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1 Introduction

Effective model theory is an area of logic that analyzes the effective content
of the typical notions and results of model theory and universal algebra.
Typical notions in model theory and universal algebra are languages and
structures, theories and models, models and their submodels, automorphisms
and isomorphisms, embeddings and elementary embeddings. In this paper
languages, structures, and models are assumed to be countable.

There are many ways to introduce considerations of effectiveness into
the area of model theory or universal algebra. Here we will briefly explain
considerations of effectiveness for theories and their models on the one hand,
and for just structures on the other hand.

Let us begin by considering effectiveness for theories and their models.
From the model theoretic point of view, given a first order theory, one is
interested in finding models for the theory with specific algebraic or model-
theoretic properties. In this sense theories are the basic objects in model
theory. A natural way of introducing effectiveness is, therefore, to begin by
considering decidable theories, i.e. ones whose theorems form a decidable (i.e.
computable or recursive) set.
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Given a decidable complete theory, one can effectively carry out a Henkin
type construction and build a model of the theory. This procedure guarantees
that the satisfaction predicate for the model constructed is decidable. Thus
we are led to the following definition.

Definition 1.1 A structure A is decidable if there is a computable enu-
meration ai of the elements of A such that Th(A, ai) is decidable.

Just as model theory investigates the class of models of a given theory,
effective model theory is concerned with decidable models of decidable theo-
ries. There have been a significant number of results about decidable models
of decidable theories. These results typically discuss questions related to
finding decidable prime, saturated, homogeneous models; omitting or realiz-
ing types by decidable models; the number of decidable models for decidable
theories, etc. We refer the reader to [8] and [15] for survey articles in this
area.

If we begin to introduce consideration of effectiveness just for the struc-
tures themselves, then we are essentially in the realm of general effective
mathematics. Considerations of effectiveness for structures have been exten-
sively developed since the early 60’s beginning with Frölich and Shepherdson
[5], Rabin [17], and Malcev [13]. However, it is worth to noting that even
in the early 60’s the idea of considering effectiveness in structures was not
new. In the 30’s Kleene and Church considered effectiveness in well-ordered
sets and invented recursive ordinals. In the early 70’s Nerode and his col-
laborators in the U. S., as well as Ershov and his colleagues in Novosibirsk,
developed the powerful idea of combining model-theoretic and algebraic con-
structions with priority arguments from computability theory. This approach
embodies the technical core of many results in effective model theory.

More recently, there have been many papers devoted to investigating ef-
fectiveness in structures. For example, Cenzer, Nerode and Remmel [1] have
been developing the theory of p-time structures. Khoussainov and Nerode
have begun the development of the theory of automatic structures [11]. These
theories are based, respectively, on computations which can be performed in
p-time and by finite automata. We will not discuss these topics but turn
instead to structures in which the basic functions and relations can be com-
puted by Turing machines.
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Definition 1.2 A structure A for a language L is computable if its domain
A is a computable subset of ω and its functions and relations are uniformly
computable. A structure isomorphic to a computable structure is called com-
putably presentable, and any such isomorphism is called a computable
presentation.

The requirements of computability are significantly weaker than those for
decidability. However, the definition captures what one normally means by
an effective structure or presentation in mathematical discourse.

Identification of isomorphic structures is typical in model theory and
universal algebra or, indeed, generally in classical mathematics. A typi-
cal model-theoretic or algebraic problem about isomorphisms can often be
stated as follows: Find some invariants such that any two structures from
the class are isomorphic if only if they have the same invariants.

Introducing effectiveness considerations into the area, we would like to
understand the relationship between classical invariants and effective invari-
ants; in particular, between isomorphism types and effective isomorphism
types. Thus, while model theory identifies isomorphic structures, effective
model theory is concerned with computable isomorphisms and finding char-
acterizations for structures which have the same computable isomorphism
type. A fundamental concept is therefore that of computable isomorphism
type.

Definition 1.3 Two computable structures A and B are of the same com-
putable isomorphism type if there is computable isomorphism taking A
to B. The dimension of a computable structure A is the number of its
computable isomorphism types.

To what extent computable isomorphism types can differ from classical
ones can be seen from the following result of Goncharov:

Theorem 1.4 ([7]) For each n ≤ ω there is a computable structure with
computable dimension n.

There has been significant interest in understanding the nature of the
structures of dimension 1. The basic model theoretic notion which motivated
this interest is that of ω–categoricity. A theory T is ω–categorical if all
countable models of T are isomorphic. A structure A is ω–categorical if its
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theory is ω–categorical. The analogous concept for effective model theory
deals only with computable structures and isomorphisms:

Definition 1.5 A structure A is computably categorical if any two com-
putable structures isomorphic to A are computably isomorphic.

