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Abstract

We describe the important role that the conjectures and questions
posed at the end of the two editions of Gerald Sacks’s Degrees of
Unsolvability have had in the development of recursion theory over
the past thirty years.

Gerald Sacks has had a major influence on the development of logic,
particularly recursion theory, over the past thirty years through his research,
writing and teaching. Here, I would like to concentrate on just one instance
of that influence that I feel has been of special significance to the study of
the degrees of unsolvability in general and on my own work in particular
— the conjectures and questions posed at the end of the two editions of
Sacks’s first book, the classic monograph Degrees of Unsolvability (Annals
of Mathematics Studies, Number 55, Princeton University Press, 1963 and
1966).

*This paper was presented at the symposium in honor of Gerald Sack’s sixtieth birthday
in May, 1993 and written shortly thereafter. Rather than try to rewrite it at press time
three years later, I have simply added a few footnotes and refernces to the more important
recent results.
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In presenting his list of six conjectures and five questions in [1963], Sacks
suggested that each solution should require a “new idea”. He was remarkably
prophetic in that the techniques developed to solve these problems, generally
speaking, represent the most important advances in the subject since 1963.
Moreover, as they have been discovered, the answers to these problems have
played a crucial role in the development of new results, lines of research
and indeed our whole attitude toward what constitutes the proper analysis
of degree structures. As we shall see, however, the facts have led us to a
vision of the degrees quite different from the one that motivated many of the
conjectures of [1963] and [1966].

In [1963], Sacks says that he believes each of the conjectures presented
there “because behind each of them stands several false but plausible proofs”.
The list begins with three conjectures about the structure of R, the recur-
sively enumerable degrees ordered by Turing reducibility.

(C1) If a and c are recursively enumerable degrees such that a < c, then
there exists a recursively enumerable degree b such that a < b < c.

(C2) There exist two nonzero, recursively enumerable degrees whose
greatest lower bound is O.

(C3) There exist two recursively enumerable degrees with no greatest
lower bound in the upper semi-lattice of recursively enumerable degrees.

The first conjecture is now known as the Sacks Density Theorem as Sacks
himself proved it in [1964]. Both this remarkable theorem and the meth-
ods introduced to prove it had important consequences for the study of the
structure of the r.e. degrees.

The study of the r.e. degrees begins with Post’s famous problem [1944]
to construct an r.e. set which is neither recursive nor complete. This prob-
lem was solved by Friedberg [1957] and Muchnik [1956] who introduced the
priority method to construct such sets. It is this method that has since been
viewed as the hallmark of recursion theory. The form of the method they
introduced is now known as the finite injury method. In it, actions to sat-
isfy each of the requirements that guarantee the desired result interfere with
(injure) other (lower priority) ones only finitely often. For the next several
years, this technology was the mainstay of the subject. It has, however, se-
rious limitations. These limitations were overcome by Sacks in [1963a] and



in a stronger way in the [1964] proof of the density theorem.

Theorem 1 (Sacks Jump Theorem [1963a]) Every degree ¢ which is r.e. in
and above 0’ is the jump of an r.e. degree.

The proof of this theorem also exploited the arguments introduced in that
of Sacks [1963b].

Theorem 2 (Sacks Splitting Theorem [1963b]) For every nonrecursive r.e.
degree a there are r.e. degrees b,c < a such that bV c = a.

The method introduced in the proofs of the Sacks Jump Theorem [1963a]
and Sacks Density Theorem [1964] is now called the infinite injury method
as actions for single requirements can cause infinitely many injuries to ones
of lower priority. The proofs of the jump and density theorems were the first
application of these methods to the study of R and continued to be most
influential.

A basic form of the construction used in the proof of the Sacks Jump
Theorem [1963a] had been introduced independently and somewhat earlier
in Shoenfield [1961] to produce an incomplete r.e. theory in which every re-
cursive function is representable. Another version was later introduced by
Yates [1966a] in his study of index sets. Since their introduction, these tech-
niques have been used to prove many important theorems and have served
as the basis for further extension of the priority method.

The density theorem itself engendered the idea that the r.e. degrees should
be, in some way, a homogeneous structure and so a “nice” one in the sense
that rationals are a nice linear ordering. This idea was first formulated by
Shoenfield [1965] in his famous conjecture at the Model Theory Symposium
of 1963 in Berkeley. Shoenfield conjectured that the r.e. degrees are, in the
model theoretic sense, an w-saturated uppersemilattice (usl) with a least and
a greatest element (0 and 1). A direct formulation of this conjecture can be
phrased in terms of extensions of embeddings.

Extension of Embedding Problem (for partial orderings or usls): Char-
acterize the pairs P — Q of partial orderings (usls) with 0,1 such that, for
every embedding f : P — R, there is an extension g of f to an embedding
of Q into R.

!Slaman and Soare [1995], [1997] have now solved this problem.
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Shoenfield’s Conjecture [1965]: For every pair P — Q of finite usls with
0,1 and every embedding f : P — R, there is an extension g of f to an
embedding of Q into R.

