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Abstract

Type omitting arguments provide conditions under which one can find a model
M of a given theory T which does not have elements ā which satisfy all the formulas
ϕ(x̄) in a given type Γ, i.e. a specified collection of formulas. Such theorems are an
important feature of first order logic and have been proven for a few more general
logics. Harrington, Shore and Slaman [2017] proved a theorem about Σ11 sets which
implied such results for omega logic (a classical result) and computable infinitary
logic as well as other classical theorems of hyperarithmetic theory. In this paper we
show that the same theorem implies analogous type omitting theorems for many
other logics including a wide range of fragments of second order logic both classical
and modal. That is, for the modal logics we are also allowed to use any one of
these fragments of second order logic at each world.

1 Introduction

This work grew out of research that began with Ted Slaman during a meeting at the
IMS in Singapore. That work later involved Leo Harrington and led to the joint paper
Harrington, Shore and Slaman [2017] (hereafter HSS). We spoke about many of the
applications of that work presented here at a later meeting at the IMS (Higher Recursion
Theory and Set Theory) held during May and June of 2019 in celebration of the work of
both Ted Slaman and Hugh Woodin on the occaision of their sixty-fifth birthdays. We
are pleased to present this paper in their honor.

∗Partially supported by NSF Grant DMS-1161175. This work grew out of research begun at meetings
held at, and supported by, the Institute of Mathematical Sciences at the National University of Singapore.
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In classical first order logic we begin with a language L consisting of (logical) symbols
common to all first order languages and then a specified set of (nonlogical) relation,
function and constant symbols for this particular language. As usual, one next inductively
defines the formulas and sentences of L. Then one defines a semantics for L by first
specifying the structuresM for it as setsM with interpretations of its nonlogical symbols
and then defining satisfaction,M � ϕ for sentences of L (or, as we prefer, for sentences
in a language extending L by adding constant symbols, say ca, for every a ∈ M). We
will here consider only countable languages L (whether first order or more general). For
our purposes, we may as well also assume that the basic language and so formulas, etc.
are recursive as otherwise we can just relativize our results to the language. Note that,
for first order languages, the relationM � ϕ for countable structures is arithmetic inM,
i.e. in the list of atomic sentences (with names for its elements) true in inM uniformly
in M and ϕ. (Of course, the complexity of the arithmetic definition varies with that
of ϕ.) A set T of sentences of L is a theory if it has a model, i.e. an L structure M
such that M � ϕ for every ϕ ∈ T . (For first order logic, one also has a proof theory
and a completeness theorem establishing the equivalence of having a model with being
consistent.)
For a theory T in a language L, classically one defines an n-type of L over T to be a set

p of formulas of L each having free variables precisely x1, . . . , xn which is consistent with
T (i.e. realized in some model of T in the sense about to be defined) and complete, i.e.
maximal consistent. We say p is realized in a modelM of T if there is an ā = a1, . . . an
with each ai ∈ M such that M � ϕ(ā) for every ϕ ∈ p. Otherwise, we say that p is
omitted inM. By a type omitting theorem we mean one that gives conditions on T and
p that guarantee that there is a modelM of T that omits p.
The classical type omitting theorem of first order logic says (in one semantically

oriented terminology) that if, for every formula ϕ(x̄) of L consistent with T (i.e. there
is a model of T satisfying ∃x̄ϕ(x̄)), there is a γ ∈ p such that T such that ϕ&¬γ is
consistent with T , then there is a model M of T which omits p. There are a number
of standard variations and generalizations. The classical result (for countable first order
languages) follows from compactness and can also be proven by direct applications of
the constructions such as that of Henkin used to prove completeness. (For the classical
versions see e.g. Chang and Keisler [1990] or Hodges [1993].) We are interested in type
omitting theorems for logics more general than first order that may not have compactness
or completeness theorems. The classical example is the Gandy-Kreisel-Tait theorem for
ω-logic (Gandy, Kreisel and Tait [1960] (hereafter GKT), Theorem 1). Other known
examples involve admissible sets, (computable) infinitary logic or the like as in Barwise
[1975] and Montalbán [ta]. These examples often have notions of proof (with infinitary
rules) and appropriate completeness theorems but not always the usual compactness
theorems. While some of these infinitary languages are also treated in HSS, we ignore
them here and begin our analysis by recalling the classical theorem for ω-logic.
The definition of ω-logic begins with two (or many, even infinitely many) sorted logic.

