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The arithmetic degrees as a whole and the degrees of the ω-REA 

sets in particular are considered. Chapters 1 through 4 deal with 

ω-REA sets and operators. We prove that every non-arithmetic ω-REA 

set can be cupped up to 0ω via a set of minimal arithmetic degree. 

A simplified version of Harrington’s construction of incomparable 

ω-REA sets is presented in Chapter 2. We extend the method in 

Chapters 3 and 4 to clarify the analogy between ω-REA sets for the 

arithmetic degrees and recursively enumerable sets for the Turing 

degrees. We show, for example, that all the ω-jump classes 

H ., -H,L -L , and I contain an ω-REA set and that there ~n+l ~n ~n+l ~n 
exists a minimal pair of ω-REA sets (which join to 0ω) thereby 

carrying out some steps of a program proposed by Jockusch and Shore. 

The most well-known question that we answer is that of the range 

of the ω-jump on degrees below 0ω. Chapter 3 contains a proof that 

a degree d. is the ω-jump of a degree below 0ω if and only if ci 

contains a set ω-REA in 0ω. An analogous argument provides a new 

simple proof of the Sacks Jump Theorem. In Chapters 5 and 6 we 

prove the analog of the Lachlan-Lebeuf Theorem and the Abraham-Shore 



Theorem. Thus any ^-size upper semi-lattice with least element 

and the countable predecessor property is isomorphic to an initial 

segment of the arithmetic degrees.
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Introduction

Degree structures induced by notions of computability have 

received much attention from recursion theorists. The canonical 

example of such a structure is of course the upper semi-lattice 

of Turing degrees. Turing reducibility to a subset of the natural 

numbers ω, or to a function f: ω ÷ ω, corresponds to the intuitive 

notion of algorithmic computability. The definition of the reduci-

bility is quite natural; this perhaps explains in part the central 

role the T-degrees (i.e. Turing degrees) have played in the develop-

ment of the field. It would not be too much of a simplification to 

say that the work on the T-degrees can be divided into two main parts: 

the study of the structure of the degrees as a whole, e.g. initial 

segments, homogeneity and automorphisms, and the study of the degrees 

of sets whose elements can be recursively enumerated, i.e. the 

degrees of r.e. sets. Indeed, Lerman’s book [1983] covers topics of 

the first type almost exclusively, and Scare's forthcoming book 

[1986] deals extensively with topics of the second type (as well as 

other topics in the theory of r.e. sets).

A structure which is quite similar to the T-degrees is that of the 

arithmetic degrees. The definition of arithmetic reducibility is also 

quite natural (f g for f,g: ω + ω if f is definable in first- 

order arithmetic with g as parameter, and the a-degrees are of course 

the associated equivalence classes), but the a-degrees have received 

much less attention than the T-degrees. This is due in part to the 

1



2

lack of a suitable analog to the concept of a computation, which would 

induce a notion of "effective" enumeration, for example. This would 

then provide an analog for the concept of an r.e. set, i.e. an 

"effectively" enumerable s-et. The study of the appropriate entities 

for some other generalizations of Turing computability has flourished, 

e.g. the α-r.e. sets of «-recursion theory, recursion in higher 

types, and E or set recursion. Recent work of Jockusch and Shore 

[1984] has uncovered a possible counterpart in the arithmetic degrees 

to the notion of T-degree of an r.e. set however, namely the notion of 

ω-iREA degree.

We study the arithmetic degrees from two perspectives. These 

approaches correspond to the classification given above for the work 

on the Turing degrees, and the general plan is to elucidate the 

relationships which exist between the two structures. As we will 

see, the study of these relationships can be illuminating. For 

example, one by-product of the work is a new simple proof of the 

traditional Sacks Jump Theorem.

In Chapters 5 and 6 we study the possible size initial 

segments of the arithmetic degrees. Chapter 5 contains more detailed 

introductory remarks than given here. We prove the analog of the 

Abraham-Shore Theorem classifying the initial segments of the Turing 

degrees of size That is, every upper semi-lattice with least 

element, the countable predecessor property and of size at most is 

isomorphic to an initial segment of the a-degrees. This result in 

fact is a major justification for the above claim that the T- and a- 
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degrees are quite similar in structure (note, however, that Shore 

[1984] has shown that the structures are not elementarily equivalent). 