The result of Nurtazin [16] is one of the first about the nature of com-
putably categorical structures. His theorem characterizes structures whose
decidable presentations form one computable isomorphism type.

Theorem 1.6 ([16]) For a structure A the following two conditions are
equivalent:

1. Any two decidable presentations of A are computably isomorphic.
2. There exists a finite sequence c̄ of constants from A such that (A, c̄) is

the prime model of the theory Th(A, c̄) and the set of atoms of this theory is
computable.

In the late 70’s Goncharov [6] and Remmel [18] independently gave an
algebraic characterization for Boolean Algebras and Linear Orderings to be
computably categorical.

Theorem 1.7 ([6] [18]) 1. A Boolean Algebra is computably categorical if
and only if has finitely many atoms.

2. A linear ordering is computably categorical if and only if the number
of pairs of adjacent elements is finite.

2 Scott Families

Interestingly, all the structures which have been shown to be computably
categorical have one common property. They all have Scott families.

Definition 2.1 A Scott family for a structure A is a computable sequence
φ0(ā, x1, . . . , xn0), φ1(ā, x1, . . . , xn1), . . . of ∃-formulas satisfiable in A, where
ā is a fixed tuple of elements from A, such that every tuple in A satisfies
one these formulas and any two tuples satisfying the same formula from the
sequence can be sent to each other via an automorphism of A.
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The basic idea behind this definition is the following. If a computable
structure A has a Scott family and B is a computable structure isomorphic
toA, then we can effectively carry out a back and forth argument to construct
a computable isomorphism from A to B.

Theorem 2.2 If a structure A has a Scott family, then the structure is
computably categorical. Moreover, for any n-tuple (d1, . . . , dn) the expanded
structure (A, d1, . . . , dn) also has a Scott Family.

Proof. Let φ0(ā, x1, . . . , xn0), φ1(ā, x1, . . . , xn1), . . . be a Scott family for
A, where ā = (a0, . . . , am−1). Let A1 and A2 be computable presentations
of A. We define a mapping f : A1 → A2 by stages. We can assume that
for each j ∈ {0, . . . ,m − 1}, aij is the element in Ai corresponding to the
constant aj. At even stages we define images of elements from A1, at odd
stages we define preimages of elements from A2.

Stage 0. Set f1 = {(a1
0, a

2
0), . . . , (a1

m−1, a
2
m−1)}.

Stage 2k. We can suppose that the function f2k−1 has been defined. As-
sume that f2k−1 = {(a1

0, a
2
0), . . . , (a

1
m−1, a

2
m−1), (b1, c1), . . . , (bs, cs)} and that

f2k−1 can be extended to an isomorphism of A1 to A2. Let b be the first num-
ber not in the domain of f2k−1. Consider the tuple (b1, . . . , bs, b). Find an i
such that φi(ā, b1, . . . , bs, b) holds in A1. Hence ∃xφi(ā, c1, . . . , cs, x) holds in
A2. Find the first c ∈ A2 for which φi(ā, c1, . . . , cs, c) holds. Extend f2k−1 by
letting f2k = f2k−1

⋃
{(b, c)}.

Stage 2k+1. We define f2k+1 similarly so as to put the least element of
A2 not yet in the range of f2k into that of f2k+1.

Finally, let f =
⋃
i∈ω fi. Thus, f is a computable isomorphism.

For the second part of the theorem, we slightly change the original Scott
family. Namely, set ψi = φi(ā, x1, . . . , xni)&∃y1 . . . ∃yn(&j(dj = yj). Then,
one can easily check that the sequence ψ0, ψ1, . . . is a Scott family for the
expanded structure (A, d1, . . . , dn). The theorem is proved.

Corollary 2.3 If a structure A has a Scott family, then any expansion of A
by finitely many constants is computably categorical. 2

At this point we would like to make the following two observations about
the effect of expanding computably categorical structures by finitely many
constants. First, as we have mentioned, all the known examples of com-
putably categorical structures have Scott families. Thus, it is natural to ask
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whether there exists a computably categorical structure without a Scott fam-
ily. By Corollary 2.3, one possible way to build a such structure is to provide
an example of a computably categorical structure whose expansion by finitely
many constants is not computably categorical. Second, as we mentioned, the
notion of ω–categoricity is a basic model-theoretic motivation in the inves-
tigation of computably categorical structures. It is an easy consequence of
the Ryll-Nardzewski theorem that if a structure A is ω-categorical then so is
(A, ā), the structure expanded by finitely many constants. It is the analogous
situation in effective model theory that we wish to consider.