If true, this conjecture would have implied that the r.e. degrees had many
of the familiar properties of structures like dense linear ordering or atomless
Boolean algebras which satisfy the corresponding property for the appropri-
ate family of structures (linear orderings and Boolean algebras). Such struc-
tures are countably categorical (i.e. there is a unique such countable structure
up to isomorphism) and so, if axiomatizable, have decidable theories. They
are countably homogeneous (every structure preserving map from one finite
subset to another can be extended to an automorphism) and so have con-
tinuum many automorphisms. A positive solution to Shoenfield’s conjecture
would thus have constituted an essentially complete characterization of the
structure of the r.e. degrees.

At a more algebraic or local level, Shoenfield’s conjecture would also imply
(C3): R is not a lattice. (Given any r.e. degrees ¢ < a, b, the extension of
embeddings property would say that we can find an r.e. degree d < a,b
with d £ ¢.) On the other hand, this very application contradicts (C2).
Both conjectures were settled by Lachlan [1966al,[1966b] and Yates [1966]
independently. They each verified (C2) by constructing a minimal pair of
r.e. degrees, i.e. nonrecursive a and b such that a A b = 0. This construction
represented a new turn in the methodology of the infinite injury argument. It
eventually lead to the tree constructions introduced in Lachlan [1975] which
now underlie the basic approach to developing and presenting almost all
priority arguments. The demonstration that (at least) some degrees have
infima in R, began what has been an important chapter in the study of the
r.e. degrees: Lattice embeddings. We cite three examples:

Theorem 3 (Lachlan, Lerman, Thomason; see Soare [1987] 1X.2) FEwvery
countable distributive lattice can be embedded into R as a lattice preserving
0.

Theorem 4 (Lachlan [1972]) Each of the two basic nondistributive lattices
Ms (Figure 1) and N5 (Figure 2) can be embedded (as lattices) in R.
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Figure 1: The lattice M5

Theorem 5 (Lachlan and Soare [1980]) The lattice Ss (Figure 3) cannot be
embedded in R.

As can be seen from these results, the characterization of the lattices
embeddable in R (with V and A preserved) is nontrivial. The best results
to date are in Ambos-Spies and Lerman [1986] and [1989] but the general
problem remains open.? Thus the construction of minimal pairs in the r.e.
degrees also presaged the change from “simplicity” to “complexity” as the
slogan for the study of the structure of R.

Lachlan [1966a] and Yates [1966] each showed that R is not a lattice
by proving (C3) by very different methods. Yates [1966] suggested using
the same techniques devised to construct a minimal pair to build a strictly
ascending sequence ¢y < ... < ¢, < ... with an exact pair, i.e. incomparable
degrees a and b such that ¢; < a,b for each 7 and every ¢ < a,b is below
some ¢;. No such a and b can have an infimum. (If a A b = ¢, then for some
1, c <c;. Asc; < c < a,b, we have contradicted the assumption that c is
the greatest lower bound of a and b.) A more complicated construction along
these lines is carried out in Cooper [1972] where he also answers the fourth

2A new type of nonembeddable lattice has been discovered by Lempp and Lerman
[1997].
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Figure 2: The lattice Nj

0

Figure 3: The lattice Ss



Question (Q4) in Sacks [1963] discussed below. Lachlan’s proof of this result
was quite different. It was based on a relativization of the following:

Theorem 6 (Nondiamond Theorem, Lachlan [1966a]) There are no r.e. de-
grees a and b such that alb, avb =1, aAb=0.

This theorem is now known as the nondiamond theorem as it says that
there is no lattice embedding of the diamond shaped four element lattice
(0,1 plus two incomparable intermediate elements) into R preserving 0, 1
and the lattice structure. Lachlan’s proof of this result introduced the idea
of nonuniform constructions. Given a pair a, b of incomparable potentiality
complementary r.e. degrees, Lachlan constructed infinitely many degrees one
of which witnesses that either aV b # 1 or aAb # 0. The idea that one
can use the failure of a set being constructed to satisfy some requirement
to construct another set with an alternate property has been quite useful in
later work.

An excellent source for modern proofs of almost all the results cited about
the r.e. degrees, as well as general descriptions of the techniques involved,
is Soare’s textbook [1987]. A current overview of our knowledge about the
structure of R can be found in Shore [1997].

The remaining conjectures and questions at the end of [1963] deal with
the structure of all the degrees D and the relations between this ordering,
the r.e. degrees and the jump operator. The three conjectures all deal with
embedding problems in D.

(C4) A partially ordered set P is imbeddable in the degrees if and only
if P has cardinality at most that of the continuum and each member has at
most countably many predecessors.

(C5) If S is a set of independent degrees of cardinality less than the con-
tinuum, then there exists a degree d ¢ .S such that SU{d} is an independent
set of degrees.

(C6) S is a finite initial segment of degrees if and only if S is order-
isomorphic to a finite, initial segment of some upper semi-lattice with a least
member.



Once again, the first two of these conjectures express the view that the
degrees are “nice” in a model theoretic sense. The first, (C4), says that D is a
universal partial order of size the continuum with the countable predecessor
property ({x| x<y} is countable for every element y). The second, (C5),
was presented as a likely approach to a proof of the first. It represents an
instance of a positive solution to an extension of embedding problem for
partial orderings of size less than the continuum. The particular extension of
embedding problem represented in (C5) can be solved by the finite extension
methods of Kleene and Post [1954] when S is countable. Thus, using these
methods, (C4) can be verified if the continuum hypothesis holds, i.e. 2% =
N;. Actually in §3 of [1963], Sacks had proven (C4) for partial orderings
P such that {z| x>y} has size at most N; for every element y by a rather
ingenious argument. Despite many efforts, no progress was made on these
conjectures for many years. The reason for the difficulties was revealed in
Groszek and Slaman [1983]: (C5) is independent of the axioms of set theory.

