
MEASURING THE RELATIVE COMPLEXITY OF

MATHEMATICAL CONSTRUCTIONS AND

THEOREMS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Jun Le Goh

August 2019

c© 2019 Jun Le Goh

ALL RIGHTS RESERVED

MEASURING THE RELATIVE COMPLEXITY OF MATHEMATICAL

CONSTRUCTIONS AND THEOREMS

Jun Le Goh, Ph.D.

Cornell University 2019

We investigate the relative complexity of mathematical constructions and the-

orems using the frameworks of computable reducibilities and reverse mathematics.

First, we study the computational content of various theorems with reverse

mathematical strength around Arithmetical Transfinite Recursion (ATR0) from the

point of view of computable reducibilities, in particular Weihrauch reducibility. We

show that it is equally hard to construct an embedding between two given well-

orderings, as it is to construct a Turing jump hierarchy on a given well-ordering.

We obtain a similar result for Fräıssé’s conjecture restricted to well-orderings.

We then turn our attention to König’s duality theorem, which generalizes

König’s theorem about matchings and covers to infinite bipartite graphs. We

show that the problem of constructing a König cover of a given bipartite graph is

roughly as hard as the following “two-sided” version of the aforementioned jump

hierarchy problem: given a linear ordering L, construct either a jump hierarchy

on L (which may be a pseudohierarchy), or an infinite L-descending sequence. We

also obtain several results relating the above problems with choice on Baire space

(choosing a path on a given ill-founded tree) and unique choice on Baire space

(given a tree with a unique path, produce said path).

Next, we investigate three known ways to formalize the notion of solving a

problem by applying other problems in series: the compositional product, the

reduction game, and the step product. We clarify the relationships between them

by giving sufficient conditions for them to be equivalent. We also show that they

are not equivalent in general.

Next, we turn our attention to the parallel product. In joint work with Dzha-

farov, Hirschfeldt, Patey and Pauly, we investigate the infinite pigeonhole principle

for different numbers of colors and how these problems behave under Weihrauch

reducibility with respect to parallel products.

Finally, we leave the setting of computable reducibilities for the setting of

reverse mathematics. First, we define a Σ1
1 axiom of finite choice and investigate

its relationships with other theorems of hyperarithmetic analysis. For one, we

show that it follows from Arithmetic Bolzano-Weierstrass. On the other hand,

using an elaboration of Steel’s forcing with tagged trees, we show that it does

not follow from ∆1
1 comprehension. Second, in joint work with James Barnes and

Richard A. Shore, we analyze a theorem of Halin about disjoint rays in graphs. Our

main result shows that Halin’s theorem is a theorem of hyperarithmetic analysis,

making it only the second “natural” (i.e., not formulated using concepts from logic)

theorem with this property.

BIOGRAPHICAL SKETCH

Goh Jun Le (4GP) was born and raised in Singapore. He was part of the

pioneer batch of students in the National University of Singapore High School of

Mathematics and Science. In 2008, he enrolled full-time in the National University

of Singapore. Before he could graduate, however, he was conscripted for two years.

After receiving a B.Sc. (Hons) in mathematics from the National University of

Singapore in 2013, he began graduate study at Cornell University in the United

States of America, where he is known as Jun Le Goh.

iii

ACKNOWLEDGEMENTS

I am very grateful to my advisor Richard A. Shore for teaching me how to be

a researcher. Through his guidance, many half-baked ideas and “fantasies” were

realized. I could not have asked for a better mentor.

I am very grateful to Chi Tat Chong for his mentorship and sage advice. He

introduced me to the joys of mathematics. This journey of mine would not have

gotten off the ground if not for his patience.

I would like to thank my colleagues in computability for their support, advice,

and invitations to conferences and research visits. Special thanks goes to Peter

Cholak, Barbara Csima, Damir Dzhafarov, Denis Hirschfeldt, Takayuki Kihara,

Julia Knight, Steffen Lempp, Alberto Marcone, Joe Miller, Antonio Montalbán,

Ludovic Patey, Arno Pauly, Ted Slaman, Reed Solomon, Mariya Soskova and Linda

Brown Westrick.

I thank the National Science Foundation, the Association of Symbolic Logic,

the Cornell Graduate School, and the American Mathematical Society for their

financial support, which enabled me to meet the aforementioned researchers.

To my friends, both local and overseas: Thank you for inviting me to hang

out, accepting me for who I am, and keeping me sane. Special shoutout to the

Malaysians and Singaporeans in 117, and the math climbing group, with whom I

had countless dinners at Souvlaki House.

Finally, I thank my family and my girlfriend Ai Hui for their unconditional and

unwavering support through all of the difficult times.

iv

TABLE OF CONTENTS

Biographical Sketch . iii
Acknowledgements . iv
Table of Contents . v
List of Figures . vii

1 Introduction 1
1.1 Reverse mathematics . 3
1.2 Other lenses . 8
1.3 Computable reducibilities . 10

1.3.1 Representations . 11
1.3.2 The Weihrauch lattice of problems 12
1.3.3 Other reducibilities . 16

1.4 The arithmetical, analytical and hyperarithmetical hierarchies . . . 17

2 Embeddings between well-orderings and ATR 24
2.1 Background . 24
2.2 An ATR-like problem . 26
2.3 Theorems about embeddings between well-orderings 33
2.4 An analog of Chen’s theorem . 38
2.5 Reducing ATR to WCWO . 43
2.6 Reducing ATR to NDSWO and NIACWO 46

3 König’s duality theorem and two-sided problems 49
3.1 Two-sided problems . 49

3.1.1 ATR2 and variants thereof 55
3.2 König’s duality theorem . 61

3.2.1 Reducing ATR2 to KDT . 64
3.2.2 Reducing KDT to ATR2 . 82

4 Different ways of composing multivalued functions 87
4.1 Formalizing compositions . 89

4.1.1 Parallel product . 89
4.1.2 Compositional product . 90
4.1.3 Reduction games . 93
4.1.4 Step product . 99

4.2 Composing a multivalued function with itself 102
4.3 Finite compositions of arbitrary multivalued functions 109
4.4 The ≡1

gW -lattice . 118

5 Parallel products of the infinite pigeonhole principle 120
5.1 The product coloring is optimal . 120
5.2 How many colors can a product of colorings handle? 122

v

6 A Σ1
1 axiom of finite choice 135

6.1 Theories of hyperarithmetic analysis 135
6.2 Arithmetic Bolzano-Weierstrass implies finite-Σ1

1-AC0 139
6.3 ∆1

1-CA0 does not imply finite-Σ1
1-AC0 141

6.3.1 The model . 142
6.3.2 The forcing language . 143
6.3.3 The forcing notion . 145
6.3.4 The forcing relation . 147
6.3.5 Analyzing the forcing relation for ranked formulas 148
6.3.6 Analyzing the forcing relation for Σ-over-LF formulas 155
6.3.7 M∞ satisfies ∆1

1-comprehension 168

7 Halin’s theorem on disjoint rays 176
7.1 The weak infinite ray theorem . 178

7.1.1 Upper bounds . 179
7.1.2 Lower bounds via computably enumerable equivalence rela-

tions . 183
7.2 The infinite ray theorem . 189

Bibliography 193

vi

LIST OF FIGURES

1.1 A Weihrauch reduction from P to Q. 13

5.1 Case 2 in Lemma 5.15, assuming that b0 = b1. 131
5.2 Case 3 in Lemma 5.15. 132

6.1 Arrows correspond to extension in the forcing. Dotted lines corre-
spond to some notion of retagging, which will be made precise in
the proof of Lemma 6.26. 159

6.2 Arrows correspond to extension in the forcing. Dotted lines corre-
spond to retaggings. 167

6.3 p and r lie in G, while q “looks like” it lies in G. 171

7.1 Partial zoo of theories of hyp analysis (assuming IΣ1
1) 192

vii

CHAPTER 1

INTRODUCTION

Mathematicians often make statements of the following forms: “theorem A

is needed to prove theorem B”, or “construction A is not sufficient for proving

theorem B”, or “proof A of this theorem is more direct than proof B”. My

research explores the mathematical content of such statements by analyzing the

relative complexity of mathematical constructions and theorems.

What could it mean for a theorem or construction to be more “complicated”

than another? Certainly a special case of a theorem is no more complicated than

the theorem itself. More generally, if there is an “easy” proof of theorem A from

theorem B or if one can “easily” construct A using B, then A is no more compli-

cated than B.

What, then, is an “easy” proof or construction? We want to avoid triviality

(everything is easy) and intractability (everything is complicated): neither extreme

has anything useful to say about the mathematics. A happy balance is struck using

computability, which captures the notion of being algorithmically solvable (e.g.,

using a sufficiently powerful programming language with unbounded memory).

Let us digress briefly to define some basic notions in computability theory.

First, a (possibly partial) function f :⊆ N → N is computable if there is a

Turing machine M that simulates it, i.e., for any x ∈ dom(f), M eventually halts

on input x and outputs f(x); for any other x, M never halts. In particular, a

set of natural numbers A is computable if membership in A can be decided by

a Turing machine, i.e., the characteristic function of A is computable. This is a

robust notion that allows us to discuss computability of sets of objects other than

1

numbers (e.g., finite strings of numbers, rational numbers, Diophantine equations,

formulas in a finite language, finitely presented groups) via encodings.

By augmenting Turing machines with oracles, we can define relative com-

putability: we say that A is B-computable or computable in B if A can be computed

by a Turing machine with oracle access to B, i.e., the Turing machine computing

A is given access to answers to questions of the form “is n ∈ B?” at any step of

its computation. This induces the notion of Turing reduction, written A ≤T B.

We can define relative computability for total functions on N using relative

computability for subsets of N, by encoding a function from N to N as a set of

pairs and using a standard pairing function.

Finally, we define F :⊆ NN → NN to be computable if there is an oracle Turing

machine M such that for any x ∈ dom(F), F (x) can be computed using M with

oracle access to x. Note that the same M has to work for all x ∈ dom(F), so this

is stronger than merely asserting that F (x) is computable in x for all x ∈ dom(F).

This notion of uniformity is fundamental for the present work.

Let us now return to consider the complexity of constructions. We may think

of a construction as having an input and an output; for instance compactness takes

an open cover as input and outputs any finite subcover. Then we might say that a

construction is computable if for any input, we can use it as an oracle to compute

some corresponding output. Alternatively, we might demand more uniformity:

perhaps we want a single oracle machine which, given any input, computes some

corresponding output. (For now we content ourselves with vague generalities.)

The study of mathematics which only allows computable constructions is known

as computable mathematics.1

1This should not be confused with constructive mathematics; for example, we always work

2

With computable mathematics as a base (however we choose to define it), we

can measure and compare the complexity of theorems and constructions. My work

is conducted in two closely related frameworks for doing so, which are built upon

the concepts of proof and reduction/translation respectively.

Chapters 2, 3, 5 and 4 will be conducted in the framework of computable

reducibilities, while chapter 6 will be conducted in the framework of reverse math-

ematics. In the rest of this chapter, we provide background for these frameworks.

We start with reverse mathematics; even though the majority of this thesis is

not a direct contribution toward reverse mathematics, it serves to motivate and

contextualize much of the present work.

1.1 Reverse mathematics

Reverse mathematics begins with the maxim “When the theorem is proved from

the right axioms, the axioms can be proved from the theorem.” (Friedman, ICM

1974 [18]) In this case, the axioms would be necessary for proving the theorem!

This maxim is justified by the remarkable “Big Five” phenomenon: in the decades

since, it was found that many basic theorems in algebra, analysis, combinatorics,

topology, etc. are provably equivalent to one of five systems of axioms, over the

base system of RCA0 (defined below). Furthermore, these five systems are linearly

ordered in terms of provability. The standard reference for reverse mathematics is

Simpson [42].

The basic setup is as follows. First, we fix a language which is sufficiently

expressive for formalizing our theorems of interest. The language of set theory

certainly suffices, but in fact the language L2 of second-order arithmetic (defined

with classical logic rather than intuitionistic logic.

3

below) is already rich enough to formalize many theorems of interest. This includes

most theorems about countable objects, and objects that can be represented by

countable objects, such as the real numbers. Most of reverse mathematics has been

conducted in L2.

Definition 1.1. L2 consists of the usual language of first-order arithmetic, aug-

mented with set variables and quantifiers over them, and a binary predicate symbol

∈, relating numbers and sets. We also have the equality symbol relating sets, which

always satisfies extensionality. An L2-structure is a tuple

M = (|M |,SM ,+M , ·M , 0M , 1M , <M),

where SM is a set of subsets of |M |, +M , ·M , and <M are binary relations on |M |,

and 0M and 1M are elements of |M |.

Formulas of L2 are interpreted in M in the obvious way. In particular, number

quantifiers range over |M | and set quantifiers range over SM . |M | and SM are

called the first-order universe and second-order universe of M respectively. (We

often write N instead of |M |, and X ∈M instead of X ∈ SM .)

Given a structure M , we may expand L2 to include parameters from M , i.e.,

a constant for each element of SM . They are treated syntactically as free set

variables. Formulas with parameters are interpreted in M in the obvious way.

Next, we fix a base theory in our language, which is too weak to prove our

theorems outright (hence avoiding triviality), yet strong enough to prove “basic”

facts (hence avoiding intractability). The standard base theory is a possible for-

malization of computable mathematics. It is named RCA0, after the Recursive

Comprehension Axiom below.

4

Definition 1.2. Apart from basic axioms asserting that (N,+, ·, 0, 1, <) is a com-

mutative ordered semiring with cancellation, RCA0 consists of:

– the set induction axiom:

∀X(0 ∈ X ∧ (n ∈ X → n+ 1 ∈ X)→ ∀n(n ∈ X));

– the Σ0
1 induction axiom schema:

ϕ(0) ∧ (ϕ(n)→ ϕ(n+ 1))→ ∀nϕ(n),

for any ϕ(n) which is Σ0
1;

– the ∆0
1 (recursive) comprehension axiom schema:

∀n(ϕ(n)↔ ¬ψ(n))→ ∃X∀n(n ∈ X ↔ ϕ(n)),

for any ϕ(n) and ψ(n) which are Σ0
1.

Note that being ∆0
1 is not a syntactic property, hence the necessity of the

antecedent in the ∆0
1 comprehension schema. Note also that the formulas ϕ and

ψ in the latter two schema are allowed to have set parameters. This allows us to

apply comprehension relative to sets in a model. For example, if A and B lie in a

model M of RCA0, then we can apply ∆0
1 comprehension to show that their join

A⊕B = {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B}

lies in M as well.

Having fixed a base theory, our next step is to fix a theorem P , and investigate

what axioms we need to add to our base theory in order to prove P . There are two

directions to this investigation. First we need to find a sufficiently strong system T

5

(typically consisting of set existence axioms, such as comprehension axioms) such

that T (plus our base theory) proves P . After doing so, ideally, we want to obtain

a reversal, i.e., we want to show that P (plus our base theory) proves T . That

shows that the axioms T are both sufficient and necessary in order to prove P .

We have already defined one system from the Big Five, namely RCA0. Another

system from the Big Five is ACA0, named after the Arithmetical Comprehension

Axiom below.

Definition 1.3. The system ACA0 consists of RCA0 together with the arithmetical

comprehension axiom schema, which consists of

∃X∀n(n ∈ X ↔ ϕ(n)),

for any ϕ(n) which is arithmetical.

The following theorems are known to be equivalent to ACA0:

– every infinite finitely branching tree has an infinite path (König’s infinity

lemma);

– every bounded sequence in R has a cluster point (Bolzano-Weierstrass);

– every countable commutative ring has a maximal ideal.

Yet another system in the Big Five is Arithmetical Transfinite Recursion (ATR0),

which lies one step above ACA0. It is equivalent to the following theorems:

– any two countable well-orderings are comparable;

– any uncountable closed subset of R has a perfect subset;

6

– König’s duality theorem about countable bipartite graphs (defined in section

3.2).

The next step (in the Big Five) above ATR0 is the system of Π1
1 Comprehension

(Π1
1-CA0), which is equivalent to the Cantor-Bendixson theorem: every closed set

in R is the union of a perfect closed set and a countable set. (Sources for all of the

above equivalences can be found in Simpson [42].)

We note that there are several exceptions to the Big Five phenomenon, such as

Ramsey’s theorem and its consequences. In chapter 6, we study several exceptions

which lie strictly between ACA0 and ATR0.

We end this section by explicating a connection between proof-theoretic strength

and computability-theoretic strength. Earlier, we asserted that RCA0 is a formal-

ization of computable mathematics. One way to make that precise is to restrict

ourselves to ω-models of second-order arithmetic, which are L2-structures whose

first-order universe is the standard natural numbers (with +, ·, 0, 1, < interpreted

in the standard way). An ω-model is determined entirely by its second-order uni-

verse.

It can be shown that the ω-models of RCA0 are exactly those whose second-

order universe is closed under Turing reduction and join ⊕. This is essentially

because for any set X ⊆ N, the sets which are Turing reducible to X are exactly

those which are ∆0
1-definable with X as a parameter. Hence in the context of

ω-models, RCA0 is essentially equivalent to “computable sets exist”.

How about noncomputable sets? For that we need systems stronger than RCA0.

A basic example of a noncomputable set is the halting problem for Turing machines.

More generally, for any A ⊆ N, the halting problem for Turing machines with

7

oracle access to A is called the (Turing) jump of A, denoted A′. By iterating

the jump, we can obtain more and more complicated sets (with respect to Turing

reducibility). We say that A is B-arithmetic, or that A is arithmetically reducible

to B, if A is Turing reducible to some finite iterate of the jump applied to B. If A

is ∅-arithmetic, we simply say that A is arithmetic.

For example, if T is an infinite finitely branching subtree of N<N (i.e., an in-

stance of König’s lemma), then T need not have a T -computable path, but it must

have a T -arithmetic path (in fact, one that is computable in T ′′.)

It can be shown that the ω-models of ACA0 are exactly those which are closed

under arithmetic reduction and join. This is essentially because for any set X ⊆

N, the sets which are arithmetically reducible to X are exactly those which are

definable by an arithmetical formula with X as a parameter. Hence in the context

of ω-models, ACA0 is essentially equivalent to “arithmetic sets exist” or “finite

iterates of the jump exist”.

1.2 Other lenses

Reverse mathematics is one of many lenses through which we view the zoo of

theorems. From its point of view, an optimal proof is one with the least axiomatic

assumptions. But such proofs could be suboptimal in other ways. In fact, many

theorems are more directly connected than an implication over RCA0 would suggest.

We wish to make these connections explicit where they exist, and prove that they

do not exist otherwise.

For example, we can prove König’s lemma using the Bolzano-Weierstrass the-

8

orem: given a finitely branching tree T = {σn : n ∈ N}, we can define a sequence

X = {xn : n ∈ N} in [0, 1] encoding the nodes of T such that any cluster point

x of X can be decoded into an infinite path P on T . (The fact that T is finitely

branching ensures that every cluster point of X is in the range of the encoding.)

This is an example of a reduction from the problem corresponding to König’s

lemma to the problem corresponding to the Bolzano-Weierstrass theorem: given

an instance T of König’s lemma, we defined an instance X of Bolzano-Weierstrass

such that for any solution (i.e., cluster point) x of X, we can define a solution (i.e.,

infinite path) P of T . Furthermore, the maps T 7→ X and x 7→ P are continuous,

computable even. This means that we can uniformly computably translate the

problem of finding a solution to König’s lemma into the problem of finding a

solution to Bolzano-Weierstrass.

Not all proofs in reverse mathematics have such a simple form, however. An

example is the common proof of the Bolzano-Weierstrass theorem which proceeds

by first extracting a monotone subsequence from the given sequence (using a weak

form of Ramsey’s theorem), and then applying the monotone convergence theorem.

In general, a proof could invoke its premises multiple times, either in parallel or in

series. (Notice that the former can be simulated by the latter.) If a proof invokes

one premise after another, for example, one might ask if one could invoke them in

parallel instead, or if one could weaken either of the premises. If a proof invokes a

premise more than once, one might ask if that is necessary.

Analogs of the above questions can be studied in a reducibility framework where

one could hope to define reducibility notions or algebraic operations which corre-

spond to invoking theorems in parallel or in series. Depending on the situation, we

can easily adjust our notion of reducibility to capture the behavior that we wish

9

to study.

1.3 Computable reducibilities

Among the various reducibilities between problems, we focus on Weihrauch re-

ducibility (also known as uniform reducibility). We will define it later (Definition

1.4). For now an example will suffice, namely, the reduction from König’s lemma

to the Bolzano-Weierstrass theorem which we described earlier.

The framework of uniform reducibility, as its name might suggest, allows us to

study nonuniform case divisions in proofs. A basic example is the following proof of

the intermediate value theorem: if the given function f has a rational zero, we are

done; otherwise we proceed with bisection (which is a computable procedure under

the assumption that f has no rational zero). The above proof can be carried out

in RCA0, yet one cannot uniformly compute whether a given continuous function

has a rational zero or not. (Indeed, one cannot even uniformly compute if a given

function has the value zero at a given point.) Could we get away with a uniform

case division, or no case division at all? This question can be formalized as follows:

is there a Weihrauch reduction from the problem corresponding to the intermediate

value theorem to the identity problem?

The framework of Weihrauch reducibility also allows us to study computa-

tional problems which are not commonly thought of as theorems, such as those in

computable analysis. An important class of such problems is the class of choice

problems. For example, C[0,1] is the problem of choosing an element from a given

nonempty closed subset of [0, 1] (appropriately represented). Many choice problems

are closely connected, or even Weihrauch equivalent, to problems which correspond

10

to theorems that have been studied in reverse mathematics. (We will see some ex-

amples in chapters 2 and 3.) This sheds new light on the computational content

of those theorems.

In the remainder of this section, we present some background on computable

reducibilities. For a comprehensive introduction to Weihrauch reducibility, we refer

the reader to Brattka, Gherardi, Pauly [8].

1.3.1 Representations

At the beginning of this chapter, we defined computability for elements of NN

and functions from NN to NN. Those notions of computability can be transferred

to other sets (such as the real numbers) via representations. Let X be a set of

cardinality at most that of NN. A representation of X is a surjective (possibly

partial) map δ :⊆ NN → X. The pair (X, δ) is called a represented space. If

δ(p) = x then we say that p is a (δ-)name for x. Every x ∈ X has at least

one δ-name. We say that x ∈ X is computable if it has some δ-name which is

computable.

If we have two representations δ and δ′ of a set X, we say that δ is computably

reducible to δ′ if there is some computable function F :⊆ NN → NN such that for

all p ∈ dom(δ), δ(p) = δ′(F (p)). We say δ and δ′ are computably equivalent if they

are computably reducible to each other. Computably equivalent representations

of X induce the same notion of computability on X.

Typically, the spaces X we work with have a standard representation (or en-

coding), which we will not specify in detail.

11

1.3.2 The Weihrauch lattice of problems

We begin by identifying problems, such as that of constructing an embedding

between two given well-orderings, with (possibly partial) multivalued functions

between represented spaces, denoted P :⊆ X ⇒ Y . A theorem of the form

(∀x ∈ X)(Θ(x)→ (∃y ∈ Y)Ψ(x, y))

corresponds to the multivalued function P :⊆ X ⇒ Y where P (x) = {y ∈ Y :

Ψ(x, y)}. Note that logically equivalent statements can correspond to different

problems.

The domain of a problem, denoted dom(P), is the set of x ∈ X such that P (x)

is nonempty. Note that dom(P) could be empty, in which case P is called the

empty problem. We do not require dom(P) or the graph of P to be definable in

any sense. An element of dom(P) is called a P -instance. If x is a P -instance, an

element of P (x) is called a P -solution to x.

A realizer of a problem P is a (single-valued, possibly partial) function F :⊆

NN → NN which takes any name for a P -instance to a name for one of its P -

solutions. Intuitively, P is reducible to Q if one can transform any realizer for

Q into some realizer for P . If such a transformation can be done in a uniformly

computable way, then P is said to be Weihrauch reducible to Q:

Definition 1.4. P is Weihrauch reducible (or uniformly reducible) to Q, written

P ≤W Q, if there are computable functions Φ,Ψ :⊆ NN → NN such that:

– given a name p for a P -instance, Φ(p) is a name for a Q-instance;

– given a name q for a Q-solution to the Q-instance named by Φ(p), Ψ(p⊕ q)

is a name for a P -solution to the P -instance named by p.

12

P Q

instances p Φ(p)

solutions Ψ(p⊕ q) q

Φ(·)

Ψ(p⊕·)

Figure 1.1: A Weihrauch reduction from P to Q.

Figure 1.1 illustrates a Weihrauch reduction from P to Q.

P is strongly Weihrauch reducible to Q, written P ≤sW Q, if the above holds

for some Φ and Ψ where Ψ is not allowed access to p, i.e., Ψ(q) is a name for a

P -solution to the given P -instance.

P is arithmetically Weihrauch reducible to Q, written P ≤arith
W Q, if the above

holds for some arithmetically defined functions Φ and Ψ, or equivalently, some

computable functions Φ and Ψ which are allowed access to some fixed finite Turing

jump of their inputs.

For any of the above reductions, we say that Φ and Ψ are forward and backward

functionals, respectively, for a reduction from P to Q. We will occasionally use

other Greek letters for the forward and backward functionals, such as Γ and ∆.

For readability, we will typically not mention names in our proofs. For example,

we will write “given a P -instance” instead of “given a name for a P -instance”.

Remark 1.5. Weihrauch reducibility on multivalued functions was first defined by

Gherardi and Marcone [20], generalizing earlier work by Brattka and by Weihrauch.

(See [7] for historical remarks about Weihrauch reducibility.) Independently, Do-

rais, Dzhafarov, Hirst, Mileti, and Shafer [15] gave an equivalent definition, and

named it uniform reducibility. Our definition follows that in [15].

13

It is easy to see that Weihrauch reducibility is reflexive and transitive, and hence

defines a degree structure on problems. In fact, there are several other natural

operations on problems that define corresponding operations on the Weihrauch

degrees. For example, the Weihrauch degrees form a distributive lattice (Brattka,

Gherardi [6], Pauly [35]) under the following operations:

Definition 1.6. The join (or coproduct) of multivalued functions P0 and P1,

denoted P0 t P1, has instances
⋃
i=0,1{(i,X) : X is a Pi-instance}. For i = 0, 1,

(i, Y) is a (P0 t P1)-solution to (i,X) if Y is a Pi-solution to X.

The meet (or sum) of P0 and P1, denoted P0 u P1, has instances {(X0, X1) :

Xi is a Pi-instance}. For i = 0, 1, (i, Y) is a (P0 u P1)-solution to (X0, X1) if Y is

a Pi-solution to Xi.

It is easy to see that the join and meet operations lift to the Weihrauch degrees.

Next, we have the parallel product, which captures the power of applying problems

in parallel:

Definition 1.7 (Brattka, Gherardi [6]). The parallel product of P and Q, written

P ×Q, is defined as follows: dom(P ×Q) = dom(P)×dom(Q) and (P ×Q)(x, y) =

P (x) × Q(y). The (infinite) parallelization of P , written P̂ , is defined as follows:

dom(P̂) = dom(P)N and P̂ ((xn)n) = {(yn)n : yn ∈ P (xn)}.

It is easy to see that the parallel product and parallelization operations lift to

the Weihrauch degrees. More generally, we can also apply problems in series:

Definition 1.8. The composition ◦ is defined as follows: for P :⊆ X ⇒ Y and

Q :⊆ Y ⇒ Z, we define dom(Q◦P) = {x ∈ X : P (x) ⊆ dom(Q)} and (Q◦P)(x) =

{z ∈ Z : ∃y ∈ P (x)(z ∈ Q(y))}.

14

The composition of problems, however, does not directly induce a corresponding

operation on Weihrauch degrees. It is also too restrictive, in the sense that a P -

solution is required to be literally a Q-instance. Nevertheless, one can use the

composition to define an operation on Weihrauch degrees that more accurately

captures the power of applying two problems in series:

Definition 1.9 (Brattka, Gherardi, Marcone [7]). The compositional product ∗ is

defined as follows:

Q ∗ P = sup{Q0 ◦ P0 : Q0 ≤W Q,P0 ≤W P},

where the sup is taken over the Weihrauch degrees.

Brattka and Pauly [9] showed that Q ∗ P always exists.

We end this section by defining some well-studied problems that are helpful for

calibrating the problems we are interested in.

Definition 1.10. Define the following problems:

LPO: given p ∈ NN, output 1 if there is some k ∈ N such that p(k) = 0, else output

0;

CN: given some f : N→ N which is not surjective, output any x not in the range

of f ;

CNN : given an ill-founded subtree of N<N, output any path on it;

UCNN : given an ill-founded subtree of N<N with a unique path, output said path.

For more information about the above problems, we refer the reader to the

survey by Brattka, Gherardi, Pauly [8].

15

1.3.3 Other reducibilities

Apart from arithmetic Weihrauch reducibility (Definition 1.4), we study two other

coarsenings of Weihrauch reducibility in this thesis. The first, known as com-

putable reducibility, is a nonuniform version of Weihrauch reducibility:

Definition 1.11 (Dzhafarov [16]). P is computably reducible toQ, written P ≤c Q,

if given a name p for a P -instance, one can compute a name p′ for a Q-instance

such that given a name q for a Q-solution to the Q-instance named by p′, one can

use p⊕ q to compute a name for a P -solution to the P -instance named by p.

For example, even though LPO is not Weihrauch reducible to the identity func-

tion, it is computably reducible to the identity because a solution to an LPO-

instance is either 0 or 1. The same conclusion holds for CN.

The second coarsening of Weihrauch reducibility is the notion of generalized

Weihrauch reducibility due to Hirschfeldt and Jockusch [24]. Roughly speaking, a

generalized Weihrauch reduction from P to Q solves each P -instance using multiple

applications of Q in series, in a uniform way. We will only study it in chapter 4,

so we define it there instead (Definition 4.9).

Finally, we state an easy proposition which will help us derive corollaries of our

results which involve computable reducibility and arithmetic Weihrauch reducibil-

ity:

Proposition 1.12. Suppose R ≤W Q∗P . If Q ≤c id, then R ≤c P . If Q ≤arith
W id,

then R ≤arith
W P .

Observe that the above proposition can be applied with Q being LPO or CN.

16

1.4 The arithmetical, analytical and hyperarithmetical hi-

erarchies

We end this chapter by presenting background in recursion theory that will be

essential for chapters 2, 3, and 6. For more details on classical recursion theory

and hyperarithmetical theory, we refer the reader to Rogers [38] and Sacks [39]

respectively.

At the end of section 1.1, we mentioned that the arithmetical subsets of N are

exactly those which are definable by an arithmetical formula. Let us describe the

details behind this apparently vacuous statement.

We say that a predicate R(x, n) on NN ×N is partial recursive if there is some

partial recursive Φe such that for all x ∈ NN and n ∈ N, R(x, n) holds if and only if

Φx
e(n)↓= 0. We say that R(x, n) is (total) recursive if furthermore, for all x ∈ NN

and n ∈ N, Φx
e(n)↓.

Using standard pairing functions, we may define what it means for predicates

of multiple set and number variables to be partial recursive and total recursive.

Now we may define the arithmetical hierarchy for predicates, subsets of N, and

subsets of NN: the Σ0
1 predicates are exactly the partial recursive predicates. A

predicate is Π0
n if its negation is Σ0

n. For n ≥ 1, a predicate P is Σ0
n+1 if there is

a Π0
n predicate R(x,m, k) such that P (x,m) holds if and only if there is some k

such that R(x,m, k) holds. A predicate is ∆0
n if it is both Σ0

n and ∆0
n. A predicate

is arithmetical if it is Σ0
n for some n. A subset of N or NN is Σ0

n if it is defined by

a Σ0
n predicate. Likewise for Π0

n, ∆0
n, arithmetical, mutatis mutandis.

One can show that the Σ0
n, Π0

n, and ∆0
n predicates are closed under conjunction,

17

disjunction and bounded quantifiers. The Σ0
n predicates are closed under existential

quantifiers. The Π0
n predicates are closed under universal quantifiers.

Note that we can relativize all of the above definitions and results by allowing

parameters in our predicates. We omit the details.

For subsets of N, Post showed that a set is Σ0
n+1 if and only if it is Σ0

1 relative to

the nth jump of the empty set, denoted ∅(n). It follows that a subset of N is ∆0
n+1

if and only if it is ∆0
1 relative to ∅(n), or equivalently, ∅′-computable. Therefore,

the subsets of N which are computable in some finite iterate of the Turing jump

are exactly those which are definable by a formula in the language of second-order

arithmetic without set quantifiers.

Next, we define the analytical hierarchy, which extends the arithmetical hier-

archy. A predicate is Σ1
0 if it is arithmetical. A predicate is Π1

n if its negation is

Σ1
n. For n ≥ 1, a predicate P (x,m) is Σ1

n+1 if there is a Π1
n predicate R(x, y,m)

such that P (x,m) holds if and only if there is some y ∈ NN such that R(x, y,m).

A predicate is ∆1
n if it is both Σ1

n and Π1
n. A predicate is analytical if it is Σ1

n for

some n. A subset of N or NN is Σ1
n if it is defined by a Σ1

n predicate. Likewise for

Π1
n, ∆1

n, analytical, mutatis mutandis.

One can show that the Σ1
n, Π1

n, and ∆1
n predicates are closed under conjunction,

disjunction and number quantifiers. The Σ0
n predicates are closed under existential

set quantifiers. The Π0
n predicates are closed under universal set quantifiers.

As before, we can relativize all of the above definitions and results by allowing

parameters in our predicates.

In this thesis, we will not go beyond the levels of Σ1
1 or Π1

1 in the analyti-

18

cal hierarchy. Of great importance to us is the set W of indices for computable

well-orderings. A useful tool for analyzing W (and more) is the Kleene-Brouwer

ordering <KB, which linearizes subtrees of N<N:

Definition 1.13. For any σ and τ in N<N, σ <KB τ if σ extends τ , or is to the

“left” of τ , i.e., there is i ∈ N such that σ � (i − 1) = τ � (i − 1) and σ(i) < τ(i).

If T is a subtree of N<N, we let KB(T) denote <KB� T .

Using the Kleene-Brouwer ordering and Kleene’s normal form theorem for Π1
1

predicates, one can show that W is (uniformly) complete among Π1
1 sets for many-

one reducibility (see [39, I.5.4]). A diagonalization argument then shows that W is

not Σ1
1. Analogous results hold for the set of well-orderings (with domain contained

in N).

Finally, we introduce the hyperarithmetical hierarchy for subsets of N, which

lies between the arithmetical and analytical hierarchy. The idea behind the hyper-

arithmetical hierarchy is to iterate the Turing jump into the transfinite. First, a

definition: the join of sets Xa ⊆ N where a ∈ I ⊆ N, is the set

⊕
a∈I

Xa = {〈a, x〉 : a ∈ I, x ∈ Xa} ⊆ N,

where 〈·, ·〉 : N2 → N is a standard pairing function. Now for any countable linear

ordering L, we say that (Xa)a∈L is a (Turing) jump hierarchy on L if for every

b ∈ L, Xb is the Turing jump of the join of all Xa such that a <L b. A set A is B-

hyperarithmetic, or A is hyperarithmetically reducible to B, written A ≤h B, if there

is a B-computable well -ordering L (with first element 0L) and a jump hierarchy

(Xa)a∈L such that X0L = B and A ≤T (Xa)a∈L. If A is ∅-hyperarithmetic, we

say that it is hyperarithmetic. The class of all B-hyperarithmetic sets is denoted

HYP(B). The class HYP(∅) is simply called HYP.

19

For example, if P is an isolated path on a subtree T of N<N, then one can show

that P must be T -hyperarithmetic.

Spector showed that the B-hyperarithmetic sets form a hierarchy, stratified by

the ordertypes of B-computable well-orderings (see [39, II.4.6]). Essentially, he

showed that if L and M are isomorphic B-computable well-orderings, then any

jump hierarchies on L and M (with X0L , X0M = B) are Turing equivalent.

The height of the hyperarithmetical hierarchy, i.e., the least ordinal which is

not the ordertype of a computable well-ordering, is denoted ωCK1 (CK stands for

Church-Kleene). The least ordinal which is not the ordertype of a B-computable

well-ordering is denoted ωB1 .

The hyperarithmetical hierarchy can be thought of as an effective version of the

Borel hierarchy for subsets of NN. In fact, just as Souslin showed that the Borel

hierarchy stratifies the subsets of NN which are ∆1
1-definable with a set parameter,

Kleene showed that the B-hyperarithmetical hierarchy stratifies the subsets of N

which are ∆1
1-definable with B as a parameter (see [39, II.1.4(i) and II.2.5]).

This suggests an analogy between classical recursion theory and hyperarith-

metical theory. It is natural to think of enumerating W by a computation of

length ωCK1 : at step α, we enumerate all computable well-orderings of length α.

Since W is uniformly many-one complete for Π1
1 sets, we can also think of enumer-

ating any Π1
1 set by a computation of length up to ωCK1 . If this enumeration halts

at some α < ωCK1 , then the Π1
1 set is in fact hyperarithmetical. This analogy is

explored further in the study of metarecursion theory (see [39, V and VI]).

In the remainder of this section, we state several useful results in hyperarith-

metical theory.

20

First, Spector gave a relatively simple proof of Kleene’s theorem that HYP =

∆1
1. The main technical ingredient in Spector’s proof is known as boundedness:

Theorem 1.14 (Spector; see [39, I.5.6]). If A is Σ1
1 and A ⊆ W , then there is

α < ωCK1 such that all computable well-orderings with indices in A have length less

than α.

Spector also showed that

Theorem 1.15 (Spector; see [39, II.7.7]). ωB1 > ωCK1 if and only if W ≤h B.

Another useful result is uniformization for Π1
1 predicates of numbers, due to

Kreisel.

Theorem 1.16 (Kreisel; see [39, II.2.3]). Suppose P (x, y) is a Π1
1 predicate on

N× N. Then there is some Π1
1 predicate Q(x, y) such that (1) for all x, y, Q(x, y)

implies P (x, y); (2) for all x for which there is some y such that P (x, y) holds,

there is some unique z such that Q(x, z) holds. Such Q is said to uniformize P .

Next, we state some basis and “nonbasis” theorems. First, Kleene showed that

there is a Σ1
1 predicate with some solution but no hyperarithmetic solution (see

[39, III.1.1]). This is easy once one has shown that the predicate X ∈ HYP is Π1
1:

consider the Σ1
1 predicate X /∈ HYP.

Another proof of the above fact proceeds via pseudohierarchies, which are jump

hierarchies on ill-founded computable linear orderings. These were first studied by

Harrison [22].

Theorem 1.17 (see [39, III.3.3]). Every pseudohierarchy computes every hyper-

arithmetical set.

21

Let L be an ill-founded computable linear ordering which supports a jump hier-

archy. Such linear orderings exist because the class of computable well-orderings is

not Σ1
1, while the class of all computable linear-orderings L which support a jump

hierarchy is Σ1
1. Then the predicate “X is a jump hierarchy on L” is a Σ1

1 (in fact

arithmetic) predicate with solutions, all of which compute every hyperarithmetical

set (and hence cannot be hyperarithmetical).

As for basis theorems, Kleene (see [39, III.1.3]) showed that every Σ1
1 predicate

with solutions has a solution X ≤T W . Gandy (see [39, III.1.4]) showed that every

Σ1
1 predicate with solutions has a solution X <h W .

Finally, we formulate a uniform one-to-one correspondence between solutions

to arithmetic predicates and Π0
1 predicates (or equivalently, paths on subtrees of

N<N). This correspondence follows from a proof of Simpson [42, V.5.4], but we

give a different proof.

Lemma 1.18. Given any arithmetic predicate P (X), there is a Π0
1 predicate Q(X)

and a computable bijection F from the solutions of Q to the solutions of P , such

that F−1 is arithmetic. Furthermore, indices for Q, F , and F−1 can be computed

uniformly from an index for P .

Proof. Fix a recursive predicate R and n ∈ N such that P (X) holds if and only if

R(X,X(n)) holds. Start by computing an index for X(n) as a Π0,X
2 singleton (see

[39, II.4.2]). Then define S(X, Y) to be the following Π0
2 predicate:

R(X, Y) ∧ Y = X(n).

22

Next, define Q(X, Y, Z) as follows:

S(X, Y)

∧ Z : N→ N is the minimal Skolem function

witnessing that S(X, Y) holds

Observe that Q(X, Y, Z) is Π0
1 as desired. We show that the projection (X, Y, Z) 7→

X is the desired bijection from solutions of Q to solutions of P .