Here, in addition to the usual syntactic apparatus of first order logic, we have additional
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kinds of variables xi in the language for each sort i. In addition, L may have function
and relation symbols (f i,n and Ri,n) of any arity n whose domain and range are restricted
to the sort i. The structuresM for L have designated subsets Ni for the sorts i which,
together with the interpretations of f i,n and Ri,n as functions and relations on Ni, form
structures Ni. We may write this as 〈M,Ni〉 or the like. Of course, from one point
of view this is really just a notational extension of standard first order logic in which
one has distinguished unary predicates whose interpretation are taken to be the Ni and
one does the appropriate translation to express that the domain or range of a function
(relation) may be an Ni. Nonetheless, this approach often has the benefit of providing a
more natural presentation of classes of structures such as vector spaces in which one sort
is the underlying field and the other the vectors.

The true power and interest of these logics arise when one requires, for example, (some
of) the Ni to be specific first order structures. We call this an N -logic. The classical
example of ω-logic has a unary function on N1 and requires that the associated N1 is
isomorphic to ω with successor. Alternatively, one can include the usual functions and
relations of first order arithmetic on N1 and require of the structures that it is isomorphic
to the standard natural numbers N. The structures for such a sorted language in which
N is isomorphic to the standard structure N are also called ω-models (although N-model
might be better in the latter version). One may then consider a language in which there
is an ∈ relation n ∈ A between members n of N1 and A of M − N1 (the sets). With
some axioms including extensionality for the sets, this gives structures for (varieties of)
second order arithmetic. One can extend further and also have other types Ni (i > 1)
with membership relations ∈ between members of Ni and Ni+1 (N1 ∼= N). This last
version of models of arithmetic of all finite orders with the first bottom sort assumed
to be isomorphic to N is the setting for the primary result of GKT. Another natural
example continuing on with vector spaces is requiring that the field be Q.
What GKT explicitly state as their Theorem 1 is that if one has any Π1

1 set A of
axioms in the language of ω-logic, then any set B ⊆ N appearing in every ω-model of A
is hyperarithmetic (i.e. ∆1

1)̇. (By A being Π1
1 we mean that the set of number codes for

the sentences in A is a Π1
1 set of numbers, i.e. of the form {n|(∀F )∃xR(F, x, n)} where

R is a recursive (or equivalently arithmetic) relation on NN×N× N. Remember that we
are assuming our language is recursive and so then is the set of Gödel numbers for the
formulas etc.) We can see this result as a very specific form of a type omitting argument
where the type is one of a variable X over the sort of sets of natural numbers of the
form {n ∈ X|n ∈ B} ∪ {¬(n ∈ X)|n /∈ B} for some B ⊆ N. This type is omitted in
some ω-model of A as long as B is not hyperarithmetic and A is a Π1

1 set of sentences
in the extended language. Many strengthenings and extensions of GKT can be found in
Grilliot [1972].

We now want to state similar but stronger type omitting theorems in settings as
described above that will include also many common (and some uncommon) subsystems
of (weak) second order logic as well as logics like ω-logic.
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2 N -Logics and Subsystems of Weak Second Order
Logic

Many common subsystems of second order logic are (or can be) defined by adding on
variables and quantifiers that range over finite subsets of, or relations on, the domain of
a structure. Examples include the following:

1. Weak monadic second order logic has new variables Xi ranging over finite subsets
of the domain and a syntax that views them as a unary predicate and a semantics
that interprets Xi(t) as saying that the interpretation of a term t is a member of
Xi.

2. Weak second order logic has new variables Ri,n that range over finite relations
of arity n on the domain and a syntax that allows us to write Ri,n(t1, . . . tn) for
terms of the language and interprets this formula as saying the relation holds of
the interpretation of the terms

3. Cardinality logic (for ℵ0) has a new quantifier Q0 where Q0xϕ(x) in interpreted to
mean there are infinitely many a such that ϕ(a) is true in the structure.

4. Ancestral logic allows one to talk about the transitive closure of any definable
relation by adding a new operator (quantifier) TC and making, for each formula
ϕ(x, y), TCx,yϕ(x, y)(u, v) into a formula with free variables u and v (and x and y
bound) where TCx,yϕ(x, y)(a, b) holds if there is a finite sequence a = c0 = · · · =
ck = b such that ϕ(ci, ci+1) holds for every i < k.