Theorem 7 (Groszek and Slaman [1983]) Assuming the consistency of
ZFC, there are models of ZFC in which 2% > X, and in which there are
mazimal independent sets of size Ny.

The basic embedding problem (C4), however, remains open. It is perhaps
the last algebraic question about the structure of the degrees at this basic
level. It has defied many attempts at solving it and, if true, will surely require
the new idea that Sacks and all of us look forward to seeing.

The solution to the final conjecture (C6) of [1963] in Lerman [1971] rep-
resented a milestone in the long history of the attempts at characterizing the
initial segments of D. This project had its beginnings in Spector’s [1956]
construction of a minimal nonrecursive degree. In §9 of [1963]| Sacks brought
in the priority method to show that there is a minimal degree below 0'.
Many researchers contributed partial results providing more and more lat-
tices which were isomorphic to initial segments of D. We cite three other
results on initial segments of D.

Theorem 8 (Lachlan [1968]) Every countable distributive lattice is isomor-
phic to an initial segment of D.



Theorem 9 (Lachlan and Lebeuf [1976]) Every countable usl with 0 is iso-
morphic to an initial segment of D.

Theorem 10 (Abraham and Shore [1986]) Every usl of size at most ¥y with
0 and the countable predecessor property is isomorphic to an initial segment
of D.

Of course, assuming the continuum hypothesis, this theorem completely
characterizes the initial segments of D. Without such set theoretic assump-
tions, however, this is pretty much the end of the story.

Theorem 11 (Groszek and Slaman [1983]) If ZFC is consistent then it is
consistent that the continuum is Ny and there is an usl of size Ny with 0
and the countable predecessor property which is not isomorphic to any initial
segment of D.

The best textbook source for initial segment construction and most other
information about the degrees as a whole is Lerman [1983]. A current view
of our knowledge about the structure of D can be found in Slaman [1997].

As Sacks had expected in [1966], these results (either Lachlan [1968] or
Lerman [1971] suffice) imply the undecidability of D. Although these theo-
rems at first might be viewed as tending towards characterizing the structure
of D in some “nice” way as would (C4) and (C5), we actually have here the
beginnings of the change from “simplicity” to “complexity” as the appropri-
ate slogan for D as well as R. The conjectures that replaced those solved
between 1963 and 1966, (C1), (C2) and (C3) of [1966], also reflected the
view that R and D are model theoretically “nice” in some way (saturation,
homogeneity or universality). Their solutions, however, laid the foundations
of a new attitude toward the structure of R and D. Before considering them,
however, we will discuss the five questions at the end of [1963].

These questions deal with the degrees below 0’ and the relation between
these degrees, the r.e. degrees, and the jump operator.

(Q1) If d is a nonzero, recursively enumerable degree, then there exists
a minimal degree less than d.
(Q2) If d is a nonzero degree less than 0’ then there exists a nonzero

degree b less than 0’ such that the greatest lower bound of d and b exists
and is equal to O.



(Q3) There exists a nonzero d such that no degree less than or equal to
d is minimal.

(Q4) There exists a sequence of simultaneously recursively enumerable
degrees which has an r.e. degree as one of its minimal upper bounds.

(Q5) There exists a recursively enumerable degree d such that 0™ <
d™ < 0"+ for all n.

The first question, (Q1), was solved in Yates [1970]. To solve it, Yates
introduced what is now called the full approximation method of constructing
sets (generally) below 0’. This method builds sets below 0’ by constructing
recursive approximations that are eventually constant at every point of the
sets’ characteristic functions. An alternative technology introduced later to
solve these types of problems builds a set below a given r.e. d (such as 0’)
by a direct construction recursive in the oracle d. Such arguments are called
oracle constructions. When such constructions are possible, they are almost
always easier than the full approximation method. However, it is often the
case that the first, or even only solution, to many problems has been achieved
by the more difficult but more flexible technique introduced to solve (Q1).
An introduction to these methods can be found in Posner [1980]; a current
survey of the degrees below 0’ is Cooper [1997].

The second question (Q2) was solved in Shoenfield [1966] by construct-
ing a minimal degree b below 0’ incomparable with the given degree d. Of
course, b then has the properties required in (Q2). This paper is particularly
important as the first source of tree arguments in initial segment construc-
tions. The terminology and approach introduced here were vital to the later
development of initial segment results (as described above in the discussion of
(C6)). Considerable additional work along these lines culminated in various
complementation theorems.

Theorem 12 (Posner [1980]) Every degree d < 0" is complemented, i.e.
there is a b such that dvb =0 & dAb=0. In fact, by Slaman and
Steel [1989], b can be taken to be 1-generic and found uniformly in d.