First, if Q(X, Y, Z) holds, then P (X) holds. Conversely, if P (X) holds, then

there is unique (Y, Z) such that Q(X, Y, Z) holds, namely (X(n), Z) where Z

is the minimal Skolem function witnessing that S(X, Y) holds. Furthermore,

(X,X(n), Z) is uniformly computable in X(n+1).

The above lemma can be generalized to hyperarithmetic predicates, with F−1

being hyperarithmetic.

23

CHAPTER 2

EMBEDDINGS BETWEEN WELL-ORDERINGS AND ATR

In this chapter, we use the framework of computable reducibilities to provide a

fine analysis of the computational content of various theorems about embeddings

between well-orderings, such as Fräıssé’s conjecture for well-orderings and weak

comparability of well-orderings. In reverse mathematics, these theorems are known

to be equivalent to the system of Arithmetical Transfinite Recursion (ATR0). Our

analysis exposes finer distinctions between these theorems.

First, we define a problem ATR which is analogous to ATR0 in reverse mathe-

matics (Definition 2.3). Then we show that the problem of computing an embed-

ding between two given well-orderings is as hard as ATR (Theorem 2.30). This

answers a question of Marcone [28, Question 5.8]. This also implies that it is no

harder to produce an embedding whose range forms an initial segment, than it is

to produce an arbitrary embedding.

Note that in this case the situation is the same from the point of view of either

Weihrauch reducibility or reverse mathematics. In chapter 3, we will see examples

of theorems where the point of view of Weihrauch reducibility is quite different

from that of reverse mathematics.

2.1 Background

In this chapter, we will work extensively with the represented spaces of linear

orderings and well-orderings, so we describe their representations as follows. If L

is a linear ordering or well-ordering whose domain is a subset of N, we represent

it as the relation {〈a, b〉 : a ≤L b}. Then the following operations are computable:

24

– checking if a given element is in the domain of the ordering;

– adding two given orderings (denoted by +);

– adding a given sequence of orderings (denoted by Σ);

– multiplying two given orderings (denoted by ·);

– restricting a given ordering to a given subset of its domain.

On the other hand, the following operations are not computable:

– checking whether a given element is a successor or limit;

– finding the successor of a given element (if it exists);

– comparing the ordertype of two given well-orderings;

– checking if a given real is a name for a well-ordering.

Next, in many of our proofs, we will use the following version of “effective

transfinite recursion” on linear orderings, which easily follows from the recursion

theorem. See Sacks [39, I.3.2].

Theorem 2.1. Let L be an X-computable linear ordering. Suppose F : N→ N is

total X-computable and for all e ∈ N and b ∈ L, if ΦX
e (a)↓ for all a <L b, then

ΦX
F (e)(b)↓. Then there is some e such that ΦX

e ' ΦX
F (e). Furthermore:

– {b : ΦX
e (b)↑} is either empty or contains an infinite <L-descending sequence;

– Such an index e can be found uniformly in X, an index for F , and an index

for L.

In our applications, X will usually be a sequence of sets 〈Xa〉a indexed by

elements of a linear ordering (sometimes L, but not always). We will think of ΦX
e

25

as a partial function f : L → N, and we will think of each f(b) as an index for a

computation from some Xa.

2.2 An ATR-like problem

In this section, we formulate a problem which is analogous to ATR0 in reverse

mathematics. Informally, ATR0 in reverse mathematics asserts that one can iterate

the Turing jump along any countable well-ordering starting at any set [42, pg. 38].

We make that precise as follows:

Definition 2.2. Let L be a linear ordering with first element 0L, and let A ⊆ N.

We say that 〈Xa〉a∈L is a jump hierarchy on L which starts with A if X0 = A and

for all b >L 0L, Xb = (
⊕

a<Lb
Xa)

′.

There are several ways to define jump hierarchies. We have chosen the above

definition for our convenience. We will show that the Weihrauch degree of the

resulting problem is rather robust with regards to which definition we choose. See,

for example, Proposition 2.8.

Note that by transfinite recursion and transfinite induction, for any well-ordering

L and any set A, there is a unique jump hierarchy on L which starts with A.

Definition 2.3. Define the problem ATR as follows. Instances are pairs (L,A)

where L is a well-ordering and A ⊆ N, with unique solution being the jump

hierarchy 〈Xa〉a∈L which starts with A.

There are significant differences between the problem ATR and the system ATR0

in reverse mathematics, as expounded in the remark after Theorem 3.2 in Kihara,

26

Marcone, Pauly [28]. For example, in the setting of reverse mathematics, different

models may disagree on which linear orderings are well-orderings.

The standard definition of ATR0 in reverse mathematics [42, Definition V.2.4]

involves iterating arbitrary arithmetical operators instead of just the Turing jump.

We formulate that statement as a problem and show that it is Weihrauch equivalent

to ATR.

Proposition 2.4. ATR is Weihrauch equivalent to the following problem. In-

stances are triples (L,A,Θ) where L is a well-ordering, A ⊆ N, and Θ(n, Y,A)

is an arithmetical formula whose only free variables are n, Y and A, with unique

solution 〈Ya〉a∈L such that for all b ∈ L, Yb = {n : Θ(n,
⊕

a<Lb
Ya, A)}.

Proof. ATR is Weihrauch reducible to the above problem: for the forward reduc-

tion, given (L,A), consider (L,A,Θ) where Θ(n, Y,A) holds if either Y = ∅ and

n ∈ A, or n ∈ Y ′. The backward reduction is the identity.

Conversely, given (L,A,Θ), let k be one greater than the number of quantifier

alternations in Θ. Apply ATR to (1 + k · L,L ⊕ A) to obtain the jump hierarchy

〈Xα〉α∈1+k·L.

For the backward reduction, we will use 〈X(a,k−1)〉a∈L-effective transfinite re-

cursion along L to define a total 〈X(a,k−1)〉a∈L-recursive function f : L → N such

that:

– Φ
X(b,k−1)

f(b) is total for all b ∈ L;

– if we define Yb = Φ
X(b,k−1)

f(b) for all b ∈ L, then Yb = {n : Θ(n,
⊕

a<Lb
Ya, A)}.

For each b ∈ L, we define Φ
X(b,k−1)

f(b) as follows. First note that X(b,0) uniformly

computes L ⊕ A (because of the 1 in front of 1 + k · L), and hence uniformly

27

computes A ⊕
⊕

a<Lb
X(a,k−1). Now X(b,k−1) uniformly computes X

(k)
(b,0), which

uniformly computes
(
A⊕

⊕
a<Lb

X(a,k−1)

)(k)
. Since Φ

X(a,k−1)

f(a) is total for all a <L

b, that in turn uniformly computes
(
A⊕

⊕
a<Lb

Ya
)(k)

, where Ya is defined to

be {n : Φ
X(a,k−1)

f(a) (n)↓= 1}. Finally,
(
A⊕

⊕
a<Lb

Ya
)(k)

uniformly computes {n :

Θ(n,
⊕

a<Lb
Ya, A)}, which defines Φ

X(b,k−1)

f(b) as desired.

By transfinite induction along L, f is total. Hence we can compute Yb =

Φ
X(b,k−1)

f(b) for all b ∈ L, and output 〈Yb〉b∈L.

When we define reductions from ATR to other problems by effective transfinite

recursion, we will often want to perform different actions at the first step, successor

steps, and limit steps. If we want said reductions to be uniform, we want to be

able to compute which step we are in. This motivates the following definition:

Definition 2.5. A labeled well-ordering is a tuple L = (L, 0L, S, p) where L is a

well-ordering, 0L is the first element of L, S is the set of all successor elements in

L, and p : S → L is the predecessor function.

We show that when defining Weihrauch reductions from ATR to other problems,

we may assume that the given well-ordering has labels:

Proposition 2.6. ATR is Weihrauch equivalent to the following problem. In-

stances are pairs (L, A) where L = (L, 0L, S, p) is a labeled well-ordering and

A ⊆ N, with unique solution being the jump hierarchy 〈Xa〉a∈L which starts with

A.

Proof. Given (L,A), we can uniformly compute labels for ω·(1+L). Then apply the

above problem to (ω ·(1+L), L⊕A) to obtain the jump hierarchy 〈X(n,α)〉n∈ω,α∈1+L

which starts with L⊕ A.

28

For the backward reduction, we will use 〈X(0,b)〉b∈L-effective transfinite recur-

sion along L to define a total 〈X(0,b)〉b∈L-recursive function f : L → N such that

Φ
X(0,b)

f(b) is total for every b ∈ L and 〈ΦX(0,b)

f(b) 〉b∈L is the jump hierarchy on L which

starts with A.

First note that every X(0,b) uniformly computes (L ⊕ A)′, and hence 0L. This

means that it uniformly computes the case division in the following construction.

For the base case, X(0,0L) uniformly computes L ⊕ A and hence A. As for

b >L 0L, X(0,b) uniformly computes L, hence it uniformly computes (
⊕

a<Lb
X(0,a))

′.

Therefore it uniformly computes (
⊕

a<Lb
Φ
X(0,a)

f(a))′.

The following closure property will be useful for proving Proposition 2.15. This

fact also follows from the combination of work of Pauly (UCNN is parallelizable [36])

and Kihara, Marcone, Pauly (ATR ≡W UCNN [28]), but we provide a short direct

proof.

Proposition 2.7. ATR is parallelizable, i.e., ÂTR ≡W ATR.

Proof. It suffices to show that ÂTR ≤W ATR. Instead of ÂTR, we consider the

parallelization of the version of ATR in Proposition 2.6. Given 〈(Li, Ai)〉i, apply

ATR to (
∑

i Li,
⊕

i Li ⊕ Ai) to obtain the jump hierarchy 〈X(i,a)〉i∈ω,a∈Li which

starts with
⊕

i Li ⊕ Ai.

For each i, we show how to compute the jump hierarchy 〈Xa〉a∈Li which starts

with Ai using (L0⊕Li⊕ 〈X(i,a)〉a∈Li)-effective transfinite recursion along Li. This

is done by defining a total (L0 ⊕ Li ⊕ 〈X(i,a)〉a∈Li)-recursive function fi : Li → N

such that for all a ∈ Li, Φ
X(i,a)

f(a) is total and defines Xa. (The role of L0 ⊕ Li is to

provide the values of 0L0 and 0Li in the following computation.)

29

For the base case, X(i,0Li)
uniformly computes X(0,0L0

) =
⊕

i Li ⊕ Ai, which

uniformly computes Ai.

For b >Li 0Li , X(i,b) uniformly computes X(0,0L0
) which uniformly computes Li,

so X(i,b) uniformly computes (
⊕

a<Lib
X(i,a))

′. That in turn uniformly computes

(
⊕

a<Lib
Φ
X(i,a)

f(a))′ = (
⊕

a<Lib
Xa)

′ = Xb as desired.

Henceforth we will primarily work with the following version of ATR:

Proposition 2.8. ATR is Weihrauch equivalent to the following problem: instances

are pairs (L, c) where L is a labeled well-ordering and c ∈ L, with unique solution

being Yc, where 〈Ya〉a∈L is the unique hierarchy such that:

– Y0L = L;

– if b is the successor of a, then Yb = Y ′a;

– if b is a limit, then Yb =
⊕

a<Lb
Ya.

Proof. Using Proposition 2.4, it is easy to see that the above problem is Weihrauch

reducible to ATR.

Conversely, we reduce the version of ATR in Proposition 2.6 to the above prob-

lem. Given (L, A), define

M = ω · (1 + (A,<N) + L+ 1) + 1.

Formally, the domain of M is

{(0, n) : n ∈ ω} ∪ {(1,m, n) : m ∈ A, n ∈ ω}

∪{(2, a, n) : a ∈ L, n ∈ ω} ∪ {(3, n) : n ∈ ω} ∪ {mM}

30

with the ordering described above. It is easy to see that L⊕A uniformly computes

M and labels for it. Let M denote the tuple of M and its labels.

Apply the given problem to M and mM ∈ M to obtain YmM . Note that since

mM is a limit, YmM uniformly computes Y(0,0) =M, and hence 〈Yc〉c∈M .

For the backward functional, we perform (L ⊕ 〈Yc〉c∈M)-effective transfinite

recursion along L to define a total (L ⊕ 〈Yc〉c∈M)-recursive function f : L → N

such that for each a ∈ L, Φ
Y(2,a,1)
f(a) is total and defines the ath column Xa of the

jump hierarchy on L which starts with A. Note that L uniformly computes the

following case division.

For the base case, first use Y(2,0L,1) = Y ′(2,0L,0) to compute Y(2,0L,0). Now (2, 0L, 0)

is a limit, so Y(2,0L,0) uniformly computes Y(0,0) = M, which uniformly computes

A as desired.

For b >L 0L, since (2, b, 0) is a limit, Y(2,b,0) uniformly computes Y(0,0) = M,

which uniformly computes L. Therefore Y(2,b,0) uniformly computes
⊕

a<Lb
Y(2,a,1),

and hence
⊕

a<Lb
Φ
Y(2,a,1)
f(a) =

⊕
a<Lb

Xa. Therefore Y(2,b,1) uniformly computes Xb =

(
⊕

a<Lb
Xa)

′ as desired.

This completes the definition of f , and hence the reduction from the version of

ATR in Proposition 2.6 to the given problem.

Thus far, we have seen that the Weihrauch degree of ATR is fairly robust with

respect to the type of jump hierarchy that it outputs (Propositions 2.4, 2.6, 2.8).

However, we still require some level of uniformity in the jump hierarchy produced:

Proposition 2.9. The problem of producing the Turing jump of a given set is not

Weihrauch reducible to the following problem: instances are pairs (L,A) where L

31

is a well-ordering and A ⊆ N, and solutions to L are hierarchies 〈Xa〉a∈L where

X0L = A and for all a <L b, X
′
a ≤T Xb. Hence ATR is not Weihrauch reducible to

the latter problem either.

Proof. Towards a contradiction, fix forward and backward Turing functionals Γ

and ∆ witnessing otherwise. We will show that Γ and ∆ could fail to produce ∅′

from ∅. First, Γ∅ defines some computable (L,A). We claim that there are finite

〈σa〉a∈L and e such that σ0L ≺ A and ∆∅⊕〈σa〉a∈L(e)↓6= ∅′(e).

Suppose not. Then for each e, we may compute ∅′(e) by searching for 〈σa〉a∈L

such that σ0L ≺ A and ∆∅⊕〈σa〉a∈L(e)↓. Such 〈σa〉a∈L must exist because if 〈Xa〉a∈L

is a hierarchy on L which starts with A (as defined in the proposition), then

∆∅⊕〈Xa〉a∈L is total. This is a contradiction, thereby proving the claim.

Fix any 〈σa〉a∈L which satisfies the claim. It is clear that 〈σa〉a∈L can be ex-

tended to a solution 〈Xa〉a∈L to (L,A) for the given problem (e.g., by extending

using columns of the usual jump hierarchy). But ∆∅⊕〈Xa〉a∈L 6= ∅′, contradic-

tion.

If we are willing to allow arithmetic Weihrauch reductions, then ATR remains

robust:

Proposition 2.10. ATR is arithmetically Weihrauch reducible (hence arithmeti-

cally Weihrauch equivalent) to the problem in Proposition 2.9.

For the proof, we refer to the reader to the proof of Proposition 3.13 later. (The

only difference is that we use transfinite induction along the given well-ordering to

show that we always output a jump hierarchy.)

32

2.3 Theorems about embeddings between well-orderings

There are several theorems about embeddings between well-orderings which lie

around ATR0 in reverse mathematics. Friedman (see [42, notes for Theorem V.6.8,

pg. 199]) showed that comparability of well-orderings is equivalent to ATR0. Fried-

man and Hirst [19] then showed that weak comparability of well-orderings is also

equivalent to ATR0. We formulate those two theorems about embeddings as prob-

lems:

Definition 2.11. Define the following problems:

CWO: Given a pair of well-orderings, produce an embedding from one of them onto

an initial segment of the other.

WCWO: Given a pair of well-orderings, produce an embedding from one of them into

the other.

Marcone proved the analog of Friedman’s result for (strong) Weihrauch re-

ducibility:

Theorem 2.12 (see Kihara, Marcone, Pauly [28]). CWO ≡sW UCNN ≡sW ATR.

In Theorem 2.30, we prove the analog of Friedman and Hirst’s result for

Weihrauch reducibility, i.e., WCWO ≡W UCNN . This answers a question of Marcone

[28, Question 5.8].

Another class of examples of theorems about embeddings comes from Fräıssé’s

conjecture (proved by Laver [29]), which asserts that the set of countable linear

orderings is well-quasi-ordered (i.e., any infinite sequence contains a weakly in-

creasing pair) by embeddability. Shore [40] studied the reverse mathematics of

various restrictions of Fräıssé’s conjecture. We formulate them as problems:

33

Definition 2.13. Define the following problems:

WQOLO: Given a sequence 〈Li〉 of linear orderings, produce i < j and an embedding

from Li into Lj.

WQOWO: Given a sequence 〈Li〉 of well-orderings, produce i < j and an embedding

from Li into Lj.

NDSWO: Given a sequence 〈Li〉 of well-orderings, and embeddings 〈Fi〉 from each Li+1

into Li, produce i < j and an embedding from Li into Lj.

NIACWO: Given a sequence 〈Li〉 of well-orderings, produce i and j (we may have i > j)

and an embedding from Li into Lj.

NDSLO and NIACLO can be defined analogously, but we will not study them.

WQOLO corresponds to Fräıssé’s conjecture. WQOWO is the restriction of

Fräıssé’s conjecture to well-orderings. NDSWO asserts that there is no infinite

strictly descending sequence of well-orderings. NIACWO asserts that there is no

infinite antichain of well-orderings.

The definitions immediately imply that

Proposition 2.14.

NDSWO ≤W WQOWO ≤W WQOLO

NIACWO ≤W WCWO ≤W CWO

NIACWO ≤W WQOWO

It is not hard to show that all of the problems in Proposition 2.14, except for

WQOLO, are Weihrauch reducible to ATR. (We defer our analysis of the strength

of WQOLO to section 3.1. See Corollary 3.10.)

34

Proposition 2.15. CWO ≤W ATR and WQOWO ≤W ATR.

Proof. Let Q denote the following apparent strengthening of CWO: a Q-instance is

a pair of well-orderings (L,M), and a Q-solution consists of both a CWO-solution

F to (L,M) and an indication of whether L < M , L ≡ M , or L > M . Clearly

CWO ≤W Q. (Marcone showed that CWO ≡W ATR (Theorem 2.12), so actually

CWO ≡W Q.)

We start by showing that Q ≤W ATR. Given (L,M), define N by adding a first

element 0N and a last element mN to L. Apply the version of ATR in Proposition

2.4 to obtain a hierarchy 〈Xa〉a∈N such that:

– X0N = L⊕M ;

– for all b >N 0N , Xb =
(⊕

a<N b
Xa

)′′′
.

For the backward reduction, we start by using 〈Xa〉a∈L-effective transfinite

recursion along L to define a total 〈Xa〉a∈L-recursive function f : L→ N such that

{(a,ΦXa
f(a)(0)) ∈ L×M : ΦXa

f(a)(0)↓} is an embedding of an initial segment of L into

an initial segment of M .

To define f , if we are given any b ∈ L and f � {a : a <L b}, we need to

define f(b), specifically ΦXb
f(b)(0). Use Xb = (

⊕
a<Lb

Xa)
′′′ to compute whether

there is an M -least element above {ΦXa
f(a)(0) : a <L b} (equivalently, whether

M\{ΦXa
f(a)(0) : a <L b} is nonempty). If so, we output said M -least element;

otherwise diverge. This completes the definition of ΦXb
f(b)(0).

Apply the recursion theorem to the definition above to obtain a partial 〈Xa〉a∈L-

recursive function f : L → N. Now, to complete the definition of the backward

reduction we consider the following cases.

35

Case 1. f is total. Then we output {(a,ΦXa
f(a)(0)) : a ∈ L}, which is an embed-

ding from L onto an initial segment of M .

Case 2. Otherwise, {ΦXa
f(a)(0) : a ∈ L,ΦXa

f(a)(0) ↓} = M . Then we output

{(ΦXa
f(a)(0), a) : a ∈ L,ΦXa

f(a)(0)↓}, which is an embedding from M onto an ini-

tial segment of L.

Finally, note that the last column XmN of 〈Xa〉a∈N can compute which case

holds and compute the appropriate output for each case. If Case 1 holds but not

Case 2, then L < M . If Case 2 holds but not Case 1, then L > M . If both Case 1

and 2 hold, then L ≡M .

Next, we turn our attention to WQOWO. Observe that WQOWO ≤W Q̂: given

a sequence 〈Li〉 of well-orderings, apply Q to each pair (Li, Lj), i < j. Search for

the least (i, j) such that Q provides an embedding from Li into Lj, and output

accordingly.

Finally, Q̂ ≤W ÂTR ≡W ATR (Proposition 2.7), so WQOWO ≤W ATR as desired.

In the next few sections, we work toward some reversals. Central to a reversal

(say, from WCWO to ATR) is the ability to encode information into well-orderings

such that we can extract information from an arbitrary embedding between them.

Shore [40] showed how to do this if the well-orderings are indecomposable (and

constructed appropriately).

Definition 2.16. A well-ordering X is indecomposable if it is embeddable in all

of its final segments.

Indecomposable well-orderings also played an essential role in Friedman and

36

Hirst’s [19] proof that WCWO implies ATR0 in reverse mathematics.

We state two useful properties about indecomposable well-orderings. First, it

is easy to show by induction that:

Lemma 2.17. If M is indecomposable and Li, i < n each embed strictly into M ,

then
(∑

i<n Li
)

+M ≡M .

Second, the following lemma will be useful for extracting information from

embeddings between orderings.

Lemma 2.18. Let L be a linear ordering and let M be an indecomposable well-

ordering which does not embed into L. If F embeds M into a finite sum of L’s and

M ’s, then the range of M under F must be cofinal in some copy of M .

Therefore, if M · k embeds into a finite sum of L’s and M ’s, then there must

be at least k many M ’s in the sum.

Proof. There are three cases regarding the position of the range of M in the sum.

Case 1. F maps some final segment of M into some copy of L. Since M is in-

decomposable, it follows that M embeds into L, contradiction. Case 2. F maps

some final segment of M into a bounded segment of some copy of M . Since M is

indecomposable, that implies that M maps into a bounded segment of itself. This

contradicts well-foundedness of M . Case 3. The remaining case is that the range

of M is cofinal in some copy of M , as desired.

We remark that for our purposes, we do not need to pay attention to the

computational content of the previous two lemmas. In addition, unlike in reverse

mathematics, we do not need to distinguish between “M does not embed into L”

and “L strictly embeds into M”.

37

2.4 An analog of Chen’s theorem

In this section, given a labeled well-ordering L = (L, 0L, S, p), 〈Ya〉a∈L denotes the

unique hierarchy on L, as defined in Proposition 2.8. (This notation persists for

the next two sections, which use results from this section.)

We present the technical ingredients needed for our reductions from ATR to

theorems about embeddings between well-orderings. The main result is an analog

of the following theorem of Chen, which suggests a bridge from computing jump

hierarchies to comparing well-orderings. We will not need Chen’s theorem so we

will not define the notation therein; see Shore [40, Theorem 3.5] for details.

Theorem 2.19 (Chen [11, Corollary 10.2]). Fix x ∈ O. There is a recursive

function k(a, n) such that for all a <O x and n ∈ N,

1. k(a, n) is an index for a recursive well-ordering K(a, n);

2. if n ∈ Ha, then K(a, n) + 1 ≤ ω|x|;

3. if n /∈ Ha, then K(a, n) ≡ ω|x|.

We adapt Chen’s theorem to our setting, which involves well-orderings instead

of notations. Our proof is a direct adaptation of Shore’s proof of Chen’s theorem.

We begin by defining some computable operations on trees.

Definition 2.20 (Shore [40, Definition 3.9], slightly modified). For any (possibly

finite) sequence of trees 〈Ti〉, we define their maximum by joining all Ti’s at the

root, i.e.,

max(〈Ti〉) = {〈〉} ∪ {i_σ : σ ∈ Ti}.

Next, we define the minimum of a sequence of trees to be their “staggered common

descent tree”. More precisely, for any (possibly finite) sequence of trees 〈Ti〉, a node

38

at level n of the tree min(〈Ti〉) consists of, for each i < n such that Ti is defined, a

chain in Ti of length n. A node extends another node if for each i in their common

domain, the ith chain in the former node is an end-extension of the ith chain in the

latter node.

It is easy to see that the maximum and minimum operations play well with the

ranks of trees:

Lemma 2.21 (Shore [40, Lemma 3.10]). Let 〈Ti〉 be a (possibly finite) sequence of

trees.

1. If rk(Ti) ≤ α for all i, then rk(max(〈Ti〉)) ≤ α.

2. If there is some i such that Ti is ill-founded, then max(〈Ti〉) is ill-founded.

3. If every Ti is well-founded, then rk(min(〈Ti〉)) ≤ rk(Ti) + i.

4. If every Ti is ill-founded, then min(〈Ti〉) is ill-founded as well.

With the maximum and minimum operations in hand, we may prove an analog

of Theorem 3.11 in Shore [40]:

Theorem 2.22. Given a labeled well-ordering L, we can uniformly compute se-

quences of trees 〈g(a, n)〉n∈N,a∈L and 〈h(a, n)〉n∈N,a∈L such that:

– if n ∈ Ya, then rk(g(a, n)) ≤ ω · otp(L � a) and h(a, n) is ill-founded;

– if n /∈ Ya, then rk(h(a, n)) ≤ ω · otp(L � a) and g(a, n) is ill-founded.

Proof. We define g and h by L-effective transfinite recursion on L. For the base

case (recall Y0L = L), define g(0L, n) to be an infinite path of 0’s for all n /∈ L,

and the empty node for all n ∈ L. Define h(0L, n) analogously.

39

For b limit, define g(b, 〈a, n〉) = g(a, n) and h(b, 〈a, n〉) = h(a, n) for any n ∈ N

and a <L b.

For b = a + 1, fix a Turing functional W which computes X from X ′ for any

X. In particular,

n ∈ Yb iff (∃〈P,Q, n〉 ∈ W)(P ⊆ Ya and Q ⊆ Y c
a).

Then define

h(b, n) = max(〈min(〈{h(a, p) : p ∈ P}, {g(a, q) : q ∈ Q}〉) : 〈P,Q, n〉 ∈ W 〉).

If n ∈ Yb, then there is some 〈P,Q, n〉 ∈ W such that P ⊆ Ya and Q ⊆ Y c
a .

Then every tree in the above minimum for 〈P,Q, n〉 is ill-founded, so the minimum

is itself ill-founded. Hence h(b, n) is ill-founded.

If n /∈ Yb, then for all 〈P,Q, n〉 ∈ W , either P 6⊆ Ya or Q 6⊆ Y c
a . Either way,

all of the above minima have rank < ω · otp(L � a) + ω. Hence h(b, n) has rank at

most ω · otp(L � a) + ω ≤ ω · otp(L � b).

Similarly, define

g(b, n) = min(〈max(〈{g(a, p) : p ∈ P}, {h(a, q) : q ∈ Q}〉) : 〈P,Q, n〉 ∈ W 〉).

This completes the construction for the successor case.

Next, we adapt the above construction to obtain well-founded trees. To that

end, for each well-ordering L, we aim to compute a tree (T (ω · L))∞ which is

universal for all trees of rank ≤ ω · otp(L). Shore [40, Definition 3.12] constructs

such a tree by effective transfinite recursion. Instead, we use a simpler construction

of Greenberg and Montalbán [20].

40

Definition 2.23. Given a linear ordering L, define T (L) to be the tree of finite

<L-decreasing sequences, ordered by extension.

It is easy to see that L is well-founded if and only if T (L) is well-founded, and

if L is well-founded, then rk(T (L)) = otp(L).

Definition 2.24 ([20, Definition 3.20]). Given a tree T , define a tree

T∞ = {〈(σ0, n0), . . . , (σk, nk)〉 : 〈〉 6= σ0 (· · · (σk ∈ T, n0, . . . , nk ∈ N},

ordered by extension.

Lemma 2.25 ([20, §3.2.2]). Let T be well-founded. Then

1. T∞ is well-founded and rk(T∞) = rk(T);

2. for every σ ∈ T∞ and γ < rkT∞(σ), there are infinitely many immediate

successors τ of σ in T∞ such that rkT∞(τ) = γ;

3. KB(T) embeds into KB(T∞);

4. KB(T∞) ≡ ωrk(T) + 1, hence KB(T∞)− {∅} is indecomposable.

5. if S is well-founded and rk(S) ≤ rk(T) (rk(S) < rk(T) resp.), then KB(S)

embeds (strictly resp.) into KB(T∞).

Here, KB(T) denotes the Kleene-Brouwer ordering restricted to T (Definition

1.13).

Proof. (3) and (5) are not stated in [20], so we give proofs. By (1), fix a rank

function r : T → rk(T∞) + 1. We construct an embedding f : T → T∞ which

preserves rank (i.e., r(σ) = rkT∞(f(σ))), <KB, and level. Start by defining f(∅) =

∅. Note that r(∅) = rk(T∞) = rkT∞(∅).

41

Suppose we have defined f on σ ∈ T . Then, we extend f by mapping each

immediate successor τ of σ to an immediate successor f(τ) of f(σ) such that

r(τ) = rkT∞(f(τ)). Such f(τ) exists by (2). Furthermore, by (2), if we start

defining f from the leftmost immediate successor of σ and proceed to the right,

we can extend f in a way that preserves <KB. This proves (3).

(5) follows from (3) applied to S and (4) applied to S and T .

Finally, we prove our analog of Chen’s theorem (Theorem 2.19):

Theorem 2.26. Given a labeled well-ordering L, we can uniformly compute an

indecomposable well-ordering M and well-orderings 〈K(a, n)〉n∈N,a∈L such that:

– if n ∈ Ya, then K(a, n) ≡M .

– if n /∈ Ya, then K(a, n) < M .

Proof. Given L, we may use Theorem 2.22, Definition 2.23 and Definition 2.24 to

uniformly compute

M = KB(T (ω · L)∞)− {∅}

K(a, n) = KB(min{T (ω · L)∞, h(a, n)})− {∅} for n ∈ N, a ∈ L.

By Lemma 2.25(4), M is indecomposable. Also,

rk(T (ω · L)∞) = ω · otp(L)

so rk(min{T (ω · L)∞, h(a, n)}) ≤ ω · otp(L).

It then follows from Lemma 2.25(5) that K(a, n) ≤M .

If n ∈ Ya, then h(a, n) is ill-founded. Fix some descending sequence 〈σi〉i in

h(a, n). Then we may embed T (ω · L)∞ into

42

min{T (ω ·L)∞, h(a, n)} while preserving <KB: map τ to 〈〈τ � i, σi〉〉|τ |i=0. Therefore

M ≤ K(a, n), showing that K(a, n) ≡M in this case.

If n /∈ Ya, then rk(h(a, n)) ≤ ω · otp(L � a). Therefore

rk(min{T (ω · L)∞, h(a, n)}) ≤ ω · otp(L � a) + 1.

Since ω · otp(L � a) + 1 < ω · otp(L), by Lemma 2.25(5), K(a, n) < M .

2.5 Reducing ATR to WCWO

In this section, we apply Theorem 2.26 to show that ATR ≤W WCWO (Theorem

2.30). Together with Proposition 2.15, that implies that WCWO ≡W CWO ≡W

ATR.

First we work towards some sort of modulus for jump hierarchies. The next

two results are adapted from Shore [40, Theorem 2.3]. We have added uniformities

where we need them.

Proposition 2.27. Given a labeled well-ordering L and a ∈ L, we can uniformly

compute an index for a Π0,L
1 -singleton {f} which is strictly increasing, and Turing

reductions witnessing that f ≡T Ya.

Proof. By L-effective transfinite recursion on L, we can compute an index for Ya

as a Π0,L
2 -singleton (see Sacks [39, Proposition II.4.1]). Define f to be the join

of Ya and the lex-minimal Skolem function which witnesses that Ya satisfies the

Π0,L
2 predicate that we computed. Then we can compute an index for f as a Π0,L

1 -

singleton (see Jockusch, McLaughlin [27, Theorem 3.1]). Clearly we can compute

Turing reductions witnessing that Ya ≤T f ≤T L ⊕ Ya. Next, we can L-uniformly

43

compute a Turing reduction from Y0L = L to Ya, and hence a Turing reduction

from L ⊕ Ya to Ya.

Finally, without loss of generality, we can replace f : N → N with the strictly

increasing function n 7→
∑

m≤n(f(m) + 1).

Definition 2.28. For any f, g : N → N, we say that g majorizes f if for all n,

g(n) ≥ f(n). We say that g dominates f if for all sufficiently large n, g(n) ≥ f(n).

Lemma 2.29. There are indices e0, e1, and e2 such that for all labeled well-

orderings L and a ∈ L, there is some strictly increasing f : N→ N such that if Ya

is the ath column of the unique hierarchy on L, then:

1. ΦL⊕ae0
is an index for a Turing reduction from f to Ya;

2. for all g : N→ N, ΦL⊕a⊕ge1
(0)↓ if and only if g does not majorize f ;

3. for all g which majorizes f , ΦL⊕a⊕ge2
is total and defines Ya.

Proof. Given L and a ∈ L, first use Proposition 2.27 to compute a tree T with a

unique path f which is strictly increasing, and Turing reductions witnessing that

f ≡T Ya. This shows (1).

Given g : N → N, we can compute the g-bounded subtree Tg of T . If g does

not majorize f , then Tg has no infinite path. In that case, Tg is finite by König’s

lemma, hence we can eventually enumerate that fact. This shows (2).

If g majorizes f , then we can compute f as follows: σ ≺ f if and only if for all

other τ with |τ | = |σ|, the g-bounded subtree of T above τ is finite. We can then

compute Ya from f . This shows (3).

We now combine Theorem 2.26 with the above lemma to prove that

44

Theorem 2.30. ATR ≤W WCWO.

Proof. We reduce the version of ATR in Proposition 2.8 to WCWO. Given a labeled

well-ordering L and a ∈ L, by Lemma 2.29, there is some strictly increasing f such

that if g majorizes f , then L ⊕ a⊕ g uniformly computes Ya.

Furthermore, we may compute reductions witnessing range(f) ≤T f ≤T Ya.

From that we may compute a many-one reduction r from range(f) to Ya+1 (the

(a+ 1)th column of the unique hierarchy on (L � {b : b ≤L a}) + 1).

Next, use L to compute labels for (L � {b : b ≤L a}) + 1. Apply Theorem

2.26 to (L � {b : b ≤L a}) + 1 (and its labels) to compute an indecomposable

well-ordering M and for each n, a well-ordering Ln := K(a+ 1, r(n)), such that

n ∈ range(f) ⇔ r(n) ∈ Ya+1 ⇔ Ln ≡M

n /∈ range(f) ⇔ r(n) /∈ Ya+1 ⇔ Ln < M.

For the forward functional, consider the following WCWO-instance:

∑
n

M and

(∑
n

Ln

)
+ 1.

Observe that by Lemma 2.17,
∑

n Ln has the same ordertype as
∑

nM . Hence

any WCWO-solution F must go from left to right. Furthermore, since M is inde-

composable, it has no last element, so F must embed
∑

nM into
∑

n Ln.

For the backward functional, we start by uniformly computing any element m0

of M . Then we use F to compute the following function:

g(n) = π0(F (〈n+ 1,m0〉)).

45

We show that g majorizes f . For each n, F embeds M · n into
∑

i≤g(n) Li. It

follows from Lemma 2.18 that at least n of the Li’s (i ≤ g(n)) must have ordertype

M . That means that there must be at least n elements in the range of f which lie

below g(n), i.e., f(n) ≤ g(n).

Since g majorizes f , L ⊕ a ⊕ g uniformly computes Ya by Lemma 2.29, as

desired.

Using Theorem 2.30 and Proposition 2.15, we conclude that

Corollary 2.31. CWO ≡W ATR ≡W WCWO.

2.6 Reducing ATR to NDSWO and NIACWO

Shore [40, Theorem 3.7] showed that in reverse mathematics, NDSWO (formulated

as a Π1
2 sentence) implies ATR0 over RCA0. We adapt his proof to show that

Theorem 2.32. ATR ≤W CN ∗ NDSWO. In particular, ATR ≤c NDSWO and

ATR ≤arith
W NDSWO.

Proof. We reduce the version of ATR in Proposition 2.8 to NDSWO. Given a labeled

well-ordering L and a ∈ L, by Lemma 2.29, there is some strictly increasing f such

that if g majorizes f , then L ⊕ a ⊕ g uniformly computes Ya. Furthermore, as in

the proof of Theorem 2.30, we may compute a many-one reduction r from f to

Ya+1.

Next, use L to compute labels for (L � {b : b ≤L a}) + 1. Apply Theorem 2.26

to (L � {b : b ≤L a}) + 1 to compute an indecomposable well-ordering M and for

46

each i and n, a well-ordering K(a+ 1, r(i, n)), such that

f(i) = n ⇔ r(i, n) ∈ Ya+1 ⇔ K(a+ 1, r(i, n)) ≡M

f(i) 6= n ⇔ r(i, n) /∈ Ya+1 ⇔ K(a+ 1, r(i, n)) < M.

For the forward functional, define for each j and n:

Lj,n =
∑
j≤i<n

K(a+ 1, r(i, n))

Nj =
∑
n

Lj,n.

For each j and n, Lj+1,n uniformly embeds into Lj,n. So for each j, we can uniformly

embed Nj+1 into Nj. Hence 〈Nj〉j (with said embeddings) is an NDSWO-instance.

Apply NDSWO to obtain some embedding F : Nj → Nk, j < k. For the

backward functional, we aim to compute a sequence 〈hq〉q of functions, such that

hq majorizes f for all sufficiently large q. We start by uniformly computing any

element m0 of M . Then for each q, define

hq(0) = q and hq(n+ 1) = π0(F (〈hq(n) + 1,m0〉)).

We show that hf(k) majorizes f . (Hence for all q ≥ f(k), hq majorizes f .) For

this proof, temporarily set q = f(k). We show by induction on n that hq(n) ≥

f(k + n). The base case n = 0 holds by definition of q.

Suppose hq(n) ≥ f(k+n). For each j ≤ i ≤ k+n, K(a+1, r(i, f(i))) is a sum-

mand in Lj,f(i) (because f(i) > i), which is in turn a summand in
∑

m≤hq(n) Lj,m.

That implies that M · (k+ n− j + 1) embeds into
∑

m≤hq(n) Lj,m, which lies below

〈hq(n) + 1,m0〉 in Nj.

Composing with F , we deduce that M · (k + n− j + 1) embeds into the initial

segment of Nk below F (〈hq(n) + 1,m0〉), which is contained in
∑

m≤hq(n+1) Lk,m.

47

It follows from Lemma 2.18 that there are at least k + n − j + 1 many copies of

M in
∑

m≤hq(n+1) Lk,m. Therefore, there are at least k + n− j + 1 many elements

in {f(i) : i ≥ k} below hq(n+ 1). It follows that

hq(n+ 1) ≥ f(k + n− j + k) ≥ f(k + n+ 1)

as desired. This completes the proof of the inductive step. We have shown that

hf(k) majorizes f .

Finally, by Lemma 2.29(2), given L ⊕ a ⊕ 〈hq〉q, we may apply CN (Definition

1.10) to compute some q such that hq majorizes f . Then L ⊕ a ⊕ hq uniformly

computes Ya by Lemma 2.29(3), as desired.

The above proof can be easily modified to show that

Theorem 2.33. ATR ≤W CN ∗ NIACWO. In particular, ATR ≤c NIACWO and

ATR ≤arith
W NIACWO.

Proof. Given L and a ∈ L, compute 〈Lj,n〉j,n and 〈Nj〉j as in the proof of Theorem

2.32. Then consider the NIACWO-instance 〈Nj + j〉j.

Given an embedding F : Nj+j → Nk+k, first observe that by Lemma 2.17, Nj

and Nk have the same ordertype, namely that of M ·ω. Hence j < k. Furthermore,

since M is indecomposable, F must embed Nj into Nk. The backward functional

is then identical to that in Theorem 2.32.

We do not know if ATR ≤W NDSWO, ATR ≤W NIACWO, or even ATR ≤W

WQOWO.

48

CHAPTER 3

KÖNIG’S DUALITY THEOREM AND TWO-SIDED PROBLEMS

In this chapter, we define several “two-sided” problems, which are natural ex-

tensions of some of the problems we studied in chapter 2. This allows us to

calibrate the computational content of König’s duality theorem for countable bi-

partite graphs. In particular, we define a two-sided version of ATR, denoted ATR2

(Definition 3.2), and show that the problem of computing a König cover of a given

bipartite graph is (roughly) as hard as ATR2 (Theorems 3.39 and 3.41).

