 0)) +Q(ω). Denote this model
by A0.

Stage n+1. Suppose that An has been defined and is isomorphic to

Q0(g(0, n)) + . . . +Q0(g(n, n)) +Q(ω).

Compute g(0, n + 1), . . . , g(n + 1, n + 1). Let i ≤ n be the minimal number
such that g(i, n) 6= g(i, n + 1). An can be extended to a structure An+1

isomorphic to

Q0(g(0, n+1))+. . .+Q0(g(i−1, n+1))+Q0(g(i, n+1))+. . .Q0(g(n+1, n+1))+Q(ω).

To see this, take the substructure

Q0(g(i, n)) + . . . Q0(g(n, n)) +Q(ω)

of An; extend this substructure to Q(ω); insert the new structure

Q0(g(i, n+ 1)) + . . . Q0(g(n+ 1, n + 1))

between the structures Q0(g(0, n + 1)) + . . . + Q0(g(i − 1, n + 1)) and the
extended structure Q(ω). The structure obtained in this way is An+1.

Thus we have the sequence

A0 ⊂ A1 ⊂ A2 ⊂ . . . .

Define Aω =
⋃
iAn. It is easy to see that the model Aω is ismorphic to

Q0(h(0)) +Q0(h(1)) + . . .+Q0(h(n)) + . . .+Q(ω).

Now it is clear that the above description can be effectivized. 2
These claims prove the theorem. 2

Finally we have to prove the promissed recursion theoretic lemma.

Proof of the Recursion Theoretic Lemma. Let φe(x, t), e ∈ ω,
be a uniform enumeration of all partial recursive functions φ such that for
all t′ ≥ t if φ(x, t′) is defined, then φ(x, t) is defined and φ(x, t) ≤ φ(x, t′).
At stage s of our construction we define a finite set As in such a way that
A(y) = limsAs(y) exists for all y. We satisfy the requirement Re asserting
that, if fe(x) = limtφe(x, t) < ω for all x, then range(fe) 6= A.
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The strategy for a single Re is as follows: At stage s pick a witness me,
enumerateme intoA (i.e. As(me) = 1). NowRe is satisfied (sinceme remains
in A) unless at some later stage t0 we find an x such that φe(x, t0) = me.
If so, Re ensures that A(φe(x, t)) = 0 for all t ≥ t0. Thus, either fe(x) ↑ or
fe(x) ↓ and fe(x) 6∈ A.

Keeping φe(x, t) out of A for all t ≥ t0 can conflict with a lower priority
(i > e) requrement Ri since it maybe the case that mi = φe(x, t′) for some
t′ > t0. However, if fe(x) ↓, then this holds permanently for just one number,
and if fe(x) ↑, then the restriction is transitory for each number. So each
lower priority Ri will be able to choose a stable witness at some stage.

Construction. At stage s we try to determine the values of parameters
me, xe, and ne = φe(xe, s) for Re. Each parameter may remain undefined.
Moreover we define the approximation As to A at stage s.

Sate 0. Let A0 = ∅, and declare all parameters to be undefined.

Stage s. For each e = 0, . . . s − 1 in turn go through substage e by
performing the following actions.

1. If me is undefined, let me be the least number in ω[e] greater than all
mi (i < e) which is not equal to any ni. Let As(me) = 1 and proceed
to the next sustage, or to stage s+ 1 if e = s− 1.

2. If xe is undefined and φe(x, s) = me for some x, let xe = x, ne = me,

and As(ne) = 0, and proceed to the next stage s+ 1 if e = s− 1.

3. Let ne = φe(xe, s) and As(ne) = 0. If ne = mi for some i > e, declare
all the parameters of the Rj , j ≥ i, to be undefined.

For each y, if As(y) is not determined by the end of stage s, then assign to
As(y) its previous value As−1(y). The stage is now completed.

Now we will verify that the construction succeeds.

Claim 2.10 Each me is defined and is constant from some stage on.

Proof. Suppose inductively that the claim holds for each i < e. Let s0

be a stage such that each mi has reached its limit for i < e, and if xi ever
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becomes defined after s0, and lims ni,s <∞, then the limit has been reached
at s0. Moreover, let k ≥ e be the least number which does not equal any of
these limits and is greater than all mi for i < e. Also suppose that ni,s0 > k
if limsnj,s = ∞, (j < e). If me is cancelled after stage s0, then me = k is
permanent from the next stage on. This proves the claim.

Claim 2.11 For each y, limsAs(y) exists. Therefore the set A = limsAs is
a ∆0

2–set.

Proof. Suppose that y ∈ ω[e], and let s0 be a stage at which me has
reached its limit. Since y can only be enumerated into A if y = me, after
stage s0 A(y) can change at most once. This proves the claim.

Claim 2.12 Suppose that fe(x) = limt φe(x, t) exists for each x. Then A 6=
range(fe).

Proof. Suppose that A = range(fe). Let s0 be the stage at which me

reaches its limit. Then at some stage s > s0 we must reach the second
instruction of the construction, otherwise A(me) = 1 but me 6∈ range(fe).
Suppose that φe(x, s) = me for the minimal s ≥ s0 at which we reach the
second instruction of the construction. It follows that for t ≥ s, ne = φe(x, t)
and At(ne) = 0. So A(fe(x)) = 0. This contradiction proves the claim and
hence the lemma. 2

Remark. It is possible to make A d.r.e, i.e. A = B − C for some r.e.
sets B,C. To do so, we have to set aside an interval Ie, roughly of size 2e,
for Re, I0 < I1 < . . .. As a first choice for me, we take the maximal element
of Ie, and then we proceed downward. The point is that, if Re is injured by
Ri, i < e, via ni = me, then all further values of ni are above the next values
of me (unless Ri injured itself later). Obviously A can be neither r.e. nor
co-r.e.
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