Lachlan’s [1968] proof that every countable distributive lattice is isomor-
phic to an initial segment of D, of course, gives an affirmative answer to (Q3):
Embed any distributive lattice with no nonzero minimal elements as an ini-
tial segment of D. At about the same time, Martin [1967] (see Odifreddi
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[1989], Theorem V.3.16, p. 481) produced a quite different solution. He em-
ployed a Baire category theoretic argument to prove that “most” degrees fail
to have minimal predecessors. (The class of sets of with predecessors of min-
imal degree is meager.) Much later Paris [1977] showed that this set also has
measure zero. Indeed, Kurtz [1979] shows that the set of degrees which are
r.e. in some strictly smaller degree (and so, for example, have every partial
ordering embedded below them) has measure one. These and other results
of this sort are the descendants of the work in §10 of [1963].

The next question, (Q4), was answered in Cooper [1972]. Cooper con-
structed a uniformly r.e. sequence B; which is ascending in degree and an
re. A £ B; whose degree is a minimal upper bound for those of B;. The
construction technique is closely related to that for minimal pairs used to
settle (C2). Combining this result with the Thickness Lemma derived from
Shoenfield [1961] and Sacks [1963a] as described in Soare [1987, VIII.1], im-
mediately gives an r.e. set C' # A whose degree is an upper bound for those
of the B;. It is clear that the degrees of A and C' can have no infimum (as
it would have to be strictly below A but above all the B;). Thus this result
also supplies a solution to (C3).

As Sacks indicated in [1963], the final question there, (Q5), seems to go
far beyond the techniques developed to construct r.e. sets in that it asks to
control not just the set A being constructed and is its jump A’ but all its
iterated jumps A™. Actually, what one needed was not really a whole new
arsenal of construction procedures but a new insight into the uniformities
present in most existing arguments. Solutions were produced by Lachlan
[1965] and Martin [1966] and then by Sacks [1967]. The insights revealed in
these arguments have become quite important in applications of the priority
method to recursive model theory and other areas in which it is crucial to
simultaneously control the properties of structures being built at all levels of
the arithmetic hierarchy. In his paper constructing arithmetically incompa-
rable arithmetic singletons Harrington [1975] appropriately says: “Our proof
is to be found in that shiny little box which was first opened by Sacks [1967]
... the key which unlocks this box is the recursion theorem together with the
remarkable uniformities prevalent in most recursion theoretic agreements.”
For those who have not had the pleasure of attempting to unravel these con-
structions, we might add that what one finds inside, of course, is a shiny
little box.

Three of the conjectures, (C1)-(C3), and two of the questions, (Q1)-(Q2),
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proposed in [1963] were solved before the second edition of Sacks’s Degrees
of Unsolvability appeared in [1966]. Despite the failure of Shoenfield’s con-
jecture implied by the proof of (C2), the idea that D and R should somehow
still be simple persisted and is reflected in the new conjectures. Of the r.e.
degrees Sacks says “We guess that there is some simple way of characterizing
its ordering, but we are unable to frame a strong conjecture. (L1) [the den-
sity theorem| suggests its ordering is homogeneous, but (L2) [the existence
of minimal pairs| and (L4) [there are r.e. a < b such that no r.e. ¢ joins
a to b (Lachlan[1966a])] say otherwise.” Sacks then made two conjectures
along these lines about the nature of r.e. degrees and added one suggested
by Hartley Rogers [1967] and [1967a] about the homogeneity of the degrees
as a whole. We should point out that Rogers seems to have been the first
to stress the importance of the global questions about definability and au-
tomorphisms that now seem to be the central problems in the analysis of
recursion theoretic structures. Already at the Logic Colloquium of 1965 (see
Rogers [1967]), Rogers set forth the program of investigating these issues for
structures including R, D and &, the lattice of r.e. sets. Even then, Rogers
wrote of these problems that “I do not believe that they have received much
attention up to the present time. Yet they are easily stated and appear to be
of central significance in the foundations of recursive function theory.” The
exposure given to these questions in Sacks [1966] and Rogers [1967a] and the
approach to recursion theory that they represented promoted much of the
work we will discuss below.

(C1)' The elementary theory of the ordering of the recursively enumerable
degrees is decidable.

(C2)' For each degree d, the ordering of degrees recursively enumerable
in and > d is order-isomorphic to the recursively enumerable degrees.

(C3)' For each degree d the ordering of degrees > d is order-isomorphic
to the ordering of degrees.

All of these conjectures turned out to be false. The first to fall was (C2)'.
The source of the failure was in the embedding results for R. Lerman, Shore
and Soare [1984] proved that finite partial lattices (those in which infimum
is not always defined) with a certain structural property (the trace probe
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property) derived from an analysis of the known embedding techniques could
be embedded into R. They used this result to show that there are infinitely
many 3-types realized in R. It follows from the Ryll-Nardjewski theorem
that R fails to have one of the “nice” model theoretic properties implied by
the Shoenfield conjecture:

Theorem 13 (Lerman, Shore and Soare [1984]) R is not Xy categorical.

As is pointed out in Shore [1982], the proof that all finite partial lattices
with the trace probe property can be embedded in R actually shows that
any such recursive partial lattice can be embedded in R. Shore [1982] also
constructs, for each subset A of the natural numbers, a finitely generated
partial lattice £4 of this type which is recursive in A and codes A in the
sense that A is recursive in the jump of any presentation of £, even as an
usl. As L4 is finitely generated, A is then also recursive in any usl in which £ 4
can be embedded as a partial lattice. As usual, the proof of the embedding
theorem for recursive partial lattices with the trace probe property relativizes
to any degree a. Thus L4 can be embedded in the degrees r.e. in and above
a for any degree a. As the degrees r.e. in and above a can be presented
as an usl recursive in al®, this suffices to refute (C2)’. Strengthening the
result to apply to partial lattices recursive in a® and applying the same
sort of argument about complexity of presentations provides another direct
reflection of the complexity of R.