ATR2 is much harder than ATR in terms of computational difficulty (Corollary

3.8), yet König’s duality theorem is equivalent to ATR0 in reverse mathematics

(Aharoni, Magidor, Shore [2], Simpson [41]). Therefore, this exhibits a marked

difference between computable reducibilities and reverse mathematics.

The two-sided problems we study and König’s duality theorem also provide

examples of problems which lie strictly between UCNN and CNN in the Weihrauch

degrees. Other examples exhibiting similar phenomena were studied by Kihara,

Marcone, Pauly [28].

3.1 Two-sided problems

Many of the problems we have considered thus far have domains which are Π1
1.

For instance, the domain of CWO is the set of pairs of well-orderings. In that case,

being outside the domain is a Σ1
1 property. Now, any Σ1

1 property can be thought of

as a problem whose instances are sets satisfying said property and solutions are sets

which witness that said property holds. This suggests that we combine a problem

which has a Π1
1 domain with the problem corresponding to the complement of its

49

domain.

One obvious way to combine such problems is to take their union. For ex-

ample, a “two-sided” version of WCWO could map pairs of well-orderings to any

embedding between them, and map other pairs of linear orderings to any infinite

descending sequence in either linear ordering. We will not consider such problems

here, because they are not Weihrauch reducible (or even arithmetically Weihrauch

reducible) to CNN . (Any such reduction could be used to give a Σ1
1 definition for

the set of indices of pairs of well-orderings. See also Brattka, de Brecht, Pauly

[5, Theorem 7.7].) On the other hand, it is not hard to see that the problems

corresponding to Fräıssé’s conjecture (WQOLO) and König’s duality theorem (see

section 3.2) are Weihrauch reducible to CNN .

However, note that embeddings between linear orderings can still exist even

when either linear ordering is ill-founded! This suggests an alternative method of

combination, resulting in the following “two-sided” extensions of CWO and WCWO.

Definition 3.1. Define the following problems:

CWO2: Given linear orderings L and M , either produce an embedding from one of

them onto an initial segment of the other, or an infinite descending sequence

in either ordering. In either case we indicate which type of solution we

produce.

WCWO2: Given linear orderings L and M , either produce an embedding from one of

them into the other, or an infinite descending sequence in either ordering. In

either case we indicate which type of solution we produce.

It is not hard to see that whether solutions to instances of the above problems

come with an indication of their type does not affect the Weihrauch degree of the

50

problems. Hence we include the type for our convenience.

Next, we define a two-sided version of ATR. In section 3.2, we will show that

it is closely related to König’s duality theorem (Theorem 3.39).

Recall our definition of a jump hierarchy:

Definition 2.2. Let L be a linear ordering with first element 0L, and let A ⊆ N.

We say that 〈Xa〉a∈L is a jump hierarchy on L which starts with A if X0 = A and

for all b >L 0L, Xb = (
⊕

a<Lb
Xa)

′.

Jump hierarchies on ill-founded linear orderings were first studied by Harrison

[22], and are often called pseudohierarchies. See, for example, [42, Section V.4]).

Definition 3.2. We define a two-sided version of ATR as follows:

ATR2: Given a linear ordering L and a set A ⊆ N, either produce an infinite <L-

descending sequence S, or a jump hierarchy 〈Xa〉a∈L on L which begins with

A. In either case we indicate which type of solution we produce.1

Just as for CWO and WCWO, if we require an ATR2-solution to an ill-founded

L to be an infinite <L-descending sequence, then the resulting problem is not

Weihrauch reducible to CNN . The same holds if we require an ATR2-solution to L

to be a jump hierarchy whenever L supports a jump hierarchy, because

Theorem 3.3 (Harrington, personal communication). The set of indices for linear

orderings which support a jump hierarchy is Σ1
1-complete.

A Weihrauch reduction from the aforementioned variant of ATR2 to CNN would

1Just as for CWO2 and WCWO2, this does not affect the Weihrauch degree of ATR2.

51

yield a Π1
1 definition of the set of indices for linear orderings which support a jump

hierarchy, contradicting Harrington’s result.

Next, we determine the positions of CWO2, WCWO2, and ATR2 relative to UCNN

and CNN in the Weihrauch degrees. In addition, even though we are not viewing

WQOLO (Fräıssé’s conjecture) as a two-sided problem, most of our arguments and

results hold for WQOLO as well.

First observe that each of CWO, WCWO, and ATR is trivially Weihrauch re-

ducible to its two-sided version. By Corollary 2.31 and the fact that ATR ≡W UCNN

(Kihara, Marcone, Pauly [28]), these two-sided problems lie above UCNN in the

Weihrauch degrees. We do not know if WQOLO lies above UCNN in the Weihrauch

degrees.

Next observe that CWO2, WCWO2, ATR2, and WQOLO are each defined by an

arithmetic predicate on an arithmetic domain. It easily follows that they lie below

CNN in the Weihrauch degrees. In fact, they lie strictly below CNN :

Proposition 3.4. Suppose that P is an arithmetically defined multivalued func-

tion such that dom(P) is not Π1
1. If Q is arithmetically defined and dom(Q) is

arithmetic, then P is not arithmetically Weihrauch reducible to Q.

Proof. If P is arithmetically Weihrauch reducible to Q via arithmetically defined

functionals Φ and Ψ, then we could give a Π1
1 definition for dom(P) as follows:

X ∈ dom(P) if and only if

Φ(X) ∈ dom(Q) ∧ ∀Y [Y ∈ Q(Φ(X))→ Ψ(X ⊕ Y) ∈ P (X)].

Contradiction.

52

Corollary 3.5. CNN is not arithmetically Weihrauch reducible to any of CWO2,

WCWO2, ATR2, or WQOLO.

Proof. Each of CWO2, WCWO2, ATR2, and WQOLO are arithmetically defined

with arithmetic domain. CNN is also arithmetically defined, but its domain is Σ1
1-

complete. Apply Proposition 3.4.

Next we show that CWO2, WCWO2, ATR2, and WQOLO are not Weihrauch

reducible (or even computably reducible) to UCNN . First we have a boundedness

argument:

Lemma 3.6. Suppose P (d, Y) is a Π1
1 predicate on N× NN and D is a Σ1

1 subset

of N. If for every d ∈ D, there is some hyperarithmetic Y such that P (e, Y) holds,

then there is some α < ωCK1 such that for every d ∈ D, P (d, ·) has a solution below

level α of the hyperarithmetical hierarchy.

Proof. Consider the following predicate of d and a:

d /∈ D ∨ (a ∈ W ∧ P (d, ·) has a solution below level a).

This predicate is Π1
1: assuming that a ∈ W , P (d, ·) has a solution below level a if

and only if there is some e ∈ N such that for all Y which is a jump hierarchy along

a which starts with ∅, ΦY
e is total and P (d, Y) holds.

By Π1
1-uniformization (Theorem 1.16), there is a Π1

1 predicateQ(d, a) uniformiz-

ing P . Then the set

{a : (∃d ∈ D)Q(d, a)} = {a : (∃d ∈ D)(∀b 6= a)¬Q(d, b)}

is Σ1
1 and contained in W . By boundedness (Theorem 1.14), it is bounded by some

α < ωCK1 , proving the desired statement.

53

Corollary 3.7. Each of CWO2, WCWO2, ATR2, and WQOLO have a computable

instance with no hyperarithmetic solution.

Proof. By the contrapositive of Lemma 3.6, it suffices to show that for any α <

ωCK1 , there is a computable instance of each problem with no solution which lies

below level α in the hyperarithmetical hierarchy.

Observe that for any α < ωCK1 , there is a computable instance of ATR (take

any computable well-ordering longer than α) such that its solution lies above level

α in the hyperarithmetical hierarchy.2 The following reductions imply that the

same holds for WCWO2, CWO2, ATR2, and WQOLO:

ATR ≤W WCWO ≤W WCWO2 ≤W CWO2 Theorem 2.30

ATR ≤W ATR2

ATR ≤c WQOLO Theorem 2.32

This completes the proof.

Corollary 3.7 implies that

Corollary 3.8. CWO2, WCWO2, ATR2, and WQOLO are not computably reducible

or arithmetically Weihrauch reducible to UCNN.

We conclude that

Corollary 3.9. Let P be CWO2, WCWO2 or ATR2. Then

UCNN <W P <W CNN .

In fact, P 6≤arith
W UCNN, P 6≤c UCNN, and CNN 6≤arith

W P .
2Note that the domain of ATR is not Σ1

1, so we cannot apply Lemma 3.6 to show that there is
a computable instance of ATR with no hyperarithmetic solution. (The latter statement is clearly
false.)

54

Corollary 3.10. WQOLO has the following relationships with UCNN and CNN:

– UCNN <c WQOLO. Also, WQOLO 6≤arith
W UCNN.

– WQOLO <W CNN; in fact CNN 6≤arith
W WQOLO.

3.1.1 ATR2 and variants thereof

In this section, we prove some results regarding ATR2 and its variants. First, we

have several results showing that ATR2 is fairly robust. At the end, we show that

CWO2 ≤W ATR2 (Theorem 3.14), in analogy with CWO ≤W ATR (Proposition

2.15).

We start with the following analog of Proposition 2.4:

Proposition 3.11. ATR2 is Weihrauch equivalent to the following problem. In-

stances are triples (L,A,Θ) where L is a linear ordering, A ⊆ N, and Θ(n, Y,A)

is an arithmetical formula whose only free variables are n, Y and A. Solutions are

either infinite <L-descending sequences, or hierarchies 〈Ya〉a∈L such that for all

b ∈ L, Yb = {n : Θ(n,
⊕

a<Lb
Ya, A)}. (As usual, solutions come with an indication

of their type.)

Proof. Roughly speaking, we extend the reductions defined in Proposition 2.4.

First, ATR2 is Weihrauch reducible to the above problem: for the forward reduc-

tion, given (L,A), consider (L,A,Θ) where Θ(n, Y,A) holds if either Y = ∅ and

n ∈ A, or n ∈ Y ′. The backward reduction is the identity.

Conversely, given (L,A,Θ), let k be one greater than the number of quantifier

alternations in Θ. Apply ATR2 to (1 + k · L + 2, L ⊕ A). If we obtain an infinite

55

descending sequence in 1+k·L+2, we can uniformly compute an infinite descending

sequence in L and output that.

Otherwise, we obtain a jump hierarchy 〈Xα〉α∈1+k·L+2. We want to use it to

either compute a hierarchy on L, or an infinite <L-descending sequence.

We start by using the recursion theorem to compute a 〈X(a,k−1)〉a∈L-partial

recursive function f : L → N, as described in the proof of Proposition 2.4. Note

that f may not be total.

Next, we compute (〈X(a,k−1)〉a∈L)′′ and use that to decide whether f is total. If

so, following the proof of Proposition 2.4, we may compute a hierarchy on L with

the desired properties.

If not, we use (〈X(a,k−1)〉a∈L)′′ to compute the complement of the domain of f

in L. This set has no <L-least element, by construction of f . Therefore, we can

uniformly compute an infinite <L-descending sequence within it.

Just as we defined labeled well-orderings, we may also define labeled linear

orderings if said linear orderings have first elements. Then we have the following

analog of Proposition 2.6:

Proposition 3.12. ATR2 is Weihrauch equivalent to the following problem: an

instance is a labeled linear ordering L and a set A ⊆ N, and a solution is an

ATR2-solution to (L,A).

Proof. It suffices to reduce ATR2 to the given problem. Given (L,A), we start

by computing ω · (1 + L) and labels for it. Then we apply the given problem to

ω · (1 + L) (and its labels) and the set L⊕ A.

56

If we obtain an infinite descending sequence in ω · (1 + L), we can uniformly

compute an infinite descending sequence in L and output that.

Otherwise, we obtain a jump hierarchy 〈X(n,α)〉n∈ω,α∈1+L which starts with

L ⊕ A. First use this hierarchy to compute L′′, which tells us whether L has

a first element. If not, we can uniformly compute an infinite descending sequence

in L and output that.

Otherwise, we use the recursion theorem to compute a partial 〈X(0,b)〉b∈L-

recursive function f : L → N, as described in the proof of Proposition 2.6. Then

we compute

S =
{
b ∈ L : 〈ΦX(0,a)

f(a) 〉a<Lb defines a jump hierarchy
}

and consider two cases.

Case 1. If S is all of L, then we output 〈ΦX(0,a)

f(a) 〉a∈L, which is a jump hierarchy

on L which starts with A.

Case 2. Otherwise, observe that by construction of f , L\S has no <L-least

element. Then we can compute an infinite <L-descending sequence in L\S and

output that.

Finally, note that 〈X(n,α)〉n∈ω,α∈1+L can compute the above case division and

the output in each case.

Proposition 3.12 will be useful in section 3.2. Using similar ideas, we can show

that

Proposition 3.13. ATR2 is arithmetically Weihrauch equivalent to the following

problem: an instance is a linear ordering L and a set A ⊆ N, and a solution

57

is an infinite <L-descending sequence, or some 〈Xa〉a∈L such that X0L = A and

X ′a ≤T Xb for all 0L ≤L a <L b.

Proof. It suffices to construct an arithmetic Weihrauch reduction from ATR2 to the

given problem. Given (L,A), the forward functional outputs (L,L⊕A). To define

the backward functional: if the above problem gives us some infinite <L-descending

sequence then we output that. Otherwise, suppose we are given 〈Xa〉a∈L such that

X0L = A and X ′a ≤T Xb for all 0L ≤L a <L b.

We start by attempting to use (〈Xa〉a∈L)′′′-effective transfinite recursion along

L to define a partial (〈Xa〉a∈L)′′′-recursive function f : L→ N such that 〈ΦXa
f(a)〉a∈L

is a jump hierarchy on L which starts with A.

For the base case, we use X0L = L⊕ A to uniformly compute A. For b >L 0L,

first use (
⊕

a≤LbXa)
′′′ to find Turing reductions (for each a <L b) witnessing that

X ′a ≤T Xb. Then we can use Xb to compute (
⊕

a<Lb
ΦXa
f(a))

′. This completes the

definition of f .

Next, compute

S =
{
b ∈ L : 〈ΦXa

f(a)〉a<Lb defines a jump hierarchy
}

and consider two cases.

Case 1. If S is all of L, then we output 〈ΦXa
f(a)〉a∈L, which is a jump hierarchy

on L which starts with A.

Case 2. Otherwise, observe that by construction of f , L\S has no <L-least

element. Then we can compute an infinite <L-descending sequence in L\S and

output that.

58

Finally, note that by choosing n sufficiently large, (〈Xa〉a∈L)(n) can compute

the above case division and the output in each case.

Next, in analogy with CWO ≤W ATR (Proposition 2.15), we have that

Theorem 3.14. CWO2 ≤W ATR2.

Proof. Given linear orderings (L,M), define N by adding a first element 0N and

a last element mN to L. Apply ATR2 to the linear ordering N and the set L⊕M .

If we obtain an infinite descending sequence in N , we can use that to uniformly

compute an infinite descending sequence in L.

Otherwise, using Proposition 3.11, we may assume that we obtain a hierarchy

〈Xa〉a∈N such that:

– X0N = L⊕M ;

– for all b >N 0N , Xb =
(⊕

a<N b
Xa

)′′′
.

We start by attempting to use 〈Xa〉a∈L-effective transfinite recursion along L

to define a partial 〈Xa〉a∈L-recursive function f : L→ N such that {(a,ΦXa
f(a)(0)) ∈

L × M : ΦXa
f(a)(0)↓} is an embedding of an initial segment of L into an initial

segment of M .

To define f , if we are given any b ∈ L and f � {a : a <L b}, we need to define

f(b), specifically ΦXb
f(b)(0). First use Xb = (

⊕
a<Lb

Xa)
′′′ to compute whether all of

the following hold:

1. for all a <L b, ΦXa
f(a)(0) converges and outputs some element of M ;

2. {ΦXa
f(a)(0) : a <L b} is an initial segment of M ;

59

3. there is an M -least element above {ΦXa
f(a)(0) : a <L b}.

If so, we output said M -least element; otherwise diverge. This completes the

definition of ΦXb
f(b)(0).

Apply the recursion theorem to the definition above to obtain a partial 〈Xa〉a∈L-

recursive function f : L → N. Now, to complete the definition of the backward

reduction we consider the following cases.

Case 1. f is total. Then following the proof of Proposition 2.15, we output

{(a,ΦXa
f(a)(0)) : a ∈ L}, which is an embedding from L onto an initial segment of

M .

Case 2. There is no L-least element above {a ∈ L : ΦXa
f(a)(0)↓}. Then we can

output an infinite L-descending sequence above {a ∈ L : ΦXa
f(a)(0)↓}.

Case 3. {ΦXa
f(a)(0) : a ∈ L,ΦXa

f(a)(0)↓} = M . Then following the proof of Propo-

sition 2.15, we output {(ΦXa
f(a)(0), a) : a ∈ L,ΦXa

f(a)(0)↓}, which is an embedding

from M onto an initial segment of L.

Case 4. There is no M -least element above {ΦXa
f(a)(0) : a ∈ L,ΦXa

f(a)(0)↓ }. Then

we can output an infinite M -descending sequence which lies above {ΦXa
f(a)(0) : a ∈

L,ΦXa
f(a)(0)↓}.

Finally, note that the last column XmN of 〈Xa〉a∈N can compute the above case

division and the appropriate output for each case.

60

3.2 König’s duality theorem

In this section, we study König’s duality theorem from the point of view of com-

putable reducibilities.

First we state some definitions from graph theory. A graph G is bipartite if its

vertex set can be partitioned into two sets such that all edges in G go from one

of the sets to the other. It is not hard to see that G is bipartite if and only if it

has no odd cycle. (Hence the property of being bipartite is Π0
1.) A matching in

a graph is a set of edges which are vertex-disjoint. A (vertex) cover in a graph

is a set of vertices which contains at least one endpoint from every edge. König’s

duality theorem states that:

Theorem 3.15. For any bipartite graph G, there is a matching M and a cover C

which are dual, i.e., C is obtained by choosing exactly one vertex from each edge

in M . Such a pair (C,M) is said to be a König cover.

König proved the above theorem for finite graphs, where it is commonly stated

as “the maximum size of a matching is equal to the minimum size of a cover”. For

infinite graphs, this latter form would have little value. Instead of merely asserting

the existence of a bijection, we want such a bijection to respect the structure of

the graph. Hence the notion of a König cover. Podewski and Steffens [37] proved

König’s duality theorem for countable graphs. Finally, Aharoni [1] proved it for

graphs of arbitrary cardinality. In this thesis, we will only study the theorem for

countable graphs.

Definition 3.16. KDT is the following problem: given a (countable) bipartite

graph G, produce a König cover (C,M).

61

Note that we represent bipartite graphs as their vertex set and edge relation.

Alternatively, our representation of a bipartite graph could also include a partition

of its vertex set which witnesses that the graph is bipartite. Even though these two

representations are not computably equivalent3, all of our results hold for either

representation.

Aharoni, Magidor, Shore [2] studied König’s duality theorem for countable

graphs from the point of view of reverse mathematics. They showed that ATR0

is provable from König’s duality theorem. They also showed that König’s du-

ality theorem is provable in the system Π1
1-CA0, which is strictly stronger than

ATR0. Simpson [41] then closed the gap by showing that König’s duality theorem

is provable in (hence equivalent to) ATR0.

The proof of ATR0 from König’s duality theorem in [2] easily translates into a

Weihrauch reduction from ATR to KDT. We adapt their proof to show that ATR2 is

Weihrauch reducible to LPO∗KDT (Theorem 3.39). Next, we adapt [41]’s proof of

König’s duality theorem from ATR0 to show that KDT is arithmetically Weihrauch

reducible to ATR2 (Theorem 3.41). It follows that ATR2 and KDT are arithmetically

Weihrauch equivalent. Since both ATR2 and KDT have computational difficulty

far above the arithmetic (see, for example, Corollary 3.7), this shows that ATR2

and KDT have roughly the same computational difficulty.

Before constructing the above reductions, we make some easy observations

about KDT.

Proposition 3.17. KDT ≤W CNN, but CNN is not even arithmetically Weihrauch

reducible to KDT.

3In fact, there is a computable bipartite graph such that no computable partition of its vertices
witnesses that the graph is bipartite. This was known to Bean [4, remarks after Theorem 7] (we
thank Jeff Hirst for pointing this out.) See also Hirst [26, Corollary 3.17].

62

Proof. The first statement holds because KDT is defined by an arithmetic predicate

on an arithmetic domain. The second statement follows from Proposition 3.4.

Proposition 3.18. KDT is parallelizable, i.e., K̂DT ≤W KDT.

Proof. This holds because the disjoint union of bipartite graphs is bipartite, and

any König cover of a disjoint union of graphs restricts to a König cover on each

graph.

We do not know if ATR2 is parallelizable; a negative answer would separate

ATR2 and KDT up to Weihrauch reducibility.

Since being a bipartite graph is a Π0
1 property (in particular Π1

1), we could

define two-sided KDT (KDT2): given a graph, produce an odd cycle (witnessing

that the given graph is not bipartite) or a König cover. This produces a problem

which is Weihrauch equivalent to KDT, however:

Proposition 3.19. KDT2 ≤W LPO× KDT, hence KDT ≡W KDT2.

Proof. Given a KDT2-instance G (i.e., a graph), we can uniformly compute a graph

H which is always bipartite and is equal to G if G is bipartite: H has the same

vertices as G, but as we enumerate edges of G into H, we omit any edges that

would result in an odd cycle in the graph we have enumerated thus far.

For the reduction, we apply LPO × KDT to (G,H). If LPO (Definition 1.10)

tells us that G is bipartite, we output a KDT-solution to H = G. Otherwise, we

can uniformly compute and output an odd cycle in G.

Finally, to conclude that KDT ≡W KDT2, we use Proposition 3.18 and the fact

that LPO ≤W KDT, which trivially follows from Theorem 3.33 later.

63

3.2.1 Reducing ATR2 to KDT

For both of our forward reductions (from ATR or ATR2 to KDT), the bipartite

graphs we construct are sequences of subtrees of N<N. Let us define our notation

regarding trees. For us, a rooted subtree of N<N is a subset T of N<N for which

there is a unique r ∈ T (called the root) such that:

– no proper prefixes of r lie in T ;

– for every s ∈ T , s extends r and every prefix of s which extends r lies in T .

A rooted subtree of N<N whose root is the empty node 〈〉 is just a prefix-closed

subset of N<N.

If r ∈ N<N and R ⊆ N<N, we define r_R = {r_s : s ∈ R}. In particular, if

T ⊆ N<N is prefix-closed, then r_T is a subtree of N<N with root r. Conversely,

if a rooted subtree of N<N has root r, it is equal to r_T for some such T . If T is

prefix-closed, we sometimes refer to a tree of the form r_T as a copy of T . (Our

usage of “copy” is more restrictive than its usage in computable structure theory.)

If T is a rooted subtree of N<N, for any t ∈ T , the subtree of T above t is the

subtree {s ∈ T : t � s} with root t.

For each r ∈ N<N, e ∈ N and X ⊆ N, (r, e,X) is a name for the following tree T

with root node r: r_σ ∈ T if and only if for all k < |σ|, ΦX
e,
∏
i<k(σ(i)+1)(σ � k)↓= 1.

This representation is easily seen to be computably equivalent to what is perhaps

the usual representation, where if ΦX
e is total, then (r, e,X) is the name for the

tree defined by ΦX
e starting with root r. The advantage of our representation is

that (r, e,X) names some tree even if ΦX
e is partial, which will be useful when e is

produced by the recursion theorem.

64

Using the above representation, we can define a representation for sequences of

subtrees of N<N: view (e,X) as 〈(〈n〉, en, X)〉n, where en is an X-index for ΦX
e (n, ·).

Observe that every (e,X) names some such sequence.

Henceforth, we will use “tree” as a shorthand for “rooted subtree of N<N”.

Next, we describe our backward reduction for ATR ≤W KDT. It only uses the

cover in a König cover and not the matching. First we define a coding mechanism:

Definition 3.20. Given a tree T (with root r) and a König cover (C,M) of T ,

we can decode the bit b, which is the Boolean value of r ∈ C. We say that (C,M)

codes b.

More generally, given any sequence of trees 〈Tn : n ∈ X〉 (with roots rn) and a

König cover (Cn,Mn) for each Tn, we can uniformly decode the following set from

the set 〈(Cn,Mn)〉:

A = {n ∈ X : rn ∈ Cn}.

We say that 〈(Cn,Mn)〉 codes A.

A priori, different König covers of the same tree or sequence of trees can code

different bits or sets respectively. A tree or sequence of trees is good if that cannot

happen:

Definition 3.21. A tree T is good if its root r lies in C for every König cover

(C,M) of T , or lies outside C for every König cover (C,M) of T . A sequence of

trees 〈Tn〉 is good if every Tn is good. In other words, 〈Tn〉 is good if all of its

König covers code the same set.

If 〈Tn〉 is good and every (equivalently, some) König cover of 〈Tn〉 codes A, we

say that 〈Tn〉 codes A.

65

We will use this coding mechanism to define the backward reduction in ATR ≤W

KDT. Here we make a trivial but important observation: for any s ∈ N<N and

any tree T , the König covers of T and the König covers of s_T are in obvious

correspondence, which respects whichever bit is coded. Hence T is good if and

only if s_T is good.

Next, we set up the machinery for our forward reductions. Aharoni, Magidor,

and Shore’s [2] proof of ATR0 from KDT uses effective transfinite recursion along

the given well-ordering to construct good trees which code complicated sets. The

base case is as follows:

Lemma 3.22. Given any A ⊆ N, we can uniformly compute a sequence of trees

〈Tn〉 which codes A.

Proof. The tree {〈〉} codes the bit 0. This is because any matching must be empty,

hence any dual cover must be empty.

The tree {〈〉, 〈0〉, 〈1〉} codes the bit 1. This is because any matching must

contain exactly one of the two edges. Hence any cover dual to that must consist of

a single node. But the root node is the only node which would cover both edges.

By defining each Tn to be either of the above trees as appropriate, we obtain a

sequence 〈Tn〉 which codes A.

We may use this as the base case for our construction as well. As for the succes-

sor case, however, we want to extract extra information from the construction in

[2]. The issue is that when reducing ATR2 to KDT, “effective transfinite recursion”

on ill-founded linear orderings may produce garbage. (Of particular concern is that

the resulting trees may not be good.) Nevertheless, we may attempt it anyway. If

66

we detect inconsistencies in the resulting trees and König covers (using the extra

information we have extracted), then we may use them to compute an infinite

descending sequence in the given linear ordering. Otherwise, we may decode the

resulting König covers to produce a jump hierarchy.

In order to describe our construction in detail, we need to examine the con-

struction in [2] closely. First we state a sufficient condition on a König cover of

a tree and a node in said tree which ensures that the given König cover, when

restricted to the subtree above the given node, remains a König cover. The set of

all nodes satisfying the former condition form a subtree:

Definition 3.23. For any tree T (with root r) and any König cover (C,M) of T ,

define the subtree T ∗ (with root r):

T ∗ = {t ∈ T : ∀s(r ≺ s � t→ (s /∈ C ∨ (s � (|s| − 1), s) /∈M))}.

The motivation behind the definition of T ∗ is as follows. Suppose (C,M) is

a König cover of T . If s ∈ C and (s � (|s| − 1), s) ∈ M , then C restricted to

the subtree of T above s would contain s, but M restricted to said subtree would

not contain any edge with endpoint s. This means that the restriction of (C,M)

to said subtree is not a König cover. Hence we define T ∗ to avoid this situation.

According to [2, Lemma 4.5], this is the only situation we need to avoid.

When we use the notation T ∗, the cover (C,M) will always be clear from

context. Observe that T ∗ is uniformly computable from T and (C,M).

Lemma 3.24. For any T and any König cover (C,M) of T , define T ∗ as above.

Then for any t ∈ T ∗, (C,M) restricts to a König cover of the subtree of T (not

T ∗!) above t.

67

Proof. Proceed by induction on the level of t using [2, Lemma 4.5].

Using Definition 3.23 and Lemma 3.24, we may easily show that:

Proposition 3.25. Let (C,M) be a König cover of T . Suppose that t ∈ T ∗. Let S

denote the subtree of T above t. Then S∗ is contained in T ∗, where S∗ is calculated

using the restriction of (C,M) to S.

Next, we define a computable operation on trees which forms the basis of the

proofs of [2, Lemmas 4.9, 4.10].

Definition 3.26. Given a (possibly finite) sequence of trees 〈Ti〉, each with the

empty node as root, we may combine it to form a single tree S, by adjoining two

copies of each Ti to a root node r. Formally,

S = {r} ∪ {r_(i, 0)_σ : σ ∈ Ti} ∪ {(i, 1)_σ : σ ∈ Ti}.

Logically, the combine operation can be thought of as ¬∀:

Lemma 3.27. Suppose 〈Ti : i ∈ X〉 combine to form S. Let r denote the root of

S, and for each i ∈ X, let ri,0 and ri,1 denote the roots of the two copies of Ti in S

(i.e., ri,0 = r_(i, 0) and ri,1 = r_(i, 1)). Given any König cover (C,M) of S, for

each i ∈ X, we can uniformly computably choose one of ri,0 or ri,1 (call our choice

ri) such that:

– ri ∈ S∗;

– r /∈ C if and only if for all i ∈ X, ri ∈ C.

Therefore if 〈Tn : n ∈ X〉 codes the set A ⊆ X, then S codes the bit 0 if and only

if A = X.

68

Proof. Given a König cover (C,M) of S and some i ∈ X, we choose ri as follows.

If neither (r, ri,0) nor (r, ri,1) lie in M , then define ri = ri,0 ∈ S∗.

Otherwise, since M is a matching, exactly one of (r, ri,0) and (r, ri,1) lie in M ,

say (r, ri,j). If r /∈ C, we choose ri = ri,1−j ∈ S∗. If r ∈ C, note that since

(r, ri,j) ∈ M , we have (by duality) that ri,j /∈ C. Then we choose ri = ri,j ∈ S∗.

This completes the definition of ri.

If r /∈ C, then for all i ∈ X and j < 2, ri,j ∈ C because (r, ri,j) must be covered

by C. In particular, ri ∈ C for all i ∈ X.

If r ∈ C, then (by duality) there is a unique i ∈ X and j < 2 such that

(r, ri,j) ∈M . In that case, we chose ri = ri,j /∈ C.

In the above lemma, it is important to note that our choice of each ri depends

on the König cover (C,M); in fact it depends on both C and M .

We can now use the combine operation to implement ¬.

Definition 3.28. The complement of T , denoted T , is defined by combining the

single-element sequence 〈T 〉.

By Lemma 3.27, if T codes the bit i, then T codes the bit 1− i.

Next, we work towards iterating the combine operation to implement the jump,

with the eventual goal of proving a generalization of [2, Lemma 4.7]. In order

to reason about trees which are formed by iterating the combine operation, we

generalize Lemma 3.27 slightly:

Lemma 3.29. Suppose 〈Ti : i ∈ X〉 combine to form the subtree of S above some

r ∈ S. For each i ∈ X, let ri,0 and ri,1 denote the roots of the two copies of Ti in

69

S above r. Given any König cover (C,M) of S such that r ∈ S∗, for each i, we

can uniformly computably choose one of ri,0 or ri,1 (call our choice ri) such that

– ri ∈ S∗;

– r /∈ C if and only if for all i ∈ X, ri ∈ C.

Proof. By Lemma 3.24, (C,M) restricts to a König cover of the subtree of S above

r. Apply Lemma 3.27 to the subtree of S above r, then use Proposition 3.25.

We may now present a more general and more informative version of [2, Lemma

4.7].

Lemma 3.30. Given a sequence of trees 〈Ti : i ∈ N〉 (each with the empty node

as root), we can uniformly compute a sequence of trees 〈Se : e ∈ N〉 (each with the

empty node as root) such that given a König cover (Ce,Me) of Se, we can uniformly

compute a sequence of sets of nodes 〈Re,i〉i in S∗e such that

1. each r ∈ Re,i has length two or three;

2. for each i and each r ∈ Re,i, the subtree of Se above r is r_Ti;

3. if the set A ⊆ N is such that

i ∈ A ⇒ Re,i ⊆ Ce

i /∈ A ⇒ Re,i ⊆ Ce,

then e ∈ A′ if and only if the root of Se lies in Ce.

Therefore, if 〈Ti〉 codes a set A, then 〈Se〉 codes A′.

70

Iterating the combine operation (as we will do in the following proof) introduces

a complication, which necessitates the assumption in (3). For each e and i, instead

of choosing a single node ri as in Lemma 3.29, we now have to choose a set of

nodes Re,i. This is because we might want to copy the tree Ti more than twice, at

multiple levels of the tree Se. If Ti is not good (Definition 3.21), these copies could

code different bits (according to appropriate restrictions of (Ce,Me)), so we could

have Re,i 6⊆ Ce and Re,i 6⊆ Ce. In that case, we have little control over whether the

root of Se lies in Ce.

Also, in the assumption of (3), we write ⇒ instead of ⇔ because writing ⇔

would require us to specify separately that we do not restrict whether i ∈ A in

the case that Re,i is empty. (In the following proof, Re,i could be empty if the

construction of Se does not involve Ti at all.)

Proof of Lemma 3.30. We start by constructing Se. Observe that e ∈ A′ if and

only if

¬∀(σ, s) ∈ {(σ, s) : Φσ
e,s(e)↓}¬∀i ∈ dom(σ)[(σ(i) = 1 ∧ i ∈ A)

∨ (σ(i) = 0 ∧ ¬(i ∈ A))].

Each occurrence of ¬∀ or ¬ corresponds to one application of the combine operation

in our construction of Se.

Formally, for each finite partial σ : N → 2 and i ∈ dom(σ), define T σi = Ti

if σ(i) = 1, otherwise define T σi = Ti. Now, for each σ and s such that Φσ
e,s(e)↓,

define Tσ,s by combining 〈T σi : i ∈ dom(σ)〉. Finally, combine 〈Tσ,s : Φσ
e,s(e)↓〉 to

form Se.

Next, given a König cover (Ce,Me) of Se, we construct 〈Re,i〉i as follows. First

71

apply Lemma 3.29 to 〈Tσ,s : Φσ
e,s(e)↓〉 and (Ce,Me) to choose 〈rσ,s : Φσ

e,s(e)↓〉 ⊆ S∗e

such that

– the subtree of Se above each rσ,s is rσ,s
_Tσ,s;

– the root of Se lies in Ce if and only if there is some σ and s such that Φσ
e,s(e)↓

and rσ,s /∈ Ce.

Next, for each σ and s such that Φσ
e,s(e)↓, apply Lemma 3.29 to 〈T σi : i ∈

dom(σ)〉 and the König cover (Ce,Me) restricted to the subtree of Se above rσ,s.

This produces 〈rσ,si : i ∈ dom(σ)〉 ⊆ S∗e (all extending rσ,s) such that

– the subtree of Se above each rσ,si is rσ,si
_T σi ;

– rσ,s /∈ Ce if and only if rσ,si ∈ Ce for all i ∈ dom(σ).

Finally, for each σ and s such that Φσ
e,s(e)↓ and each i such that σ(i) = 0, apply

Lemma 3.29 to the single-element sequence 〈Ti〉 and (Ce, Se) restricted to the

subtree of Se above rσ,si to obtain rσ,si ∈ S∗e extending rσ,si such that

– the subtree of Se above rσ,si is rσ,si
_Ti;

– rσ,si ∈ Ce if and only if rσ,si /∈ Ce.

Define

Re,i = {rσ,si : Φσ
e,s(e)↓, σ(i) = 1} ∪ {rσ,si : Φσ

e,s(e)↓, σ(i) = 0}.

First observe that each rσ,si has length two and each rσ,si has length three. Hence

(1) holds. Next, since T σi = Ti if σ(i) = 1, the subtree of Se above each r ∈ Re,i is

r_Ti, i.e., (2) holds.

72

We prove that (3) holds. Suppose that A ⊆ N is such that

i ∈ A ⇒ Re,i ⊆ Ce

i /∈ A ⇒ Re,i ⊆ Ce.

Now, e ∈ A′ if and only if there is some σ ≺ A and s such that Φσ
e,s(e)↓. By our

assumption on A and the definition of Re,i, that holds if and only if there is some

σ and s such that Φσ
e,s(e)↓ and for all i ∈ dom(σ):

σ(i) = 1 ⇔ rσ,si ∈ Ce

σ(i) = 0 ⇔ rσ,si /∈ Ce.

Chasing through the above definitions, we see that the above holds if and only if

the root of Se lies in Ce, as desired.

Finally, suppose that 〈Ti〉 codes the set A. We show that 〈Se〉 codes A′. Fix

a König cover 〈(Ce,Me)〉 of 〈Se〉. First we show that the assumption in (3) holds

for A. Fix e, i ∈ N. If Re,i is empty, the desired statement holds. Otherwise, fix

r ∈ Re,i. Since r lies in S∗e , Lemma 3.24 says that (Ce,Me) restricts to a König

cover of the subtree of Se above r. By (2), the subtree of Se above r is r_Ti. Since

Ti codes A(i), so does r_Ti. We conclude that

r ∈ Ce ⇔ the root of Ti ∈ Ci ⇔ i ∈ A.

It follows that the assumption in (3) holds for A. Now by (3), e ∈ A′ if and only

if the root of Se lies in Ce.

Since this holds for every König cover 〈(Ce,Me)〉 of 〈Se〉, 〈Se〉 codes A′ as

desired.

Remark 3.31. In the proof of Lemma 3.30, we could just as well have defined

Re,i to be the set of all nodes in S∗e which are roots of copies of Ti. (Formally, for

73

each Tσ,s such that Φσ
e,s(e)↓, we could include the roots of the component T σi ’s if

σ(i) = 1, and the roots of the component Ti’s in the T σi ’s if σ(i) = 0, as long as

they lie in S∗e .)

Next, we make two small tweaks to Lemma 3.30. First, we adjust conclusion

(3) to fit our definition of jump hierarchy (Definition 2.2). Second, we broaden the

scope of our conclusions to include König covers of copies of Sn, not just König

covers of Sn itself. Lemma 3.32 is the central lemma behind our reductions from

ATR and ATR2 to KDT.

Lemma 3.32. Given a sequence of sequences of trees 〈〈T an 〉n〉a (each with the

empty node as root), we can uniformly compute a sequence of trees 〈Sn〉n (each

with the empty node as root) such that for any sn ∈ N<N and any König cover

(Cn,Mn) of sn
_Sn, we can uniformly compute a sequence of sets of nodes 〈Ra

n,i〉a,i

in (sn
_Sn)∗ such that

1. each r ∈ Ra
n,i has length two or three (plus the length of sn);

2. for each a, i, and each r ∈ Ra
n,i, the subtree of sn

_Sn above r is r_T ai ;

3. suppose that for each a, the set Ya ⊆ N is such that

i ∈ Ya ⇒ Ra
n,i ⊆ Cn

i /∈ Ya ⇒ Ra
n,i ⊆ Cn,

then n ∈ (
⊕

a Ya)
′ if and only if sn lies in Cn.

Therefore, if for each a, 〈T an 〉n codes a set Ya, then 〈Sn〉n codes (
⊕

a Ya)
′.

Proof. Apply Lemma 3.30 to 〈T an 〉a,n. Given a König cover (Cn,Mn) of sn
_Sn, we

may compute the corresponding König cover of Sn (as we observed after Definition

74

3.21). Then apply Lemma 3.30 to obtain 〈Ra
n,i〉n,i in S∗n. It is straightforward to

check that 〈sn_Ra
n,i〉n,i satisfies conclusions (1)–(3).

As a warmup for our reduction from ATR2 to KDT, we use Lemma 3.32 to

prove that ATR ≤W KDT. Our proof is essentially the same as that of [2, Theorem

4.11]. Note that we do not use the sets Ra
n,i in the following proof, only the final

conclusion of Lemma 3.32. (The sets Ra
n,i will be used in our reduction from ATR2

to KDT.)

Theorem 3.33. ATR ≤W KDT.

Proof. We reduce the version of ATR in Proposition 2.6 to KDT. Given a labeled

well-ordering L and a set A, we will use (L⊕A)-effective transfinite recursion on L

to define an (L ⊕ A)-recursive function f : L→ ω such that for each b ∈ L, ΦL⊕Af(b)

is interpreted as a sequence of trees 〈T bn〉n (each with the empty node as root). We

will show that 〈T bn〉n codes the bth column of the jump hierarchy on L which starts

with A.