The best previous result is that of Harding [1974] classifying the pos-

sible countable distributive initial segments. Our proof closely follows 

the treatment of Abraham and Shore [1985] and so is essentially in 

the style of Lerman [1983] except that we build trees for each element 

of the lattice rather than just one tree for the top element. The 

Abraham-Shore approach is specifically designed for the extension 

from the countable case to lattices of size , but we feel that it is 

the best presentation of the countable case even without this exten-

sion in mind.

A corollary to the embedding theorem answers a question of 

Odifreddi [1983]. Namely, the ordering of the T-degrees below 0ω 

and the ordering of the a-degrees below 0ω are not elementarily 

equivalent. (0ω, the ω-jump of 0, is the truth set for arithmetic 

or equivalently the effective join of all the finite iterations of 

the Turing jump applied to 0.)

Chapters 1-4 are devoted to the study of ω-REA sets and operators. 

Jockusch and Shore [1984] first defined these notions as instances of 

cκ 
the definitions of α-REA sets and operators for any a < (REA 

stands for "recursively enumerable in and above"). An α-REA operator 

is called a pseudo-jump operator because of its relation to the α-jump. 

A 1-REA operator is one of the form A ∙→- A Φ and has various 
e

properties analogous to the Turing jump, e.g. for every e and every 

set C with 0' <τ C, there is an A such that A « ≡τ A Φ 0' ≡τ C 

(Jockusch and Shore [1983]). This is the counterpart of the Friedberg 
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Jump Theorem. Analogously to the α-jump, a-REA operators are defined 

by composing sequences of 1-REA operators.

The REA hierarchy has yielded solutions to many problems in areas 

which at first seem to have few interconnections. For example, 

Jockusch and Shore [1984] obtained results on the difference hierarchy, 

they proved that 0ω is the base of a cone of minimal covers in the 

Turing degrees, and they gave results on definability including the 

fact that the collection of degrees of arithmetic sets is definable in 

the first order theory of the Turing degrees. Jockusch-Shore [1983] 

contains a finite injury proof of the nontriviality of the standard 

jump classes (H^, ‰n, and I) of r.e. sets, using 1-REA operators.

Our interest in level ω of the REA hierarchy is of course due to 

the fact that the jump operator for the arithmetic degrees is the 

co-jump. Indeed Jockusch and Shore [1984] gave some indications that 

the study of ω-REA operators would be relevant to the a-degrees and 

ω-jump. For example, they established that there is an incomplete 

ι , , , _ , , , -UJ , CO _ λ 0J+U)vhigh arithmetic degree (i.e. a degree a with a_ £ and a_ ≡ £ ).

Prior to this all arithmetic degrees a_ constructed satisfied aω ≡ 

a v 0ω, and hence all known degrees a below 0ω were low (i.e. aω ≡ 

0ω). They also noted that ψω is the complete ω-REA set, and 

that not all A <a 0ω are ω-REA. These results suggest that the 

concept of ω-REA degree is a possible counterpart in the context of 

arithmetic degrees to the notion of r.e. degree in the context of 

Turing degrees. Therefore a wide array of problems immediately arises, 

e.g.: Is there a Highn~Lown hierarchy for the arithmetic degrees
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(defined with the ω-jump analogously to the definition of the 

standard jump classes H^, 1>^)? Is there a minimal pair of ω-REA 

degrees? Is no ω-REA degree minimal?

The first question to arise after the suggestion of such an 

analogy would probably be that of the existence of an ω-REA set of 

intermediate degree, that is, the analog of Post's problem. Fortunately 

Harrington answered this difficult question affirmatively, before 

the notion of ω-REA set was even isolated, in his first proof of the 

existence of arithmetically incomparable arithmetic singletons 

[1975]. He produced arithmetically incomparable low sets which 

happened to be ω-REA by the nature of his construction (an ω-REA set 

is a Hθ-singleton), and thus established the analog of the Friedberg- 

Muchnik theorem.

Harrington's basic construction can be modified in various ways 

to answer other questions along these lines. For example in Chapters 

3 and 4 we answer the first two questions above affirmatively (we 

conjecture that the answer to the third is also "yes"). His construc-

tion has never appeared in print; furthermore, his second proof of 

the existence of arithmetically incomparable arithmetic singletons 

[1976] (which produces singletons which are not ώ-REA) is much easier 

to understand, so perhaps has eclipsed the original solution. We 

therefore present Harrington's construction in Chapter 2 (in a some-

what simplified form) before giving the extensions.