Theorem 14 (Shore [1982]) If the degrees r.e. in and above a are isomor-
phic to those r.e. in and above b then a and b are contained in the same
arithmetic degree. (In fact, one can get a® < b®) )3

Corollary 15 (Shore [1982]) The structure R is not recursively presentable,
i.e. 1t 18 not isomorphic to any recursive partial ordering.

At about the same time Harrington and Shelah [1982] announced the
solution to (C1)"

3Nies, Shore and Slaman [1997] have improved the conclusion to be a” = b”. Indeed
they show that if the degrees r.e. in and above a are elementary equivalent to the r.e.
degrees then a” = 0",
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Theorem 16 (Harrington and Shelah [1982]) The theory of R is undecid-
able.

As the proof of undecidability includes a definable coding of partial order-
ings into R which, of course also relativizes, it also supplies another refutation
of (C2)" as well. (Once again the argument is based on the complexity of pre-
sentations of the degrees r.e. in d.) While finitely generated codings suffice
for (C2)" and such isomorphism results, the codings needed for undecidability
must be more explicit. Interpreting a theory in R requires a definable coding
scheme. Harrington and Shelah [1982] exploit the new priority techniques
introduced in Lachlan [1975] to construct sets of degrees which are definable
from finitely many parameters. These sets are then used as the domains for
partial orderings defined by other parameters.

Theorem 17 (Harrington and Shelah [1982]) For each partial ordering (P, <)
recursive in 0" there are r.e. degrees a, b, c,d such that if M = {x| x is maz-

imal among the degrees below a such that ¢ £ bV x} and < is defined on M
byx <y < x<pyVvd, then (M, =) = (P,<).

The new type of constructions needed to prove this theorem were origi-
nally called “monstrous injury arguments” because of their complexity. Lach-
lan, introduced them to prove that the Sacks Splitting and Density theorems
cannot be combined:

Theorem 18 (Lachlan [1975]) There are r.e. degrees d < a for which there
are no r.e. degrees b,c such thatd <b,c <a and bVc=a.

These arguments are now called 0" constructions because an oracle for
0" is needed to determine how the requirements are satisfied. In this termi-
nology, introduced by Harrington, finite and infinite injury arguments are,
respectively, 0" and 0” constructions. There are now simpler proofs of the
undecidability of R (Slaman and Woodin [ta] and Ambos-Spies and Shore
[1993]) that do not rely on Lachlan’s 0" methods but the method itself has
continued to play a crucial role in the study of the r.e. degrees.

The next step in the elucidation of the complexity of R was the charac-
terization of the degree of its theory: It is as complicated as possible.
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Theorem 19 (Harrington and Slaman; Slaman and Woodin [ta]) The theory
of R is recursively isomorphic to that of true first order arithmetic.*

A similar path had been followed somewhat earlier in the study of D. As
we have mentioned, its undecidability follows from initial segment embedding
results (Theorem 8 or (C6)). The first proofs that its theory is as complicated
as possible exploited such results along with Spector’s theorem [1957] on
exact pairs : If I is a countable ideal in D then there are degrees x,y such
that I = {z|z < x,y}.

Theorem 20 (Simpson [1977]) The theory of D is recursively isomorphic to
that of true second order arithmetic.

Nerode and Shore [1980] and [1980a] produced another proof of this theo-
rem as well as many other results on the global structure of D. In particular,
they proved that every automorphism ¢ of D is the identity on a cone, i.e.
JzVx > z(¢p(x) = x). A more precise calculation of the base of such cones
combined with results of Jockusch and Soare [1970] and either Jockusch

[1973] or Harrington and Kechris [1975] on cones of minimal covers (see the
discussion of (Q2)" of [1966] below) led to the refutation of (C3)":

Theorem 21 (Shore [1979]) Ifd >O (the complete 1] set), then the degrees
above d are not order isomorphic to D.

Now the failure of (C3)’, like that of (C2)’, was not due to a counterex-
ample to the phenomena of relativization which prompted Rogers to suggest
the conjecture. Indeed, in each case, the proofs relied heavily on relativizing
many results on the structure of D and R to other degrees. Their failure was
due instead to the fact that the degrees, like the r.e. degrees, are much more
complicated than was expected in the 1960’s. Had D and R been simply
characterizable along the lines of density and Shoenfield’s conjecture, then
both conjectures would have been true. The problem was that they turned
out to be much more complicated. More to the point, they turned out to be
so complicated that the degrees above any d, and indeed even those r.e. in
d, are in many senses as complicated as possible. As complicated as possible

4See Nies, Shore and Slaman [1997] for a new proof of this result and various definability
results for R.
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implies that the structures reflect or encode the complexity inherent in the
given degree d. This was precisely the method of refuting (C2)" described
above. It also lies at the heart of the refutation of (C3)" as can be seen from
the proof of a stronger result.

Theorem 22 (Shore [1982a]) If d >O, then the degrees above d are not
elementarily equivalent to D.