For the base case, we use Lemma 3.22 to compute a sequence of trees 〈T 0L
n 〉n

which codes A. Otherwise, for b >L 0L, we use Lemma 3.32 to compute a sequence

of trees 〈T bn〉n such that if for each a <L b, ΦL⊕Af(a) is (interpreted as) a sequence of

trees 〈T an 〉n which codes Ya, then 〈T bn〉n codes
(⊕

a<Lb
Ya
)′

.

Note that f is total: for any b, we can interpret 〈ΦL⊕Af(a) 〉a<Lb as a sequence of

sequences of trees and apply Lemma 3.32 to obtain 〈T bn〉n. This also means that

every 〈T bn〉n (for b >L 0L) was obtained using Lemma 3.32.

We may view the disjoint union of 〈〈T bn〉n〉b∈L as a KDT-instance. This defines

the forward reduction from ATR to KDT.

75

For the backward reduction, let 〈〈(Cb
n,M

b
n)〉n〉b∈L be a solution to the above

KDT-instance. We may uniformly decode said solution to obtain a sequence of

sets 〈Yb〉b∈L.

By transfinite induction along L using Lemmas 3.22 and 3.32, 〈T bn〉n is good

for all b ∈ L, and 〈Yb〉b∈L is the jump hierarchy on L which starts with A.

What if we want to use the forward reduction from ATR to KDT in our reduction

from ATR2 to KDT? If the given ATR2-instance L is ill-founded, things could go

wrong in the “effective transfinite recursion”. Specifically, there may be some a ∈ L

and i ∈ N such that T ai is not good, i.e., there may be some r, s ∈ N<N and some

König covers of r_T ai and s_T ai which code different bits. In order to salvage the

situation, we will modify the backward reduction to check for such inconsistencies.

If they are present, we use them to compute an infinite <L-descending sequence.

In order to detect inconsistencies, for each b ∈ L and n ∈ N, we need to keep

track of the internal structure of (Cb
n,M

b
n) in the KDT-solution. According to

Lemma 3.32 and our construction of T bn, for each a <L b and i ∈ N, there is a set

of nodes Ra
n,i in (T bn)∗ such that:

– for each r ∈ Ra
n,i, the subtree of T bn above r is r_T ai ;

– if for each i, either Ra
n,i ⊆ Cb

n or Ra
n,i ⊆ Cb

n, then (Cb
n,M

b
n) codes the nth bit

of (
⊕

a Ya)
′, where each Ya satisfies the assumption in Lemma 3.32(3).

The “consistent” case is if for each a <L b and i ∈ N, (Ca
i , T

a
i) codes the same

bit as the restriction of (Cb
n,M

b
n) to the subtree above each r in Ra

n,i. (This must

happen if each T ai is good, but it could also happen “by chance”.) We will show

that this ensures that for each a and i, either Ra
n,i ⊆ Cb

n or Ra
n,i ⊆ Cb

n. Furthermore,

76

for each a, the Ya coded by 〈T ai 〉i must satisfy the assumptions in Lemma 3.32(3),

so we correctly calculate the next column of our jump hierarchy.

On the other hand, what if there are some a <L b, i ∈ N, and r0 ∈ Ra
n,i such

that (Ca
i ,M

a
i) codes a different bit from the restriction of (Cb

n,M
b
n) to the subtree

above r0? Then consider T ai and the subtree of T bn above r0. The latter tree is a

copy of T ai (specifically, it is r0
_T ai), yet its König cover codes a different bit from

that of T ai , so we can use Lemma 3.32 to find a subtree of T ai and a subtree of

T bn above r0 (both subtrees are copies of T a0i0 for some a0 <L a, i0 ∈ N) on which

appropriate restrictions of (Ca
i ,M

a
i) and (Cb

n,M
b
n) code different bits. By repeating

this process, we can obtain an infinite <L-descending sequence.

In order to formalize the above arguments, we organize the above recursive

process using the sets Rb,a
n,i, defined as follows:

Definition 3.34. Fix a labeled linear ordering L and use the forward reduction in

Theorem 3.33 to compute 〈〈T bn〉n〉b∈L. For each n and b, fix a König cover (Cb
n,M

b
n)

of T bn. For each a <L b and each i, n ∈ N, we define a set of nodes Rb,a
n,i in T bn as

follows: Rb,a
n,i is the set of all r for which there exist j ≥ 1 and

〈〉 = r0 ≺ r1 ≺ · · · ≺ rj = r in T bn

b = c0 >L c1 >L · · · >L cj = a in L

n = i0 , i1 , · · · , ij = i in N

such that for all 0 < l ≤ j, rl lies in Rcl
il−1,il

as calculated by applying Lemma 3.32

to (Cb
n,M

b
n) restricted to the subtree of T bn above rl−1.

We make two easy observations about Rb,a
n,i:

1. By induction on l, rl lies in (T bn)∗ and the subtree of T bn above rl is rl
_T clil .

77

In particular, for each r ∈ Rb,a
n,i, r ∈ (T bn)∗ and the subtree of T bn above r is

r_T ai .

2. Rb,a
n,i is uniformly c.e. in L ⊕ (Cb

n,M
b
n). (A detailed analysis shows that Rb,a

n,i

is uniformly computable in L ⊕ (Cb
n,M

b
n), but we do not need that.)

With the Rb,a
n,i’s in hand, we can make precise what we mean by consistency:

Definition 3.35. In the same context as the previous definition, we say that a ∈ L

is consistent if for all i ∈ N:

the root of T ai ∈ Ca
i ⇒ Rb,a

n,i ⊆ Cb
n for all b >L a, n ∈ N

the root of T ai /∈ Ca
i ⇒ Rb,a

n,i ⊆ Cb
n for all b >L a, n ∈ N.

Observe that if T ai is good for all i, then observation (1) above implies that a

is consistent, regardless of what 〈(Cb
n,M

b
n)〉b,n may be. However, unless L is well-

founded, we cannot be certain that T ai is good. Consistency is a weaker condition

which suffices to ensure that we can still obtain a jump hierarchy on L, as we show

in Corollary 3.38. We will also show that inconsistency cannot come from nowhere,

i.e., if b0 is inconsistent, then there is some b1 <L b0 which is inconsistent, and so

on, yielding an infinite <L-descending sequence of inconsistent elements.

Furthermore, consistency is easy to check: by observation (2) above, whether

a is consistent is Π0
1 (in L ⊕ 〈(Cb

n,M
b
n)〉b,n).

We prove two lemmas that will yield the desired result when combined:

Lemma 3.36. Fix König covers 〈(Cb
n,M

b
n)〉b,n for 〈T bn〉b,n. Now fix n and b. Sup-

pose that for each a <L b, the set Ya ⊆ N is such that

i ∈ Ya ⇒ Rb,a
n,i ⊆ Cb

n

i /∈ Ya ⇒ Rb,a
n,i ⊆ Cb

n.

78

Then n ∈
(⊕

a<Lb
Ya
)′

if and only if the root of T bn lies in Cb
n.

Proof. Recall that 〈T bn〉n∈N is computed by applying Lemma 3.32 to 〈〈T an 〉n∈N〉a<Lb.

By definition of Rb,a
n,i, R

a
n,i (as obtained from Lemma 3.32) is a subset of Rb,a

n,i (this

is the case j = 1). So for all a <L b,

i ∈ Ya ⇒ Ra
n,i ⊆ Rb,a

n,i ⊆ Cb
n

i /∈ Ya ⇒ Ra
n,i ⊆ Rb,a

n,i ⊆ Cb
n.

The desired result follows from Lemma 3.32(3).

Lemma 3.37. Fix König covers 〈(Cc
m,M

c
m)〉c,m for 〈T cm〉c,m. Now fix m and b <L c.

Suppose that for each a <L b, the set Ya ⊆ N is such that

i ∈ Ya ⇒ Rc,a
m,i ⊆ Cc

m

i /∈ Ya ⇒ Rc,a
m,i ⊆ Cc

m.

Then for all n ∈ N,

n ∈

(⊕
a<Lb

Ya

)′
⇒ Rc,b

m,n ⊆ Cc
m

n /∈

(⊕
a<Lb

Ya

)′
⇒ Rc,b

m,n ⊆ Cc
m.

Proof. If Rc,b
m,n is empty, then the desired result is vacuously true. Otherwise,

consider r ∈ Rc,b
m,n. As we observed right after Definition 3.34, r ∈ (T cm)∗ and the

subtree of T cm above r is r_T bn. T bn was constructed by applying Lemma 3.32 to

〈〈T an 〉n∈N〉a<Lb, so we can use the restriction of (Cc
m,M

c
m) to r_T bn to compute sets

〈Ra
n,i〉a<Lb,i∈N of nodes in (r_T bn)∗ satisfying the conclusions of Lemma 3.32.

We claim that for all a <L b, R
a
n,i ⊆ Rc,a

m,i.

79

Proof of claim. Consider s ∈ Ra
n,i. We know that s extends r and r ∈ Rc,b

m,n. Fix

j ≥ 1 and

〈〉 = r0 ≺ r1 ≺ · · · ≺ rj = r in T cm

c = c0 >L c1 >L · · · >L cj = b in L

m = i0 , i1 , · · · , ij = n in N

which witness that r ∈ Rc,b
m,n. Then we can append one column:

〈〉 = r0 ≺ r1 ≺ · · · ≺ rj = r ≺ rj+1 = s in T cm

c = c0 >L c1 >L · · · >L cj = b >L cj+1 = a in L

m = i0 , i1 , · · · , ij = n , ij+1 = i in N

Since s ∈ Ra
n,i, this witnesses that s ∈ Rc,a

m,i.

By our claim, we have that

i ∈ Ya ⇒ Ra
n,i ⊆ Rc,a

m,i ⊆ Cc
m

i /∈ Ya ⇒ Ra
n,i ⊆ Rc,a

m,i ⊆ Cc
m.

By Lemma 3.32(3), n ∈
(⊕

a<Lb
Ya
)′

if and only if r ∈ Cc
m. This concludes the

proof.

Putting the previous two lemmas together, we obtain

Corollary 3.38. Fix König covers 〈(Cb
n,M

b
n)〉b,n for 〈T bn〉b,n. For each b ∈ L,

define Yb by decoding 〈(Cb
n,M

b
n)〉n, i.e.,

Yb = {n ∈ N : the root of T bn lies in Cb
n}.

If all a <L b are consistent, then b is consistent and Yb =
(⊕

a<Lb
Ya
)′

.

80

Proof. 0L is consistent because every T 0L
n is good (Lemma 3.22). Consider now

any b >L 0L. Every a <L b is consistent, so for all a <L b:

i ∈ Ya ⇒ Rc,a
m,i ⊆ Cc

m for all c >L a,m ∈ N

i /∈ Ya ⇒ Rc,a
m,i ⊆ Cc

m for all c >L a,m ∈ N.

By Lemma 3.36, Yb =
(⊕

a<Lb
Ya
)′

.

Also, by Lemma 3.37, for all n ∈ N:

n ∈

(⊕
a<Lb

Ya

)′
⇒ Rc,b

m,n ⊆ Cc
m for all c >L b,m ∈ N

n /∈

(⊕
a<Lb

Ya

)′
⇒ Rc,b

m,n ⊆ Cc
m for all c >L b,m ∈ N.

It follows that b is consistent.

We are finally ready to construct a reduction from ATR2 to KDT.

Theorem 3.39. ATR2 ≤W LPO∗KDT. In particular, ATR2 ≤c KDT and ATR2 ≤arith
W

KDT.

Proof. Given a labeled linear ordering L (we may assume that L is labeled by

Proposition 3.12) and a set A, we apply the forward reduction in Theorem 3.33

to produce some KDT-instance 〈T bn〉b,n. For the backward reduction, given a KDT-

solution 〈〈(Cb
n,M

b
n)〉n〉b∈L, we start by uniformly decoding it to obtain a sequence

of sets 〈Yb〉b∈L.

Next, since Rb,a
n,i is uniformly c.e. in L ⊕ (Cb

n,M
b
n), whether some a ∈ L is

inconsistent is uniformly c.e. in L ⊕ 〈(Cb
n,M

b
n)〉b,n. Therefore we can use LPO

(Definition 1.10) to determine whether every a ∈ L is consistent.

If so, by Corollary 3.38, 〈Yb〉b∈L is a jump hierarchy on L which starts with A.

81

If not, by Corollary 3.38, every inconsistent element is preceded by some other

inconsistent element. Since whether some a ∈ L is inconsistent is uniformly c.e. in

L⊕ 〈(Cb
n,M

b
n)〉b,n, we can use it to compute an infinite <L-descending sequence of

inconsistent elements.

3.2.2 Reducing KDT to ATR2

This section presumes an understanding of the proofs in Simpson [41]. First, he

proved in ATR0 that for any set G, there is a countable coded ω-model of Σ1
1-AC

which contains G. His proof [41, Lemma 1] also shows that

Lemma 3.40. If 〈Xa〉a∈L is a jump hierarchy on L and I is a proper cut of L

which is not computable in 〈Xa〉a∈L, then the countable coded ω-model M = {A :

∃a ∈ I(A ≤T Xa)} satisfies Σ1
1-AC.

Sketch of proof. Given an instance ϕ(n, Y) of Σ1
1-AC, for each n, let an ∈ I be

<L-least such that Xan computes a solution to ϕ(n, ·). Since I is a proper cut, for

any a ∈ I and b ∈ L\I, Xb computes every Xa-hyperarithmetic set. Therefore if

b ∈ L\I, then Xb computes (an)n∈ω.

Hence (an)n∈ω is not cofinal in I, otherwise I would be computable in 〈Xa〉a∈L.

Fix b ∈ I which bounds (an)n∈ω. Then there is a Σ1
1-AC-solution to ϕ which is

arithmetic in Xb (and hence lies in M), as desired.

We now adapt [41]’s proof of König’s duality theorem in ATR0 to show that

Theorem 3.41. KDT is arithmetically Weihrauch reducible to ATR2.

82

Proof. Given a bipartite graphG, we would like to use ATR2 to produce a countable

coded ω-model of Σ1
1-AC which contains G. In order to do that, we define a G-

computable linear ordering (i.e., an instance of ATR2) using the recursion theorem,

as follows.

First define a predicate P (G, e,X) to hold if X is a jump hierarchy on LGe which

starts with G and does not compute any proper cut in LGe . Notice that P (G, e,X)

is arithmetic.

The total G-computable function to which we apply the recursion theorem is

as follows. Given any G-computable linear ordering LGe , use Lemma 1.18 to define

the G-computable tree HG
e whose paths (if any) are solutions to P (G, e, ·) (with

Skolem functions). Then output an index for the Kleene-Brouwer ordering of HG
e .

By the recursion theorem, we can G-uniformly compute a fixed point e for the

above computable transformation. Observe that the following are (consecutively)

equivalent:

1. LGe has an infinite G-hyperarithmetic descending sequence;

2. HG
e has a G-hyperarithmetic path;

3. P (G, e, ·) has a G-hyperarithmetic solution, i.e., there is a G-hyperarithmetic

jump hierarchy on LGe which starts with G and does not compute any proper

cut in LGe ;

4. LGe is well-founded.

(The only nontrivial implication is (3)⇒ (4), which holds because no jump hierar-

chy on a G-computable ill-founded linear ordering can be G-hyperarithmetic; see

Sacks [39, III.3.3].) But (1) and (4) contradict each other, so (1)–(4) are all false.

83

Hence LGe must be ill-founded and cannot have any infinite G-hyperarithmetic de-

scending sequence. It follows that every infinite LGe -descending sequence defines a

proper cut in LGe .

Next, we show that given an ATR2-solution to LGe , we can arithmetically uni-

formly compute some proper cut I in LGe and a solution to P (G, e, ·), i.e., a jump

hierarchy 〈Xa〉a∈LGe which does not compute any proper cut in LGe . Then by Lemma

3.40, the countable coded ω-model of all sets which are computable in some Xa,

a ∈ I, satisfies Σ1
1-AC as desired.

If ATR2 gives us an infinite LGe -descending sequence S, then we can use S to

arithmetically uniformly compute a proper cut in LGe . Since LGe is the Kleene-

Brouwer ordering of HG
e , we can also use S to arithmetically uniformly compute a

path on HG
e . From said path, we can uniformly compute a solution to P (G, e, ·).

If ATR2 gives us a jump hierarchy X on LGe , we show how to arithmetically

uniformly compute an infinite LGe -descending sequence. We may then proceed as

in the previous case.

First arithmetically uniformly check whether X computes any proper cut in

LGe . If so, we can arithmetically uniformly find an index for such a computation,

and produce a proper cut in LGe . From that, we may uniformly compute an infinite

LGe -descending sequence. If not, then X is a solution to P (G, e, ·), so we can arith-

metically uniformly compute a path on HG
e , and hence an infinite LGe -descending

sequence.

We have produced a countable coded ω-model of Σ1
1-AC which contains the

given graph G. Call it M.

84

WithM in hand, we follow the rest of Simpson’s [41] proof in order to obtain a

KDT-solution to G. His idea is to “relativize” Aharoni, Magidor, Shore’s [2] proof

of KDT in Π1
1-CA0 to M. In the following, we will often write M instead of “the

code of M”.

Let G = (X, Y,E). (If we are not given a partition (X, Y) of the vertex set of

G witnessing that G is bipartite, we can arithmetically uniformly compute such a

partition.) If A ⊆ X, then the demand set of A is defined by

DG(A) = {y ∈ Y : xEy → x ∈ A}.

Note that if A ∈M, then DG(A) is uniformly arithmetic inM and the code of A.

Next, consider the set of pairs

S = {(A,F) ∈M : A ⊆ X and F : A→ DG(A) is a matching}.

(Note that A and F may be infinite.) S (specifically the set of codes of (A,F) ∈ S)

is arithmetic over M. So is the set
⋃
{A : (A,F) ∈ S} ⊆ X, which we denote by

A∗.

Next, for each x ∈ A∗, we define F ∗(x) to be F (x), where (A,F) is the least

(with respect to the enumeration of M) pair in S such that x ∈ A. Then F ∗ :

A∗ → DG(A∗) is a matching ([41, Lemma 2]). Note that F ∗ is arithmetic overM.

Next, define X∗ = X−A∗ and Y ∗ = Y −DG(A∗). Both sets are arithmetic over

M. Simpson then constructs (by recursion along ω) a matching H from Y ∗ to X∗

which is arithmetic in G⊕M, as follows. Each step of the recursion proceeds by

searching for a pair of adjacent vertices (one in X∗, one in Y ∗) whose removal does

not destroy goodness : a cofinite induced subgraph G′ (with vertices partitioned

into X ′ ⊆ X and Y ′ ⊆ Y) of G is good if for any A ⊆ X ′ in M and any matching

85

F : A → DG′(A) in M, DG′(A) − range(F) and Y ∗ are disjoint. (This definition

is not related to Definition 3.21.) This recursion eventually matches every vertex

in Y ∗ to some vertex in X∗ ([41, Lemmas 3, 5]).

The property of goodness (where each G′ is encoded by the finite set of vertices

in G\G′) is arithmetic overM. Hence the resulting matching H is arithmetic over

M.

Finally, we arrive at a KDT-solution to G: F ∗ ∪ H is a matching in G, with

corresponding dual cover A∗∪Y ∗. (F ∗∪H,A∗∪Y ∗) can be arithmetically uniformly

computed from M.

Using Theorems 3.39 and 3.41, we conclude that

Corollary 3.42. ATR2 and KDT are arithmetically Weihrauch equivalent.

86

CHAPTER 4

DIFFERENT WAYS OF COMPOSING MULTIVALUED

FUNCTIONS

In this chapter, we compare and contrast different methods of composing mul-

tivalued functions. As a motivating example, consider Ramsey’s theorem for k-

colorings of n-tuples (RTnk): for every coloring c : [N]n → k, there is an infinite

c-homogeneous set. Then RCA0 + RTn3 ` RTn2 (view the given 2-coloring as a

3-coloring). This proof only invokes RTn3 once, and it can be translated into a

Weihrauch reduction from RTn2 to RTn3 .

Less trivially, we also have that RCA0 + RTn2 ` RTn3 . The usual proof invokes

RTn2 twice, in series: given a 3-coloring of [N]n by red, green, and blue, first de-

fine a 2-coloring of [N]n by red and “grue”. Then use RTn2 to obtain an infinite

homogeneous set for it. If we obtain a red homogeneous set, then we are done. If

we obtain a “grue” homogeneous set, then we apply RTn2 to the original coloring

restricted to this set, and we are done.

Is there a proof of RTn3 which only invokes RTn2 once?1 If not, is there a proof of

RTn3 which invokes RTn2 twice, but in parallel?2 We want to study such questions

from the point of view of Weihrauch reducibility. In order to do so, we must define

some reducibility which would capture the notion of P being reducible to multiple

instances of Q in series. There are three known ways to formalize this idea:

1. the compositional product (Definition 4.4);

2. reduction games (Definition 4.9);

1In the reverse mathematics setting, Hirst and Mummert [25] gave such a proof in RCA0. Their
proof was not “uniform”. In the setting of Weihrauch reducibility, Hirschfeldt and Jockusch [24],
Brattka and Rakotoniaina [10], and Patey [34] independently showed that there is no reduction.

2Note that invoking a theorem in parallel is a special case of invoking a theorem in series.

87

3. the step product (Definition 4.17).

In this chapter, we clarify the relationships between these three notions (for ex-

ample, Theorems 4.22, 4.26, Corollary 4.28). We conclude that they are (mostly)

equivalent, and hence one is (mostly) free to use whichever definition is convenient

for one’s purposes. Along the way, we prove some basic properties of these notions,

and give counterexamples where appropriate.

We are also interested in capturing the notion of P being reducible to different

theorems Q0, . . . , Qn−1 in series. One motivating example is Cholak, Jockusch, and

Slaman’s [12] proof of RT2
2 which proceeds by first using one theorem to obtain an

infinite set on which the given coloring is stable, and then restricting to said set

and obtaining, by another theorem, an infinite homogeneous set. To formalize this

notion, we consider a generalized reduction game and show how it relates to the

other formalizations (Theorem 4.33).

Next, we give some notation and basic definitions. In this chapter, we only

consider multivalued functions from NN to NN, rather than multivalued functions

between represented spaces in general. (We will argue that for our purposes, this

is without loss of generality.) If Φ is a Turing functional and X is an oracle for Φ,

we will sometimes write Φ(X) instead of ΦX . Since Φ formally only takes numbers

as input, this should not cause confusion.

A useful notion is that of a uniformly computable multivalued function: a

multivalued function P is uniformly computable if it has a computable realizer;

that is, there is a Turing functional Γ such that for every P -instance X, Γ(X) is

a P -solution to X. Note that the uniformly computable multivalued functions do

not all lie in the same Weihrauch degree.3

3In fact, it is easy to see that the Medvedev degrees embed into the set of Weihrauch degrees

88

4.1 Formalizing compositions

In this section, we present several ways to formalize what it means for P to be

reducible to multiple instances of Q, and prove some basic properties about them.

Some of these definitions have been stated in chapter 1, but we repeat them for

the reader’s convenience.

4.1.1 Parallel product

We begin by considering what it means for P to be reducible to multiple instances

of Q in parallel. This notion is captured by the parallel product:

Definition 4.1 (Brattka, Gherardi [6]). Given multivalued functions P and Q,

the parallel product P ×Q is the Cartesian product of P and Q. That is, instances

are pairs (X, Y), where X is a P -instance and Y is a Q-instance. (Z,W) is a

(P ×Q)-solution to (X, Y) if Z is a P -solution to X and W is a Q-solution to Y .

For example, we have that RTnj × RTnk ≤W RTnjk: given a j-coloring and a

k-coloring, we can pair them to obtain a jk-coloring. A homogeneous set for the

jk-coloring will be homogeneous for both the j-coloring and the k-coloring. For

other examples, see [7] and [15].

Up to Weihrauch degree, the parallel product is well-defined, associative, and

monotone in both components [6, Proposition 3.2].

While we will not study the parallel product in this chapter, we will use it to

state a later definition.

which contain a uniformly computable multivalued function. See [8, Theorem 9.1].

89

4.1.2 Compositional product

In this section, we define the compositional product of multivalued functions (Brat-

tka, Gherardi, Marcone [7]; Brattka, Pauly [9]), which attempts to capture the no-

tion of P being reducible to multiple instances of Q in series. We begin by defining

the composition of multivalued functions, which forms a building block for the

compositional product. Intuitively, Q ◦ P corresponds to invoking P and then Q,

with no extra steps allowed in between; that is, the solution to the P -instance has

to be a Q-instance.

Definition 4.2. Given multivalued functions P and Q, their composition Q ◦P is

the following multivalued function. Instances are P -instances X such that every

P -solution Y to X is itself a Q-instance. Z is a (Q ◦ P)-solution to X if there is

some P -solution Y to X such that Z is a Q-solution to Y .

Note that the composition of P and Q as multivalued functions is more restric-

tive than the composition of P and Q as relations. This restriction implies that, for

example, the composition of realizers for P and Q is a realizer of the composition

Q ◦ P .

It is easy to see that ◦ is associative:

Proposition 4.3. ◦ is associative up to equality of multivalued functions; that is,

for multivalued functions P , Q, R, we have (R ◦Q) ◦ P = R ◦ (Q ◦ P).

However, ◦ is not monotone (in either component) with respect to Weihrauch

reducibility. To illustrate what can go wrong, here are some examples.

1. Take any Q which is not uniformly computable and has a computable in-

stance X0 with a computable solution. (For example, take Q to be RT1
2.)

90

Take P0 to be the identity function, and take P1 to be the identity function

restricted to {X0}. It is easy to see that P0 ≤W P1 and Q ◦ P0 6≤W Q ◦ P1.

2. Take any P which is not uniformly computable. For i = 0, 1, define Pi as

follows: Pi-instances are P -instances, and (i, Y) is a Pi-solution to X if and

only if Y is a P -solution to X. Define Q as follows: instances are pairs (i, Y),

for any set Y and i = 0, 1. For each (0, Y), Y is the only Q-solution, and for

each (1, Y), 0 is the only Q-solution. It is easy to see that P0 ≤W P1 and

Q ◦ P0 6≤W Q ◦ P1.

3. Take any R which is not uniformly computable. Define P as follows: in-

stances are pairs (i,X) for any set X and i = 0, 1. For each (0, X), the

P -solutions are pairs (0, Y), where Y is an R-solution to X, and for each

(1, X), 0 is the only P -solution. Define Q0 to be the identity function re-

stricted to instances (0, Y), for any set Y . Define Q1 to be the identity

function with only one instance 0. It is easy to see that Q0 ≤W Q1 and

Q0 ◦ P 6≤W Q1 ◦ P .

4. Define P as follows: instances are pairs (i,X) for any setX and i = 0, 1. Each

(i,X) has a unique P -solution (0, X). For i = 0, 1, defineQi to be the identity

function restricted to pairs (i,X). We have that Q0 ≤W Q1. But Q0 ◦P has

nonempty domain while Q1 ◦ P has empty domain, so Q0 ◦ P 6≤W Q1 ◦ P .

Having defined ◦, we are now ready to define the compositional product Q ∗P ,

which attempts to capture the power of one invocation of P , followed by one

invocation of Q in series.

Definition 4.4 (Brattka, Gherardi, Marcone [7]; Brattka, Pauly [9]). The compo-

sitional product4 of Weihrauch degrees p and q, written q ∗p, is defined to be the

4Brattka and Pauly [9] give a different definition of q ∗ p and show that it is equal to the

91

Weihrauch degree sup{Q ◦ P : Q ≤W q, P ≤W p}.

That the supremum in the definition exists is in fact a theorem:

Theorem 4.5 (Brattka, Pauly [9, Corollaries 18, 20]). For every p and q, there

are multivalued functions P of degree p and Q of degree q such that Q ◦ P has

degree q ∗ p.

We abuse notation and use Q∗P to refer to the Weihrauch degree q∗p, where

P has degree p and Q has degree q. Since ∗ is monotone in both coordinates, this

is well-defined.

In order to state more facts about the compositional product, we use the notion

of a cylinder due to Brattka and Gherardi [6]. We say that a multivalued function P

is a cylinder if P ≡sW id×P . It is easy to see that if Q ≤W P , then Q ≤sW id×P .

Therefore, if P is a cylinder, then Q ≤W P if and only if Q ≤sW P .

The compositional product has a so-called cylindrical decomposition:

Lemma 4.6 (Brattka, Pauly [9, Lemma 21]). For all P and Q which are cylinders,

there exists a computable function K such that Q∗P ≡W Q◦K ◦P . Furthermore,

Q ◦K ◦ P is a cylinder.

We also have that

Proposition 4.7 (Brattka, Pauly [9, Proposition 32]). ∗ is associative. ∗ is mono-

tone in both components with respect to Weihrauch reducibility.

supremum of all Q ◦ P , where Q ≤W q and P ≤W p are multivalued functions on arbitrary
represented spaces, not just NN. Nevertheless, this definition is equivalent to theirs: suppose f
is a multivalued function from (X, δX) to (Y, δY) and g is a multivalued function from (Y, δY) to
(Z, δZ). Then f ≡W δY ◦ f ◦ δ−1

X , g ≡W δZ ◦ g ◦ δ−1
Y , and g ◦ f ≡W (δZ ◦ g ◦ δ−1

Y) ◦ (δY ◦ f ◦ δ−1
X).

92

In order to prove our main results, we will use the following version of Theo-

rem 4.5 for multiple multivalued functions.

Lemma 4.8. For every Q0, . . . , Qn−1, there are multivalued functions R0, . . . , Rn−1

such that for each i < n, Ri ≤W Qi, and Qn−1 ∗ · · · ∗Q0 ≡W Rn−1 ◦ · · · ◦R0.

Proof. First, by replacing each Qi with id × Qi, we may assume that each Qi is

a cylinder. Next, by induction using Lemma 4.6, we obtain computable functions

K0, . . . , Kn−2 such that

Qn−1 ∗ · · · ∗Q0 ≡W Qn−1 ◦Kn−2 ◦Qn−2 ◦ · · · ◦K0 ◦Q0.

Then define Rn−1 = Qn−1, and for i < n− 1, define Ri = Ki ◦Qi. For each i, it is

easy to see that Ri ≤W Qi.

4.1.3 Reduction games

In this section, we present another formalization of the notion of P being reducible

to multiple instances of Q in series. The process of solving an instance of P using

multiple instances of Q in series can be thought of as a game. Roughly speaking,

Player I starts by posing a P -instance for Player II to solve. At each turn, Player

II has oracle access to all of Player I’s previous plays, and it can either compute

a Q-instance for Player I to solve, or it can win by computing a solution to the

P -instance posed by Player I.

Definition 4.9 (Hirschfeldt, Jockusch [24, Definition 4.1]). Define the game re-

ducing P to Q as follows. In round n = 1, Player I starts by playing a P -instance

X0. Player II responds with either of the following:

93

– an X0-computable Q-instance Y1;

– an X0-computable P -solution to X0;

and an indication of which case it is (for the second case, Player II declares victory.)

In round n > 1, Player I plays a solution Xn−1 to the Q-instance Yn−1. Player

II responds with either of the following:

– a
(⊕

i<nXi

)
-computable Q-instance Yn;

– a
(⊕

i<nXi

)
-computable P -solution to X0;

and an indication of which case it is (for the second case, Player II declares victory.)

Player II wins if it ever declares victory, after which the game ends. Otherwise

Player I wins, which happens either if the game goes on forever, or Player II cannot

move (which can only happen in the first round).

In the game reducing P to Q, even though II can only play sets which are

computable in the join of all of I’s previous plays, II is allowed to employ non-

uniform strategies to decide which set to play. Since we are interested in solving P

uniformly from multiple instances of Q, we will only consider computable strategies

for II, defined as follows.

First we define some notation. If Z is a set and Φ is a Turing functional, then

we define Φ̂Z to be {n : ΦZ(n + 1)↓= 1}. Also, following [24], we define the join

operation for finitely many sets so that we can compute n from
⊕

i<nXi.

Definition 4.10 (Hirschfeldt, Jockusch [24, Definition 4.3]). A Turing functional

Φ is a computable strategy for II for the game reducing P to Q if for all n ≥ 1, if

Z =
⊕

i<nXi is the join of Player I’s first n moves in some run of said game, then

94

– if ΦZ(0)↓= 0, then Φ̂Z is a Z-computable Q-instance;

– otherwise, ΦZ(0)↓= 1 and Φ̂Z is a Z-computable P -solution to X0.

We will frequently define ΦZ by first defining Φ̂Z and then setting ΦZ = ∅_Φ̂Z or

ΦZ = {0}_Φ̂Z .

We say that P ≤gW Q if there is a computable winning strategy for II for the

game reducing P to Q. We say that P ≤ngW Q if there is a computable strategy

for II for the game reducing P to Q such that II always wins in round n + 1 or

before.

In this thesis, we will not discuss ≤gW , only its bounded versions ≤ngW . In order

to understand ≤ngW better, we start by considering ≤1
gW . If P ≤1

gW Q, that means

that there is a strategy Φ for II which wins the game reducing P to Q in round 1

or 2. Those P -instances for which Φ wins in round 1 have uniformly computable

solutions, while all other P -instances can be solved by solving some corresponding

Q-instance (given by Φ). More precisely, Φ provides a Weihrauch reduction from

the restriction of P to those latter instances, to Q. This indicates that ≤1
gW and

≤W are related. We explore their relationship in the following propositions.

First, the above discussion can be formally stated as follows:

Proposition 4.11. The following are equivalent:

– P ≤1
gW Q;

– the domain D of P can be computably partitioned into D0 and D1, such that

P � D0 is uniformly computable and P � D1 ≤W Q;

– there is some uniformly computable R such that P ≤W Q tR.

95

– P ≤W Q t id.

Second, if every P -instance uniformly computes a Q-instance, then we can

upgrade a ≤1
gW -reduction from P to Q to a ≤W -reduction:

Proposition 4.12. P ≤W Q if and only if every P -instance uniformly computes

a Q-instance (that is, dom(Q) is Medvedev reducible to dom(P)) and P ≤1
gW Q.

Proof. (⇒). Fix Γ and ∆ witnessing that P ≤W Q. First, Γ witnesses that

every P -instance uniformly computes a Q-instance. Next, we give a strategy Φ

witnessing that P ≤1
gW Q:

ΦX0 = ∅_ΓX0

ΦX0⊕X1 = {0}_∆X0⊕X1 .

(⇐). Fix a strategy Φ witnessing that P ≤1
gW Q, and fix a functional Ξ which

takes in any P -instance and computes a Q-instance from it. We define functionals

Γ and ∆ witnessing that P ≤W Q:

ΓX0 =

Φ̂X0 if ΦX0(0)↓= 0

ΞX0 otherwise

and

∆X0⊕X1 =

Φ̂X0⊕X1 if ΦX0(0)↓= 0

Φ̂X0 otherwise

.

Most problems that arise directly from mathematical theorems have com-

putable instances. Such problems are called pointed (Brattka, de Brecht, Pauly

[5]).

96

Corollary 4.13. If Q is pointed, then P ≤W Q if and only if P ≤1
gW Q.

It is clear that Q is pointed if and only if id ≤W Q. Hence if Q is not pointed,

then there is a trivial counterexample to the above Corollary: id 6≤W Q yet id ≤1
gW

Q. These results clarify a statement in §4.4 of [24], where they claim that P ≤1
gW Q

if and only if P ≤W Q.

Moving on to n ≥ 1, observe that if P ≤ngW Q, then there is a computable

strategy for II for the game reducing P to Q which wins in round 1 or round n+1.

This is because everytime II declares victory in round k for 1 < k < n+1, II could

instead repeatedly play the Q-instance which it played in round 1, and wait until

round n+ 1 to declare victory. Using this observation, we obtain

Proposition 4.14. P ≤ngW Q if and only if the domain D of P can be computably

partitioned into D0 and D1, such that

– P � D0 is uniformly computable;

– there is a strategy for II witnessing that P � D1 ≤ngW Q which always wins in

round n+ 1.

Proof. (⇒). Fix a strategy Φ witnessing that P ≤ngW Q. For i = 0, 1, define

Di = {X ∈ D : ΦX(0)↓= 1 − i}. D0 and D1 form a computable partition of D.

P � D0 is uniformly computable, as witnessed by Φ̂.

Then, as discussed above, we may modify Φ to give a strategy Ψ which always

wins the game reducing P � D1 to Q in round n+ 1.

(⇐). Fix a computable partition of D into D0 and D1, a functional Ξ which

solves P � D0, and a strategy Φ which always wins the game reducing P � D1 to

Q in round n+ 1.

97

We give a strategy for II which witnesses that P ≤ngW Q. I starts by playing a

P -instance, say X0. II starts by computing whether X0 lies in D0 or D1. If X0 lies

in D0, then II applies Ξ to solve X0 and declares victory. If X0 lies in D1, then II

follows the strategy Φ to solve X0 and declare victory in round n+ 1. Either way,

II declares victory by round n+ 1.

Another useful property about ≤ngW is that it is well-defined on Weihrauch

degrees, which we show below. Since we only defined the compositional product

up to Weihrauch degree, this allows us to make sense of statements such as P ≤ngW

Q ∗Q (such as in Theorem 4.29).

The desired statement follows from the following proposition.

Proposition 4.15. If P ≤mgW Q with a strategy that always wins in round m + 1

and Q ≤ngW R with a strategy that always wins in round n+ 1, then P ≤mngW R with

a strategy that always wins in round mn + 1. If P ≤mgW Q and Q ≤ngW R, then

P ≤mngW R.

Proof. To prove the first statement, fix a strategy Φ for P ≤mgW Q which always

wins in round m + 1, and a strategy Ψ for Q ≤ngW R which always wins in round

n + 1. We describe a strategy for P ≤mngW R which always wins in round mn + 1.

The idea is to play the game G reducing P to R by playing the game G′ reducing

P to Q, interleaved with m many consecutive games G0, . . . , Gm−1, each reducing

Q to R.

Say that in G, I starts by playing a P -instance X0. Then Φ̂(X0) is a Q-instance,

so we simulate a parallel game G′ reducing P to Q where I starts by playing X0

and II responds with Φ̂(X0). In order to come up with a valid response for I in

G′, we simulate yet another parallel game G0 reducing Q to R where I starts by

98

playing Φ̂(X0). Then Ψ̂(Φ̂(X0)) is an R-instance, so II plays Ψ̂(Φ̂(X0)) in G (and

in G0).

Next, in G, I responds with some R-solution X1 to Ψ̂(Φ̂(X0)). We copy that

response to G0. Then Ψ̂(Φ̂(X0)⊕X1) is an R-instance, so II plays it in G (and in

G0).

We continue playing G as above (and simulating G0) until II wins G0 and

provides a Q-solution Z0 to Φ̂(X0). At that point we return to simulating G′: I

can now respond with Z0.

In G′, II responds with the Q-instance Φ̂(X0 ⊕ Z0). In order to simulate I’s

response in G′, we simulate another parallel game G1 reducing Q to R where I

starts by playing Φ̂(X0 ⊕ Z0). Proceed as we did for G0.

Since Φ always wins in round m + 1 and Ψ always wins in round n + 1, the

above strategy always wins in round mn+ 1.

The proof of the second statement is similar.

Corollary 4.16. ≤ngW is well-defined up to Weihrauch degree, i.e., if P1 ≤W P0,

P0 ≤ngW Q0, and Q0 ≤W Q1, then P1 ≤ngW Q1.

Proof. Use Propositions 4.15 and 4.12.

4.1.4 Step product

The step product generalizes the composition of multivalued functions. Intuitively,

Q•ΘP corresponds to invoking P , transforming the result by Θ (allowing Θ access

to the original P -instance), and then invoking Q.

99

Definition 4.17 (Dorais, Dzhafarov, Hirst, Mileti, Shafer [15, section 5.2]). Given

multivalued functions P and Q and a Turing functional Θ, the multivalued function

Q •Θ P is defined as follows. A is an instance of Q •Θ P if

– A is a P -instance;

– for every P -solution B to A, we have that ΘA⊕B is a Q-instance.

In that case, a (Q •Θ P)-solution to A is a pair (B,C) such that

– B is a P -solution to A;

– C is a Q-solution to ΘA⊕B.

Note that Q •Θ P may very well be the empty multivalued function, but that

will not affect any of our results. Note also that if we define Θ to be the projection

A⊕B 7→ B, then Q •Θ P is exactly Q ◦ P .

Many compositions that we encounter in proofs can be thought of as some step

product. However, the step product does not satisfy several of the properties one

would desire of a product, such as monotonicity. First we give a positive result: in

some sense, the step product is monotone in the first coordinate with respect to

Weihrauch reducibility.

Proposition 4.18. Suppose Q0 ≤W Q1, Θ is a functional, and P is a multivalued

function. Then there is a functional Λ such that Q0 •Θ P ≤W Q1 •Λ P .