Clearly we can combine these fragments of second order logic with multisorted logics
by allowing restrictions of the new types of variables to the sorts in the natural way.
(One could also interpret them as multisorted logics in which some sorts are required to
be, e.g. the collection of finite subsets of, or relations on, some other sort.)

To the extent that formalizations are desired for the syntax and semantics of these
languages, they are straightforward and left to the reader. (One can also describe proof
systems and completeness theorems for these systems but in general, like ω-logic, they
require infinitely branching proofs and determining if the proof tree is well founded.
Thus provability is often at the Π1

1 level rather than Σ0
1.) We do, however, want to point

out two crucial facts. The first is, we think, fairly well known to those who work with
such logics: They all have the downward Skolem-Löwenheim property. In particular,
if M is a structure for any of them (in the appropriate sense) then it has a countable
elementary substructure (in the same sense). Note that this relies on the assumption
that the only sorts that we specify up to isomorphism are required to be countable.
Otherwise, the proof is of the same kind as for first order logic. We use this fact below
just to equate a theory having a model with its having a countable model. The second
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even more crucial fact, is that the property of a countable sequence of countable sets
with countable sequences of functions and relations (on some of them) being a structure
for one of these logics is Σ1

1 in M and the list of countable structures Nj specified as
being the sortMij with its specific sublanguage. The only requirement that pushes the
definition beyond recursive conjunctions of arithmetic conditions are those that eachMij

(with designated functions and relations from the list) is isomorphic to a given Nj. This
is clearly a Σ1

1 predicate. Everything else, such as some function or relation being a k-ary
one on some domain or some variables ranging over the finite subsets of, or relations on, a
particular domain, is clearly arithmetic. Given thatM is a countable structure for one of
these languages in the appropriate sense, the satisfaction relationM � ϕ(a1, . . . an) (for
ai ∈ M) is, uniformly inM and ϕ, clearly arithmetic inM and so the full satisfaction
relation is recursive inM(ω) the effective join of the nth Turing jumps ofM for n ∈ N.
For the rest of this section L will be a (recursive) multisorted language as above

and we will fix a semantics for it extending the usual first order one by interpreting the
new variables and quantifiers in the intended manner and imposing restrictions on the
acceptable interpretations of the sorts as in the examples. To be definite we use the
sorts N〈k〉 as the ones that are required to be isomorphic to some given sequence N̂k of
countable first order structures. We could as well require of our structures, for example,
that for various i and j, Ni is elementary equivalent or isomorphic to, or an elementary
substructure of, Nj. We call any of these an N -logic for N =

〈
N̂k
〉
. An N -theory in

L is a set of sentences of L which has an N -model, i.e. there is an N -structure which
satisfies every ϕ ∈ T . We could generalize further by allowing. e.g. quantification over
the sorts, their variables and even formulas with the satisfaction relation. Such versions
of language and logic seem perhaps unnatural in this setting. They, will however, be both
natural and crucial in the presentation of modal logics that are built on some N -logic in
each world and so we leave such examples to the next section.

The only properties of N -logic that we need to prove our type omitting theorem are
the following ones that we have already noted:

Property of N -Logic 1: For countableM, being an N -structure is a Σ1
1 property of

M and N .

Property of N -Logic 2: For sentences ϕ of L and countable N -structures M for L
(even with constants for the elements a of M), the set {(M, ϕ)|M � ϕ} is Σ1

1 in
N .

Property of N -Logic 3: Any N -theory T has a countable N -model.

We can generalize N - logics in various ways that preserve these three properties. For
example, instead of requiring that N〈k〉 is isomorphic to a fixed structure N̂k we could
require only that it is isomorphic to one of a countable list of countable structures, N̂k,l. A
natural example here is for vector spaces requiring that the field be finite. Alternatively,
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we can require that a sort be infinite (so infinite fields). At a more complex level we could
require that some binary relation (definable) in one of the sorts not be well-founded. The
only constraint on conditions on the structures is Property 1. Our type omitting theorems
rely only on these three principles.
Before stating our type omitting theorem we generalize the notion of a type in a

language L over an N -theory T .
Definition 2.1. Let T be a N -theory in a language L for some version of N -logic. Let
Γ be any set of formulas of L and n ∈ N. A Γ-n-type is a subset p of Γ with each element
having free variables precisely x1, . . . , xn. (If Γ is the set of all formulas of L we do not
mention it. Note that requiring the variables to always range over the entire structure
does not involve any loss of generality as one can add formulas of the form ∃xj(xj = xi)
to the types as long as one includes them in Γ.) The type p is realized in a structureM
for L if there are elements a1, . . . , an of M such that p = {ϕ ∈ Γ| M � ϕ(a1, . . . , an)}. If
p is not realized inM we say it is omitted inM.