The key idea in this paper is an extension (implicit in Simpson [1977])
of the idea that one can code second order arithmetic in D. The crucial
procedure is to define in D, not only standard models of arithmetic, but
also a map taking a degree d to (the code for) a set (in the defined model
of arithmetic) which has degree d. One can then translate any property
definable in arithmetic into the degrees. In particular, any relation on degrees
definable in second order arithmetic becomes definable in D with such a
translation.

Actually, the map constructed in Shore [1982a] worked correctly only on
sufficiently large degrees (the ones above Q). Thus corollaries on definability
and failure of homogeneity worked only for such degrees. Since then, much
work has been devoted to extending and improving these results. An im-
portant step was taken in Jockusch and Shore [1984] where they defined the
class of degrees of arithmetic sets in D and so brought “sufficiently large”
down to 0,

Now, many of the results in this area had earlier proofs or more refined
versions for the degrees with the jump operator. (Including, for example, the
refutation of the homogeneity conjecture with the jump operator by Feiner
[1970].) A truly remarkable result of Cooper’s then eliminated the need for
the added hypothesis.

Theorem 23 (Cooper [1990], [ta]) The jump operator is definable in D
(from just the ordering Turing reducibility). In fact, the relation “a is r.e. in
b” is definable in D.

Together with earlier results of Nerode and Shore [1980a], this theorem

brought sufficiently large down to 0. Slaman and Woodin [1986] developed
a considerably simpler approach to coding second order arithmetic in D.
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They then introduced techniques from set theory, including forcing and ab-
soluteness, to push these result even farther. “Sufficiently large” came down
to 0”.5 They have conjectured that the true answer is 0.

Biinterpretability Conjecture for D (Slaman and Woodin [ta], see Sla-
man [1991]): There is a definable coding of true second order arithmetic in
D for which the map taking a degree d to the code in the model for a set of
degree d is also definable.®

This conjecture really expresses the strongest form of our new view of the
structure of the degrees as being as complicated as possible. We should stress,
however, that it does not represent a failure of our attempts to characterize
the ordering of the degrees. Rather, it is itself a strong characterization of
the structure of D. It would provide complete information for example about
definability in D (everything possible would be definable) and automorphisms
for D (none other than the identity would exist). Slaman and Woodin |[ta]
have proven many remarkable results related to this conjecture both for D
and for many other degree structures. We cite a few and refer to Slaman
[1991] and [1997] for a more complete summary.

Theorem 24 (Slaman and Woodin [ta]) There are at most countably many
automorphisms of D.

Theorem 25 (Slaman and Woodin [ta]) Second order arithmetic is biinter-
pretable in D with parameters, i.e. the definitions required in the biinter-
pretability conjecture can be given using parameters from D.

Theorem 26 (Slaman and Woodin [ta]) D is rigid, i.e. it has no automor-
phisms other than the identity, if and only if it is biinterpretable with second
order arithmetic.

A similar change has taken place in our attitude toward the r.e. degrees.
They too seem as complicated as possible. As mentioned above, this has

®See Nies, Shore and Slaman [1997] for a new proof of this result by simply improving
the coding procedures.

6Cooper [1996] has announced that there is there is a nontrivial automorphism of D
and hence the biinterpretability conjecture fails.
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been verified for the theory of R, but we have fewer other results supporting
the corresponding conclusion. In particular, there are as yet no results on
definability or automorphisms.” Nonetheless, the analogous conjecture has
been proposed.

Biinterpretability Conjecture for R (Harrington; Slaman and Woodin
[ta], see Slaman [1991]): There is a definable coding of first order arithmetic
in R for which the map taking an r.e. degree d to the code in the model for
a set of degree d is also definable.®

As with D, this strong conjecture would imply that R is rigid and every
relation on r.e. degrees definable in arithmetic is definable in R. It too then
represents a new proposal for a solution to the problem of characterizing
the ordering of the r.e. degrees quite different from the ones that Sacks was
considering in [1963] and [1966]. Surprisingly, the conjecture for R implies
the one for D. Indeed, even more is true.

Theorem 27 (Slaman and Woodin [ta]) If R is rigid then so is D. In fact,
there are finitely many r.e. degrees ay, ..., a, such that if ® is an automor-
phism of D with ®(a;) = a; for each i < n, then ® is the identity map.

We conclude our paper with a discussion of the four questions posed at
the end of [1966] that did not appear in [1963]. (The one carried over, (Q4),
was discussed above.)

(Q1)’ Does there exist a Gédel number e such that for all sets 4, WA,
the e set recursively enumerable in A, is of higher degree than A and of
lower degree than A’, and such that if A and B have the same degree, then
WA and W2 have the same degree?

"Nies, Shore and Slaman [1997] have shown that every automorphism of R preserves
the double jump and that all relations on R which are definable in arithmetic and invariant
under the double jump are definable in R.

8Cooper [1996] has announced that there is a nontrivial automorphism of R and indeed
one that moves a low degree to a nonlow one. This implies that the biinterpretability
conjecture for R also fails.
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(Q2)’ Is the elementary theory of the ordering of degrees elementary
equivalent to the elementary theory of the degrees of arithmetical sets?

(Q3)" Is there some simple property of complements of r.e. sets (in the
style of Post) which implies noncompleteness?

(Q5)" Is there an elementary difference between the ordering of r.e. de-
grees and the ordering of metarecursively enumerable degrees?