Proof. We define a functional Λ, and forward and backward functionals witnessing

that Q0 •Θ P ≤W Q1 •Λ P . We will take the forward functional to be the identity.

100

Fix Γ and ∆ witnessing that Q0 ≤W Q1. We define Λ such that every (Q0•ΘP)-

instance X is also a (Q1 •Λ P)-instance: for every P -solution Y to X, Θ(X ⊕ Y)

is a Q0-instance, so Γ(Θ(X ⊕ Y)) is a Q1-instance. Hence we define Λ = Γ ◦Θ.

Next, for every (Q1 •Λ P)-solution (Y, Z) to X, we have that Y is a P -solution

to X and Z is a Q1-solution to Λ(X⊕Y) = Γ(Θ(X⊕Y)). Hence ∆(Θ(X⊕Y)⊕Z)

is a Q0-solution to Θ(X ⊕ Y), so (Y,∆(Θ(X ⊕ Y)⊕Z)) is a (Q0 •Θ P)-solution to

X. Therefore, we define the backward functional by

X ⊕ (Y, Z) 7→ (Y,∆(Θ(X ⊕ Y)⊕ Z)).

This completes the proof that Q0 •Θ P ≤W Q1 •Λ P .

However, the step product is not monotone (in the above sense) in the second

coordinate. (Take Q = RT1
2, P0 = id, P1 = id � {N}. Then P0 ≤W P1 but for all

Λ, Q ◦ P0 6≤W Q •Λ P1. See Example 4.25 for a more sophisticated example.) We

have the following partial positive result:

Proposition 4.19. Suppose P0 ≤W P1, P1 is a cylinder, Θ is a functional, and

Q is a multivalued function. Then there is a functional Λ such that Q •Θ P0 ≤sW

Q •Λ P1.

Proof. Fix Γ and ∆ witnessing that P0 ≤W P1. Fix Φ and Ψ witnessing that

id× P1 ≤sW P1. We define a functional Λ, and forward and backward functionals

witnessing that Q •Θ P0 ≤W Q •Λ P1. We will take the forward functional to be

X 7→ Φ(X,Γ(X)).

We define Λ such that for every (Q•ΘP0)-instance X, Φ(X,Γ(X)) is a (Q•ΛP1)-

instance: first note that Φ(X,Γ(X)) is a P1-instance. Next, for every P1-solution

Z to Φ(X,Γ(X)), Ψ(Z) is an (id×P1)-solution to (X,Γ(X)); that is, (Ψ(Z))0 = X

101

and (Ψ(Z))1 is a P1-solution to Γ(X). It follows that ∆(Ψ(Z)) is a P0-solution to

X. Therefore, Θ(X ⊕∆(Ψ(Z))) is a Q-instance. So we define

Λ(A⊕ Z) = Θ((Ψ(Z))0 ⊕∆(Ψ(Z))).

Now, for every (Q •Λ P1)-solution (Z,W) to Φ(X,Γ(X)), we have that Z is

a P1-solution to Φ(X,Γ(X)) and W is a Q-solution to Λ(Φ(X,Γ(X)) ⊕ Z) =

Θ(X ⊕ ∆(Ψ(Z))). Then (∆(Ψ(Z)),W) is a (Q •Θ P0)-solution to X. Therefore,

we define the backward functional by

(Z,W) 7→ (∆(Ψ(Z)),W).

This completes the proof that Q •Θ P0 ≤sW Q •Λ P1.

Proposition 4.19 suggests that the class of Q •Θ P where P is a cylinder may

be well-behaved (see also Lemma 4.6). Note that any multivalued function P is

Weihrauch equivalent to a cylinder, for example id× P .

4.2 Composing a multivalued function with itself

In this section, we study the relationships between the various products for the

simplest nontrivial case: two invocations of P . We will see in Theorem 4.22 that

the compositional product and the reduction game are equivalent in the case where

P is pointed, and the compositional product and the step product can be made

equivalent if we modify the second factor in the step product.

We begin by showing that ∗ is always at least as strong as •Θ.

Proposition 4.20. For any functional Θ, we have that Q •Θ P ≤W Q ∗ P .

102

Proof. Define the multivalued function P0 as follows. Instances of P0 are instances

of Q •Θ P . (Y, Z) is a solution to the P0-instance Y if Z is a P -solution to Y .

We have P0 ≤W P : take the forward functional to be the identity, and define

the backward functional by mapping Y ⊕ Z to (Y, Z).

Next, define Q0: its instances are pairs (Y, Z) such that Y is a Q •Θ P -instance

and Z is a P -solution to Y . (Z,W) is a solution to the Q0-instance (Y, Z) if W is

a solution to the Q-instance ΘY⊕Z .

We have Q0 ≤W Q: define the forward functional by mapping (Y, Z) to ΘY⊕Z ,

and define the backward functional by mapping (Y, Z)⊕W to (Z,W).

Finally, we see that Q0 ◦ P0 is equal to Q •Θ P , so we are done.

Next, in order to state our first main result, we need the following definition.

Definition 4.21. Given a multivalued function R, define the multivalued function

R as follows. Instances of R are pairs (X, Y), where X is any set and Y is an R-

instance. Z is an R-solution to (X, Y) if Z is an R-solution to Y .

Note that R ≡W R. Note also that R is not a cylinder. Now we prove our first

main theorem relating ∗, reduction games, and •Θ.

Theorem 4.22. The following are equivalent:

1. P ≤W Q ∗Q;

2. there is a strategy for II witnessing that P ≤2
gW Q, which always wins in the

third round, or P has empty domain;

3. every P -instance uniformly computes a Q-instance, and

P ≤2
gW Q;

103

4. there is a functional Θ such that P ≤W Q •Θ Q.

Proof. (1) ⇒ (2). By Theorem 4.5, since P ≤W Q ∗ Q, there are multivalued

functions Q0, Q1 ≤W Q such that P ≤W Q1 ◦ Q0. We define a strategy Φ for II

witnessing that Q1 ◦Q0 ≤2
gW Q, which always wins in the third round. The desired

result then follows from Corollary 4.16. Fix Γ0 and ∆0 witnessing that Q0 ≤W Q.

Fix Γ1 and ∆1 witnessing that Q1 ≤W Q.

I begins the game by playing a (Q1 ◦ Q0)-instance, say X. (If the domain of

Q1 ◦Q0 is empty, then the domain of P is empty and we are done.) In particular,

note that X is a Q0-instance. II responds by playing the Q-instance Γ0(X).

I then plays a Q-solution to Γ0(X), say Z. Then ∆0(X⊕Z) is a Q0-solution to

X. Since X is a (Q1 ◦Q0)-instance, ∆0(X ⊕Z) must be a Q1-instance. Therefore,

II responds with the Q-instance Γ1(∆0(X ⊕ Z)).

Finally, I plays a Q-solution W to Γ1(∆0(X ⊕ Z)). Then

∆1(∆0(X ⊕ Z) ⊕W) is a Q1-solution to ∆0(X ⊕ Z), which implies that it is a

(Q1◦Q0)-solution to X. II declares victory and responds with ∆1(∆0(X⊕Z)⊕W).

(2) ⇒ (3). If P has empty domain, (3) vacuously holds. Otherwise, fix a strat-

egy Φ for II witnessing that P ≤2
gW Q which always wins in the third round. For

every P -instance X, Φ̂X is always a Q-instance (because Φ does not win in the

first round).

(3) ⇒ (4). Fix some Φ witnessing that P ≤2
gW Q, and fix some Ξ which

computes Q-instances from P -instances. First define a forward functional for

104

P ≤W Q •Θ Q:

ΓX =

(X, Φ̂X) if ΦX(0)↓= 0

(X,ΞX) otherwise

.

Then define

Θ(X,Y)⊕Z =

Φ̂X⊕Z if ΦX(0)↓= 0 and ΦX⊕Z(0)↓= 0

ΞX otherwise

.

Observe that for every P -instance X, ΓX is a Q-instance, and for every Q-solution

Z to ΓX , ΘΓX⊕Z is a Q-instance. Therefore ΓX is a Q •Θ Q-instance.

Finally, define a backward functional

∆X⊕(Z,W) =

Φ̂X⊕Z⊕W if ΦX(0)↓= 0 and ΦX⊕Z(0)↓= 0

Φ̂X⊕Z if ΦX(0)↓= 0 and ΦX⊕Z(0)↓= 1

Φ̂X if ΦX(0)↓= 1

.

(4) ⇒ (1). We have that

P ≤W Q •Θ Q

≤W Q ∗Q Proposition 4.20

≤W Q ∗Q Q ≤W Q and definition of ∗ .

We note that a statement similar to (2) ⇒ (4) was proven in Remark 4.23

in [24]. (They use Q̂ := id × Q instead of Q, but the same result holds: use

Proposition 4.19 and the fact that Q̂ is a cylinder.) However, they (implicitly)

assume that if P ≤2
gW Q, then (2) holds. This is true if Q is pointed, but false

otherwise (see Proposition 4.27).

105

Let us now study corollaries of Theorem 4.22. First, we obtain a simple real-

ization of the compositional product (cf. Theorem 4.5):

Corollary 4.23. For all Q, there is a functional Θ such that Q ∗Q ≡W Q •Θ Q.

Proof. (1) ⇔ (4) in Theorem 4.22.

If Q is a cylinder, we note that a nicer result follows from the cylindrical

decomposition of Brattka and Pauly (Lemma 4.6):

Corollary 4.24. If Q is a cylinder, then there is a functional Θ such that Q∗Q ≡W

Q •Θ Q.

Proof. By the cylindrical decomposition lemma, there is some uniformly com-

putable K such that Q ∗ Q ≡W Q ◦ K ◦ Q. Taking Θ : A ⊕ B 7→ K(B), we

get Q ∗Q ≡W Q •Θ Q.

The above corollary cannot hold for all Q in general:

Example 4.25. We construct Q and Θ such that for all Λ, Q •Θ Q 6≤W Q •Λ Q

(and hence Q ∗ Q 6≤W Q •Λ Q for all Λ). We take Θ to be the identity. Fix four

sets A, B, C and D such that no three of these sets compute the other. (Such sets

can be obtained from a Cohen generic.) Define Q as follows: the instance B has a

unique solution C, and the instance ((A,B), C) has a unique solution D. Observe

that (A,B) is a (Q •id Q)-instance with unique solution (C,D).

Suppose towards a contradiction that Λ is such that Q •id Q ≤W Q •Λ Q. Fix

Γ and ∆ witnessing this. We show that they fail to solve the (Q •id Q)-instance

(A,B). First, Γ(A ⊕ B) must be a Q-instance. The only Q-instance computable

in A ⊕ B is B, which has a unique Q-solution C. Next, Λ(B ⊕ C) must be a

106

Q-instance. The only Q-instance computable in B ⊕ C is B, which has a unique

Q-solution C. Hence the unique (Q •Λ Q)-solution to B must be (C,C). Finally,

∆((A⊕ B)⊕ (C ⊕ C)) must be the unique (Q •id Q)-solution to (A,B), which is

(C,D). But A⊕B ⊕ C does not compute D, contradiction.

Another application of Theorem 4.22 is to compare •, ∗, and ≤2
gW on the same

footing. The following suprema are taken with respect to Weihrauch reducibility.

Theorem 4.26. For all Q, supΛ Q •Λ Q exists and for all Θ,

Q •Θ Q ≤W sup
Λ
Q •Λ Q ≡W Q ∗Q ≤2

gW Q.

Proof. First, by (1)⇒ (4) in Theorem 4.22, there is Λ such that Q∗Q ≤W Q•ΛQ.

By (4)⇒ (1) in Theorem 4.22, Q•ΛQ ≤ Q∗Q for all Λ. Hence supΛQ•ΛQ exists

and is equal to Q ∗Q.

Next, by Proposition 4.20, Q •Θ Q ≤W Q ∗Q.

Finally, by (1) ⇒ (2) in Theorem 4.22, Q ∗Q ≤2
gW Q.

We do not know whether supΘ Q •Θ Q or sup{P : P ≤2
gW Q} exist in general.

If Q is pointed, we have some partial results.

Proposition 4.27. If Q is pointed, then sup{P : P ≤2
gW Q} exists and is equal to

Q ∗Q. If Q is not pointed, then there is some P ≤2
gW Q (in fact, P ≤1

gW Q) such

that P 6≤W Q ∗Q.

Proof. Suppose that Q has a computable instance. If we fix a computable Q-

instance A, then for every multivalued function P , every P -instance uniformly

107

computes A. By (1) ⇔ (3) in Theorem 4.22, sup{P : P ≤2
gW Q} exists and is

equal to Q ∗Q.

Suppose that Q has no computable instance. Consider P = id. We have

that P ≤1
gW Q, yet P -instances do not uniformly compute Q-instances. By the

contrapositive of (1) ⇒ (3) in Theorem 4.22, P 6≤W Q ∗Q.

Corollary 4.28. If Q is pointed, then

sup
Λ
Q •Λ Q ≡W Q ∗Q ≡W sup{P : P ≤2

gW Q}.

Proposition 4.27 inspired us to consider ≤1
gW instead of ≤W . That gives us a

cleaner analog of Theorem 4.22:

Theorem 4.29. The following are equivalent:

1. P ≤1
gW Q ∗Q;

2. P ≤2
gW Q;

3. there is a functional Θ such that P ≤1
gW Q •Θ Q.

Proof. (1) ⇒ (2). Let D be the domain of P . By Proposition 4.11, fix a computable

partition D0 and D1 of D such that P � D0 is uniformly computable and P �

D1 ≤W Q ∗Q. By (1) ⇒ (2) in Theorem 4.22, there is a strategy for II witnessing

that P � D1 ≤2
gW Q, which always wins in the third round. By Proposition 4.14,

P ≤2
gW Q as desired.

(2) ⇒ (3). Let D be the domain of P . By Proposition 4.14, fix a computable

partition D0 and D1 of D such that P � D0 is uniformly computable, and there

exists a strategy Φ witnessing that P � D1 ≤2
gW Q which always wins in the third

108

round. By (2)⇒ (4) in Theorem 4.22, there is some Θ such that P � D1 ≤W Q•ΘQ.

By Proposition 4.11, P ≤1
gW Q •Θ Q as desired.

(3) ⇒ (1). By Theorem 4.26, Q •Θ Q ≤W Q ∗ Q. The desired result follows

from Corollary 4.16.

4.3 Finite compositions of arbitrary multivalued functions

Many of the results in Section 4.2 can be easily generalized to finite compositions of

a multivalued function with itself. In this section, we generalize some of our results

to the finite composition of (possibly) different multivalued functions. We show

that such a composition can be thought of in terms of the following generalized

reduction game.

Definition 4.30. For multivalued functions P , Q0, . . . , Qn−1, define the game

reducing P to Qn−1, . . . , Q0 as follows. In round 1, Player I starts by playing a

P -instance X0. Player II responds with either of the following:

– an X0-computable P -solution to X0;

– an X0-computable Q0-instance Y1;

and an indication of which case it is (for the first case, II declares victory.)

Subsequently, for k ≥ 1, in round k + 1, Player I plays a solution Xk to the

Qk−1-instance Yk. Player II responds with either of the following:

– a
(⊕

i<k+1Xi

)
-computable P -solution to X0;

– if k < n, a
(⊕

i<k+1Xi

)
-computable Qk-instance Yk+1;

109

and an indication of which case it is (for the first case, II declares victory.)

Player II wins if it declares victory on round n + 1 or before, after which the

game ends. Otherwise Player I wins, which happens exactly if Player II has no

possible move in some round. (If the game reaches round n+ 1, the only possible

move for II is to declare victory, if it can.)

Note. In the game reducing P to Q, if II was able to make a move in round 1,

then it can repeat said move for all subsequent rounds. This is not always possible

for the game reducing P to Qn−1, . . . , Q0.

Definition 4.31. A Turing functional Φ is a computable strategy for II for the

game reducing P to Qn−1, . . . , Q0 if for all k ≤ n, if Z =
⊕

i<k+1Xi is the join of

Player I’s first k + 1 moves in some run of said game, then ΦZ = V _Y , where

– if V = {0}, then Y is a Z-computable solution to the P -instance X0 (this

must happen if k = n);

– otherwise, V = ∅ and Y is a Z-computable Qk-instance.

We define Φ̂ and the join operation as before.

We say that P ≤(n)
gW Qn−1, . . . , Q0 if there is a computable winning strategy for

II for the game reducing P to Qn−1, . . . , Q0.

Unlike ≤ngW , ≤(n)
gW does not seem to admit a nice characterization like that in

Proposition 4.14. That is, assuming that P ≤(n)
gW Qn−1, . . . , Q0, one may not be

able to divide the domain of P into finitely many sets, on each of which II has

a strategy which always wins in a certain number of rounds. Take for example a

run where a strategy Φ wins the game reducing P to Qn−1, . . . , Q0 in some round

110

1 < k < n+ 1. We may not be able to delay Φ’s victory because there may not be

any Qk+1-instance which is computable in I’s plays. Even if there is such a Qk+1-

instance, we may not be able to compute it uniformly from I’s plays. Whether

we can do so may depend on I’s choice of solutions to the instances played by II.

Therefore, we do not have an analog of Theorem 4.29 in this context.

Next, we prove an analog of Corollary 4.16. We could prove an analog of

Proposition 4.15 and use that to derive an analog of Corollary 4.16, but that

would be messy.

Proposition 4.32. Suppose P0 ≤W P1 and Qi ≤W Ri for each i < n. If P1 ≤(n)
gW

Qn−1, . . . , Q0, then P0 ≤(n)
gW Rn−1, . . . , R0. Moreover, if P1 ≤(n)

gW Qn−1, . . . , Q0 with

a strategy that always wins in the last round, then P0 ≤(n)
gW Rn−1, . . . , R0 with a

strategy that always wins in the last round as well.

Proof. Fix Γ and ∆ witnessing that P0 ≤W P1, and for each i < n, fix Γi and ∆i

witnessing that Qi ≤W Ri. Fix a strategy Φ witnessing that P1 ≤(n)
gW Qn−1, . . . , Q0.

We describe a strategy Ψ witnessing that P0 ≤(n)
gW Rn−1, . . . , R0, such that if Φ

always wins in round n+ 1, then so does Ψ. The idea is as follows: while we play

the game G0 reducing P0 to Rn−1, . . . , R0, we play a parallel game G1 reducing P1

to Qn−1, . . . , Q0, where II follows the strategy Φ.

In the game G0, I starts by playing a P0-instance X0. Then Γ(X0) is a P1-

instance, so we may start the game G1 with the P1-instance Γ(X0) and with II

following the strategy Φ. In G1, II either plays a P1-solution to Γ(X0) and declares

victory, or a Q0-instance.

If II plays a P1-solution to Γ(X0), then we may apply ∆ to obtain a P0-solution

to X0. II can then play this set in G0 and declare victory.

111

On the other hand, if II plays a Q0-instance, then we may apply Γ0 to obtain

an R0-instance. II can then play this set in G0, continuing the game.

In G0 (if II has not already won), I responds by playing an R0-solution to II’s

previous play in G0. Then we may apply ∆0 to obtain a Q0-solution to II’s previous

play in G1. We make I play this set in G1.

Next, in G1, II (following Φ) either plays a P1-solution to Γ(X0) and declares

victory, or plays a Q1-instance. The rest of the game proceeds as above.

We have described our strategy for the first two rounds of G0. We omit the

formal construction and verification.

Our final main theorem (analogous to Theorem 4.22) is as follows:

Theorem 4.33. For multivalued functions P,Qn−1, . . . , Q0, the following are equiv-

alent:

1. P ≤W Qn−1 ∗ · · · ∗Q0;

2. there is a strategy for II witnessing that P ≤(n)
gW Qn−1, . . . , Q0 which always

wins in round n+ 1, or P has empty domain;

3. there are functionals Θ0, . . . ,Θn−2 such that

P ≤W Qn−1 •Θn−2 (Qn−2 •Θn−3 (· · · (Q1 •Θ0 Q0))).

Before we give the proof, we state some observations. First, if all Qi are pointed,

then the extra condition in (2) is unnecessary (cf. the observation before Proposi-

tion 4.14):

Corollary 4.34. For multivalued functions P,Qn−1, . . . , Q0 such that P has nonempty

112

domain and all Qi are pointed, P ≤W Qn−1 ∗ · · · ∗ Q0 if and only if P ≤(n)
gW

Qn−1, . . . , Q0.

Proof. (⇒) follows from (1) ⇒ (2) in Theorem 4.33. For (⇐), fix computable

instances of each Qi. Then any strategy witnessing that P ≤(n)
gW Qn−1, . . . , Q0 can

be padded to obtain a strategy which always wins in the last round: simply play

the appropriate computable instances and ignore the solutions. Then apply (2)⇒

(1) in Theorem 4.33.

Unlike Proposition 4.27, even if for all P , we have P ≤W Qn−1 ∗ · · · ∗ Q0 if

and only if P ≤(n)
gW Qn−1, . . . , Q0, it does not follow that all Qi have computable

instances. (See the comments before Proposition 4.32.)

Next, note that strategies in the game reducing P to Qn−1, . . . , Q0 are allowed

to refer to each Qi-instance played thus far, while •Θ only allows reference to the

Qi-instance just played. Therefore in (3), we use Qi instead of Qi. The extra

coordinate in a Qi-instance can be used to encode every Qj-instance played thus

far. For the last factor (i = n − 1), we can get away with Qn−1 instead of Qn−1

(as is the case in Theorem 4.22). Nevertheless, we state the theorem with Qn−1

because this obviates the need to consider an extra case in the proof of (2) ⇒ (3).

We now prove Theorem 4.33:

Proof. (1) ⇒ (2). By Lemma 4.8, since P ≤W Qn−1∗· · ·∗Q0, there are multivalued

functions R0, . . . , Rn−1 such that Ri ≤W Qi for all i < n, and P ≤W Rn−1◦· · ·◦R0.

By Proposition 4.32, it suffices to give a computable strategy for II which always

wins the game reducing Rn−1 ◦ · · · ◦ R0 to Qn−1, . . . , Q0 in round n + 1. For each

i < n, fix Γi and ∆i witnessing that Ri ≤W Qi.

113

In order to illustrate the construction, we describe the strategy for the first three

rounds before giving the general description. I starts by playing an (Rn−1◦· · ·◦R0)-

instance X0. (If Rn−1 ◦ · · · ◦ R0 has empty domain, then so does P and we are

done.) II has to respond with an X0-computable Q0-instance. Note that X0 is in

particular an R0-instance, so II can play the Q0-instance Γ0(X0).

Next, I plays a Q0-solution X1 to Γ0(X0). II has to respond with an (X0⊕X1)-

computable Q1-instance. Since X0 is an (Rn−1 ◦ · · · ◦R0)-instance, any R0-solution

to X0 is itself an (Rn−1◦· · ·◦R1)-instance, which is in particular an R1-instance. We

can obtain an R0-solution to X0 by applying ∆0 to X0 ⊕X1. As explained above,

that gives us an R1-instance, to which we can apply Γ1 to obtain a Q1-instance.

Therefore II plays Γ1(∆0(X0 ⊕X1)).

In the third round, I plays a Q1-solution X2 to Γ1(∆0(X0 ⊕ X1)). II has to

respond with an (X0 ⊕X1 ⊕X2)-computable Q2-instance.

Since ∆0(X0⊕X1) is an (Rn−1 ◦ · · · ◦R1)-instance, any R1-solution to ∆0(X0⊕

X1) is itself an (Rn−1 ◦· · ·◦R2)-instance, which is in particular an R2-instance. We

can obtain an R1-solution to ∆0(X0 ⊕X1) by applying ∆1 to ∆0(X0 ⊕X1)⊕X2.

That gives us an R2-instance, to which we can apply Γ2 to obtain a Q2-instance.

Therefore II plays Γ2(∆1(∆0(X0 ⊕X1)⊕X2)).

We have described our strategy for the first three rounds. Formally, define the

auxiliary functional Ξ by recursion:

Ξ(X0) = X0

Ξ

(⊕
j<k+1

Xj

)
= ∆k−1

(
Ξ

(⊕
j<k

Xj

)
⊕Xk

)
if k ≤ n.

For example, Ξ(X0 ⊕X1) = ∆0(X0 ⊕X1). Then we can define our strategy as

114

follows. Suppose that in round k, I plays Xk−1. In round k < n + 1, II plays the

Qk−1-instance Γk−1(Ξ(
⊕

j<kXj)). In round n + 1, II declares victory and plays

Ξ(
⊕

j<n+1Xj).

Verification. We show by simultaneous induction on k that:

(i) for every 1 ≤ k < n+ 1, Ξ(
⊕

j<kXj) is an (Rn−1 ◦ · · · ◦Rk−1)-instance;

(ii) for every 1 ≤ k ≤ n+ 1, II’s move in round k is legal;

(iii) for every 1 < k ≤ n+ 1, Ξ(
⊕

j<kXj) is an Rk−2-solution to the (Rn−1 ◦ · · · ◦

Rk−2)-instance Ξ(
⊕

j<k−1Xj).

Base case. By definition of Ξ and the game, (i) holds for k = 1.

Inductive step 1. Suppose (i) holds for some 1 ≤ k < n+ 1. Then Ξ(
⊕

j<kXj)

is in particular an Rk−1-instance, so by choice of Γk−1, II’s move in round k is a

Qk−1-instance. Also, Γk−1 ◦ Ξ is computable. Therefore (ii) holds for k.

Inductive step 2. Suppose (i) and (ii) hold for some 1 ≤ k < n + 1. Then in

round k + 1, I plays a solution Xk to II’s move in round k. By our choice of ∆k−1

and the definition of Ξ, (iii) holds for k + 1.

Inductive step 3. Suppose (iii) holds for some 1 < k < n + 1. By definition of

◦, (i) is true for k as well.

The base case and inductive steps prove (i), (ii), and (iii) for the desired values

of k, except (ii) for k = n+ 1. We prove that as follows. Since (iii) holds for every

1 < k ≤ n + 1, by definition of ◦, Ξ(
⊕

j<n+1 Xj) is a (Rn−1 ◦ · · · ◦ R0)-solution to

X0. Therefore Ξ(
⊕

j<n+1Xj) is a winning move for II in round n + 1. We have

defined a strategy for II which always wins the game reducing P to Qn−1, . . . , Q0

115

in round n+ 1.

(2) ⇒ (3). If P has empty domain, (3) vacuously holds. Otherwise, fix a strat-

egy Φ for II which always wins the game reducing P to Qn−1, . . . , Q0 in round n+1.

We have to define Θ0, . . . ,Θn−2 and forward and backward functionals witnessing

that P ≤W Qn−1 •Θn−2 (Qn−2 •Θn−3 (· · · (Q1 •Θ0 Q0))).

Suppose we are given a P -instance X0, from which we need to compute a

Qn−1 •Θn−2 (Qn−2 •Θn−3 (· · · (Q1 •Θ0 Q0)))-instance. Regardless of our definitions of

Θ0, . . . ,Θn−2, such a set must be a Q0-instance. As a starting point, we can obtain

a Q0-instance by applying Φ̂ to X0. Also, we want to include X0 in the Q0-instance

so that we can use it in the future. Hence, we define the forward functional Γ to

send X0 to the Q0-instance (X0, Φ̂(X0)).

Next, we need to define Θ0 so that for every Q0-solution X1 to (X0, Φ̂(X0)),

Θ0((X0, Φ̂(X0))⊕X1) is a Q1-instance. Since X1 is a Q0-solution to Φ̂(X0), we can

obtain a Q1-instance by applying Φ̂ to X0 ⊕X1. Also, we want to include X0 and

X1 in the Q1-instance so that we can use them in the future. Hence, we define Θ0

to output the Q1-instance (X0 ⊕X1, Φ̂(X0 ⊕X1)).

In general, for 0 ≤ m ≤ n− 2, define Θm by

(X0, Φ̂(X0))⊕ (((X1, X2), . . .), Xm+1) 7→

(⊕
i<m+2

Xi, Φ̂

(⊕
i<m+2

Xi

))
.

Finally, we want to solve X0 using a Qn−1 •Θn−2 (· · · (Q1 •Θ0 Q0))-solution to

(X0, Φ̂(X0)). Such a solution has the form (((X1, X2), . . .), Xn). We will show in

the verification that there is a run of the game reducing P to Qn−1, . . . , Q0 where

II follows the strategy Φ and at round m, I plays Xm−1. Since Φ always wins in

round n+ 1, Φ̂(
⊕

i<n+1Xi) must be a P -solution to X0. Therefore, we define the

116

backward functional ∆ by mapping X0 ⊕ (((X1, X2), . . .), Xn) to Φ̂(
⊕

i<n+1 Xi).

Verification. We show that P ≤W Qn−1 •Θn−2 (Qn−2 •Θn−3 (· · · (Q1 •Θ0 Q0)))

via Γ and ∆. Fix a P -instance X0. We show by simultaneous induction on k that

(i) for each 0 ≤ k ≤ n− 1, Γ(X0) is a Qk •Θk−1
(· · · (Q1 •Θ0 Q0))-instance;

(ii) for each 0 ≤ k ≤ n−1, if (((X1, X2), . . .), Xk+1) is a Qk•Θk−1
(· · · (Q1•Θ0Q0))-

solution to Γ(X0), then there is a partial run of the game reducing P to

Qn−1, . . . , Q0 where II follows the strategy Φ and at round 1 ≤ m ≤ k + 2, I

plays Xm−1.

Base case. We show that (i) holds for k = 0. Since X0 is a P -instance and

Φ always wins in round n + 1, it follows that Φ̂(X0) is a Q0-instance. Therefore

Γ(X0) = (X0, Φ̂(X0)) is a Q0-instance.

Inductive step 1. Assuming that for some 0 ≤ k ≤ n − 1, we have that (ii)

holds for all 0 ≤ m < k and (i) holds for k, we show that (ii) holds for k. Let

(((X1, X2), . . .), Xk+1) be a Qk •Θk−1
(· · · (Q1 •Θ0 Q0))-solution to Γ(X0). We start

by showing that there is a partial run where II follows the strategy Φ and at round

1 ≤ m ≤ k + 1, I plays Xm−1.

If k = 0, then I starts by playing the P -instance X0. If k > 0, by definition

of •, (((X1, X2), . . .), Xk) is a Qk−1 •Θk−2
(· · · (Q1 •Θ0 Q0))-solution to Γ(X0). By

assumption, (ii) holds for k − 1, so there is a partial run where II follows the

strategy Φ and at round 1 ≤ m ≤ k + 1, I plays Xm−1.

Now, we extend said partial run. By choice of (((X1, X2), . . .), Xk+1) and def-

inition of •, Xk+1 is a Qk-solution to Θk−1(Γ(X0) ⊕ (((X1, X2), . . .), Xk)), which

is defined to be (
⊕

i<k+1Xi, Φ̂(
⊕

i<k+1Xi)). Therefore Xk+1 is a Qk-solution to

117

Φ̂(
⊕

i<k+1Xi), and so we may extend the aforementioned run by making I play

Xk+1. This proves that (ii) holds for k.

Inductive step 2. Assuming that (i) and (ii) hold for some 0 ≤ k < n − 1,

we show that (i) holds for k + 1. Since (i) holds for k, it remains to show

that if (((X1, X2), . . .), Xk+1) is a Qk •Θk−1
(· · · (Q1 •Θ0 Q0))-solution to Γ(X0),

then Θk(Γ(X0)⊕ (((X1, X2), . . .), Xk+1)) = (
⊕

i<k+2Xi, Φ̂(
⊕

i<k+2 Xi)) is a Qk+1-

instance.

Indeed, let us apply (ii) for k to (((X1, X2), . . .), Xk+1). Since Φ always wins

in round n+ 1 and k + 2 < n+ 1, we have that Φ̂(
⊕

i<k+2Xi) is a Qk+1-instance.

We have shown that (i) holds for k + 1, completing the proof of inductive step 2.

Applying the above base case and inductive steps, we may deduce (i) and (ii)

for k = n − 1. To complete the proof, we show that if (((X1, X2), . . .), Xn) is a

Qn−1•Θn−2 (· · · (Q1•Θ0Q0))-solution to Γ(X0), then ∆(X0⊕(((X1, X2), . . .), Xn)) =

Φ̂(
⊕

i<n+1 Xi) is a P -solution to X0.

By (ii) for k = n− 1, there is a partial run where II follows the strategy Φ and

at round 1 ≤ m ≤ n+1, I plays Xm−1. Since Φ wins in round n+1, Φ̂(
⊕

i<n+1 Xi)

is a P -solution to X0 as desired.

(3) ⇒ (1). Induction on n using Proposition 4.20.

4.4 The ≡1
gW -lattice

Recall from Proposition 4.11 that P ≤1
gW Q if and only if P ≤W Qt id. It follows

that ≤1
gW is reflexive and transitive, so we can define the associated notion of ≡1

gW

118

and ≡1
gW -degrees. As a notion of reduction between problems, we find ≤1

gW more

intuitive than ≤W . This is because in order to show that P ≤W Q, one is obliged

to compute a Q-instance from every P -instance, even if one could already compute

a solution to said P -instance. See also Theorem 4.29.

Using Proposition 4.11, it is easy to show that the ≡1
gW -degrees form a distribu-

tive lattice with the usual join and meet operations. In fact, Pauly5 has pointed

out that the ≡1
gW -lattice is isomorphic to the pointed Weihrauch lattice, which was

studied by Higuchi and Pauly [23]. It is easy to show that the pointed Weihrauch

degrees (under ≤W) form a lattice under the usual join and meet operations.

Proposition 4.35 (Pauly). The ≡1
gW -lattice and the pointed Weihrauch lattice are

isomorphic.

Proof. By Proposition 4.11, P ≤1
gW Q if and only if P ≤W Q t id. Also, it is easy

to see that P ≤W Q t id if and only if P t id ≤W Q t id. Next, note that if P

is pointed, then P t id ≡W P . So P 7→ P t id is an isomorphism between the

≡1
gW -degrees and the pointed Weihrauch degrees. Hence P 7→ P t id is in fact a

lattice isomorphism.

5Arno Pauly, personal communication.

119

CHAPTER 5

PARALLEL PRODUCTS OF THE INFINITE PIGEONHOLE

PRINCIPLE

This chapter is part of joint work with Dzhafarov, Hirschfeldt, Patey, and Pauly

[17], which will appear in Computability.

In this chapter, we investigate the infinite pigeonhole principle for different

numbers of colors, and how these problems behave under Weihrauch reducibility

with respect to parallel products. Let RT1
k denote the following problem: given

a coloring c : N → k, produce an infinite c-homogeneous set. A motivating toy

example is the fact that RT1
2×RT1

2 ≤W RT1
4. More generally, it is easy to see that

for all n ≥ 1 and k0, . . . , kn ≥ 2,

n∏
m=0

RT1
km ≤sW RT1∏n

m=0 km
.

We show below that the right-hand side is optimal. Our results extend a number

of similar investigations, including by Dorais, Dzhafarov, Hirst, Mileti and Shafer

[15], Hirschfeldt and Jockusch [24], and Patey [34].

In the sequel, we will regard RT1
k as the problem whose instances are colorings

c : N → k and whose solutions are colors which appear infinitely often in c. Note

that this formulation of RT1
k is Weihrauch equivalent to the above formulation.

5.1 The product coloring is optimal

We begin with the following technical lemma:

Lemma 5.1. Suppose that P ≤W Q and they satisfy the following properties:

120

– P has finite tolerance, i.e., there is some Θ such that if C0 and C1 are P -

instances, C0(x) = C1(x) for all x above some m, and S0 is a P -solution to

C0, then Θ(S0 ⊕m) is a P -solution to C1;

– any finite modification of a P -instance is still a P -instance;

– solutions of all instances of P and Q lie in some fixed finite set.

Then P ≤sW Q.

Proof. Fix functionals Φ and Ψ witnessing that P ≤W Q. Since solutions of all

instances of P lie in some fixed finite set, we may assume that for each P -instance C

and each s which is a Q-solution to Φ(C), Ψ(C⊕s) outputs a number which codes

a P -solution to C. Fix a functional Θ witnessing that P has finite tolerance. Fix

a finite solution set S for Q. We define functionals which witness that P ≤sW Q.

First, we construct a finite initial segment τ of a P -instance C which decides

(in the sense of Cohen 1-genericity) for each s ∈ S whether Ψ(C ⊕ s) converges.

Since S is finite, such τ exists.

We define Φ′ by Φ′(C) = Φ(C ′), where C ′ is obtained from C by replacing its

initial segment of length |τ | by τ itself. By our assumption on P , C ′ is still a

P -instance.

We define Ψ′ by Ψ′(s) = Θ(Ψ(τ ⊕ s) ⊕ |τ |). We show that Φ′ and Ψ′ witness

that P ≤sW Q.

Take any P -instance C. Since C ′ is a P -instance, Φ′(C) = Φ(C ′) is a Q-

instance. Let s be any Q-solution to Φ(C ′). Then Ψ(C ′⊕ s) is a P -solution to C ′.

In particular, Ψ(C ′ ⊕ s) converges. Since C ′ extends τ , by our construction of τ ,

121

we have that Ψ(τ ⊕ s) ↓= Ψ(C ′ ⊕ s) ↓. Hence Ψ(τ ⊕ s) is a P -solution to C ′. We

conclude that Ψ′(s) = Θ(Ψ(τ ⊕ s)⊕ |τ |) is a P -solution to C.

It is easy to see that RT1
k (and finite parallel products of RT1

k) satisfy the

properties for P and Q in Lemma 5.1. Therefore

Corollary 5.2. If
∏n

m=0 RT
1
km ≤W RT1

N , then
∏n

m=0 RT
1
km ≤sW RT1

N .

Optimality then follows from a counting argument:

Proposition 5.3. If
∏n

m=0 RT
1
kn ≤sW RT1

N , then N ≥
∏n

m=0 km.

Proof. Fix Φ and Ψ witnessing that
∏n

m=0 RT
1
km ≤sW RT1

N . We show that for each

(a0, . . . , an) ∈
∏n

m=0 km, there is some c < N such that Ψ(c) = (a0, . . . , an).

Consider the tuple of constant colorings (aω0 , . . . , a
ω
n). This is a

∏n
m=0 RT

1
km-

instance, so Φ(aω0 , . . . , a
ω
n) is an RT1

N -instance with some solution c. Ψ(c) must be

a solution to (aω0 , . . . , a
ω
n), so Ψ(c) = (a0, . . . , an).

Corollary 5.4. If
∏n

m=0 RT
1
kn ≤W RT1

N , then N ≥
∏n

m=0 km.

Therefore the right-hand side of
∏n

m=0 RT
1
km ≤sW RT1∏n

m=0 km
is optimal, with

regards to both ≤W and ≤sW .

5.2 How many colors can a product of colorings handle?

In contrast to Corollary 5.4, we will see that RT1∏n
m=0 km

6≤W
∏n

m=0 RT
1
km for all

n ≥ 1 and k0, . . . , kn ≥ 2 (Proposition 5.13). In the rest of this section, we attempt

122

to find the smallest N such that

RT1
N 6≤W

n∏
m=0

RT1
km .

We start by giving a lower bound for N :

Proposition 5.5. For all n ≥ 1 and k0, . . . , kn ≥ 2,

RT1
1+

∑n
m=0(km−1) ≤sW

n∏
m=0

RT1
km .

Proof. Suppose we are given an instance c of RT1
1+

∑n
m=0(km−1). For 0 ≤ m ≤ n, we

define colorings

dm : N→

{
m−1∑
i=0

(ki − 1), . . . ,
m∑
i=0

(ki − 1)

}
as follows. Note that for each m, dm will be an km-coloring.

For each m and x, we define dm(x) as follows. First check which color among

0, . . . ,
∑m

i=0(ki − 1) appears most often among c(0), . . . , c(x). (Resolve ties by

picking the <N-least color.) If said color is among 0, . . . ,
∑m−1

i=0 (ki−1), let dm(x) =∑m−1
i=0 (ki − 1). Otherwise, let dm(x) be said color.

Now, if for each m, the color am appears infinitely often in dm, we want to

compute a color which appears infinitely often in c. Start by considering an. If

an 6=
∑n−1

i=0 (ki − 1), then for infinitely many x, an appears most often among

c(0), . . . , c(x). In particular, an appears infinitely often in c.

On the other hand, if an =
∑n−1

i=0 (ki − 1), then for infinitely many x, some

color among 0, . . . ,
∑n−1

i=0 (ki − 1) appears most often among c(0), . . . , c(x). By

the pigeonhole principle, some color among 0, . . . ,
∑n−1

i=0 (ki − 1) appears infinitely

often in c. We then proceed to consider an−1 and repeat the above case division.