We can now state our type omitting theorem for logics satisfying Properties 1-3 above.
Note that we can omit Property 3 if we require that all theories considered have countable
models. All the models we construct to prove any of our type omitting theorems will
also be countable

Theorem 2.2. With the conditions just described on our N -logic, if T is a Π1
1 (in N )

N -theory (i.e. the set of Gödel numbers for the sentences of T is a Π1
1 (in N ) set of

numbers); Γ is a Σ1
1 in N set of formulas of L and p is a Γ- n-type which is not Σ1

1 in
N , then there is a countable N -model of T not realizing p.

This theorem is an immediate corollary of the main theorem of HSS relativized to N .
Theorem 2.3 (HSS Theorem 2.1). If a real X is Σ1

1 in every member G of a nonempty
Σ1
1 class K of reals then X is itself Σ1

1.

Here reals are just members of Cantor space, i.e. subsets of N or functions from N to
{0, 1} = 2. We note that the proof of this theorem is quite elementary and takes about
a page. So the full proofs of our type omitting results are quite short and simple.

Proof of Theorem 2.2. By Properties 1 and 2 above, the class of countable N -models
of T (coded as reals in any reasonable way) is a Σ1

1 in N class of reals. The Σ1
1 in N

class of such reals is nonempty by Property 3. As Γ is a Σ1
1 set of formulas, for any

a1, . . . , an in M , the set {ϕ ∈ Γ|M � ϕ(a1, . . . , an)} is Σ1
1(M,N ) by Property 2. Thus

by Definition 2.1, were p realized in every countable N -model, it would be Σ1
1 in N for

a contradiction.

We mention some easy extensions of [HSS Theorem 2.1] and the corresponding ones
of Theorem 2.2 that include the ones in Grilliot [1972] for the appropriate logics in his
settings.
First, as usual, if one can omit a type, one can omit a countable sequence of types:
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Theorem 2.4. If T is a Π1
1 (in N ) N -theory; Γi a uniformly Σ1

1 in N sequence of sets of
formulas of L and pi are Γi- n-types none of which is Σ1

1 in N , then there is a countable
N -model of T not realizing any pi.

This Theorem follows from the following result of HSS the same way Theorem 2.2
followed from HSS Theorem 2.1.

Theorem 2.5 (HSS Theorem 2.6). If K is a nonempty Σ1
1 class reals and Xn a countable

sequence of reals none of which is Σ1
1, then there is a G ∈ K such that no Xn is Σ1

1 in G.

As suggested by Grilliot’s variations on his omitting types theorems, one can strengthen
these results by proving “minimal pair”versions. We do a bit more.

Theorem 2.6. If K0 and K1 are nonempty Σ1
1 classes of reals then there are G0 ∈ K0

and G1 ∈ K1 such that any X which is Σ1
1 in both G0 and G1 is itself Σ1

1. In fact, one
can prove more: For any G0 ∈ K0 there is a G1 ∈ K1 such that any X which is Σ1

1 in
both G0 and G1 is itself Σ1

1.

Proof. A construction of a pair of generics satisfying minimal pair type conditions pro-
vides a minimal pair G0 and G1. A suggestion we received for a direct proof leads to the
stronger result: If every Y which is Σ1

1 in G0 is Σ1
1, any G1 ∈ K1 works. If not, let Xn list

all the sets which are Σ1
1 in G0 but not Σ1

1. By [HSS, Theorem 2.6], there is a G1 ∈ K1
such that no Xn is Σ1

1 in G1. This G1 is as required.

The same argument as for Theorem 2.2 now gives the type omitting version.

Theorem 2.7. If T0 and T1 are Π1
1 N -theories in L then there are N -models M0 and

M1 of T0 and T1, respectively, such that any Γ-n-type p (with Γ Σ1
1 in N ) realized in both

models is Σ1
1 in N . Indeed, for any modelM0 of T0 there is anM1 � T1 such that any

type realized in both models is Σ1
1.