Millar [14] proved that a small amount of decidability is enough to guar-
antee that categoricity is preserved under such expansions. Informally his
theorem states that if a structure A is computably categorical and we can ef-
fectively solve systems of algebraic equations and inequations over this struc-
ture, then computable categoricity is preserved under expansions by a finite
number of constants.

Theorem 2.4 ([14]) If a structure A is computably categorical and its exis-
tential theory is decidable, then the expansion of A by finitely many constants
is also computably categorical.

Without the assumption of the decidability of the existential diagram,
the question (known as Ash-Goncharov problem) has been open:

Does there exist a computably categorical structure whose expansion by a
finite number of constants is not computably categorical?

An answer to this question has recently been found:

Theorem 2.5 ([2]) For each natural number n, there exists a computably
categorical structure A such that, for every a ∈ A, the expanded structure
(A, a) has dimension n.

An immediate consequence of Corollary 2.3 is now the following result:

Corollary 2.6 There exists a computably categorical structure without a
Scott family.

However, based on Corollary 2.3, one could suggest that the reason the
structure constructed in Theorem 2.5 does not have a Scott family is that
the structure has an expansion by a finite number of constants which is not
computably categorical. We construct a counterexample to this suggestion
in the next section.
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3 Scott Sequences for Families of Computably

Enumerable Sets

Our basic result is the following theorem.

Theorem 3.1 There exists a structure without a Scott family such that ev-
ery expansion of the structure by a finite number of constants is computably
categorical.

The structure required to establish the theorem is constructed by cod-
ing certain (uniformly) computably enumerable families of sets of natural
numbers.

Definition 3.2 A family S of sets of natural numbers has a one-to-one
computable enumeration if there is a bijection f : ω → S such that
{(i, x)|x ∈ f(i)} is computably enumerable. We then call f a (computable)
one-to-one enumeration of S.

We wish to consider a preordering on the one-to-one computable enumer-
ations of S that naturally induces an equivalence relation corresponding to
computable isomorphism:

Definition 3.3 A computable enumeration f of S is reducible to g, f ≤ g,
if there is a computable Φ such that f = gΦ. If f ≤ g and g ≤ f , then we
say that f and g are equivalent.

Note that if f is a one-to-one enumeration of S and f = gΦ, then Φ is a
permutation of ω and so f ≤ g. Thus the equivalence classes of one-to-one
enumerations are minimal elements in the induced partial ordering. These are
the enumerations that we need to consider to define the family that supplies
the structure required for Theorem 3.1. Informally, computable categoricity
corresponds to there being a single such equivalence class and dimension
corresponds to the number of such classes.

Definition 3.4 A computable sequence D0, D1, . . . of (canonical indices
for) finite sets is a Scott sequence for a family S if the following properties
hold:

1. For each Di there exists exactly one Mi ∈ S such that Di ⊂M .
2. The set S \ {M0,M1, . . .} is finite.
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The reader can easily prove the following:

Theorem 3.5 If S has a Scott sequence, then any two computable enumer-
ations of S are equivalent. 2

For any given family S, we want to construct a structure AS such that
AS has a Scott family if and only if S has a Scott sequence. Thus, let S
be a family of sets and let f be a one-to-one computable enumeration of S.
We assume that each set in S has at least two elements. Based on f , we will
construct a computable structure, indeed a graph, Af = (ω, Pf ), where Pf is
a computable binary predicate on ω.

Consider a uniformly effective, possibly finite, sequence ai,0, ai,1, ai,2, . . .
without repetitions such that, for each i ∈ ω, f(i) = {ai,0, ai,1, ai,2, . . .}.

For each i ∈ ω, we can consider a computable structure Gfi = (Gi, P
f
i )

defined as follows. Gi has an element di such that for each ai,j the predicate

P f
i defines a unique cycle Ci,j of length ai,j for which di ∈ Ci,j. In addition,

for all j, k the cycles Ci,k and Ci,j have only one element in common which
is di. Thus, we see that for all j 6= k we have di ∈ Ci,k, di ∈ Ci,j and
(Ci,j \ {di})

⋂
(Ci,k \ {di}) = ∅. We call the element di a cluster point.

Informally, the structure Gfi codes the set f(i). The structure (graph) Gfi is
computable and satisfies the following properties:

1. For every number t, t belongs to f(i) if and only if there exist distinct
elements x0, . . . , xt of the structure Gfi such that the formula

P f
i (x0, x1) & . . . P f

i (xt−1, xt) &P f
i (xt, x0)

holds in the structure Gfi .
2. Any two cycles in Gfi have only one element in common.