Eventually we either reach some am which is not equal to
∑m−1

i=0 (ki − 1), in which

123

case am appears infinitely often in c, or we reach a0 = 0, in which case 0 appears

infinitely often in c.

In order to obtain upper bounds for N , we begin by restricting the reductions

that we need to diagonalize against. Firstly, by Lemma 5.1, we need only handle

strong Weihrauch reductions:

Proposition 5.6. If RT1
N ≤W

∏n
m=0 RT

1
km, then RT1

N ≤sW
∏n

m=0 RT
1
km.

We can impose a further restriction:

Proposition 5.7. Suppose RT1
N ≤sW

∏n
m=0 RT

1
km via some forward functionals

Φm, 0 ≤ m ≤ n, where Φm computes the mth coloring in the
∏n

m=0 RT
1
km-instance,

and a backward functional Ψ. Then for any c < N , there exists (a0, . . . , an) where

each am < km and Ψ(a0, . . . , an) = c.

Proof. Given c < N , consider the coloring C which is constantly c. Then ΦC
0 , . . . ,Φ

C
n

is a
∏n

m=0 RT
1
km-instance. Hence it has some solution (a0, . . . , an). The only solu-

tion to C is c, so Ψ(a0, . . . , an) must be c.

Combining the previous two propositions, we obtain

Corollary 5.8. Suppose RT1
N ≤W

∏n
m=0 RT

1
km. Then RT1

N ≤sW
∏n

m=0 RT
1
km, as

witnessed by some Φm, 0 ≤ m ≤ n and Ψ where Ψ :
∏n

m=0 km → N is a partial

surjection.

Henceforth, we will always assume that our reductions from RT1
N to

∏n
m=0 RT

1
km

have the above special form. In order to diagonalize against such reductions, it

will be convenient to have the following notion of covering a tuple of colors using

a set of tuples of colors.

124

Definition 5.9. If X ⊆
∏n

m=0 km and (c0, . . . , cn) ∈
∏n

m=0 km, we say that X

covers (c0, . . . , cn) if for each 0 ≤ m ≤ n, there is a (a0, . . . , an) ∈ X such that

am = cm.

Observe that if C is a
∏n

m=0 RT
1
km-instance whose solution set contains X, and

X covers (c0, . . . , cn), then (c0, . . . , cn) is also a solution to C.

The following terminology will also be useful.

Definition 5.10. If we fix a partial surjection Ψ :
∏n

m=0 km → N , then we refer

to each Ψ−1({c}), c < N as a group. We call a group of size one a singleton.

We now work towards an upper bound (≈ (
∏
km)/2) for N . Suppose we want

to show that RT1
N 6≤W

∏n
m=0 RT

1
km for some N . Towards a contradiction, we may

(by Corollary 5.8) fix Φm, 0 ≤ m ≤ n and Ψ witnessing that RT1
N ≤sW

∏
m RT1

km

such that Ψ is a partial surjection from
∏n

m=0 km to N . We aim to construct

C : N→ N and some (a0, . . . , an) such that (a0, . . . , an) is a solution to ΦC
0 , . . . ,Φ

C
n ,

yet Ψ(a0, . . . , an) is not a solution to C.

Our basic strategy is to choose N large enough so that the following combina-

torial property holds for all partial surjections Ψ :
∏n

m=0 km → N :

There is some nonempty S (N such that for any set

of (a0, . . . , an)’s whose image under Ψ is exactly S, the

(a0, . . . , an)’s cover some (b0, . . . , bn) which maps outside S

under Ψ.

(∗)

Assuming (∗), we may construct C by repeatedly looping through colors in S:

for each c ∈ S, extend constantly by c until there is some (a0, . . . , an), which maps

to c under Ψ, such that for all 0 ≤ m ≤ n, ΦC
m has some new element of color am.

125

(This must happen eventually: if C is the RT1
N instance produced by extending

the current finite coloring by c forever, then ΦC
0 , . . . ,Φ

C
n is a

∏n
m=0 RT

1
km-instance

with some solution (a0, . . . , an). Then Ψ(a0, . . . , an) = c, and for each 0 ≤ m ≤ n,

some new element of color am must appear at some finite stage of ΦC
m.)

Then for all c ∈ S, there is some (a0, . . . , an) such that Ψ(a0, . . . , an) = c and

(a0, . . . , an) is a solution to ΦC
0 , . . . ,Φ

C
n . But then the (a0, . . . , an)’s cover some

(b0, . . . , bn) which maps outside S under Ψ. It follows that (b0, . . . , bn) is also a

solution to ΦC
0 , . . . ,Φ

C
n . But Ψ(b0, . . . , bn) /∈ S and is hence not a solution to C,

contradiction. This shows that RT1
N 6≤W

∏n
m=0 RT

1
km .

The above strategy may be applied as follows:

Proposition 5.11. If N > max{(k0·k1)/2, k0+k1−1}, then RT1
N 6≤W RT1

k0
×RT1

k1
.

Proof. By the previous discussion, it suffices to show that (∗) holds. Since N >

(k0 · k1)/2, by a counting argument, Ψ must have at least one singleton (a0, a1).

Note that there are 1 + (k0 − 1) + (k1 − 1) = k0 + k1 − 1 many pairs in k0 × k1

which share some color with (a0, a1). But N > k0 + k1− 1, so there is some group

G such that none of its pairs share any colors with (a0, a1). In other words, for

every pair in G, the set containing it and (a0, a1) covers a pair outside G. Let S

be the image of (a0, a1) and G under Ψ. Then S witnesses that (∗) holds.

Corollary 5.12. We have that

RT1
4 6≤W RT1

2 × RT1
2, RT1

5 6≤W RT1
2 × RT1

3,

RT1
6 6≤W RT1

2 × RT1
4, RT1

6 6≤W RT1
3 × RT1

3,

RT1
7 6≤W RT1

2 × RT1
5, RT1

7 6≤W RT1
3 × RT1

4,

RT1
8 6≤W RT1

2 × RT1
6, RT1

8 6≤W RT1
3 × RT1

5.

126

Note that Proposition 5.5 implies that RT1
k0+k1−1 ≤W RT1

k0
× RT1

k1
. Hence all

of the nonreductions in Corollary 5.12 are sharp.

We can derive more results using variations of the argument in Proposition

5.11.

Proposition 5.13. If N > (max km +
∏
km)/2, then RT1

N 6≤W
∏n

m=0 RT
1
km.

Proof. As before, we show that (∗) holds. By a counting argument, Ψ must have at

least 1 + max km many (a0, . . . , an) which are singletons. Among these singletons,

there must be two of them which differ in at least two entries, i.e., the set consisting

of these two singletons cover a new tuple of colors. We can then take S to be the

image of two such singletons under Ψ.

We can improve on this asymptotically, but even then this seems to be far from

optimal.

Proposition 5.14. If N > max{(2 +
∏
km)/2,max km − 1 + (

∏
km)/3}, then

RT1
N 6≤W

∏n
m=0 RT

1
km.

Proof. As before, we show that (∗) holds. Since N > (2 +
∏
km)/2, Ψ must have

at least three singletons.

Case 1. If there are two singletons which differ in at least two entries, then we

may take S to be the image of two such singletons under Ψ, as in Proposition 5.13.

Case 2. Otherwise, all of the singletons share exactly one common entry. So

there are some 0 ≤ m ≤ n and 3 ≤ l ≤ km such that there are exactly l many

singletons and all of them are of the form (a0, . . . , am−1, b, am+1, . . . , an), where

b < km.

127

We claim that there are at least km + 1 many groups of size < l. If not, by a

counting argument, there are at least

1 · l + 2 · (km − l) + l · (N − km)

= l + 2km − 2l + lN − lkm

> l

(
max km − 1 +

∏
km
3

)
+ 2km − l − lkm

≥ lkm − l +
∏

km + 2km − l − lkm

≥
∏

km

many tuples, contradiction.

By the claim, there is a group U of size < l which does not contain any tuple

of the form (a0, . . . , am−1, b, am+1, . . . , an). Since |U | < l, there is a singleton

(a0, . . . , am−1, b, am+1, . . . , an) such that b does not appear in any tuple in U . Then

for any tuple in U , the set containing it and (a0, . . . , am−1, b, am+1, . . . , an) covers

some tuple outside U , so we can take S to be the image of U and said singleton.

The lower bound in Proposition 5.5 is, in general, much smaller than the upper

bounds in Propositions 5.11, 5.13, and 5.14. Observe that in all of our proofs, the

sets S consist of two elements, at least one of which is the image of a singleton

under Ψ. However, Ψ may not have any singletons, for example in a hypothetical

reduction witnessing that RT1
8 ≤W RT1

4 × RT1
4. Also, there may not be any S

which has exactly two elements and satisfies (∗), e.g., consider Ψ : 4 × 4 → 8 as

represented in the grid below. Ψ maps (i, j) ∈ 4 × 4 to the number in the (i, j)th

128

position.

0 3 2 6

0 4 5 7

1 2 3 7

1 4 5 6

One can check that for any c, d < 8, there is a point labeled c which shares a row

or column with a point labeled d. That means that S = {c, d} fails to satisfy (∗).

Therefore, new techniques will be required to close the gap between our lower

and upper bounds. We conclude this section by giving an ad hoc proof that

RT1
8 6≤W RT1

4 × RT1
4, which is the smallest case not resolved by Corollary 5.12. In

order to do so, we will show that there exists some S which satisfies (∗) and has

exactly three elements.

Before specializing to the case of RT1
8 6≤W RT1

4×RT1
4, we consider a more general

context: let k0, k1 ≥ 2 and fix a partial surjection Ψ : k0×k1 → N (i.e., a potential

backward reduction for RT1
N 6≤W RT1

k0
× RT1

k1
.) We say that a collection of three

groups is bad if its image under Ψ does not satisfy (∗). We may characterize the

bad collections of three groups:

Lemma 5.15. Let k0, k1 ≥ 2 and let Ψ : k0 × k1 → N be a partial surjection. A

collection of three groups is bad if and only if their union contains either:

1. three pairs in a row/column (e.g., (a, b0), (a, b1), (a, b2)), with one pair from

each of the three groups;

2. four pairs which form a rectangle (e.g., (a0, b0), (a0, b1), (a1, b0), (a1, b1)),

with at least one pair from each of the three groups.

Proof. (⇐). If (1) holds, the three pairs in question do not cover any new pair. If

129

(2) holds, pick three out of the four pairs such that one pair from each of the three

groups is picked. Then these three pairs cover exactly one other pair (the fourth).

But the fourth pair is already contained in the union of the three groups.

(⇒). Suppose that we have a bad collection of three groups. Without loss of

generality, we may pick one pair (ai, bi) from each group such that the three pairs

(a0, b0), (a1, b1), and (a2, b2) witness badness.

Case 1. (a0, b0), (a1, b1), and (a2, b2) lie in the same row or column. Then they

satisfy (1).

Case 2. Two out of the three pairs, say (a0, b0) and (a1, b1), lie in the same

row or column (i.e., a0 = a1 or b0 = b1). Without loss of generality, suppose that

b0 = b1. Note that (a0, b0), (a0, b1), and (a2, b2) cover (a2, b0), (a0, b2), and (a2, b1).

Therefore by badness, the latter three pairs lie in the union of the three groups.

If (a0, b0), (a1, b1), and (a2, b2) are vertices of a rectangle (i.e., b2 = b0 or

b2 = b1), then we satisfy (2). Otherwise, we consider cases depending on which

group contains (a2, b0). In all cases, we satisfy either (1) or (2). See Figure 5.1 for

an illustration.

Case 3. None of the three pairs lie in the same row or column. Note that by

badness, (a0, b1), (a1, b0), (a0, b2), (a2, b0), (a1, b2), and (a2, b1) all lie in the union

of the three groups. We consider cases depending on which group contains (a2, b1).

See Figure 5.2 for an illustration.

Case 3a. (a2, b1) and (a0, b0) lie in the same group. Then we satisfy (2): (a1, b2),

(a1, b1), (a2, b1), and (a2, b2) form a rectangle with at least one pair from each of

the three groups.

130

a0 0 ·
a1 1 ·

· ·
b0

a0 0 2
a1 1 ?

· ·
b0 b2

a0 0 ?
a1 1 ?

? 2
b0 b2

0 ?
1 ?
0 2

0 ?
1 ?
1 2

0 ?
1 ?
2 2

Figure 5.1: Case 2 in Lemma 5.15, assuming that b0 = b1. In the array on the
top level, 0 lies in position (a0, b0) and 1 lies in position (a1, b0), meaning that
Ψ(a0, b0) = 0 and Ψ(a1, b0) = 1. We have yet to label position (a2, b2). The middle
level represents cases depending on whether a2 equals some ai, or not. If a star
lies in position (a, b), then (a, b) is known (by badness) to lie in the union of the
bad collection of three groups. Sets of pairs that satisfy (1) or (2) are underlined.
The bottom level represents cases depending on which of the three groups contains
(a2, b0). For example, in the array on the bottom right, 2 lies in positions (a2, b0)
and (a2, b2), meaning that Ψ(a2, b0) = Ψ(a2, b2) = 2 and hence (a2, b0) and (a2, b2)
lie in the same group. Then (a0, b0), (a1, b0), and (a2, b0) lie in a column, satisfying
(1).

Case 3b. (a2, b1) and (a1, b1) lie in the same group. Then we consider cases

depending on which group contains (a2, b0). In all cases, we satisfy either (1) or

(2).

Case 3c. (a2, b1) and (a2, b2) lie in the same group. We consider cases depending

on which group contains (a0, b1). The argument is symmetric to Case 3b.

Proposition 5.16. RT1
8 6≤W RT1

4 × RT1
4.

Proof. Towards a contradiction, fix forward functionals Φ0, Φ1 and a partial surjec-

tion Ψ : 4×4→ 8 witnessing that RT1
8 ≤W RT1

4×RT1
4. If Ψ has any singletons, we

can derive a contradiction using the proof of Proposition 5.11. Hence we assume

131

a0 0 ? ?
a2 ? ? 2
a1 ? 1 ?

b0 b1 b2

0 ? ?
? 0 2
? 1 ?

0 ? ?
? 1 2
? 1 ?

0 ? ?
0 1 2
? 1 ?

0 ? ?
1 1 2
? 1 ?

0 ? ?
2 1 2
? 1 ?

0 ? ?
? 2 2
? 1 ?

0 0 ?
? 2 2
? 1 ?

0 1 ?
? 2 2
? 1 ?

0 2 ?
? 2 2
? 1 ?

Figure 5.2: Case 3 in Lemma 5.15. In the array on the top level, for each i < 3,
i lies in position (ai, bi), meaning that Ψ(ai, bi) = i. On the middle level, we have
Case 3a on the left, followed by Case 3b and 3c. On the bottom level, we have
various subcases. For example, in the array on the bottom right, 0 lies in position
(a0, b0), 2 lies in position (a0, b1), and 1 lies in position (a1, b1). Together with
(a1, b0), they form a rectangle satisfying (2).

that Ψ has no singletons. There are sixteen pairs in 4× 4, so Ψ must be total, and

all of the eight groups in Ψ must contain exactly two pairs each.

As discussed previously, we derive a contradiction by producing a set S which

satisfies (∗) and consists of three elements. In other words, we show that there is a

collection of three groups which is not bad. To that end, we give an upper bound

for the number of bad collections of three groups. Since each group contains exactly

two pairs, it is either contained in a row or column, or lies in diagonal position.

Let k be the number of groups which are contained in some row or column.

First, we give an upper bound for the number of collections which satisfy (2) in

Lemma 5.15. It suffices to give an upper bound for the number of rectangles which

intersect at most three groups. Such rectangles have two possible forms, and we

count those cases separately.

132

Case 1. The rectangle contains at least one of those k groups. There are at

most (4− 1)k = 3k many such rectangles.

Case 2. The rectangle contains at least one group in diagonal position. There

are at most 8− k many such rectangles.

Therefore, there are at most 3k + (8 − k) = 2k + 8 many rectangles which

intersect at most three groups. So there are at most 2k+ 8 many collections which

satisfy (2).

Next, we give an upper bound for the number of collections which satisfy (1)

in Lemma 5.15.

Case 1. If a row/column contains two groups (and hence nothing else), then

said row/column does not contribute to our upper bound. Let l be the number of

such rows and columns. Note that 2l ≤ k.

Case 2. If a row/column contains one group, as well as two other vertices from

two different groups, then said row/column contributes one collection to our upper

bound. There are k − 2l many such rows/columns.

Case 3. Finally, the remaining 8+l−k many rows or columns contribute
(

4
3

)
= 4

collections each.

Therefore, there are at most

l · 0 + (k − 2l) · 1 + (8 + l − k) · 4 = 32− 3k + 2l ≤ 32− 2k

many collections which satisfy (1).

We conclude that there are at most (2k + 8) + (32− 2k) = 40 bad collections

of three groups. There are
(

8
3

)
= 56 > 40 collections of three groups in total, so

133

we can define S to be the image under Ψ of any collection which is not bad. Then

S satisfies (∗), contradiction.

134

CHAPTER 6

A Σ1
1 AXIOM OF FINITE CHOICE

In this chapter, all theories of second-order arithmetic implicitly contain RCA0.

6.1 Theories of hyperarithmetic analysis

Van Wesep [44, Section 2] showed in his thesis that given any theory of second-

order arithmetic all of whose ω-models are hyp closed (i.e., closed under join and

hyperarithmetic reduction ≤h), there exists a strictly weaker such theory. In par-

ticular, there is no theory of second-order arithmetic whose ω-models are exactly

the hyp closed models. We present his proof below, with minor simplifications.

Consider the theory S consisting of, for each e ∈ W , the sentence “for all Z,

there is a jump hierarchy along the eth computable well-ordering starting with Z”.

Observe that every ω-model which is hyp closed satisfies S. But we overshoot:

Proposition 6.1. There is an ω-model M of S which is not hyp closed.

Proof. Fix any Z such that ωZ1 > ωCK1 (equivalently, Z ≥h W). Define M to be the

class of all X which are computable in some jump hierarchy along a computable

(not Z-computable!) well-ordering starting with Z.

Theorem 6.2 (van Wesep). Let T be a theory of second-order arithmetic all of

whose ω-models are hyp closed. Then there is some ω-model M which is hyp closed,

yet does not satisfy T.

Proof. By the previous proposition, there is an ω-model of S which does not satisfy

T. Fix ϕ ∈ T such that S + ¬ϕ has an ω-model.

135

Now, S (and hence S + ¬ϕ) is a Π1
1 set of sentences. Hence being an ω-model

of S + ¬ϕ is Σ1
1. By Gandy’s basis theorem, S + ¬ϕ has an ω-model M <h W .

We show that M is hyp closed: note that for every Z ∈ M , Z <h W , so

ωZ1 = ωCK1 . Since M satisfies S, it follows that M is hyp closed as desired.

In fact:

Theorem 6.3 (van Wesep). For any T all of whose ω-models are hyp closed, there

is some T′ with the same property but with more ω-models than T.

Proof. By the proof of the previous theorem, fix M <h W which is hyp closed,

and is a model of S but not T. We aim to construct T′, such that all ω-models of

T′ are hyp closed, and T′ has more ω-models than T as witnessed by M . It suffices

to construct a sentence ρ such that M |= ρ and every model of ρ is hyp closed.

Then T′ = {ψ ∨ ρ : ψ ∈ T} would satisfy the desired properties.

Since W 6≤h M , by overspill, there must be an ill-founded computable linear

ordering L0 such that M satisfies the following sentence ρ:

L0 is well-founded ∧ ∀Z(there is a jump hierarchy along ω · L0 starting with Z).

We show that every ω-model N of ρ is hyp closed. We know that for any Z ∈ N ,

N contains some jump hierarchy Y along ω · L0 starting with Z. Since ω · L0 is

ill-founded, Y computes a jump hierarchy starting with Z on every computable

well-ordering (see Sacks [39, III.3.3].) So it remains to show that for any Z ∈ N ,

ωZ1 = ωCK1 .

Suppose not, i.e., there is some Z ∈ N and some Z-computable well-ordering

L1 of length ωCK1 . Now, let Y ∈ N be a jump hierarchy along ω · L0 starting with

Z. Observe that Y computes a comparison map between L0 and L1.

136

Since there is no embedding from L0 into L1 (L0 is ill-founded while L1 is well-

founded), this map must be an isomorphism between L1 and an initial segment of

L0. But the well-founded part of L0 has ordertype ωCK1 (see Sacks [39, III.2.2(i)]),

so this map (together with Z) computes a proper cut in L0.

Hence N contains a proper cut in L0. But then N sees that L0 is ill-founded,

contradicting our assumption that N satisfies ρ.

Even though there is no theory whose ω-models are exactly the hyp closed ones,

there are several theories that come close, in the following sense:

Definition 6.4. A theory T is a theory of hyperarithmetic analysis if:

– every ω-model of T is hyp closed;

– for every Y ⊆ N, HYP(Y) is a model of T.

We say that ϕ is a theorem of hyperarithmetic analysis if RCA0 + ϕ is a theory of

hyperarithmetic analysis.

Note that by Theorem 6.3, there is no weakest theory of hyperarithmetic anal-

ysis.

Of particular interest to us are the following theories:

Definition 6.5. The system of Σ1
1 axiom of choice, denoted Σ1

1-AC0, consists of

the axiom schema

∀n∃Y ϕ(n, Y)→ ∃(Zn)n∀nϕ(n, Zn),

for any ϕ(n, Y) which is arithmetic.

137

The system of ∆1
1 comprehension, denoted ∆1

1-CA0, consists of the axiom schema

∀n(ϕ(n)↔ ¬ψ(n))→ ∃X∀n(n ∈ X ↔ ϕ(n)),

for any ϕ(n) and ψ(n) which are Σ1
1.

The system of Σ1
1 axiom of unique choice, denoted unique-Σ1

1-AC0, consists of

the axiom schema

∀n(∃ unique Y)ϕ(n, Y)→ ∃(Zn)n∀nϕ(n, Zn),

for any ϕ(n, Y) which is arithmetic.

Note that even though HYP satisfies Σ1
1-AC0, that does not mean that if ϕ(n, Y)

is arithmetic, then for all n, there must be some hyperarithmetical Y such that

ϕ(n, Y) holds. In fact, Kleene showed that the latter statement is false; see [39,

II.1.4]. Rather, if there is n such that ϕ(n, ·) has no hyperarithmetical solution,

then ϕ is not an instance of Σ1
1-AC0 in HYP.

What we call unique-Σ1
1-AC0 is sometimes known as Π0

(ω)-replacement ([44]), Π1
0-

replacement ([43]), or weak-Σ1
1-AC0 ([42, VIII.4.12]). Our choice of nomenclature

should be compared with the following new variant of Σ1
1-AC0:

Definition 6.6. The system of Σ1
1 axiom of finite choice, denoted finite-Σ1

1-AC0,

consists of the axiom schema

∀n(∃ finitely many Y)ϕ(n, Y)→ ∃(Zn)n∀nϕ(n, Zn),

for any ϕ(n, Y) which is arithmetic.

Note that by a lemma of Simpson [42, V.5.4], finite-Σ1
1-AC0 is equivalent to the

following statement: “if (Tn)n is a sequence of subtrees of N<N, each of which has

138

finitely many paths, then there is a sequence (Xn)n such that for each n, Xn is a

path on Tn”.

Trivially, finite-Σ1
1-AC0 lies between unique-Σ1

1-AC0 and Σ1
1-AC0. Hence it is a

theory of hyperarithmetic analysis. In this chapter, we explore the relationships

between finite-Σ1
1-AC0 and other known theorems of hyperarithmetic analysis.

6.2 Arithmetic Bolzano-Weierstrass implies finite-Σ1
1-AC0

The arithmetic Bolzano-Weierstrass theorem was introduced by Friedman [18].

Our definition follows Conidis [13].

Definition 6.7. The arithmetic Bolzano-Weierstrass theorem, denoted ABW0,

states that if A(X) is an arithmetic predicate on 2N, then either A(X) has finitely

many solutions, or the set of A-solutions {X ∈ 2N : A(X)} has an accumulation

point.

Friedman asserted that ABW0 follows from Σ1
1-AC0. Conidis [13, Theorem

2.1] furnished a proof of that statement. In addition, Conidis showed that ABW0,

together with the induction schema for Σ1
1 formulas (denoted IΣ1

1), implies unique-

Σ1
1-AC0. We adapt his proof to show that:

Proposition 6.8 (IΣ1
1). ABW0 implies finite-Σ1

1-AC0.

Proof. Suppose that A(n, Y) is an instance of finite-Σ1
1-AC0, i.e., for each n, A(n, Y)

has finitely many solutions. Without loss of generality, we may assume that A(n, ∅)

always fails.

139

Define B((Xn)n) to hold if

∃n0[(∀n ≤ n0)A(n,Xn) ∧ (∀n > n0)[Xn = ∅]].

Observe that B((Xn)n) is an arithmetic predicate on 2N. Using IΣ1
1 and the as-

sumption that for each n, A(n, Y) has a solution, we can show that for each n0,

B((Xn)n) has at least n0 distinct solutions. (Since A(n, ∅) always fails, the solu-

tions we construct are distinct.) Hence B((Xn)n) is an instance of ABW.

Hence we may apply ABW to B to obtain an accumulation point (Yn)n of

{(Xn)n : B((Xn)n)}. We claim that for all n, A(n, Yn) holds.

Suppose towards a contradiction that A(k, Yk) fails. Since A(k, ·) has only

finitely many solutions, there is sufficiently large m such that Yk � m 6= Y � m for

every Y such that A(k, Y) holds.

Now, by our choice of (Yn)n, there are infinitely many (Xn)n satisfying B such

that Xk extends Yk � m. For any such (Xn)n, A(k,Xk) fails, so by definition of B,

Xn = ∅ for all n ≥ k.

But for each n < k, A(n, ·) has at most finitely many solutions, so there cannot

be infinitely many (Xn)n satisfying the above conditions. Contradiction. We have

showed that (Yn)n is a finite-Σ1
1-AC0 solution to A(n, Y).

Conidis [13, Theorem 4.1] also showed that ABW0 does not imply the following

theorem, known as INDEC0:

Theorem 6.9 (Jullien, see Montalbán [30]). Every scattered indecomposable linear

ordering is either indecomposable to the right, or indecomposable to the left.

Montalbán [30] initiated the study of the reverse mathematics of Jullien’s the-

140

orem. He showed that it is a theorem of hyperarithmetic analysis, making it the

first theorem in the literature which is not formulated using concepts from logic

and is known to be a theorem of hyperarithmetic analysis. Montalbán also showed

that ∆1
1-CA0 implies INDEC0. (Later, Neeman [32], [33] showed that INDEC0 +IΣ1

1

implies unique-Σ1
1-AC0, and INDEC0 + I∆1

1 does not imply unique-Σ1
1-AC0.)

It follows from the above results of Conidis and Montalbán that:

Corollary 6.10. Finite-Σ1
1-AC0 does not imply INDEC0. In particular, finite-Σ1

1-

AC0 does not imply ∆1
1-CA0 or Σ1

1-AC0.

In the next section, we separate finite-Σ1
1-AC0 from unique-Σ1

1-AC0. In fact, we

will show that

Theorem 6.11. There is an ω-model satisfying ∆1
1-CA but not finite-Σ1

1-AC. Hence

∆1
1-CA0 does not imply finite-Σ1

1-AC0. In particular, unique-Σ1
1-AC0 does not imply

finite-Σ1
1-AC0.

This result strengthens Conidis [13, Theorem 3.1], which shows that ∆1
1-CA0

does not imply ABW0. We do not know whether our result is strictly stronger than

his, i.e., we do not know whether finite-Σ1
1-AC0 implies ABW0.

6.3 ∆1
1-CA0 does not imply finite-Σ1

1-AC0

In this section, a tree is a prefix-closed subset of ω<ω. The empty string is denoted

by ∅. If σ is a prefix of τ , we write σ ⊆ τ . If σ is a nonempty string, σ− denotes

the prefix of σ of length |σ| − 1. If σ is a string and T is a tree, σ ∩ T denotes the

longest prefix of σ which lies in T .

141

6.3.1 The model

We construct an ω-model M∞ ⊂ P(ω) which satisfies ∆1
1-CA but not finite-Σ1

1-AC.

To define M∞ we will construct a generic object

〈TG, {αGi : i ∈ ω}, hG〉

where TG is a subtree of ω<ω, each αGi is a path on TG, and hG : TG → ωCK1 ∪{∞} is

the well-founded rank function on TG, i.e., for all σ ∈ TG, hG(σ) = sup{hG(τ)+1 :

τ ∈ TG, τ ⊇ σ} (our convention is that ∞ =∞+ 1 and ∞ >∞ > α.)

Then, for each finite F ⊆ ω (written F ⊂f ω), we define

MF = {X ⊆ ω : ∃µ < ωCK1 (X ≤T (TG ⊕ 〈αGi 〉i∈F)(µ))}

M∞ =
⋃
F⊂fω

MF .

We will show in Corollary 6.31 that MF = HYP(TG ⊕ 〈αGi 〉i∈F). Notice that hG

does not appear in the definition of M∞. Nonetheless it will play a crucial role in

showing that M∞ has the properties we desire.

We briefly sketch the reason why finite-Σ1
1-AC fails in M∞. First, we will show

in Lemma 6.21 that for each F ⊂f ω, MF ∩ [TG] = {αGi : i ∈ F}. This implies

that the paths on TG in M∞ are exactly {αGi : i ∈ ω}. This also implies that M∞

does not contain any infinite sequence of distinct αGi .

Now, for each n, let Tn be the subtree of TG passing through 〈n〉. We will use

locks in our forcing to ensure that each [Tn] contains finitely many αGi . Hence M∞

thinks that 〈Tn〉n is an instance of finite-Σ1
1-AC. But the results in the previous

paragraph imply that this instance fails to have a solution in M∞.

For later purposes, we give every element in M∞ a name. Define the following

142

names by recursion along ωCK1 :

H1,F = TG ⊕ 〈αGi 〉i∈F , Sµ,F,e = WHµ,F
e , Hµ,F =

⊕
ν<µ,e∈ω

Sν,F,e

for µ < ωCK1 , F ⊂f ω, e ∈ ω.

6.3.2 The forcing language

We consider a ramified language L∞, which extends the language of second-order

arithmetic with constants for each element of M∞, and various types of restricted

set variables.

For each F ⊂f ω, the language LF is generated by the language of second-order

arithmetic, except that the set variables are as follows: for each D ⊆ F , there are

unranked set variables of the form XD and ranked set variables of the form Xλ
D for

each λ < ωCK1 . LF also consists of a class CF of constants which are intended to

name every element of MF :

– T, αi for i ∈ F ;

– for each ν < ωCK1 , Hν,F and Sν,F,e for each e ∈ ω.

If S is of the form Sν,F,e, we define dom(S) to be F . We define Cµ to be set of

all constants of the form Hν,F or Sν,F,e for some ν < µ.

The language L∞ consists of
⋃
F⊂fω LF , unranked set variables of the form X,

and ranked set variables of the form Xλ for each λ < ωCK1 .

A variable of the form Xν
H or XD is F -restricted if D ⊆ F . A formula of L∞

is F -restricted if all of its bounded variables are F -restricted. A formula of L∞ is

143

ranked if all of its bounded variables are ranked. Every ranked formula ψ of L∞

can be assigned a rank below ωCK1 , as follows:

rk(ψ) = ω2 · o(ψ) + ω · r(ψ) + n(ψ),

where:

– o(ψ) denotes the least upper bound of

{ν : ν is the superscript of a quantified variable in ψ}

∪ {ν + 1 : some constant of the form Sν,F,e or Hν,F occurs in ψ};

– r(ψ) denotes the number of ranked set quantifiers in ψ;

– n(ψ) denotes the number of connectives.

A formula is Σ-over-LF if it is built up from ranked F -restricted formulas using

∧, ∀n, and ∃X. Every Σ1
1 formula is Σ-over-LF for some finite F .

For any formula ψ and any µ < ωCK1 , we define ψµ by replacing every unranked

set variable in ψ with its ranked counterpart, i.e., X is replaced by Xµ and XF is

replaced by Xµ
F . Observe that if ψ is Σ-over-LF and every constant symbol in ψ

lies in Cµ, then M∞ |= ψµ → ψ.

We give our formulas Gödel numberings in the usual way. In particular, we fix

a computable linear ordering whose well-founded part has ordertype ωCK1 , known

as a pseudo-well-ordering (see Harrison [22]). We identify each α < ωCK1 with its

corresponding natural number in the well-founded part.

144

6.3.3 The forcing notion

The forcing P consists of tuples p = 〈T p, fp, hp, lp〉 where:

(1) T p ⊆ ω<ω is a finite tree;

(2) fp is a finite partial function from ω to T p\{∅};

(3) hp : T p → ωCK1 ∪ {∞} satisfies the following:

(a) hp is a rank function, i.e., if τ (σ, then hp(τ) > hp(σ)

(our convention is that ∞ >∞ > α);

(b) for all i ∈ dom(fp), hp(fp(i)) =∞;

(c) hp(∅) =∞ and hp(〈n〉) =∞ for all 〈n〉 ∈ T p;

(4) lp ⊆ {n : 〈n〉 ∈ T p}. 〈n〉 is locked if n ∈ lp, and unlocked otherwise.

We say that q extends p, written q ≤ p, if

(5) T q ⊇ T p;

(6a) for all i ∈ dom(fp), fp(i) = f q(i) ∩ T p (old paths cannot be extended in the

old tree);

(6b) for all i ∈ dom(f q)\dom(fp), |f q(i) ∩ T p| ≤ 1 (new paths can only intersect

the old tree at the root or at level one);

(7) hq ⊇ hp;

(8) lq ⊇ lp (locked nodes stay locked);

(9) for all i ∈ dom(f q)\dom(fp),

f q(i)(0) = n ∧ ∃j[fp(j)(0) = n]→ n /∈ lp

145

(if a node is locked and there is already a path passing through it, then one

cannot add new paths which pass through it.)

Conditions (6a) and (6b) are needed for us to control the complexity of the

forcing relation for ranked formulas and Σ-over-LF formulas respectively.

We show that the above forcing is transitive.

Proof. Suppose that r ≤ q and q ≤ p. The only nontrivial facts to verify for r ≤ p

are (6b) and (9). For (6b), we have two cases. If i ∈ dom(f r)\dom(f q), then

|f r(i) ∩ T p| ≤ |f r(i) ∩ T q| ≤ 1 by (6b) for r ≤ q, as desired. On the other hand,

if i ∈ dom(f q)\dom(fp), f r(i) ∩ T p = (f r(i) ∩ T q) ∩ T p = f q(i) ∩ T p by (6a) for

r ≤ q. But |f q(i) ∩ T p| ≤ 1 by (6b) for q ≤ p so |f r(i) ∩ T p| ≤ 1 as desired.

As for (9), suppose that f r(i)(0) = n and there is j such that fp(j)(0) = n. By

(6a) for q ≤ p, f q(j)(0) = n. By (9) for r ≤ q, n /∈ lq. By (8) for q ≤ p, lq ⊇ lp.

Hence n /∈ lp.

We will take G to be a sufficiently P-generic filter (specifically, G decides all

Σ-over-LF formulas). Then we may define TG =
⋃
p∈G T

p, αGi =
⋃
p∈G f

p(i) for

i ∈ ω, and hG =
⋃
p∈G h

p. By genericity, hG is the well-founded rank function on

TG.

Just as we did for formulas, we identify each α < ωCK1 with its corresponding

element in the fixed pseudo-well-ordering. When we write α < β, we always refer

to their order as ordinals rather than the natural number ordering. In this way,

we can encode P as a Π1
1 subset of ω. For each α < ωCK1 , define Pα to be the set of

all conditions p such that the range of hp is contained in α ∪ {∞}. Observe that

P =
⋃
α<ωCK1

Pα and that the Pα’s are uniformly computable from α.

146

6.3.4 The forcing relation

The forcing relation for formulas of L∞ is defined by recursion as follows:

1. for quantifier-free formulas of arithmetic ψ, p ψ if and only if ψ is true;

2. p σ ∈ T if either |σ| < 2 and σ ∈ T p, or σ− ∈ T p and hp(σ−) ≥ 1;

3. p 〈n,m〉 ∈ αi if i ∈ dom(fp) and fp(i)(n) = m;

4. p 〈0, σ〉 ∈ H1,F if p σ ∈ T , and p 〈1, 〈i, 〈n,m〉〉〉 ∈ H1,F if i ∈ F and

p 〈n,m〉 ∈ αi;

5. for ν > 1, p n ∈ Sν,F,e if p ∃sR(Hν,F ; e, s,n) where R codes a universal

Turing machine;

6. for ν > 1, p 〈e,n, µ〉 ∈ Hν,F if µ < ν and p n ∈ Sµ,F,e;

7. p ∀xψ(x) if for all n ∈ ω, p ψ(n);

8. p ∀Xλ
Fψ(Xλ

F) if for all ν < λ, e ∈ ω, p ψ(Sν,F,e);

9. p ∀Xλψ(Xλ) if for all ν < λ, e ∈ ω, F ⊂f ω, p ψ(Sν,F,e);

10. p ∀XFψ(XF) if for all ν < ωCK1 , e ∈ ω, p ψ(Sν,F,e);

11. p ∀Xψ(X) if for all ν < ωCK1 , e ∈ ω, F ⊂f ω, p ψ(Sν,F,e);

12. p ϕ ∧ ψ if p ϕ and p ψ;

13. p ¬ψ if for every q ≤ p, q 6 ψ.

Our definitions of M∞ and the forcing relation are set up so that for sufficiently

P-generic G, M∞ (as defined from G) satisfies ψ if and only if there is p ∈ G such

that p ψ. A similar statement holds for MF and ψ which is F -restricted.

147

6.3.5 Analyzing the forcing relation for ranked formulas

When constructing conditions, we will use the following basic fact about rank

functions:

Proposition 6.12. Let h : T → β ∪ {∞} be a rank function. For each α < β,

define the subtree Qα = {ρ ∈ T : h(ρ) ≥ α}. Then for every τ ∈ T with h(τ) ≥ α,

we have

h(τ) ≥ α + |τ |Qα .

We recall the basic notion of retagging used by Steel [43].

Definition 6.13 ([43, Definition 4]). If p and p∗ are conditions, we say that they

are µ-F -absolute retaggings if

– T p = T p
∗

and fp � F = fp
∗
� F ;

– hp and hp
∗

agree on labels < µ;

– if hp(σ) ≥ µ, then hp
∗
(σ) ≥ µ.

We make some observations:

– µ-F -absolute retagging is an equivalence relation.

– If p and p∗ are µ-F -absolute retaggings, then for any µ′ < µ and any F ′ ⊆ F ,

p and p∗ are µ′-F ′-absolute retaggings as well.

– µ-F -absolute retagging is independent of the locks. We will see in Lemma

6.18 that the locks do not affect whether a condition forces a ranked formula.

When we analyze the forcing relation for Σ-over-LF formulas, we will define

two new notions of retagging which do depend on the locks.

148

We begin by proving a basic retagging lemma, which is a cornerstone of the

method of Steel forcing. The presence of locks in our forcing necessitates the

assumption that F ⊆ dom(fp). This assumption is also made in Conidis [13,

Lemma 3.11], but not in Steel [43] or Montalbán [31].

Lemma 6.14. Let p and p∗ be ωβ-F -absolute retaggings such that F ⊆ dom(fp)

(hence F ⊆ dom(fp
∗
) as well.) Then for all q ≤ p and all γ < β, there exists

q∗ ≤ p∗ such that q and q∗ are ωγ-F -absolute retaggings.

Before we prove the lemma, we make a few remarks.

Remark 6.15. The space between ωβ and ωγ is so that if, say, hp
∗
(σ) = ωβ, then

the nodes τ extending σ such that hq(τ) ≥ ωγ can be retagged with ωγ + n for

some n ∈ ω. (Since ωγ + n < ωβ for all n, this can be done in a way that makes

hq
∗

a rank function.) See Case 2 in the verification that hq
∗

is a rank function in

the following proof.

Remark 6.16. If we did not include (6a) in the definition of extension, the lemma

could fail to hold. Suppose that there is some i ∈ F ∩ dom(fp) such that σ :=

f q(i) ∩ T p properly extends fp(i). Then hq(σ) = hp(σ) = ∞. Consider p∗ such

that hp
∗
(σ) is sufficiently large (so that p and p∗ are appropriate retaggings) but

not ∞. Then for any q∗ ≤ p∗, f q
∗
(i) cannot extend σ (that would imply that

∞ = hq
∗
(f q

∗
(i)) ≤ hq

∗
(σ) = hp

∗
(σ) < ωCK1). In particular, f q

∗
(i) cannot be equal

to f q(i), implying that q∗ is not an ωγ-F -absolute retagging of q.