We also give in Chapter 3 a complete answer to the question 

(raised by Odifreddi [1982] and others) of the range of the ω-jump 

on degrees below 0ω. The results of Jockusch and Shore [1984] 

jjj 
prompted them to ask if every set ω-REA in V has the same degree as 
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the ω-jump of some set A below 0ω. We prove (Theorem 3.8 and Corollary 

3.11) that this is the case; in fact the analog of the Sacks Jump 

Theorem holds, i.e. A may be taken to be ω-REA (it is in this sense 

that we mean our answer to the above question is complete). A sur-

prising free bonus is a new, very short proof of the standard Sacks 

Jump Theorem (see, e.g. Soare [1986]) using only an easy application 

of the finite injury priority method and the recursion theorem 

(Corollary 3.9).

Our construction in Chapter 4 of an ω-REA minimal pair has the 

added feature that the sets produced join to 0ω in the a-degrees 

and thus (by Lachlan’s Non-Diamond Theorem, see e.g. Soare [1986]) 

we have a simple sentence satisfied by the ordering of the a-degrees 

of ω-REA sets which is not satisfied by the ordering of the T-degrees 

of r.e. sets. Thus the proposed analogy is not perfect.

The constructions we give of ω-REA sets rely heavily on the 

recursion theorem. The amazing uniformities inherent in most recur-

sion theoretic constructions are exploited throughout. In fact our 

proof of the Sacks Jump Theorem depends in a sense on two layers of 

uniformity. Inside Sacks’ "shiny little box" [1967] is yet another 

shiny little box, which we open in Corollary 3.9.

We now discuss our notation briefly, which is basically standard. 

Lerman [1983], Soare [1986] and Rogers [1967] are recommended as 

references. The map (x,y) ÷ <x,y> is some fixed recursive bijection 

from ω×ω to ω. For A a subset of ω, and n e ω, A^n^ - column n of .A = 
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{x∣<n,x> ∈ A}, A^-= {<m,x>∣<m,x> e A & m < n} and A^n^ is defined 

similarly. Note that A^ ≠ A^-θ^ . For A and B subsets of ω, A =* B 

if they differ on just a finite set, i.e. (A-B) ∪ (B-A) is finite.

Let A Φ B = ({θ}×A) u ({1}×B), Φ B. = {<j,x>Ij < n & x e B.}, 
i<n 1 j

and similarly define Φ B . For a string T: n ÷ ω, we write 
i<ω i

∣τ∣ for its length, i.e. n. The concatenation operator for strings

is *. Sometimes we write <xrι, x,, ..., x ,> for the string τ(i) 0 1 n-1 o

-- x for i < n = ∣τ∣ . When this conflicts with the above pairing 

function the intent will be clear from the context. For functions 

f,g: ω ÷ ω, f <a g if f is definable in first order arithmetic with 

parameter g. Equivalently, f <a g <—>3n(f <τ g^), where g^ is 

the nth iterate of the Turing jump applied to g, and denotes 

Turing reducibility. Given an arithmetic degree d_, Ό&(<ά) is the 

partial ordering of the a-degrees below d_, and (<b) is defined 

similarly. As usual, {e}A is the et^1 function partial recursive 

in A in some standard enumeration and W^ is its domain. For improved 

readability, we use at times such notations as W(e;A), {e}(A;x) and 

Φe(A) (= {e}A).

We can now give some definitions.
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Definition 1.1: A set A is ω-REA in X if there exists some 

recursive function f such that A^θ^ = X and Vi (A^+^'^'' = W(f (i); A^-^)) . 

We use jω(f,A) or just J(f,x) as notation for this A. A set B is 

n-REA in X if for some τ with ∣τ∣ = n, Bt0] -- X, Vi < n --

W(t(i) ) and Vm > n (B∣^πi^ = 0). We use jn(f,X) as short hand for

J(f,x)[-nJ so Jn(f,X) is n-REA in X. An ω-REA operator is of course 

one of the form X ,→ J(f,X) for some recursive f, and we define 

n-REA operators similarly. (Remark: our definitions of Ot-REA 

operators for α < ω differ slightly from those of Jockusch and Shore, 

but the induced sets are the same up to 1-1 degree.)