By the construction of Gfi and the computability of f , we can conclude
that there exists a computable sequence Af0 = (Af

0 , P0), Af1 = (Af
1 , P1),

Af2 = (Af
2 , P2), . . . of computable structures such that:

1. For each i the structure Afi is isomorphic to the structure Gfi .
2. For each pair i 6= j, Af

i

⋂
Af
j = ∅ and ω =

⋃
iA

f
i .

3. The relation Pf =
⋃
i Pi is computable.
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Consider the computable structure Af defined in some canonical way so
that Af is isomorphic to (ω, Pf ). Note that the set of all cluster points of
Af is recursive in every recursive presentation of Af . (We are here using the
assumption that every set in the family S has at least two elements.) The
following lemma describes the relationship between S and Af .

Lemma 3.6 The structure Af satisfies the following conditions.

1. If g is a one-to-one computable enumeration of S, then Af is isomor-
phic to Ag.

2. The structure Af is rigid, that is it does not have any nontrivial auto-
morphisms.

3. If g is a one-to-one computable enumeration of S, then Af is com-
putably isomorphic to Ag if and only if f and g are equivalent.

4. The dimension of the structure Af is equal to the maximal number of
nonequivalent one-to-one computable enumerations of S.

5. The structure Af has a Scott family if and only if S has a Scott se-
quence.

Proof. To prove 1, first, note that for any pair i, j ∈ ω the graphs Gfi
and Gg

j are isomorphic if and only if f(i) = g(j). Hence, since f and g are
one-to-one enumerations of S, we can conclude that Af is isomorphic to Ag.

Any automorphism α of Af must be the identity by the construction of
Af and the fact that f is a one-to-one mapping. This proves 2.

Suppose that f and g are equivalent. There exists a recursive function Φ
such that f = gΦ. Hence the structure Gfi is isomorphic to the structure GgΦ(i).
HenceAf andAg are computably isomorphic. Let B be a computable presen-
tation of Af . Consider an effective sequence e0, e1, e2, . . . without repetition
of all cluster points in B. We define a one-to-one computable enumeration
fB of S as follows:

fB(i) = {n|ei belongs to a circle of length n}.

It follows that B is computably isomorphic to Ag if and only if g is equivalent
to fB. This proves 3.
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4 follows from the proof of 3.
We are left to prove the last part of the lemma. Suppose that S has a

Scott sequence D0, D1, D2, . . . . Without lost of generality we can suppose
that Di ⊂ f(i). We have to prove that Af has a Scott family. Take an
x ∈ Af . Find a di which is connected to x via Pf . Suppose that the length of
a path which connects x with di is n. Define the following formula: ψ(x) =
[there exists a path of length n which connects x with a cluster point y such
that for each m ∈ Di the element y belongs to a cycle of length m]. Now for
every s–tuple (x1, . . . , xs) let φ(x1,...,xs) be ψ(x1)& . . .&ψ(xs). It is not hard
to check that the sequence {φ(x1,...,xs)} is a Scott family for Af .

Now suppose for simplicity that Af has a Scott family

φ0(x1, . . . , xn0), φ1(x1, . . . , xn1), . . .

without parameters. The proof below will show that we do not lose any gen-
erality by making this assumption. Let d0, d1, d2 . . . be an effective sequence
of all cluster points from Af . Let

φi0(x0), φi1(x1), . . .

be an effective subsequence of the original sequence such that φik(dk) holds
for each k ∈ ω. Since the formulas are all existential and the structure is
computable, we can effectively find a finite substructure Bi of Af such that
di ∈ Bi and φik(dk) holds in Bi. Define

Di = {n|di belongs to a cricle of length n in substructure Bi}.

Since we have a Scott family for Af and since the structure Af is rigid, we
can see that the sequence D0, D1, . . . is a Scott sequence for family S. 2

Corollary 3.7 Any two one-to-one computable enumerations of S are
equivalent if and only if Af is computably categorical. 2

Now, to prove Theorem 3.1 it suffices, by lemma 3.6, to build a com-
putably enumerable family S of sets without a Scott sequence any two com-
putable one-to-one enumerations of which are equivalent.

Lemma 3.8 There is a computably enumerable family S of sets with no
Scott sequence any two computable one-to-one enumerations of which are
equivalent.
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In order to build a such family S and its one-to-one enumeration f , we
need to satisfy the following requirements:

De : Fe is not a Scott sequence for S,

Rj : gj ≡ f or gj is not a one-to-one enumeration of S,

where {gj}j is a computable sequence of all potential one-to-one enumerations
of a family of sets, and {Fe}e is a computable sequence of all potential Scott
sequences for S. These requirements are similar to the requirements for
constructing a computable structure as needed for Theorem 2.5 (see [2]).
In fact, to construct such a family S, we essentially use the ideas from the
proof of Theorem 2.5. A detailed proof of this lemma and similar results will
appear in [12].
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