Remark 6.17. If we do not assume that F ⊆ dom(fp), the lemma could fail

to hold. Fix j ∈ F and any i 6= j. Suppose that p is such that fp(i) = 〈n〉,

j /∈ dom(fp), and 〈n〉 is unlocked in p. Suppose p∗ only differs from p in that 〈n〉

is locked in p∗. Define q ≤ p by adding f q(j) = 〈n〉. Then for any q∗ ≤ p∗, (9)

ensures that f q
∗
(j) cannot even extend 〈n〉, so f q

∗
and f q do not agree on F .

149

Proof of Lemma 6.14. Fix q ≤ p, p∗, γ < β as above. Define q∗ as follows:

– T q
∗

= T q;

– f q
∗

= f q on F , otherwise f q
∗

= fp
∗
;

– lq
∗

= lp
∗
;

– hq
∗

is defined by cases:

hq
∗
(τ) =

hp
∗
(τ) if τ ∈ T p

∞ if ∃i(τ ⊆ f q
∗
(i)) or |τ | ≤ 1

hq(τ) if hq(τ) < ωγ

ωγ + |τ |Q otherwise

where Q = {σ ∈ T q : hq(σ) ≥ ωγ}.

We verify that q∗ has the desired properties. First we note a fact which will be

used twice: if i ∈ F ⊆ dom(fp), then

f q
∗
(i) ∩ T p = f q(i) ∩ T p definition of f q

∗

= fp(i) i ∈ dom(fp), (6a) for q ≤ p

= fp
∗
(i) i ∈ F, retagging

hq
∗

is well-defined. First we show that the second and third case in the

definition of hq
∗

are mutually exclusive. It suffices to show that if ∃i(τ ⊆ f q
∗
(i)),

then hq(τ) ≥ ωγ. There are two cases.

Case 1. If τ ⊆ f q(i) for some i ∈ F , then hq(τ) =∞ > ωγ.

Case 2. Otherwise, τ ⊆ fp
∗
(i) for some i. Then τ ∈ T p and hp

∗
(τ) = ∞, so

hp(τ) ≥ ωβ by retagging. It follows that hq(τ) = hp(τ) > ωγ.

150

Next, we show that the first and second case in the definition of hq
∗

do not

conflict. It suffices to show that if τ ∈ T p and ∃i(τ ⊆ f q
∗
(i)), then hp

∗
(τ) = ∞.

There are two cases.

Case 1. If τ ⊆ fp
∗
(i) for some i, then hp

∗
(τ) =∞ as desired.

Case 2. Otherwise, τ ⊆ f q
∗
(i) for some i ∈ F ⊆ dom(fp). We noted above that

f q
∗
(i) ∩ T p = fp

∗
(i). Since τ ∈ T p, this case is actually subsumed by Case 1.

Finally, we show that the first and third case in the definition of hq
∗

do not

conflict, i.e., if τ ∈ T p and hq(τ) < ωγ, then hp
∗
(τ) = hq(τ). We have that

hp(τ) = hq(τ) < ωγ, so by retagging, hp
∗
(τ) = hp(τ) = hq(τ) as desired. We have

shown that hq
∗

is well-defined.

hq
∗

is a rank function. We want to show that for all τ ∈ T q such that |τ | ≥ 1,

hq
∗
(τ−) > hq

∗
(τ). There are

(
4
2

)
+
(

4
1

)
many cases to consider, but we can narrow

it down using the following observations:

– hq
∗

is a rank function on each of the four sets it is piecewise-defined on, so

we only need to consider the
(

4
2

)
interactions between the four sets.

– The first and second set (namely T p and {τ : ∃i(τ ⊆ f q
∗
(i)) or |τ | ≤ 1} are

both downward closed. The third set is upward closed.

– Trivially, ∞ > ωγ + |γ|Q ≥ ωγ.

It follows that we only have two nontrivial cases to consider.

Case 1. |τ | > 1, τ /∈ T p, τ− ∈ T p, hq(τ) < ωγ. We want to show that hq
∗
(τ) <

hq
∗
(τ−), i.e., hq(τ) < hp

∗
(τ−). If hp

∗
(τ−) ≥ ωγ, then hq(τ) < ωγ ≤ hp

∗
(τ−) as

desired. Otherwise, hp
∗
(τ−) < ωγ < ωβ, so hp(τ−) = hp

∗
(τ−) by retagging. But

151

then hq(τ) < hq(τ−) = hp(τ−) = hp
∗
(τ−) as desired.

Case 2. |τ | > 1, τ /∈ T p, τ− ∈ T p, hq(τ) ≥ ωγ, hq
∗
(τ) = ωγ + |τ |Q. If

hq
∗
(τ−) ≥ ωβ, then hq

∗
(τ−) ≥ ωβ > ωγ + |τ |Q = hq

∗
(τ) as desired. Otherwise,

hq
∗
(τ−) < ωβ. Then

hq
∗
(τ−) = hp

∗
(τ−) τ− ∈ T p

= hp(τ−) retagging

= hq(τ−) hq ⊇ hp

> hq(τ) hq is a rank function

≥ ωγ + |τ |Q Proposition 6.12

= hq
∗
(τ)

as desired. This shows that hq
∗

is a rank function.

q∗ is a condition extending p∗. To check that q∗ is a condition, it remains

to observe that lq
∗

= lq ⊆ {n : 〈n〉 ∈ T q} = {n : 〈n〉 ∈ T q∗}.

Next, we show that q∗ and p∗ satisfy (6a). For i ∈ dom(fp
∗
)\F , f q

∗
(i) = fp

∗
(i)

so certainly f q
∗
(i)∩T p = fp

∗
(i) as desired. As for i ∈ F , we noted at the beginning

of the proof that f q
∗
(i) ∩ T p = fp

∗
(i) as desired.

Finally, q∗ and p∗ vacuously satisfy (6b) and (9) because

dom(f q
∗
) = (F ∩ dom(f q)) ∪ (dom(fp

∗
)\F)

= F ∪ (dom(fp
∗
)\F)

= dom(fp
∗
).

q and q∗ are ωγ-F -absolute retaggings. It suffices to check that if hq(τ) ≥

ωγ, then hq
∗
(τ) ≥ ωγ. If τ /∈ T p, then hq

∗
(τ) ≥ ωγ by definition. If τ ∈ T p, then

152

hp(τ) = hq(τ) ≥ ωγ. Since p and p∗ are ωβ-F -absolute retaggings, hp
∗
(τ) ≥ ωγ as

well. Hence hq
∗
(τ) = hp

∗
(τ) ≥ ωγ as desired.

Lemma 6.18. Let ψ be a ranked formula in LF . Suppose that p and p∗ are

ω · rk(ψ)-F -absolute retaggings such that F ⊆ dom(fp). Then p ψ if and only if

p∗ ψ.

Proof. We proceed by induction on the rank of ψ. The only nontrivial case is when

ψ is ¬ϕ. Assuming that p∗ and p are ω · rk(¬ϕ)-F -absolute retaggings and that

p∗ ¬ϕ, we want to show that p ¬ϕ, i.e., for all q ≤ p, q 6 ϕ. By Lemma

6.14, there is q∗ ≤ p∗ such that q∗ and q are ω · rk(ϕ)-F -absolute retaggings. Since

p∗ ¬ϕ, we have that q∗ 6 ϕ. Applying the induction hypothesis to q and q∗

shows that q 6 ϕ as desired.

Corollary 6.19. Suppose p ∈ Pωβ and ψ ∈ LF has rank β. If there is q ≤ p such

that q ψ, then there is q′ ≤ p in Pωβ such that q′ ψ. Therefore, p ¬ψ if and

only if for all q ≤ p in Pωβ, q 6 ψ.

Proof. First extend q so that F ⊆ dom(f q). Then define q′ as follows: T q
′

=

T q, f q
′

= f q, lq
′

= lq, and define hq
′
(τ) = hq(τ) if hq(τ) < ωβ and hq

′
(τ) =

∞ otherwise. Clearly q′ is a condition in Pωβ, and q and q′ are ωβ-F -absolute

retaggings. Since F ⊆ dom(f q) = dom(f q
′
), by Lemma 6.18, q′ ψ. Finally,

in order to check q′ ≤ p, it suffices to check (7). (7) holds because p ∈ Pωβ and

hq ⊇ hp.

Corollary 6.20. If ψ ∈ LF has rank β < ωCK1 and p is a condition with F ⊆

dom(fp), then Hβ,∅ uniformly computes whether p ψ.

Proof. Induction on β using the above corollary.

153

Next, we use our basic retagging lemma to analyze which paths on TG lie in

each MF .

Lemma 6.21. For each finite F ⊂ ω, the paths on TG which lie in MF are exactly

the αGi for i ∈ F . Hence M∞ ∩ [TG] = {αGi : i ∈ ω}, but no infinite sequence of

distinct αGi lies in M∞.

Proof. Suppose towards a contradiction that S = Sν,F,e ∈ [TG] is not αGi for any

i ∈ F . Then there is σ ⊂ S such that σ 6⊂ αGi for any i ∈ F . Without loss of

generality, we choose such σ of length ≥ 2. Fix p ∈ G such that

p ϕ(S), where ϕ(S) is S ∈ [T] ∧ σ ⊂ S ∧ ∀i ∈ F (σ 6⊂ αi).

By genericity, we may assume that F ⊆ dom(fp) and σ ∈ T p. Next, fix β < ωCK1

large enough so that β > ω · rk(ϕ(S)) and p ∈ Pβ.

Note that hp(σ) must be ∞. We define p∗ which is a β-F -absolute retagging

of p, such that hp
∗
(σ) ∈ [β, ωCK1). Define T p

∗
= T p, fp

∗
= fp � F , lp

∗
= lp, and

hp
∗
(τ) =

β + |τ |Q τ ⊇ σ ∧ hp(τ) ≥ β

hp(τ) otherwise

,

where Q = {τ : τ ⊆ σ ∨ (τ ⊇ σ ∧ hp(τ) ≥ β)}.

Since hp(σ) =∞ and |σ| ≥ 2, it is easy to see that hp
∗

is a rank function, and

hp
∗
(τ) =∞ if |τ | < 2. In order to show that p∗ is a condition, it suffices to check

that hp
∗
(fp

∗
(i)) = ∞ for all i ∈ dom(fp

∗
) = F . This holds because for all i ∈ F ,

σ 6⊆ fp(i) = fp
∗
(i), so hp

∗
(fp

∗
(i)) = hp(fp

∗
(i)) = hp(fp(i)) =∞.

Finally, it is clear that p∗ is a β-F -absolute retagging of p, and hence an ω ·

rk(ϕ(S))-F -absolute retagging of p. By Lemma 6.18,

p∗ S ∈ [T] ∧ σ ⊂ S,

154

which is impossible because hp
∗
(σ) < ωCK1 .

Lemma 6.22. M∞ does not satisfy finite-Σ1
1-AC.

Proof. For each n, let Tn be the subtree of TG passing through 〈n〉. By genericity

(given p, we can expand lp to include n), each 〈n〉 is eventually locked, so there are

only finitely many αGi passing through 〈n〉. Also by genericity (if there is no i such

that fp(i) passes through 〈n〉, we can choose some fresh j and add fp(j) = 〈n〉 to

p), there must be some αGi passing through 〈n〉.

Now, we showed in Lemma 6.21 that the paths on TG in M∞ are exactly

{αGi : i ∈ ω}. So M∞ thinks that 〈Tn〉n is an instance of finite-Σ1
1-AC.

However, we showed in Lemma 6.21 that M∞ does not contain any infinite

sequence of distinct αGi . So M∞ does not contain any finite-Σ1
1-AC solution to

〈Tn〉n.

6.3.6 Analyzing the forcing relation for Σ-over-LF formulas

In order to analyze the forcing relation for Σ-over-LF formulas, we define a stronger

retagging notion which places restrictions on locks.

Definition 6.23. We define Ret≤(β, F, p, p∗) if:

– p and p∗ are β-F -absolute retaggings;

– {n : ∃i(fp(i)(0) = n)} ⊇ {n : ∃i(fp∗(i)(0) = n)};

– lp ⊇ lp
∗
.

We make some observations:

155

– Ret≤(β, F, ·, ·) is reflexive and transitive, but not symmetric. This asymmetry

is not essential; we could have enforced equality in the second and third

condition and proved Lemma 6.24.

– The dependence of Ret≤(β, F, ·, ·) on fp and fp
∗

is not “local” to F : whether

Ret≤(β, F, p, p∗) holds depends on more than just fp � F and fp
∗
� F .

We prove a basic retagging lemma.

Lemma 6.24. Suppose that Ret≤(ωβ, F, p, p∗). Then for all q ≤ p and all γ < β,

there exists q∗ ≤ p∗ such that Ret≤(ωγ, F, q, q∗).

Proof. Fix q ≤ p, p∗, and γ < β as above. Define q∗ as follows:

– T q
∗

= T q;

– f q
∗

= f q on F and f q
∗

= fp
∗

on dom(fp
∗
)\F ;

– lq
∗

= lq;

– hq
∗

is defined by cases:

hq
∗
(τ) =

hp
∗
(τ) if τ ∈ T p

∞ if ∃i(τ ⊆ f q
∗
(i)) or |τ | ≤ 1

hq(τ) if hq(τ) < ωγ

ωγ + |τ |Q otherwise

where Q = {σ ∈ T q : hq(σ) ≥ ωγ}.

We verify that q∗ has the desired properties.

hq
∗

is well-defined. The proof is almost the same as that for Lemma 6.14,

except where we show that the first and second case in the definition of hq
∗

do not

156

conflict. Since we do not assume here that F ⊆ dom(fp), we need to consider the

following situation, which was impossible in Lemma 6.14.

Suppose that τ ⊆ f q
∗
(i) for some i ∈ (F ∩ dom(f q))\dom(fp). By definition

f q
∗
(i) = f q(i). By (6b) for q ≤ p, |f q(i) ∩ T p| ≤ 1. Since τ ∈ T p, it follows that

|τ | ≤ 1. So hp
∗
(τ) =∞ as desired.

q∗ is a condition. The proof is the same as that for Lemma 6.14.

q∗ extends p∗. We start by showing that q∗ and p∗ satisfy (6a). For i ∈

dom(fp
∗
)\F , f q

∗
(i) = fp

∗
(i) ∈ T p so certainly f q

∗
(i) ∩ T p = fp

∗
(i) as desired. As

for i ∈ dom(fp
∗
) ∩ F = dom(fp) ∩ F , we showed earlier (in the proof that hq

∗
is

well-defined) that f q
∗
(i) ∩ T p = fp

∗
(i) as desired.

For (6b) and (9), let i ∈ dom(f q
∗
)\dom(fp

∗
) = (F ∩ dom(f q))\dom(fp). We

showed earlier (in the proof that hq
∗

is well-defined) that |f q∗(i)∩T p| ≤ 1, showing

(6b).

As for (9), suppose that f q
∗
(i)(0) = n and there is j such that fp

∗
(j)(0) = n.

We want to show that n /∈ lp∗ . First, by definition of q∗, f q
∗
(i) = f q(i). Second, by

the second condition in Ret≤(ωβ, F, p, p∗), there is some j′ such that fp(j′)(0) = n.

Hence we may apply (9) for q ≤ p to conclude that n /∈ lp. Finally, by the third

condition in Ret≤(ωβ, F, p, p∗), lp ⊇ lp
∗
. Thus n /∈ lp∗ as desired.

q and q∗ satisfy Ret≤(ωγ, F, q, q∗). The proof that hq(τ) ≥ ωγ implies

hq
∗
(τ) ≥ ωγ is the same as that for Lemma 6.14. Hence q and q∗ are ωγ-F -

157

absolute retaggings. Next, observe that

{n : ∃i(f q∗(i)(0) = n)}

⊆ {n : ∃i(f q(i)(0) = n)} ∪ {n : ∃i(fp∗(i)(0) = n)}

⊆ {n : ∃i(f q(i)(0) = n)} ∪ {n : ∃i(fp(i)(0) = n)} Ret≤(ωβ, F, p, p∗)

⊆ {n : ∃i(f q(i)(0) = n)} (6a) for q ≤ p.

Finally, lq
∗

= lq by definition.

Next, we study a retagging notion even stronger than that in Definition 6.23

and show that it respects the forcing relation for Σ-over-LF formulas (Lemma

6.26).

Definition 6.25. We abbreviate Ret≤(β, dom(fp), p, p∗) by Ret≤(β, p, p∗). Equiv-

alently, Ret≤(β, p, p∗) if:

– p and p∗ are β-dom(fp)-absolute retaggings;

– {n : ∃i(fp(i)(0) = n)} = {n : ∃i(fp∗(i)(0) = n)};

– lp ⊇ lp
∗
.

We make some observations:

– Ret≤(β, F, ·, ·) is reflexive and transitive, but not symmetric.

– In the second condition, we have equality (instead of ⊇) because the first

condition of Ret≤(β, p, p∗) implies that fp ⊆ fp
∗
.

Our goal is then to prove:

158

p p∗

q q∗

r r∗

Figure 6.1: Arrows correspond to extension in the forcing. Dotted lines correspond
to some notion of retagging, which will be made precise in the proof of Lemma
6.26.

Lemma 6.26. Suppose that ψ is Σ-over-LF , p ψµ, and F ⊆ dom(fp). If

Ret≤(ω · rk(ψµ) + ω2, p, p∗), then p∗ ψµ as well.

The proof has two main components: a retagging lemma (Lemma 6.27), and

a class of automorphisms of our forcing P, obtained by using permutations of ω

to permute the domain of fp. Before presenting the proof, we discuss our strat-

egy, which is illustrated in Figure 6.1. For simplicity, suppose for now that ψ is

∃Xϕ(X), where ϕ is ranked and F -restricted. Suppose that p ψµ, F ⊆ dom(fp),

and Ret≤(ω · rk(ψµ) + ω2, p, p∗). Given q∗ ≤ p∗, we want to construct r∗ ≤ q∗ and

S ∈ Cµ such that r∗ ϕµ(S).

The first step in our plan is to construct q ≤ p which is a retagging of q∗ (for

some appropriate notion of retagging). Next, since p ψµ, there must be some

r ≤ q and some S ∈ Cµ such that r ϕµ(S). By extending r, we may assume

without loss of generality that dom(S) ⊆ dom(f r). Finally, if we could construct

r∗ ≤ q∗ which is an ω · rk(ϕµ)-(F ∪dom(S))-absolute retagging of r, then we could

conclude by Lemma 6.18 that r∗ ϕµ(S) as desired.

What properties does q have to satisfy in order for us to construct r∗ as above?

For one, there cannot be any i such that f q(i) and f q
∗
(i) are defined but different.

For if i ∈ dom(S), there is no r∗ extending q∗ which satisfies f r
∗
� (F ∪dom(S)) =

159

f r � (F ∪ dom(S))! (This follows from (6a) for r∗ ≤ q∗ and r ≤ q.) Therefore we

will construct q such that f q and f q
∗

agree on dom(f q) ∩ dom(f q
∗
).

As for i ∈ dom(f q
∗
)\dom(f q), we can avoid problems using automorphisms of

our forcing. As we argue later, we may permute r and S to ensure that dom(f r)∩

dom(f q
∗
) = dom(f q) (while preserving the facts that r ≤ q and r ϕµ(S)). Then

dom(f q
∗
)\dom(f q) and dom(S) are disjoint, so we are not obliged to (and indeed

will not) define f r
∗
(i) = f r(i).

How about i ∈ dom(f q)\dom(f q
∗
)? Consider the situation where r = q and

i ∈ dom(S). Then if f r
∗
� (F ∪ dom(S)) = f r � (F ∪ dom(S)), we must have

f r
∗
(i) = f q(i). Hence we must be able to extend q∗ by defining f r

∗
(i) = f q(i).

But since i ∈ dom(f r
∗
)\dom(f q

∗
), f r

∗
(i) is constrained by (6b) and (9) for r∗ ≤

q∗. This creates multiple problems, so we will avoid this by constructing q such

that this cannot happen, i.e., dom(f q) ⊆ dom(f q
∗
). Together with our earlier

commitment that f q and f q
∗

agree on dom(f q) ∩ dom(f q
∗
), this means that we

want to construct q such that f q ⊆ f q
∗
.

Unfortunately, we cannot always avoid (6b) and (9). Consider a situation where

r extends q by adding some f r(i), i ∈ dom(f r)\dom(f q). Suppose that i ∈ dom(S).

Then we must define f r
∗
(i) = f r(i). Since dom(f r) ∩ dom(f q

∗
) = dom(f q), we

have that i ∈ dom(f r
∗
)\dom(f q

∗
). Hence f r

∗
(i) is constrained by (6b) and (9) for

r∗ ≤ q∗.

However, observe that f r(i) is constrained by (6b) and (9) for r ≤ q! (6b) for

r ≤ q demands that |f r(i) ∩ T q| ≤ 1. Since f r
∗
(i) = f r(i) and T q = T q

∗
, (6b) for

r∗ ≤ q∗ holds as well. Similarly, we will argue that (9) for r∗ ≤ q∗ follows from (9)

for r ≤ q. What is needed for that argument is exactly the following statement

160

about q and q∗:

P (q, q∗): If n ∈ lq∗ and there is some i ∈ dom(f q
∗
) such that f q

∗
(i)(0) = n,

then n ∈ lq and there is some j ∈ dom(f q) such that f q(j)(0) = n.

Observe that if lq ⊇ lq
∗

and {n : ∃i(f q(i)(0) = n)} ⊇ {n : ∃i(f q∗(i)(0) = n)},

then P (q, q∗) certainly holds. This partially justifies the second and third condition

in Definition 6.25. To fully justify those conditions, we need to bring p and p∗ back

into the picture. Stronger assumptions, such as those in Definition 6.25, are needed

on p and p∗ in order to ensure that we can always construct q satisfying the desired

properties.

There is another restriction that we need to impose on p and p∗. Suppose that

there is some i ∈ dom(fp)\dom(fp
∗
). Define q∗ ≤ p∗ by adding fp(i)(0) to lq

∗
.

Next, suppose that we manage to construct some q ≤ p. We then obtain some

r ≤ q and some S. Suppose that i ∈ dom(S). Then we are obliged to define

f r
∗
(i) = f r(i). But i /∈ dom(f q

∗
) and f r

∗
(i)(0) = fp(i)(0) ∈ lq∗ , violating (9). So

there is no r∗ ≤ q∗ satisfying the desired properties. Therefore we must require

that dom(fp) ⊆ dom(fp
∗
), justifying the first condition in Definition 6.25.

This concludes our preliminary discussion of the proof of Lemma 6.26. We

proceed to present the details. First, we prove a retagging lemma. It looks similar

to Lemma 6.24, but yields a stronger result in the case where F = dom(fp
∗
) (in this

case Lemma 6.24 only yields some q∗ ≤ p∗ such that Ret≤(ωγ, dom(fp
∗
), q∗, q).)

Lemma 6.27. Suppose that Ret≤(ωβ, p∗, p), q ≤ p, and γ < β. Then there is

q∗ ≤ p∗ such that Ret≤(ωγ, q∗, q).

Proof. Fix q ≤ p, p∗, γ < β as above. Define q∗ as follows:

161

– T q
∗

= T q;

– f q
∗

= f q � (H ∪ dom(fp
∗
)), where

H = dom(f q)\dom(fp);

– lq
∗

= lq;

– hq
∗

is defined by cases:

hq
∗
(τ) =

hp
∗
(τ) if τ ∈ T p

∞ if ∃i(τ ⊆ f q
∗
(i)) or |τ | ≤ 1

hq(τ) if hq(τ) < ωγ

ωγ + |τ |Q otherwise

where Q = {σ ∈ T q : hq(σ) ≥ ωγ}.

hq
∗

is well-defined. First observe that since f q
∗ ⊆ f q, the second and third

case are mutually exclusive.

Next, assuming that τ ∈ T p and ∃i(τ ⊆ f q
∗
(i)), we show that hp

∗
(τ) =∞.

If i ∈ dom(fp
∗
) ⊆ dom(fp), then τ ⊆ f q

∗
(i) ∩ T p = f q(i) ∩ T p = fp(i) by (6a)

for q ≤ p. Next, fp(i) = fp
∗
(i) by retagging, so hp

∗
(τ) =∞ as desired.

Otherwise, i ∈ H = dom(f q)\dom(fp). Then |f q∗(i) ∩ T p| = |f q(i) ∩ T p| ≤ 1

by (6b) for q ≤ p, so hp
∗
(τ) =∞ as desired.

Next, assuming that τ ∈ T p and hq(τ) < ωγ, we show that hp
∗
(τ) = hq(τ):

hp(τ) = hq(τ) < ωγ, so by retagging, hp
∗
(τ) = hp(τ) = hq(τ). We have shown that

hq
∗

is well-defined.

q∗ is a condition. The proof is the same as that for Lemma 6.14.

162

q∗ extends p∗. (5) holds because of (5) for q ≤ p. For (6a): if i ∈ dom(fp
∗
) ⊆

dom(fp), we have that

f q
∗
(i) ∩ T p = f q(i) ∩ T p i ∈ dom(fp

∗
)

= fp(i) i ∈ dom(fp), (6a) for q ≤ p

= fp
∗
(i) fp

∗ ⊆ fp

as desired. For (6b), observe that dom(f q
∗
)\dom(fp

∗
) = dom(f q)\dom(fp), so

(6b) follows from (6b) for q ≤ p. (7) holds by definition. (8) follows from (8) for

q ≤ p and Ret≤(ωβ, p∗, p): lq
∗

= lq ⊇ lp = lp
∗
.

Finally, (9) follows from (9) for q ≤ p and Ret≤(ωβ, p∗, p): suppose n ∈ lp∗ and

there is j such that fp
∗
(j)(0) = n. We have that lp

∗
= lp and fp

∗ ⊆ fp, so n ∈ lp

and fp(j)(0) = n. By (9) for q ≤ p, there is no i ∈ dom(f q)\dom(fp) such that

f q(i)(0) = n. Since f q
∗ ⊆ f q and dom(f q

∗
)\dom(fp

∗
) = dom(f q)\dom(fp), there

is no i ∈ dom(f q
∗
)\dom(fp

∗
) such that f q

∗
(i)(0) = n, as desired.

{n : ∃i[f q(i)(0) = n]} equals {n : ∃i[f q∗(i)(0) = n]}. The backward inclusion

holds because f q
∗ ⊆ f q. For the forward inclusion:

{n : ∃i ∈ dom(fp)\dom(fp
∗
)[f q(i)(0) = n]}

= {n : ∃i ∈ dom(fp)\dom(fp
∗
)[fp(i)(0) = n]} (6a) for q ≤ p

⊆ {n : ∃i ∈ dom(fp
∗
)[fp

∗
(i)(0) = n]} Ret≤(ωβ, p∗, p)

= {n : ∃i ∈ dom(fp
∗
)[fp(i)(0) = n]} fp

∗ ⊆ fp

= {n : ∃i ∈ dom(fp
∗
)[f q(i)(0) = n]} (6a) for q ≤ p

⊆ {n : ∃i[f q∗(i)(0) = n]} f q � dom(fp
∗
) ⊆ f q

∗
.

q and q∗ satisfy Ret≤(ωγ, q∗, q). We omit the routine proof that q∗ and q are

163

ωγ-dom(f q
∗
)-absolute retaggings. We showed above that {n : ∃i[f q(i)(0) = n]}

equals {n : ∃i[f q∗(i)(0) = n]}. Finally, lq
∗

= lq by definition.

Next, observe that every permutation π of ω induces an automorphism π̂ of

our forcing, defined by T π̂(p) = T p, f π̂(p)(π(i)) = fp(i), hπ̂(p) = hp, and lπ̂(p) = lp.

π also induces a bijection on formulas in L∞: for any ψ in L∞, πψ is defined

to be the formula obtained from ψ by replacing αi with απ(i), Hν,F with Hν,π′′F ,

Sν,F,e with Sν,π′′F,e, X
ν
F with Xν

π′′F , and XF with Xπ′′F .

Lemma 6.28. Suppose that p ψ. If π is a permutation of ω, then π̂(p) πψ.

Proof. Induction on rank of ψ.

A typical application of Lemma 6.28 is as follows.

Corollary 6.29. Let ϕ ∈ LF . Suppose that p and H ⊂f ω are such that F ⊆

dom(fp) ⊆ H. If there is q ≤ p such that q ϕ, then there is q′ ≤ p such that

q′ ϕ and dom(f q
′
) ∩H = dom(fp).

Proof. Let π permute q to q′ by fixing dom(fp) and moving dom(f q)\dom(fp)

to some set disjoint from H. Lemma 6.28 implies that q′ πϕ. Since π fixes

F ⊆ dom(fp) and ϕ ∈ LF , πϕ is the same as ϕ. Finally, it is easy to see that

q′ ≤ p.

We are ready to show that our retagging notion respects the forcing relation

for Σ-over-LF formulas.

Proof of Lemma 6.26. We prove the following statement by induction on k:

164

Suppose that ψ is Σ-over-LF and can be constructed from ranked F -

restricted formulas in k steps. Suppose that p ψµ and F ⊆ dom(fp).

If Ret≤(ω · rk(ψµ) + ω · 2k, p, p∗), then p∗ ψµ as well.

The case k = 0 follows from Lemma 6.18. Assume that the above statement

holds for k. Fix ψ which is Σ-over-LF and can be constructed from ranked F -

restricted formulas in k + 1 steps.

The only nontrivial case is where ψ is of the form ∃Xϕ(X), and ϕ can be

constructed from ranked F -restricted formulas in k steps.

Suppose that p ψµ. Let σ denote rk(ψµ). Suppose that Ret≤(ωσ + ω · (2k +

2), p, p∗). Given q∗ ≤ p∗, we have to construct r∗ ≤ q∗ and S ∈ Cµ such that

r∗ ϕµ(S). This plan is illustrated in Figure 6.1.

First, by Lemma 6.27, there is q ≤ p such that Ret≤(ωσ + ω · (2k + 1), q, q∗).

Since p ψµ, there are r ≤ q and S ∈ Cµ such that r ϕµ(S).

Without loss of generality, we may assume that dom(S) ⊆ dom(f r) and dom(f q
∗
)∩

dom(f r) = dom(f q). This is arranged by first extending r to ensure that dom(S) ⊆

dom(f r). Then, consider a permutation π which fixes dom(f q) (and hence F) and

moves dom(f r)\dom(f q) away from dom(f q
∗
). We show that πr and πS have the

desired properties. Firstly, it is easy to see that πr ≤ q. Secondly, Lemma 6.28

implies that πr πϕµ(πS). Since F ⊆ dom(f q) and π fixes dom(f q), πϕ is the

same as ϕ. Hence πr ϕµ(πS). Thirdly, dom(πS) = π(dom(S)) ⊆ π(dom(f r)) =

dom(fπr), so πr and πS satisfy the desired properties.

To complete the proof, observe that because Ret≤(ωσ+ω·(2k+1), dom(f q), q, q∗)

and dom(f q
∗
) ∩ dom(f r) = dom(f q), we in fact have that Ret≤(ωσ + ω · (2k +

165

1), dom(f r), q, q∗). Now we apply Lemma 6.24 to obtain r∗ ≤ q∗ such that Ret≤(ωσ+

ω · 2k, dom(f r), r, r∗). Note that ϕ(S) is Σ-over-LF∪dom(S) and can be constructed

from ranked (F ∪ dom(S))-restricted formulas in k steps, r ϕµ(S), and F ∪

dom(S) ⊆ dom(f r). The inductive hypothesis then implies that r∗ ϕµ(S), as

desired.

Now we may prove a boundedness result. Its statement and proof is almost the

same as that of Montalbán [31, Lemma 2.9]. One important difference is that we

cannot use Lemma 6.14 in our proof (because it only applies when F ⊆ dom(fp)),

while Montalbán can use his Lemma 2.5. Instead, we use Lemma 6.24.

Lemma 6.30. Suppose that ψ is Σ-over-LF . Then, for conditions p such that

F ⊆ dom(fp):

– if p ψ, there is µ < ωCK1 such that for all ρ ∈ [µ, ωCK1), p ψρ;

– given p, ψ and ρ < ωCK1 , we can compute whether p ψρ uniformly in some

Hµ,F (µ depending on ψρ).

Proof. We proceed by induction on the number of steps it takes to construct ψ

from ranked F -restricted formulas. The base case holds by Corollary 6.20.

The only nontrivial case is when ψ has the form ∃Xϕ(X). Since p ψ, for

every q ≤ p, there is r ≤ q and S such that r ϕ(S). By extending r, we may

ensure that F ∪ dom(S) ⊆ dom(f r). Then, by the induction hypothesis applied to

r ϕ(S), r ϕρ(S) for all sufficiently large ρ < ωCK1 .

Hence, for each q ≤ p, there is γq < ωCK1 , r ≤ q in Pγq , and S ∈ Cγq such that

r ϕγq(S). By the induction hypothesis, we can hyperarithmetically search for

the least such γq < ωCK1 .

166

p

q∗ q

r∗ r

Figure 6.2: Arrows correspond to extension in the forcing. Dotted lines correspond
to retaggings.

By boundedness, for each β < ωCK1 , there must be γ < ωCK1 such that for every

q ≤ p in Pβ, there is γq < γ, r, and S as above. For later purposes, we will choose

γ sufficiently large such that ω · rk(ϕγq(S)) + ω2 + ω ≤ γ.

In fact, we can search for such γ hyperarithmetically, so by boundedness, we

can construct some limit µ < ωCK1 by recursion along ω, such that (1) p ∈ Pµ; (2)

for every β < µ, we can find such γ < µ.

We show that p ψµ: given q ≤ p, we want to construct r ≤ q and S ∈ Cµ

such that r ϕµ(S). Our plan for doing so is illustrated in Figure 6.2.

First we define q∗ such that Ret≤(µ,H, q∗, q) for any H: T q
∗

= T q, f q
∗

= f q,

lq
∗

= lq, and for all σ such that hq(σ) ≥ µ, we define hq
∗
(σ) =∞, otherwise define

hq
∗
(σ) = hq(σ). Clearly q∗ is a condition in Pµ, q∗ extends p, and Ret≤(µ,H, q∗, q)

for any H.

Since µ is a limit and dom(hq
∗
) = T q

∗
is finite, q∗ ∈ Pβ for some β < µ. By

construction of µ, there exist γq∗ < γ < µ, r∗ ≤ q∗ in Pγq∗ , and S ∈ Cγq∗ such that

ω · rk(ϕγq(S)) + ω2 + ω ≤ γ and r∗ ϕγq∗ (S). We may extend r∗ to ensure that

F ∪ dom(S) ⊆ dom(f r
∗
).

Next, since ω · rk(ϕγq(S)) + ω2 + ω ≤ γ < µ and Ret≤(µ, dom(f r
∗
), q∗, q), by

Lemma 6.24, there is some r ≤ q such that Ret≤(ω·rk(ϕγq∗ (S))+ω2, dom(f r
∗
), r∗, r).

167

Since F ∪ dom(S) ⊆ dom(f r
∗
), by Lemma 6.26, r ϕγq∗ (S), and so r ϕµ(S) as

desired.

The above argument also shows us how to compute whether p ∃Xρϕρ(Xρ),

in a hyperarithmetic way. Let µ < ωCK1 be larger than ω · rk(ϕρ(S)) + ω2 + ω for

any S ∈ Cρ. Then p ∃Xρϕρ(Xρ) if and only if for all q ≤ p in Pµ, there is some

r ≤ q in Pµ and S ∈ Cρ such that r ϕρ(S).

Just as in [31, Lemma 2.9], we conclude that

Corollary 6.31. For each F , MF |= Σ1
1-AC0. It follows that MF = HYP(TG ⊕

〈αGi 〉i∈F).

Proof. Suppose that MF |= ∀n∃Xϕ(n,X), where ϕ(n,X) is arithmetic. Then

there is some p ∈ G such that p ∀n∃Xϕ(n,X). By Lemma 6.30, fix some

µ < ωCK1 such that p ∀n∃Xµϕ(n,Xµ). Next, by Corollary 6.20, for each n,

we can use Hµ+ω,F to search for the least en such that p ϕ(n,Sµ,F,en). Hence

(Sµ,F,en)n lies in MF , as desired.

6.3.7 M∞ satisfies ∆1
1-comprehension

Definition 6.32. We say that h : T → ωCK1 ∪ {∞} is ν-good if T ⊂ TG and for

all σ ∈ T :

hG(σ) < ν ⇒ h(σ) = hG(σ)

hG(σ) ≥ ν ⇔ h(σ) ≥ ν.

To complete the proof of Theorem 6.11, we show that:

168

Lemma 6.33. M∞ |= ∆1
1-CA0.

Proof. Suppose that ϕ(n) and ψ(n) are Σ-over-LF with only n free and M∞ |=

∀n(ψ(n)↔ ¬ϕ(n)). We want to define D ∈M∞ such that

M∞ |= ∀n(ψ(n)↔ n ∈ D).

A naive attempt is to consider

{n : ∃q ∈ G(q ψ(n))},

but there are two obstacles preventing us from showing that the above set lies in

M∞:

– M∞ does not contain G so we cannot search over q ∈ G;

– we do not know that deciding whether q ψ(n) is hyperarithmetic.

To overcome the first obstacle, we use retagging to change the scope of our search

to a class of conditions which look like they might lie in G, based on information

from TG and finitely many αGi , which do lie in M∞. Notice that M∞ (in fact MF

for F = ∅) also contains α-good rank functions on TG, for each α < ωCK1 . To

overcome the second obstacle, we use Lemma 6.30.

Fix p ∈ G such that p ∀n(ψ(n) ∨ ϕ(n)) (note that ∀n(ψ(n) ∨ ϕ(n)) is

Σ-over-LF). By genericity and by expanding F if necessary, we may assume that

F = dom(fp). By Lemma 6.30, fix µ < ωCK1 large enough such that p ∀n(ψµ(n)∨

ϕµ(n)) and µ is greater than the rank of any constant in ϕ and ψ. So M∞ |=

∀n(ψµ(n) ∨ ϕµ(n)). By upward persistence, M∞ |= ∀n(ψµ(n)↔ ¬ϕµ(n)).

169

Next, fix ν < ωCK1 large enough such that p ∈ Pν and rk(ϕµ(n) ∨ ψµ(n)) < ν

for all n. Now, we define D as follows: d ∈ D if and only if there is q ∈ Pων+ω2+ω

extending p such that

1. q ψµ(d);

2. T q ⊂ TG;

3. hq is (ων + ω2 + ω)-good;

4. ∀i ∈ F (f q(i) = αGi ∩ T q).

Observe that D is hyperarithmetic in TG ⊕ 〈αGi 〉i∈F , so D ∈MF ⊆M∞. We show

that M∞ |= ψ(d) if and only if d ∈ D.

Suppose that M∞ |= ψ(d). Then M∞ |= ψµ(d), so we may fix q∗ ∈ G extending

p which forces ψµ(d). We retag q∗ to q ∈ Pων+ω2+ω, defined as follows: T q = T q
∗
,

f q = f q
∗
, lq = lq

∗
, and

hq(σ) =

∞ if hq

∗
(σ) ≥ ων + ω2 + ω

hq
∗
(σ) otherwise

.

Since hq
∗ ⊆ hG, hq is (ων + ω2 + ω)-good. It is easy to see that q is a condition

in Pων+ω2+ω. Since p ∈ Pν , hq ⊇ hp. It is then easy to see that q ≤ p. Observe

that Ret≤(ων + ω2, q∗, q) and F = dom(fp) ⊆ dom(f q) = dom(f q
∗
), so by Lemma

6.26, q ψµ(d). q witnesses that d ∈ D, as desired.

On the other hand, suppose that M∞ |= ϕ(d). Then M∞ |= ϕµ(d), so we may

fix r ∈ G extending p which forces ϕµ(d). Suppose towards a contradiction that

d ∈ D, as witnessed by some q.

Without loss of generality, we may assume that dom(f q)∩ dom(f r) = F . This

is arranged by fixing F and permuting dom(f q)\F as necessary. This permutation

170

p

q r

q∗ s∗ r∗
Ret≤ Ret≥

Figure 6.3: p and r lie in G, while q “looks like” it lies in G.

clearly preserves (2), (3), and (4) in the definition of D. By Lemma 6.28, (1) is

also preserved.

Next, we aim to define q∗ ≤ q, r∗ ≤ r, and s∗ ≤ p such that Ret≤(ων+ω2, q∗, s∗)

and Ret≤(ων + ω2, r∗, s∗). This plan is illustrated in Figure 6.3. If we then apply

Lemma 6.26 twice, we obtain that s∗ ψµ(d) ∧ ϕµ(d). But s∗ ≤ p ∈ G and

M∞ |= ∀n(ψµ(n)↔ ¬ϕµ(n)), giving the desired contradiction.