Similarly, one can prove countable sequence versions of both minimal pair theorems
first getting, for a countable sequence Ki of nonempty Σ1

1 classes of reals, a sequence
Gi ∈ Ki (starting with any G0 ∈ K0) such that any X which is Σ1

1 in both Gj and Gk
for any j 6= k is itself Σ1

1. Then, on the type omitting side, this tells us that if Ti are Π1
1

N -theories in L then there are N -models Mi of Ti (starting with any M0 � T0) such
that any Γ-n-type p with Γ Σ1

1 in N realized in both bothMj andMk for any j 6= k is
Σ1
1 in N .
Finally, to bound the complexity of the desired models and reproduce the relevant

applications in Grilliot [1972], we note that the proof of Theorem 2.8 of HSS, shows that
in all of these cases the desired sets G and so modelsM can be constructed hyperarith-
metically (recursively) in Kleene’s ON , the complete Π1

1 in N set, if the sets Xi (types
pi) are uniformly hyperarithmetic (recursive) in ON . Moreover, they can be taken to
have strictly smaller hyperdegree than ON .
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We mention all of these variations partially to make a comment on a comment of
Grilliot [1972] to his Application 2 of his analogous result. Grilliot points out that his
theorems give basis results for Σ1

1 classes. The strongest of them being the countable
“minimal pair” version: If Sm is the mth nonempty Σ1

1 set of functions (N→ N) in a
recursive in O list, then there are (uniformly) recursive in O functions fm,n such that
fm,n ∈ Sm for all m,n ∈ N and any function hyperarithmetical in more than one fm,n is
hyperarithmetical. He says this seems to be about the strongest (basis theorem) that can
be obtained while still insisting that the solutions be recursive inO. We point out that our
approach strengthens these results not by imposing stronger conditions on the solutions
but by moving everything to the realm of sets rather than functions. For functions being
Σ1
1 is the same as being ∆1

1 (hyperarithmetic). Of course, this is not true for sets. Our
approach shows that if one replaces functions (N→ N) by sets (contained in N) in any
of the basis results he proves including the last, one can replace “hyperarithmetical”by
“Σ1

1”in the conclusions.

We conclude this section with a fragment of second order logic stronger than all of
the ones considered so far and some natural settings for such a “logic”. (We do not know
if this particular fragment, which is not really a logic under most definitions, has been
previously studied.) The mathematical settings it is intended to capture are extension
problems. Given a (countable) modelM of a theory T in one language L and a language
L′ extending L and a theory T ′ in L′ extending T , what can we say about the (possible)
extensions ofM to anM′ � T ′? For example, starting with a countable group what can
one say about the (possible) extensions to a ordered groups. A similar question studied
in logic starts with a model of some fragment of arithmetic of some or all finite types
or of set theory and asks what can we say about the (possible) extensions to a model of
some stronger version of arithmetic or set theory. Many such questions are studied for
subsystems of second order arithmetic such as when can one extend models of RCA0 (or
some other theory) to models of stronger theories perhaps without extending the first
order part of the original model. One more unusual example here is the investigation of
extensions of models of ZF to ones of KM as in Zygmunt [1981].

We extend any of the logics considered so far by including sentences that are existential
second order. That is for a given language L a theory or type is allowed to be contain
sentences of the form ψ = ∃Rn11 . . . ∃Rnkk ϕ where ϕ is a sentence in the language extending
L by adding on new ni-ary relation symbols Ri (1 ≤ i ≤ k). (Note that, up to logical
equivalence, we can close the set of formulas we are allowing under conjunction and
disjunction but not negation.) We call this set of formulas LExt. The semantics is
the natural one. A structure M for L satisfies ψ = ∃Rn11 . . . ∃Rnkk ϕ if there are ni-ary
relations Rnii onM such that extendingM to a structureM′ by adding on these relations
satisfies ϕ. It is clear that ifM is a countable structure for L, satisfaction for formulas
ψ of the required form is Σ1

1 in M (and N if this is an N -language). Moreover, these
structures still have the downward Skolem-Löwenheim property. So all of the Properties
1-3 required above hold for LExt. Thus we have a type omitting theorem for theories and
types in this language as well.
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Theorem 2.8. If T is a Π1
1 set of formulas of LExt with a model, Γ a Σ1

1 set of formulas
of LExt and {pi} is a set of Γ-ni-types of LExt none of which is Σ1

1 then there is a model
M of T in which no pi is realized.