Both (Q1) and (Q3)" deal with Post’s problem from [1944] to construct an
incomplete nonrecursive r.e. set. As we have mentioned, it was solved with
the introduction of the priority method by Friedberg [1957] and Muchnik
[1956]. The first question asks for what is now called an invariant solution
to Post’s problem as it asks for a single construction procedure that gives
a solution to the relativized version of Post’s problem (an e such that for
every A, A <p WA < A’) which is invariant with respect to the degree of the
oracle. Lachlan [1975a] proved that there is no such solution with certain
additional uniformities.

Theorem 28 (Lachlan [1975]) There is no index e as required in (Q1) with
the additional property that indices for the reductions between WA and W5
can be found uniformly from ones for the reductions between A and B.

Further work on this problem has been intimately connected with two
very sweeping conjectures by Martin about the nature of degree invariant
maps under the assumption of the axiom of determinacy. Roughly speak-
ing, the conjectures say that, in the sense appropriate to working with AD,
the only (definable) degree invariant operators that always increase degree
are the various jump operators and their iterates. Much has been done to
characterize such functions. We cite, in particular, the work of Steel [1982],
Slaman and Steel [1988] and especially Becker [1988]. From this point of
view, Sacks’s question essentially asks if there is a counterexample of a very
special type to Martin’s conjectures. The original question, however, remains
open. It too will surely require a new idea.”

9Exploiting the work of Steel [1982], Downey and Shore [1966] have shown that any such
invariant solution must be lowy or highs for all sufficiently large degrees a, i.e., there is a c
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Post’s own approach to his problem of constructing a nonrecursive in-
complete r.e. set was to try to find a set theoretic property of an r.e. set
which would guarantee incompleteness but still be compatible with the set
theoretic property of nonrecursiveness. (An r.e. set is recursive if and only if
it has an r.e. complement.) The work on this program has motivated much
of the study of the set theoretic properties of r.e. sets and in particular the
analysis of the lattice £ of the r.e. sets under inclusion. Post himself sug-
gested several “simplicity” type properties of an r.e. set implying that its
complement is “thin”. While some of these properties guaranteed incom-
pleteness with respect to stronger reducibilities, none seemed to work for
Turing degree. Yates’ [1965] proof that maximal sets (which by definition
have the “thinnest” possible complement) can be complete showed that this
particular approach could not work. On the other hand, Marchenkov [1976]
proved that, if one extends Post’s notions by considering both semirecursive-
ness and the structures derived by dividing £ by r.e. equivalence relations,
one can guarantee incompleteness by such simplicity type properties.

Theorem 29 (Marchenkov [1976]) No n-mazimal semirecursive r.e. set is
Turing complete. (An r.e. set A is semirecursive if there is a recursive func-
tion f such that f(z,y) € A if either x ory belongs to A; it is n-mazimal if
it is a maximal element of the lattice of r.e. sets modulo the r.e. equivalence
relation 7.)

On the other hand, Cholak, Downey and Stob [1992] proved that no
property of an r.e. set A which is definable in terms of the lattice of super-
sets of A alone can guarantee incompleteness and still be compatible with
nonrecursiveness as required in (Q3)’.

Theorem 30 (Cholak, Downey and Stob [1992]) For every r.e. A there is a
complete r.e. C such that the lattice of r.e. supersets of A is isomorphic to
that of C.

On yet the other hand (we seem to need many for this problem), Har-
rington and Soare have found a lattice theoretic property that guarantees
both incompleteness and nonrecursiveness and so provides a positive answer
to (Q3)’ for this interpretation of “in the style of Post”.

such that if W is degree invariant and increasing in degree then (Va > ¢)(W2)" =¢ A”)
or (Va > c)((WA)" =p A™).
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Theorem 31 (Harrington and Soare [1991]) There is a class Q of r.e. sets
definable in the lattice of r.e. sets such that any r.e. set A in () is nonrecursive
and incomplete. 1°

Basic information about the lattice of r.e. sets can be found in Soare
[1987] and a current survey in Soare [1997]. A treatment of the route to Post
problem through strong reducibilities and n-maximal sets can be found in
Odifreddi [1989, III.3-5].

The remaining two questions (Q2)" and (Q5)’ once again return us to the
theme of the complexity of the theories of R and D. Again, had the nature
of degree structures turned out to be “simple” the answers to these questions
would presumably have been “yes”. By now, we know enough to expect the
answers to be “no”. Indeed, as we know by Theorem 20, the theory of D
is recursively isomorphic to that of true second order arithmetic. Thus it
cannot possibly be the same as that of the degrees of the arithmetic sets.
(The degree of the latter theory is clearly too low.) In fact, the theories
of jump ideals, i.e. classes of degrees closed downward and under jump, are
equivalent to the corresponding models of arithmetic.

Theorem 32 (Nerode and Shore [1980a]) IfC is a jump ideal then the theory
of C with the relation of Turing reducibility is recursively isomorphic to that
of the structure of second order arithmetic with underlying domain N and
set quantification over the sets with degrees in C.

This theorem distinguishes among the theories of the standard jump ide-
als and so, in particular answers (Q2). The first answer to this question,
however, came from a study of minimal covers. (A degree b is a minimal
cover of a, if a < b and there are no degrees strictly between them.) Jockusch

and Soare [1970] uncovered enough about the nature of minimal covers to
refute (Q2)".