Define T q
∗

= T r
∗

= T s
∗

= T r ∪ T q. We define q∗ as follows:

– f q
∗
(i) = αGi ∩ T q

∗
for i ∈ F , and f q

∗
(i) = f q(i) for i ∈ dom(f q)\F . Also,

for each n for which ∃i(〈n〉 ⊆ f r(i)) but ¬∃i(〈n〉 ⊆ f q(i)), we add 〈n〉 to f q
∗

(using numbers > dom(f r) as domain);

– lq
∗

= lq ∪ lr;

– Define hq
∗

by cases:

hq
∗
(τ) =

hq(τ) if τ ∈ T q

∞ ∃i(τ ⊆ f q
∗
(i)) or |τ | ≤ 1

hG(τ) if hG(τ) < ων + ω2

ων + ω2 + |τ |Q otherwise

where Q = {τ ∈ T q∗ : hG(τ) ≥ ων + ω2}.

171

hq
∗

is well-defined. First we show that the second and third case are mutually

exclusive. Suppose ∃i(τ ⊆ f q
∗
(i)). There are three cases. If i ∈ F , then τ ⊂ αGi ,

so hG(τ) = ∞ > ων + ω2. If i ∈ dom(f q)\F , then f q
∗
(i) = f q(i), so hq(τ) = ∞.

Since q is (ων + ω2 + ω)-good, hG(τ) ≥ ων + ω2 + ω > ων + ω2. In the remaining

case, |f q∗(i)| = 1 so hG(τ) =∞ > ων + ω2.

Next, the first and third case do not conflict: if τ ∈ T q and hG(τ) < ων + ω2,

then hq(τ) = hG(τ) because hq is (ων + ω2 + ω)-good.

Finally, we show that the first and second case do not conflict. If τ ∈ T q

and ∃i(τ ⊆ f q
∗
(i)), we consider three cases. If i ∈ dom(f q)\F , then hq(τ) = ∞

as before. If i ∈ F , then f q
∗
(i) = αGi ∩ T q

∗
. Since τ ∈ T q, it follows that

τ ⊆ αGi ∩ T q = f q(i), so hq(τ) = ∞. Otherwise, |f q∗(i)| = 1 so hq(τ) = ∞. We

have shown that hq
∗

is well-defined.

q∗ is a condition. It suffices to check that hq
∗

is a rank function. The

nontrivial cases are as follows:

Case 1. |τ | > 1, τ /∈ T q, τ− ∈ T q, hG(τ) < ων + ω2. We show that hq
∗
(τ) <

hq
∗
(τ−), i.e., hG(τ) < hq(τ−). If hq(τ−) ≥ ων + ω2, then we are done. Otherwise,

hq(τ−) < ων + ω2, so hG(τ−) = hq(τ−) since q is (ων + ω2 + ω)-good. So hG(τ) <

hG(τ−) = hq(τ−) as desired.

Case 2. |τ | > 1, τ /∈ T q, τ− ∈ T q, hG(τ) ≥ ων + ω2, hq
∗
(τ) = ων + ω2 + |τ |Q.

If hq
∗
(τ−) ≥ ων+ω2 +ω, then hq

∗
(τ−) ≥ ων+ω2 +ω > ων+ω2 + |τ |Q = hq

∗
(τ)

as desired.

172

Otherwise, hq
∗
(τ−) < ων + ω2 + ω. Then

hq
∗
(τ−) = hq(τ−) τ− ∈ T q

= hG(τ−) q is (ων + ω2 + ω)-good

> hG(τ) hG is a rank function

≥ ων + ω2 + |τ |Q Proposition 6.12

= hq
∗
(τ)

as desired. This shows that hq
∗

is a rank function.

q∗ extends q. (5), (7), and (8) hold by definition. (6b) holds because all new

paths we added (if any) have length 1. (9) holds because for any new path 〈m〉

that we added,

m /∈ {n : ∃i(〈n〉 ⊆ f q(i))}

so we are free to add 〈m〉 to q.

It remains to check (6a): for i ∈ dom(f q)\F , f q
∗
(i) = f q(i) so we are done. As

for i ∈ F , since q witnesses that d ∈ D, f q
∗
(i)∩T q = αGi ∩T q

∗∩T q = αGi ∩T q = f q(i)

as desired.

Next we define r∗:

– f r
∗

= αGi ∩ T r
∗

for i ∈ F , and f r
∗
(i) = f r(i) for i ∈ dom(f r)\F . Also, for

each n for which ∃i(〈n〉 ⊆ f q(i)) but ¬∃i(〈n〉 ⊆ f r(i)), we add 〈n〉 to f r
∗

(using numbers > dom(f q
∗
) as domain);

– lr
∗

= lq ∪ lr;

– hr
∗

= hG � T r
∗
.

173

r∗ is a condition. It suffices to show that for each i ∈ dom(f r
∗
), hr

∗
(f r

∗
(i)) =

∞. For i ∈ dom(f r)\F , hr
∗
(f r

∗
(i)) = hG(f r(i)) = ∞ because r ∈ G. For i ∈ F ,

hr
∗
(f r

∗
(i)) = hG(αGi ∩ T r

∗
) =∞. Otherwise, |f r∗(i)| = 1 so hr

∗
(f r

∗
(i)) =∞.

r∗ extends r. (5) and (8) hold by definition. (7) holds because r ∈ G. (6b)

holds because all new paths we added (if any) have length 1. (9) holds because for

any new path 〈m〉 that we added,

m /∈ {n : ∃i(〈n〉 ⊆ f r(i))}

so we are free to add 〈m〉 to r.

It remains to check (6a): for i ∈ dom(f r)\F , f r
∗
(i) = f r(i) so we are done. As

for i ∈ F , f r
∗
(i)∩ T r = αGi ∩ T r

∗ ∩ T r = αGi ∩ T r = f r(i) because r ∈ G. We have

showed that r∗ is a condition extending r.

Finally, define s∗ as follows:

– f s
∗

= f q
∗ ∪ f r∗ ;

– ls
∗

= lq ∪ lr;

– Define hs
∗

by cases:

hs
∗
(τ) =

hG(τ) if hG(τ) < ων + ω2

∞ if hG(τ) ≥ ων + ω2

.

f s
∗

is well-defined. This holds because dom(f q
∗
) ∩ dom(f r

∗
) = F and f q

∗
�

F = f r
∗
� F .

s∗ is a condition. It suffices to show that if i ∈ dom(f s
∗
), then hs

∗
(f s

∗
(i)) =

∞. First suppose that i ∈ dom(f q
∗
). It suffices to show that hG(f q

∗
(i)) ≥ ων+ω2.

174

If not, then by definition of hq
∗
, hq

∗
(f q

∗
(i)) = hG(f q

∗
(i)). But the former is

∞ because q∗ is a condition, contradicting our assumption. Hence hG(f q
∗
(i)) ≥

ων + ω2. By definition of hs
∗
, hs

∗
(f q

∗
(i)) =∞ as desired.

Otherwise, i ∈ dom(f r
∗
). Then hG(f r

∗
(i)) = hr

∗
(f r

∗
(i)) = ∞ ≥ ων + ω2, so

hs
∗
(f r

∗
(i)) =∞ as desired.

s∗ extends p. (5) and (8) hold by definition. (6a), (6b), and (9) hold because

both q∗ ≤ p and r∗ ≤ p satisfy (6a), (6b), and (9). (7) holds because p ∈ Pν ,

p ∈ G, and hs
∗

is (ων + ω2)-good.

q∗, r∗ and s∗ satisfy Ret≤(ων + ω2, q∗, s∗) and Ret≤(ων + ω2, r∗, s∗). First,

by definition of hq
∗
, hr

∗
, and hs

∗
, they are (ων + ω2)-good. Also, by definition,

f q
∗

= f s
∗
� dom(f q

∗
) and f r

∗
= f s

∗
� dom(f r

∗
).

Second, by construction, {n : ∃i(〈n〉 ⊆ f q
∗
(i))} and {n : ∃i(〈n〉 ⊆ f r

∗
(i))} (and

hence their union {n : ∃i(〈n〉 ⊆ f s
∗
(i))}) are all equal to

{n : ∃i(〈n〉 ⊆ f q(i))} ∪ {n : ∃i(〈n〉 ⊆ f r(i))}.

Finally, ls
∗

= lq
∗

= lr
∗

by definition.

175

CHAPTER 7

HALIN’S THEOREM ON DISJOINT RAYS

This chapter is part of joint work with James Barnes and Richard A. Shore.

In this chapter, all graphs are undirected unless specified otherwise. A path

in a graph is a (possibly finite) sequence of distinct vertices such that consecutive

vertices are adjacent. A ray is an infinite path (indexed by N). A set of paths or

rays is vertex-disjoint (edge-disjoint) if the rays within do not have any vertices

(edges, respectively) in common.

In 1965, Halin [21] proved the following:

Theorem 7.1. In every graph, there is a set of vertex-disjoint rays of maximum

cardinality. In particular, if a graph contains k many vertex-disjoint rays for every

k ∈ N, then it contains a set of infinitely many vertex-disjoint rays.

Halin [21] also proved the analogous result for edge-disjoint rays, but we will

not study it here. Henceforth, we will write disjoint instead of vertex-disjoint.

In this chapter, we study the second statement in Halin’s theorem (restricted

to countable graphs) from the point of view of reverse mathematics. Henceforth

we will simply refer to this statement as Halin’s theorem.

First, observe that we cannot collect multiple disjoint rays in a greedy manner.

For example, in the N × N grid, there are rays which pass through every vertex,

and hence are not part of any set of infinitely many disjoint rays. This suggests

that Halin’s theorem has nontrivial computational and proof-theoretic content, as

we will show in Proposition 7.8.

176

Next, notice that the form of Halin’s theorem is reminiscent of a compactness

theorem. However, rays are not first-order objects. In fact, they can be hard to

compute! Even if we can compute k-many disjoint rays individually, we cannot

in general compute a set of k-many disjoint rays uniformly in k (see Proposition

7.15).

This suggests the following two formalizations of Halin’s theorem in the lan-

guage of second-order arithmetic. The only difference between them lies in their

hypotheses, about which sets are asserted to exist.

Definition 7.2. Define the infinite ray theorem (IRT) and the weak infinite ray

theorem (WIRT):

IRT: if G is a graph and for each k, there is a set of k disjoint G-rays, then there

is a set of infinitely many disjoint G-rays.

WIRT: if G is a graph and there is a sequence of sets (Xk)k such that for each k ∈ N,

Xk is a set of k disjoint G-rays, then there is a set of infinitely many disjoint

G-rays.

Trivially, IRT implies WIRT. We will show that WIRT is much weaker than

IRT. In more detail, our main results are as follows:

– WIRT is provable in ACA0 (Theorem 7.5) but not RCA0 (Proposition 7.8);

– IRT is provable in Σ1
1-AC0 (Proposition 7.14) and implies ABW0 over RCA0 +

IΣ1
1 (Proposition 7.16).

Our results imply that IRT is a theorem of hyperarithmetic analysis (Definition

6.4). To our knowledge, IRT is only the second known theorem of hyperarithmetic

177

analysis which is “natural”, i.e., formulated without concepts from logic. (Mon-

talbán [30] discovered the first such theorem; see Theorem 6.9 and the paragraph

after it.)

7.1 The weak infinite ray theorem

In this section, we give some upper and lower bounds on WIRT and its variants.

We begin with some preliminaries.

If R is a ray and x is a vertex on R, let Rx denote the initial segment of R up

until x. Let xR denote the tail of R starting from x. If x precedes y on R, let xRy

denote the path starting from x, following R, and ending at y. Analogously, if x

precedes y on R and y precedes z on S, let xRySz denote the path which starts

from x, then follows R until y, and then follows S until z.

An important tool in the proof of Halin’s theorem is Menger’s theorem for finite

graphs (see [14, Theorem 3.3.1]). If A and B are disjoint sets of vertices in a graph,

we say that P is an A-B path if P starts with some vertex in A and ends with

some vertex in B. A set of vertices S separates A and B if any A-B path passes

through at least one vertex in S.

Theorem 7.3 (Menger). Let G be a finite graph. If A and B are disjoint sets of

vertices in G, then the minimum size of a set of vertices which separate A and B

is equal to the maximum size of a set of disjoint A-B paths.

178

7.1.1 Upper bounds

Diestel [14, Theorem 8.2.5] presents a proof of Halin’s theorem due to Andreae.

The key combinatorial lemma implicit in Andreae’s proof is as follows:

Given a set of n disjoint rays R0, . . . , Rn−1 and a set of n2 + 1 disjoint

rays S0, . . . , Sn2 , there is a set of n + 1 disjoint rays R′0, . . . , R
′
n such

that for each i < n, Ri and R′i start at the same vertex.

On the face of it, constructing such R′0, . . . , R
′
n could be difficult; perhaps as

difficult as providing a solution to a Σ1
1 predicate. However, Andreae’s proof actu-

ally constructs R′0, . . . , R
′
n such that for each i ≤ n, R′i shares a tail with some Rj

or Sj. This lowers the complexity of constructing such rays considerably, allowing

us to prove the following effective version:

Theorem 7.4. If G is a graph and (Xk)k is such that for each k ∈ N, Xk is a set

of k disjoint rays, then G ⊕ ((Xk)k)
′ uniformly computes a set of infinitely many

disjoint rays.

Proof. For later purposes, we fix the polynomial f(n) = n(n+1)
2

+ n2 + 1. (Any

computable function which majorizes f will do.)

Fix a graph G and a sequence ((Ski)i<k)k such that for each k, {Ski : i < k} is a

set of disjoint G-rays. We construct an infinite set of disjoint G-rays by recursion.

Start with the empty set of rays.

At the beginning of stage n, we will have constructed n many disjoint rays

Rn
0 , . . . , R

n
n−1, where each Rn

i shares a tail with some S
f(k)
j , j < f(k), k < n (and

hence can be coded by a number, relative to ((Ski)i<k)k.) For each i < n, let xni be

179

the (n− i)th vertex on Rn
i . The path Rn

i x
n
i will be an initial segment of the ith ray

in our eventual set of infinitely many disjoint rays.

In the following, we construct n + 1 many disjoint rays Rn+1
0 , . . . , Rn+1

n such

that

– each Rn+1
i shares a tail with some S

f(k)
j , j < f(k), k < n+ 1;

– for each i < n, Rn+1
i xni = Rn

i x
n
i . (This ensures that (limnR

n
i)i exists, consists

of disjoint rays, and is computable from ((Rn
i)i<n)n.)

First, use (((Ski)i<k)k)
′ to compute the set

Q0 = {q < f(n) : Sf(n)
q is disjoint from Rn

i x
n
i for i < n}.

Note that

|Q0| ≥ f(n)−
∑
i<n

|Rn
i x

n
i | = f(n)−

∑
i<n

(n− i) = n2 + 1.

Next, we claim that there is a set I ⊆ {0, . . . , n− 1} such that if we define

Q1 = {q ∈ Q0 : Sf(n)
q meets Rn

i for some i ∈ I}

R = {Sf(n)
q : q ∈ Q1},

then

– for each i ∈ I, Rn
i meets at least n rays in R;

– for each i < n outside I, Rn
i does not meet any ray in R;

– |Q1| ≥ |I|2 + 1.

Proof. First, use (((Ski)i<k)k)
′ to compute {(i, q) : i < n, q ∈ Q0, R

n
i intersects S

f(n)
q }.

Then we construct I by recursion. Start with I = {0, . . . , n − 1}. While there is

180

i ∈ I such that Rn
i meets less than n rays in R, we remove i from I. (Notice that

this may cause Q1 and R to shrink by as much as n− 1.) This process eventually

terminates. We have that

|Q1| ≥ |Q0| − n(n− |I|) ≥ n2 + 1− n(n− |I|) = n|I|+ 1 ≥ |I|2 + 1

as desired.

(((Ski)i<k)k)
′ can uniformly construct I as above. For each i < n outside I, we

define

Rn+1
i = Rn

i .

Next, we define Rn+1
n+1 and finally Rn+1

i for i ∈ I. Let m be the size of I. For

each i ∈ I, use (((Ski)i<k)k)
′ to compute the first vertex zi on Rn

i such that Rn
i zi

(equivalently, xni R
n
i zi) meets m many rays in R. We define

Z =
⋃
i∈I

xni R
n
i zi

Q2 = {q ∈ Q1 : Sf(n)
q meets Z}.

Note that |Q2| ≤ m2, so Q1\Q2 is nonempty. We then define

Rn+1
n+1 = S

f(n)
min(Q1\Q2).

Finally, we define Rn+1
i for i ∈ I. For each q ∈ Q2, use (((Ski)i<k)k)

′ to compute

the first vertex yq on S
f(n)
q such that yqS

f(n)
q is disjoint from Z. We define

X = {xni : i ∈ I}

Y = {yq : q ∈ Q2}

H = Z ∪
⋃
q∈Q2

Sf(n)
q yq.

181

We apply Menger’s theorem to X, Y ⊆ H. We claim that X cannot be sepa-

rated from Y in H by fewer than m vertices.

Suppose we have a set A of less than m vertices in H. Since |I| = m and

{Rn
i : i ∈ I} is disjoint, there is some i ∈ I such that Rn

i does not meet A. Also,

since xni R
n
i zi meets m many disjoint rays in {Sf(n)

q : q ∈ Q2}, there is some q ∈ Q2

such that S
f(n)
q meets xni R

n
i zi (say at z) but not A. Then xni R

n
i zS

f(n)
q yq is a path

in H from xni to yq which does not meet A. This proves our claim.

By Menger’s theorem (Theorem 7.3), there is a set of m disjoint X-Y paths

in H. We can computably search for such paths. Then, for each i ∈ I, define

Rn+1
i by first following Rn

i up until xni , then following the X-Y path given by

Menger’s theorem, and finally following whichever S
f(n)
q , q ∈ Q2 that we are on.

This completes stage n of the construction.

Then (limnR
n
i)i is a set of infinitely many disjoint rays, as desired.

The above proof shows that

Theorem 7.5. ACA0 implies WIRT.

We can obtain better upper bounds for WIRT for restricted classes of graphs.

Proposition 7.6. RCA0 implies WIRT for trees.

Proof. In the proof of Theorem 7.4, the only noneffective steps involved computing

the intersection relations between sets of rays or paths. In a tree, such relations

are uniformly ∆0
1-definable.

Next, we study lower bounds for WIRT. First we will construct a computable

instance of WIRT with no computable solution, i.e., a computable graph G and

182

a computable sequence of sets of k-many rays (Xk)k in G, such that no set of

infinitely many disjoint rays is computable. Our results can be phrased in terms

of computably enumerable equivalence relations.

7.1.2 Lower bounds via computably enumerable equiva-

lence relations

An equivalence relation E on N is computably enumerable if the set {(x, y) : xEy}

is computably enumerable. Such an equivalence relation is known as a ceer.

Given a ceer E (specifically, an index e such that We = {(x, y) : xEy}), we can

construct a computable graph G on N× N in the following way:

– (y, s) and (y, s+ 1) are adjacent if and only if for all x < y, (x, y) /∈ We,s;

– (y, s) and (x, s+1) are adjacent if and only if x < y and (x, y) ∈ We,s+1\We,s;

– no other vertices are adjacent.

We make some observations about G:

– G is highly recursive.

– Any ray in G must “grow upward”, i.e., the second coordinates of its vertices

must increase as one traverses the ray.

– If R is a ray, then {x : ∃s(x, s) ∈ R} is contained in an E-class.

– Two rays R0 and R1 are disjoint if and only if {x : ∃s(x, s) ∈ R0} and

{x : ∃s(x, s) ∈ R1} are in different E-classes.

183

– If I is an independent set in E, then one can uniformly compute a set of |I|

many disjoint rays: for each x ∈ I, start at (x, 0) and grow upwards.

Therefore, disjoint rays in G are closely connected to independent sets in E. In

this section, we will construct ceers with various properties, and then apply the

above graph construction to derive various results in reverse mathematics.

Proposition 7.7. There is a ceer E such that one can uniformly in n compute an

E-independent set of size n, yet there is no infinite c.e. E-independent set.1

Proof. We will construct a ceer E on {〈n,m〉 : n < m} such that:

– for each m, the mth block {〈n,m〉 : n < m} is E-independent;

– there is no infinite c.e. E-independent subset of {〈n,m〉 : n < m}.

(We only defined ceers with field N, so at the end of our construction we can use

a computable bijection between {〈n,m〉 : n < m} and N to change the field of E

to N.)

To satisfy the second condition above, we have a requirement Re for each index

e stating that Φe does not enumerate an infinite E-independent set. We arrange

the requirements in order of priority: Rd has higher priority than Re if d < e. At

any stage, each requirement is in one of three states: satisfied, unsatisfied with

witness, and unsatisfied without witness. At the beginning of our construction, all

requirements are unsatisfied without witness.

At stage s of the construction, we run one more step of each Φe, e < s. If any

of the conditions below hold, we proceed accordingly.

1The ceers for which there is no infinite c.e. independent set are known as dark ceers. Andrews
and Sorbi [3] proved many structural results about dark ceers.

184

1. If Φe enumerates some number outside {〈n,m〉 : n < m}, then Re releases

all restraints and is (forever) satisfied.

2. If Re is unsatisfied with witness, and Φe enumerates some 〈n′,m′〉 which lies

in [〈n,m〉]Es , then Re releases all restraints and is (forever) satisfied.

3. If Re is unsatisfied without witness and Φe enumerates some 〈n,m〉 which

is not restrained by requirements of higher priority, then Re chooses 〈n,m〉

as its witness. Furthermore, for all 〈n′,m′〉 in [〈n,m〉]Es (including 〈n,m〉

itself), Re restrains all equivalence classes [〈i,m′〉]Es , i 6= n′. This means that

no requirements of priority e or lower are allowed to act by expanding any

of these equivalence classes.

4. If Re is unsatisfied with witness 〈n,m〉, and Φe enumerates some 〈n′,m′〉

which is not restrained by requirements of priority e or higher, then we act

to satisfy Re by adding 〈n′,m′〉 to [〈n,m〉]Es+1 . Re releases all restraints and

is now (forever) satisfied. Furthermore, any requirements of lower priority

which were unsatisfied with witness now become unsatisfied without witness.

(Any requirements of lower priority which were satisfied remain satisfied.)

This completes stage s of the construction.

We verify that E has the desired properties. Each block is E-independent

because we only enumerate equivalences into E in case 4, and such action must

respect the restraints of the relevant Re.

Next, we show that no Φe enumerates an infinite E-independent subset of

{〈n,m〉 : n < m}. Go to a sufficiently late stage s such that all Rd, d < e which

will ever act have already acted. At this stage, the Rd for d < e only restrain finitely

many classes, which will never expand from now on. Therefore if Φe enumerates

185

an infinite subset of {〈n,m〉 : n < m}, Re will eventually choose a witness (if it

has not already) and we will eventually act to satisfy Re.

The above proposition shows that

Proposition 7.8. WIRT restricted to highly recursive graphs is not provable in

RCA0.

Note that the restriction of WIRT to graphs constructed from ceers using the

above method cannot imply ACA0:

Proposition 7.9. Let E be a ceer such that one can uniformly in n compute an

E-independent set of size n. Then there is a nonempty Π0
1 class of infinite E-

independent sets. Therefore (by, e.g., the low basis theorem) there is an infinite

E-independent set which does not compute ∅′.

Proof. Fix a computable sequence (Xn)n such that for each n, Xn is (the code

for) an E-independent set of size n. Consider the following computably branching

subtree T of N<N: σ ∈ T if and only if

– for each n < |σ|, σ(n) ∈ Xn;

– {σ(n) : n < |σ|} is E|σ|-independent. (E|σ| is the enumeration of E up until

stage |σ|.)

It is easy to see that T is infinite and that for any path P on T , {P (n) : n ∈ N}

is an infinite E-independent set.

We do not know if WIRT implies ACA0.

186

On the other hand, if we remove the restriction that one can uniformly in n

compute an E-independent set of size n, then we can code ∅′ into the infinite

E-independent sets (and more).

Proposition 7.10. There is a ceer E with infinitely many classes such that if (Xi)i

is a sequence such that for each i, Xi is (the code for) an E-independent set of size

i, then (Xi)i uniformly computes ∅′. In particular, every infinite E-independent

set uniformly computes ∅′.

Proof. We will compute ∅′ by majorizing its true stage function ∇, defined as

follows. Fix an enumeration (∅′s)s of ∅′. For each i, ∇(i) is the least stage s greater

than ∇(i − 1) such that ∅′s � i = ∅′ � i. (By convention, ∇(−1) = −1.) Any

function that majorizes ∇ uniformly computes ∅′.

Consider the following equivalence relation E: n0En1 if and only if there is some

i such that n0, n1 ∈ (∇(i− 1),∇(i)]. If (Xi)i is a sequence such that for each i, Xi

is (the code for) an E-independent set of size i, then the function i 7→ max(Xi+1)

majorizes ∇ and hence uniformly computes ∅′.

It remains to show that E can be computably enumerated. At stage t, we

can guess ∇(j) for j < t as follows. For each j < t, define ∇t(j) to be the least

stage s ≤ t greater than ∇t(j − 1) such that ∅′s � j = ∅′t � j. (By convention,

∇t(−1) = −1.) Define Et to be the equivalence relation with the following classes:

– (∇t(j − 1),∇t(j)] for j < t;

– {n} for n > ∇t(t− 1).

It is easy to see that Et is uniformly computable in t, and E =
⋃
tEt.

187

The above proof shows that

Proposition 7.11. The principle “if G is a graph and for each k, there is a set

of k disjoint G-rays, then there is a sequence of sets (Xk)k such that for each k,

Xk is a set of k disjoint G-rays” implies ACA0.

We will show in Proposition 7.15 that the above principle is actually equivalent

to IRT, which is much stronger than ACA0 (Proposition 7.16).

Proposition 7.10 also yields a reversal to ACA0 from the following adhoc (ap-

parent) strengthening of WIRT.

Definition 7.12. Define nonuniform-WIRT as follows: if G is a graph and there

is a sequence of G-rays (Ri)i such that for each k, there are i1, . . . , ik such that

Ri1 , . . . , Rik are disjoint G-rays, then there is a set of infinitely many disjoint G-

rays.

Proposition 7.13. Nonuniform-WIRT is equivalent to ACA0 over RCA0.

Proof. The proof of Proposition 7.10 shows that nonuniform-WIRT implies ACA0.

It remains to show that nonuniform-WIRT is provable in ACA0. Suppose we have

a graph G and a sequence of rays (Ri)i such that for each k, there are i1, . . . , ik

such that Ri1 , . . . , Rik are disjoint rays. Then ACA0 can choose, for each k, the

least i1, . . . , ik such that Ri1 , . . . , Rik are disjoint. This yields a sequence of sets of

rays (Xk)k such that for each k, Xk is a set of k disjoint rays. Finally, we apply

WIRT (which is provable in ACA0 by Theorem 7.5) to produce a set of infinitely

many disjoint rays as desired.

188

7.2 The infinite ray theorem

We now turn our attention to IRT. We show that IRT is a theorem of hyperarith-

metic analysis and study its relationships with other theories of hyperarithmetic

analysis.

Instead of verifying directly that IRT satisfies the definition of a theorem of

hyperarithmetic analysis, we will show that IRT lies between two known theories

of hyperarithmetic analysis: Σ1
1-AC0 and ABW0.

Proposition 7.14. Σ1
1-AC0 implies IRT.

Proof. Σ1
1-AC0 proves that the assumption in IRT implies the assumption in WIRT.

Since ACA0 proves WIRT (Theorem 7.5), the desired result follows.

Before giving lower bounds for IRT, we digress slightly:

Proposition 7.15. The principle “if G is a graph and for each k, there is a set

of k disjoint G-rays, then there is a sequence of sets (Xk)k such that for each k,

Xk is a set of k disjoint G-rays” is equivalent to IRT.

Proof. Clearly, the given principle follows from IRT. Conversely, we showed in

Proposition 7.11 that the given principle implies ACA0 and hence WIRT. Together

with WIRT, it implies IRT as desired.

Returning to lower bounds for IRT, we begin by noting that IRT implies ACA0

(as we just showed, using Proposition 7.11). We show below that IRT implies

ABW0 over RCA0 + IΣ1
1. This strengthens Conidis’s result that Σ1

1-AC0 implies

ABW0 over RCA0 + IΣ1
1.

189

Proposition 7.16 (IΣ1
1). IRT implies ABW0.

Proof. Suppose A(X) is an arithmetic predicate on 2N which does not have finitely

many solutions. By IΣ1
1, for each n, there is some set of n-many distinct solutions

of A(X). (This is the only use of IΣ1
1 in this proof.)

Next, by a lemma of Simpson [42, V.5.4], there is a computable tree T such

that ACA0 proves that

∀X(A(X)↔ ∃f((X, f) ∈ [T]) and ∀X(∃ at most one f)((X, f) ∈ [T]).

We show that T is an instance of IRT. If A(X) holds, then by ACA0, there is

some f such that (X, f) ∈ [T]. Therefore for each n, T (as a tree) has at least

n-many paths. By taking an appropriate tail of each path, it follows that T (as a

graph) has at least n-many disjoint rays.

Now, apply IRT to T to obtain an infinite sequence of disjoint rays in T . By

extending or truncating each of those rays to the root of T , we obtain an infinite

sequence of distinct paths in T , say (Xn, fn)n. Since for each X, there is at most

one f such that (X, f) ∈ [T], it follows that (Xn)n is an infinite sequence of distinct

solutions of A.

Next, we follow a well-known proof of the Bolzano-Weierstrass theorem from

König’s lemma. Using ACA0, define the tree

T = {σ ∈ 2<N : ∃∞n(σ ≺ Xn)}.

Using IΣ2, we can show that each level of T is nonempty. By König’s lemma,

we obtain a path Z on T . It is easy to see that Z is an accumulation point of

{Xn : n ∈ N}, and hence an accumulation point of {X : A(X)}.

190

Propositions 7.14 and 7.16 imply that

Theorem 7.17. IRT is a theorem of hyperarithmetic analysis.

Next, we discuss separations between IRT and other theories of hyperarithmetic

analysis. One model of interest is van Wesep’s model N . van Wesep [44, Theorem

1.1] constructed N and showed that it satisfies unique-Σ1
1-AC but not ∆1

1-CA.

Conidis [13, section 4] strengthened van Wesep’s result to show that N satisfies

ABW. (Neeman [32, Theorem 1.3] also strengthened van Wesep’s result to show

that N does not satisfy INDEC, but we will not need that here.)

We observe that N fails to satisfy IRT:

Theorem 7.18. There is an ω-model satisfying ABW but not IRT. Therefore ABW

does not imply IRT.

Proof. Consider van Wesep’s N . Conidis [13, section 4] showed that N satisfies

ABW. We claim that N fails to satisfy IRT. Let TG be the generic tree that was

constructed in the construction of N . Since N contains infinitely many paths on

TG, N thinks that TG is an instance of IRT. But N does not contain any infinite

sequence of paths on TG. (This fact was used in the proof of Lemma 1.4 of van

Wesep [44]. It was essentially proved by Steel [43, Lemma 7].) So N does not

contain any IRT-solution to TG.

Our results are summarized in Figure 7.1. To simplify the diagram, we use the

base theory RCA0 + IΣ1
1 instead of RCA0.

We end with some open questions regarding the above theories of hyperarith-

metic analysis:

191

Σ1
1-AC0

Π1
1-SEP0

∆1
1-CA0

INDEC0

unique-Σ1
1-AC0

IRT

ABW0

finite-Σ1
1-AC0

||

Figure 7.1: Partial zoo of theories of hyp analysis (assuming IΣ1
1)

1. Does IRT imply Σ1
1-AC0, INDEC0, or any theory in between?

2. Does Π1
1-SEP0 imply IRT? Does Π1

1-SEP0 imply ABW0?

192

BIBLIOGRAPHY

[1] Ron Aharoni. König’s duality theorem for infinite bipartite graphs. J. London
Math. Soc. (2), 29(1):1–12, 1984.

[2] Ron Aharoni, Menachem Magidor, and Richard A. Shore. On the strength of
König’s duality theorem for infinite bipartite graphs. J. Combin. Theory Ser.
B, 54(2):257–290, 1992.

[3] Uri Andrews and Andrea Sorbi. Joins and meets in the structure of ceers.
https://arxiv.org/abs/1802.09249, 2018.

[4] Dwight R. Bean. Effective coloration. J. Symbolic Logic, 41(2):469–480, 1976.

[5] Vasco Brattka, Matthew de Brecht, and Arno Pauly. Closed choice and a
uniform low basis theorem. Ann. Pure Appl. Logic, 163(8):986–1008, 2012.

[6] Vasco Brattka and Guido Gherardi. Weihrauch degrees, omniscience principles
and weak computability. J. Symbolic Logic, 76(1):143–176, 2011.

[7] Vasco Brattka, Guido Gherardi, and Alberto Marcone. The Bolzano-
Weierstrass theorem is the jump of weak König’s lemma. Ann. Pure Appl.
Logic, 163(6):623–655, 2012.

[8] Vasco Brattka, Guido Gherardi, and Arno Pauly. Weihrauch complexity in
computable analysis. arXiv:1707.03202, 2018.

[9] Vasco Brattka and Arno Pauly. On the algebraic structure of Weihrauch
degrees. Logical Methods in Computer Science, to appear.

[10] Vasco Brattka and Tahina Rakotoniaina. On the uniform computational con-
tent of Ramsey’s theorem. J. Symb. Log., 82(4):1278–1316, 2017.

[11] Keh Hsun Chen. Recursive well-founded orderings. Ann. Math. Logic,
13(2):117–147, 1978.

[12] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength
of Ramsey’s theorem for pairs. J. Symbolic Logic, 66(1):1–55, 2001.

[13] Chris J. Conidis. Comparing theorems of hyperarithmetic analysis with
the arithmetic Bolzano-Weierstrass theorem. Trans. Amer. Math. Soc.,
364(9):4465–4494, 2012.

193

[14] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathemat-
ics. Fifth edition.

[15] François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti,
and Paul Shafer. On uniform relationships between combinatorial problems.
Trans. Amer. Math. Soc., 368(2):1321–1359, 2016.

[16] Damir D. Dzhafarov. Cohesive avoidance and strong reductions. Proc. Amer.
Math. Soc., 143(2):869–876, 2015.

[17] Damir D. Dzhafarov, Jun Le Goh, Denis R. Hirschfeldt, Ludovic Patey, and
Arno Pauly. Ramsey’s theorem and products in the Weihrauch degrees.
arXiv:1804.10968, 2018.

[18] Harvey Friedman. Some systems of second order arithmetic and their use.
Proceedings of the International Congress of Mathematicians (Vancouver, B.
C., 1974), Vol. 1, pages 235–242, 1975.

[19] Harvey M. Friedman and Jeffry L. Hirst. Weak comparability of well orderings
and reverse mathematics. Ann. Pure Appl. Logic, 47(1):11–29, 1990.

[20] Noam Greenberg and Antonio Montalbán. Ranked structures and arithmetic
transfinite recursion. Trans. Amer. Math. Soc., 360(3):1265–1307, 2008.

[21] R. Halin. Über die Maximalzahl fremder unendlicher Wege in Graphen. Math.
Nachr., 30:63–85, 1965.

[22] Joseph Harrison. Recursive pseudo-well-orderings. Trans. Amer. Math. Soc.,
131:526–543, 1968.

[23] Kojiro Higuchi and Arno Pauly. The degree structure of Weihrauch reducibil-
ity. Log. Methods Comput. Sci., 9(2):2:02, 17, 2013.

[24] Denis R. Hirschfeldt and Carl G. Jockusch, Jr. On notions of computability-
theoretic reduction between Π1

2 principles. J. Math. Log., 16(1):1650002, 59,
2016.

[25] Jeffry Hirst and Carl Mummert. Using Ramsey’s theorem once.
arXiv:1611.03134, 2 Jun 2017.

[26] Jeffry Lynn Hirst. Combinatorics in Subsystems of Second Order Arithmetic.

194

ProQuest LLC, Ann Arbor, MI, 1987. Thesis (Ph.D.)–The Pennsylvania State
University.

[27] C. G. Jockusch, Jr. and T. G. McLaughlin. Countable retracing functions and
Π0

2 predicates. Pacific J. Math., 30:67–93, 1969.

[28] Takayuki Kihara, Alberto Marcone, and Arno Pauly. Searching for an ana-
logue of ATR in the Weihrauch lattice. arXiv:1812.01549, 2018.

[29] Richard Laver. On Fräıssé’s order type conjecture. Ann. of Math. (2), 93:89–
111, 1971.

[30] Antonio Montalbán. Indecomposable linear orderings and hyperarithmetic
analysis. J. Math. Log., 6(1):89–120, 2006.

[31] Antonio Montalbán. On the Π1
1-separation principle. MLQ Math. Log. Q.,

54(6):563–578, 2008.

[32] Itay Neeman. The strength of Jullien’s indecomposability theorem. J. Math.
Log., 8(1):93–119, 2008.

[33] Itay Neeman. Necessary use of Σ1
1 induction in a reversal. J. Symbolic Logic,

76(2):561–574, 2011.

[34] Ludovic Patey. The weakness of being cohesive, thin or free in reverse math-
ematics. Israel J. Math., 216(2):905–955, 2016.

[35] Arno Pauly. On the (semi)lattices induced by continuous reducibilities. MLQ
Math. Log. Q., 56(5):488–502, 2010.

[36] Arno Pauly. Computability on the countable ordinals and the Hausdorff-
Kuratowski theorem. CoRR, abs/1501.00386, 2015.

[37] Klaus-Peter Podewski and Karsten Steffens. Injective choice functions for
countable families. J. Combinatorial Theory Ser. B, 21(1):40–46, 1976.

[38] Hartley Rogers, Jr. Theory of recursive functions and effective computability.
MIT Press, Cambridge, MA, second edition, 1987.

[39] Gerald E. Sacks. Higher recursion theory. Perspectives in Mathematical Logic.
Springer-Verlag, Berlin, 1990.

195

[40] Richard A. Shore. On the strength of Fräıssé’s conjecture. In Logical methods
(Ithaca, NY, 1992), volume 12 of Progr. Comput. Sci. Appl. Logic, pages
782–813. Birkhäuser Boston, Boston, MA, 1993.

[41] Stephen G. Simpson. On the strength of König’s duality theorem for countable
bipartite graphs. J. Symbolic Logic, 59(1):113–123, 1994.

[42] Stephen G. Simpson. Subsystems of second order arithmetic. Perspectives
in Logic. Cambridge University Press, Cambridge; Association for Symbolic
Logic, Poughkeepsie, NY, second edition, 2009.

[43] John R. Steel. Forcing with tagged trees. Ann. Math. Logic, 15(1):55–74,
1978.

[44] Robert Alan Van Wesep. Subsystems of Second-order Arithmetic, and De-
scriptive Set Theory under the Axiom of Determinateness. ProQuest LLC,
Ann Arbor, MI, 1977. Thesis (Ph.D.)–University of California, Berkeley.

196

	Biographical Sketch
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Reverse mathematics
	Other lenses
	Computable reducibilities
	Representations
	The Weihrauch lattice of problems
	Other reducibilities

	The arithmetical, analytical and hyperarithmetical hierarchies

	Embeddings between well-orderings and ATR
	Background
	An ATR-like problem
	Theorems about embeddings between well-orderings
	An analog of Chen's theorem
	Reducing ATR to WCWO
	Reducing ATR to NDSWO and NIACWO

	König's duality theorem and two-sided problems
	Two-sided problems
	ATR2 and variants thereof

	König's duality theorem
	Reducing ATR2 to KDT
	Reducing KDT to ATR2

	Different ways of composing multivalued functions
	Formalizing compositions
	Parallel product
	Compositional product
	Reduction games
	Step product

	Composing a multivalued function with itself
	Finite compositions of arbitrary multivalued functions
	The 1gW-lattice

	Parallel products of the infinite pigeonhole principle
	The product coloring is optimal
	How many colors can a product of colorings handle?

	A 11 axiom of finite choice
	Theories of hyperarithmetic analysis
	Arithmetic Bolzano-Weierstrass implies finite-11-AC0
	11-CA0 does not imply finite-11-AC0
	The model
	The forcing language
	The forcing notion
	The forcing relation
	Analyzing the forcing relation for ranked formulas
	Analyzing the forcing relation for -over-LF formulas
	M satisfies 11-comprehension

	Halin's theorem on disjoint rays
	The weak infinite ray theorem
	Upper bounds
	Lower bounds via computably enumerable equivalence relations

	The infinite ray theorem

	Bibliography