Essentially, this theorem gives our usual conditions under which we can say that
there are models (of a set of sentences in L) which can be extended to relations satisfying
additional axioms (as expressed by a theory T in LExt) involving the new relations which
cannot be further extended to one satisfying some one of a collection of sentences pi in
LExt and so which cannot be extended with yet additional relations to satisfy a type in
the larger extended language.

Sample known results which are immediate consequences (and can be phrased in
terms of N -logic alone) are that if some countable model of a theory of arithmetic or set
theory can be extended to be one of a stronger theory (with, for example, more types)
then no set (or higher type object of a level in the language) not already Σ1

1 over the
model can be realized in every extension to the stronger theory. If the original theory has
enough comprehension this condition typically means that no new sets (or higher type
object) can be in every model of the stronger theory. There are classical such results for
models of arithmetic as in GKT. Less well known generalizations of some of these results
for extending models of ZF to ones of KM appear in Ratajczyk [1979]. Our versions say
more than this not only because they allow a wider variety of types but they also allow
one to consider two step extensions of a given model and to talk about all models of a
given theory which have extensions satisfying another theory and give conditions under
which one of the models has no further extensions to any of a countable list of theories
with associated types realized.

3 Modal Logics: classical and beyond

To set the stage for a wide variety of (as far as we know) generally new modal logics, we
begin with a description of basic modal first order logic. A language L�,♦ here has a first
order language L (which for simplicity we may (but need not) take to be relational except
for some constant symbols as well as modal operators � and ♦. The role of structures
are played by Kripke frames F = 〈W,S, {F(p)|p ∈ W}〉 (or more simply 〈W,S,F(p)〉)
where S is a binary relation on a set W and for each p ∈ W , F(p) is a (first order)
structure on F (p) for L. One then defines the forcing relation p 
 ϕ between p ∈ W
and sentences of L, ϕ being forced in F in the usual inductive fashion on sentences.
(Some sample steps are given below.) There are however, some choices to be made in the
definition of the semantics. One important class of variations involves the relationships
among the domains F (p). (See for example, Brainer, T. and Ghilardi [2007].) At the
core, for ordinary first order modal logic, we adopt one common one, monotonic domains
((∀p, q)(S(p, q)→ F (p) ⊆ F (q)) as in Nerode and Shore [1997]. This choice makes many
things more straightforward (than say variable domains where the basic structures do
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not even fit our conventions about classical first order logic). For our purposes, we will
see that we can use this setting to get our results for some other choices including, for
example, requiring constant domains (F (p) = F (q) for all p, q ∈ W ). We can, however,
easily allow constants and function symbols with the provisos inherent in monotonicity:
If S(p, q) and c is a constant symbol of the language then its interpretation remains the
same, i.e. cF(p) = cF(q). Similarly, if ā ∈ F (p)n and f is an n-ary function symbol of the
language then fF(q)(ā).
We know of only three examples of type omitting theorems for modal logic. The first

two (Mortimer [1974] and Bowen [1979, §15]) are quite tied to first order modal logic
and have very restrictive definitions of types. A recent one (Litak et al. [2018]) has been
brought to our attention and moves in a much more general direction toward coalgebraic
logics. Our goal here is to introduce a wide range of modal logics stronger than first order
ones in a variety of ways for which the basic theorems of HHS also supply a number of
type omitting theorems.
We begin our generalizations in a well known way by allowing many (pairs of) modal

operators �i and ♦i each with their own accessibility relation Si. (Think that we are
representing knowledge for multiple agents.) We also allow the common logic and lan-
guage used in the possible worlds to be any of the N ones considered in the previous
section such as ω-logic or weak second order logic, etc. (We do not know of any inves-
tigations into such modal logics with worlds equipped with these fragments of second
order logic and specified sorts. There are however, versions of full second order modal
logic presented and studied in Cocchiarella and Freund [2008].) We can also allow the
apparatus of common knowledge (Fagin, Halpern, Moses and Vardi [1995]. We can also
allow any types of restrictions of the frames F being considered (say to a class C) as long
as the relation of satisfying these restrictions (F ∈ C) is a Σ1