Theorem 33 (Jockusch and Soare [1970]) No 0" is a minimal cover. On
the other hand, there is a degree x such that every y > x is a minimal cover.

(Actually, in [1970] Jockusch and Soare could only note that the second
fact follows from Borel determinacy. Jockusch [1973] showed that determi-
nacy for 3} sets (which was known to provable in ZFC) sufficed. Of course,

10Many more results along these lines are announced in Harrington and Soare [1996].
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Martin [1975] later proved full Borel determinacy in ZFC. Later Harrington
and Kechris [1975] showed that open determinacy sufficed and so every degree
above O is a minimal cover. This result was the one used in the refutation of
(C3) given by Theorem 21. Jockusch and Shore [1983], [1984] introduced and
developed the pseudojump operators to show that every degree above 0 is
a minimal cover. This result is the best possible by the above theorem. They
then used an extension of this result to define the degrees of the arithmetic
sets in D as mentioned above.)

The final question of [1966], (Q5)’, reflects the beginning of the interest
that became Sacks’s primary mathematical passion for the next twenty five
years or more: generalized recursion theory. Except for a brief fling with
applications of recursion theory to set theory [1969], [1971] and a somewhat
extended affair with model theory [1972], [1972a], Sacks’s mathematical en-
ergies were devoted to the development of recursion theory on ordinals (ad-
missible and nonadmissible) and set (or E) recursion. This work was capped
with his publication of the book in the field Higher Recursion Theory [1990].

Metarecursion theory is a special case of recursion theory on admissible
ordinals o where the ordinal o is w{'¥, the first nonrecursive ordinal and
so the Church-Kleene effective analog of wi, the first uncountable ordinal.
Although metarecursion is intimately tied to hyperarithmetic theory as well
as Kleene’s recursion in higher types, the simplest way to define its concerns
(and those of recursion on admissible ordinals « in general) is in terms of
Godel’s constructible universe, L. In a-recursion theory, as the subject is
often called, the natural numbers are replaced by the ordinals below «; re-
cursive enumerability becomes ¥, over L,; the finite sets are the members
of L; the appropriate definition of relative computability, <,, on subsets of
a corresponds to the one in Rogers [1967, §9.2] for sets of natural numbers:

A <, B iff there is an r.e. W such that, for every K,
KCA& (3(K 1L, L,M)e W)(LCB A MC B) and
KCAs (3(K,0,L,M) e W)(LCB AN MCB).

Here K, L, M range over a-finite subsets of a.

A primary motivation for developing a-recursion theory was to analyze
the methods and assumptions underlying the classical constructions of recur-
sion theory, in particular, priority arguments and constructions of r.e. sets.
Kripke [1964] and Platek [1966] first suggested that admissibility (equiva-
lently ¥; replacement) should be the fundamental axiom for recursion the-
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ory on ordinals. The early work in on metarecursion theory (as in Kreisel
and Sacks [1965]) and then the extensive development of recursion theory
on all admissible ordinals by Sacks, his students and collaborators confirmed
that admissibility was indeed a sufficient condition to carry out most of the
arguments and constructions of classical recursion theory. (An early survey
and introduction can be found in Shore [1977] and a current one in Friedman
[1997]. Of course, the current comprehensive reference is Sacks [1990].) Even
when certain constructions could not be carried out for all admissible ordi-
nals, it seemed that they could be done with the added assumptions available
for w¥K. (The crucial one is that there is an a-recursive one-one map from
w&E into w.) This state of affairs, naturally would lead one to believe that
there should be an affirmative answer to (Q5)’. Once again, however, the
theme that the r.e. degrees are as complicated as possible suggests instead
that this very phenomena of metarecursion mimicking recursion theory on w
should lead to a negative solution.

The first related result came at the level of isomorphism rather than
elementary equivalence. The theorems on r.e. degrees that lead to a negative
solution to (C2)" supplied the tools needed.

Theorem 34 (Odell [1983]) Any wSE -recursive partial lattice with a prop-
erty similar to the trace probe property can be embedded in the W -r.e.
degrees. These lattices include the ones L4 used in the proof of Theorem 14

for every W& -recursive A.

Corollary 35 (Odell [1983]) The ordering of the w{X-r.e. degrees is not
arithmetically presentable and so not isomorphic to R.

In line with our new philosophy, when Harrington and Slaman announced
that the theory of the r.e. degrees was equivalent to true first order arithmetic,
we were (as Sacks often says) “morally certain” that the answer to (Q5)" was
“no”. Moreover, it was clear that the way to prove the result was to carry out
enough of a proof of Theorem 19 in metarecursion theory to code a standard
model of arithmetic with an additional predicate for a set which, in w{*-
recursion theory, could be chosen to be nonarithmetic. (Of course, in the r.e.
degrees only arithmetic sets can be coded in standard models.) Carrying out
this idea awaited a comprehensible manageable proof of Theorem 19. One
was supplied by Slaman and Woodin [ta]. The details of both the statements
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and proofs of the coding theorems needed in metarecursion theory will appear
in Shore and Slaman [ta]. For now we are content to give the solution to the
last question of [1966]:

Theorem 36 (Shore and Slaman [ta]) The metarecursively enumerable de-
grees are not elementarily equivalent to the r.e. degrees.
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