1 in N property for countable
frames F .
As examples of conditions that can define such classes C of frames F , we can allow

any restrictions on the Si that are Σ1
1 properties of the Wi if countable, e.g. for all i in

some Π1
1 set the Si are transitive, reflexive, symmetric or the like. More unusually, one

can require that they be isomorphic to any fixed countable binary relations such as N,Z
or Q or to any one of a countable collection of binary relations such as all finite ones or
infinite ones or ones with a descending chain. Modal logics with some of these restrictions
on the allowed frames are often called hybrid logics (Areces and ten Cate [2007]). Some
of these restrictions are well known to be equivalent to first order axioms on the binary
relation. Others are clearly not. We can impose additional restrictions on the domains
such as being constant: ∀p, q, (F (p) = F (q)). We can also impose restrictions on the
frame as a whole that may involve the forcing relationship. For example, once we see
that p forcing ϕ in a frame F , p 
F ϕ, is at worst a Σ1

1 in N relation, we can require
that some sentence be forced at some world or at every world or many things in between.
Our only constraint is that the analog of Property 1 continues to hold: A countable set
F being an allowed frame for L (which we take to include any relevant N ) is a Σ1

1 in
property of F and L.
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We note that we also want the basic relation of a sentence ϕ being forced at a world
p to be Σ1

1 (in a countable frame F and any N used in the logic). This is easy to see for
the usual inductive definitions of forcing extended to our more general logics. The typical
definition for classical first order logic defines p 
F ϕ for p in a frame F inductively for
sentences ϕ in the (classical) language L(p) gotten by expanding the basic language of
the frame L by adding at least constant symbols ca for every a ∈ F (p). If, for example,
we want to have the logic be weak second order logic as in the previous section, then we
want L(p) to also include new n-ary relation symbols Rne for each finite n-ary relation e
on F (p) (we write this as e ∈ F (n, p) = [F (p)n]<ω) with the natural interpretations. If
we have an N logic then we require the appropriate type in each F(p) to be isomorphic
to N . The definition then proceeds as would be expected by induction. For example,
p 
 ϕ for atomic sentences ϕ of L(p) if and only if F(p) � ϕ; p 
 ϕ ∧ ψ iff p 
 ϕ
and p 
 ψ; p 
 ∃xϕ(x) iff p 
 ϕ(ca) for some a ∈ F (p) where if, for example, the
variable x is typed to be say in N then a must be in the isomorphic copy of N in F(p);
p 
 ∃Rnϕ(Rn) iff ∃e ∈ F (n, p)(p 
 ϕ(Rne )); p 
 �iϕ iff ∀q(Si(p, q) → q 
 ϕ) and so as
expected for ∨,→,¬,∀x,∀Rn and ♦i or the operators for common knowledge. (Note that
by our assumption of monotonicity, Si(p, q)→ F (p) ⊆ F (q), implies that if ϕ is a formula
of L(p) then it is also one of L(q) so the induction makes sense.) It is straight-forward
to see that such definitions make p 
 ϕ uniformly arithmetic in F (and the N ) where
the quantifier complexity of the arithmetic definition depends uniformly on the syntactic
form of ϕ. Thus over all p ∈ W and sentences ϕ of L(p), the relation p 
 ϕ is clearly
Σ1
1 in F and N . All of this remains true if we allow as well the apparatus of common
knowledge as in Fagin, Halpern, Moses and Vardi [1995] where we view the sequence of
groups of agents as part of the logic as well and so can quantify over them to get the
operators EG and iterate the EG to get the CG as and keep the relation p 
 ϕ arithmetic
as before. (A version of common knowledge with infinitely many agents and groups as
we would allow here is considered in Halpern and Shore [2004].)

Thus the analog of Property 2 holds for all these modal logics: for sentences ϕ of L
and countable frames F for L the relation p 
 ϕ is Σ1

1 in L (which, remember, we take to
include the relevant N ) and F . As usual, a Skolem-Löwenheim type argument (involving
W as well as the Si and the F(p)) shows that we maintain Property 3 as well for frames
and theories about them in the expanded languages and associated generalized modal
logics.

We next give definitions of theories and types for these modal logics analogous to
those for classical logics in §2. We fix one of our generalized N logics and languages L
as well as a Σ1

1 (in L and N ) class C of acceptable frames for L.

Definition 3.1. A C-theory is a set T of sentences ϕ of L such that there is a C-frame
F such that p 
 ϕ for every ϕ ∈ T and p ∈ W . (We write this as F 
 T .) For Γ a set
of formulas of L and n ∈ N, a Γ-n-type is a subset P of Γ with each element having free
variables precisely x1, . . . , xn. The type P is realized in a C-frame F for L if there are
elements a1, . . . , an of some F(p) such that P = {ϕ ∈ Γ|p 
 ϕ(a1, . . . , an)}. In this case,
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we also say that F realizes P . If P is not realized in F we say it is omitted in F .

We now have a type omitting theorem for our modal L analogous to Theorem 2.2 for
classical logic.

Theorem 3.2. For a modal N -language and logic L with a class C of frames with the
properties described above analogous to those of §2, a Π1

1 (in L) C-theory T , a Σ1
1 in L

set Γ of formulas and P a Γ- n-type which is not Σ1
1 in L, there is a countable C-frame

F such that F 
 T which does not realize P .

Proof. As before we apply Theorem 2.6 of HSS. The only things to note is that once
again the C-frames F such that F 
 T is a Σ1

1 in L class and if P is realized in some
C-frame F then it is Σ1

1 in L and F by definition and the assumed properties of L and
C.

In the same style we can prove the analogs of Theorems 2.4 and 2.7 and their common
generalization for types and sequences of types in the modal setting.

We close with some remarks and conjectures about expected proof systems and cor-
responding soundness and completeness results for the generalized modal logics we have
considered. We believe that one can modify standard tableaux style proof systems for
classical modal logics (as in, for example, Nerode and Shore [1997]) to get ones for these
logics as well. We assume that we are dealing with systems with equality with the asso-
ciated axioms/tableaux rules. As the intended semantics uses true equality, one expects
the usual moding out by an equivalence relation for completeness proofs. Of course, these
proof systems cannot be any simpler than those for the underlying generalized classical
logics. Thus we expect to define tableaux and systematic tableaux which are infinitely
branching trees. A proof of ϕ should then be as usual a tableau with root labeled Fϕ
on which every path is contradictory. Thus being a proof is a Π1

1 property. (We can also
think of terminating paths when they become contradictory. Then proofs are the well
founded tableaux.)

To give an indication of how such systems should work we mention a few examples
of new types of atomic tableaux. Our basic setting here is that for modal logics (with
equality) in Nerode and Shore [1997]. If we have quantification over finite sets S, then
we would have one with root Tp 
 ∃Sϕ and immediate successors for each n ∈ N. The
successor for n would introduce n many new constants c1, . . . , cn and have label Tp 
 ϕ′

where each instance in ϕ of t ∈ S for terms t (or S(t) depending on the syntax) is
replaced by the disjunction over i ∈ [1, n] of t = ci. If we quantify over finite relations
then we would have one with root Tp 
 ∃Rnϕ and infinitely many successors, one for each
finite n-ary relations Rne with domain d1, . . . , dm of size m which we label with p 
 Tϕ′

where we introduce m many new constants c1, . . . cm and ϕ′ is gotten by replacing each
occurrence in ϕ of Rn(t1, . . . , tn) for terms ti by

∨
ji,j2,...jn∈[1,m] & Rne (dj1 ,...djn )

∧
i∈[1,n]

(ti = cji).

If the base logic is an N logic requiring, for example, some sort to be isomorphic to a
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countable structure N as in ω-logic,then we list the elements ci of N intending them to
be elements of the appropriate sort in every F(p) and put them in along every path of
the tableau as well as Tp 
 θ for every θ in the atomic diagram of N . We also have, for
example, a new atomic tableau with root Tp 
 ∃x ∈ Nϕ(x) which has infinitely many
immediate successors each of the form Tp 
 ϕ(ci) for i ∈ N.
Of course, we also have the expected variations for universal quantifications and the

usual definition for �iϕ and ♦iϕ. Similar moves should work for all the fragments of
second order N -logic discussed in §2. We can also handle many restrictions on the class
C of acceptable frames in similar ways. For example if Si is required to be ω with the usual
ordering <, then we have worlds pi in W for i ∈ ω on which we specify Si accordingly.
Then, for example, we would introduce a new atomic tableau with root Tpi 
 ♦iϕ whose
immediate successors are Tpj 
 ϕ for j > i and when we get a node α labeled Tpi 
 �ϕ
we promise to put a node labeled Tpj 
 ϕ for every j > i on every path below α.

Admittedly, this is all quite sketchy but we hope that the project of producing proof
systems generating (recursively for recursive L and theories T ) trees whose well founded
members can be taken as proofs from T should not be too diffi cult to carry out. The goal
then would be to prove soundness and completeness theorems as one does for classical
first order modal logics for as many of the generalized modal logics as possible.
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