Note that the ω-REA sets (i.e. the sets ω-REA in 0) are uniformly 

recursive in 0ω, in that given an index e, 0ω can determine whether 

{e} is total, and if so can determine an index eθ so that J({e},0) = 

{eθ}^ . Indeed the ω-REA sets are uniformly 1-1 reducible to 0ω in 

the same sense, and so 0ω is the complete ω-REA set (0ω 

( ∖
{<n,x>∣x ∈ 0' '} is of course itself ω-REA).

We actually will not throw away the indices corresponding to 

partial functions as above since another approach allows notational 

matters to behave more nicely. We absorb the process of waiting 

for {e}(i) to converge into the enumeration of the associated column. 

Note that given e, there is (uniformly in e) a recursive function g 

such that for all i and Y
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γ w{e}(l) lf {el(1>+

ws<ι) " )
I 0 if {e}(i)+

Definition 1.2: Let a be the g above, and let J (X) = -------------------------- e e

1(a ,χ) (so J (X) - J({e},X) if {e} is total). We define the n-REA 
e e

operator Jθ similarly and indeed given any ω-REA operator A: 

X H- A(X), we use An to denote the associated n-REA operator.

Remark: On occasion expressions such as W{e}ζ∙jj 2nd {{e}(i)} 

will appear with {e}(i)+. Such expressions are to be interpreted 
γ

in the obvious way, e.g. - 0 and {{e}(i)} = λx.-t∙. This

convention would seem to make the above definition of aθ superfluous 

but we use it since it still simplifies the exposition in places.



Chapter 1

Preliminary results

In this chapter we prove some propositions which mostly 

highlight the parallels between the Turing degrees of r.e. sets and 

the arithmetic degrees of ω-REA sets. The first result, however, 

gives an instance in which the Turing jump and ω-jump are dissimilar.

Clearly A' B’ implies both A and A are r.e. in B, so A’ B' 

implies A <l^, B (where C D if there is a recursive 1-1 function f 

such that x ∈ C <~> f(x) ε D). Hence A < B if and only if A' <1 B'. 

The analogous statement for the ω-jump is false.

Proposition 1.1; There is an A such that A <, 0ι and A ∕ 0.
-1 -a

The standard ω-generic set below 0ω is such an A. In fact, one 

reason for including this result is that we now have an excuse to give 

a brief discussion of ω-generic sets which we will need later. B is 

ω-generic if B is Cohen generic for arithmetic.

Definition 1.2: Let L be some standard language for first-order 

arithmetic with a constant symbol n for each η ε ω, and a symbol B 

with x ε B and n ε 13 as the possible atomic formulas involving .B 

(this restriction allows for a simplified definition of forcing). If 

ch is a sentence of L and σ is a binary string, then σ [|— φ ,

10
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O forces φ is defined inductively.

i) If φ is an atomic formula that does not contain the symbol 

B then φ ||— Φ iff φ is true.

ii) σ ∣∣- n e iff σ(n) -- 1.

iii) σ ∖∖- φθ v φ1 iff σ ∣∣- φθ or σ ∣∣- φχ.

iv) σ ∣∣- 3xψ(x) iff there is an n such that σ ∣∣- ψ(n).

v) σ ∣∣- ~ψ iff ¥τ = σ (τ ∣∣∕∙ ψ) .

A set B forces φ, B ∣∣- φ, if σ ||— φ for some σ £ B. B is n-generic 

if for every ∑θ-sentence φ, B ∣[- φ or B ∣[- ~φ . B is ^-generic 

(or just generic) if B is n-generic for every n. The basic facts are 

that for an n-generic set B and a ∑θ-sentence φ, B 11— φ iff

B ∣= φ, and that {σ ∣ σ ||— φ} if φ is ∑θ (or ∏θ) is (uniformly) 

recursive in 0^n∖ Also, n-generic sets are not ∑θ, so in particular

ω-generic sets are not arithmetic. For more details see e.g.

Odifreddi [1982].

Proof of Proposition 1.1: Let <φg∣s e ω> be an effective listing of 

the sentences of L. Let an = 0, and given α , let a ,, = the least0 σ s s+1

τ => a such that τ II— φ if there is such a τ, and α ., = α 

otherwise. Let A = U aθ, so A is generic and hence A is not arith-

metic. We show that Aω 0ω to complete the proof.

The point is that we can effectively in s write down a formula 

δg of arithmetic such that δg(σ)<-> σ = otg (we assume that binary 

strings have been Godel numbered in some effective way so that σ is 

really an integer when appropriate for the context). This follows



12

from the definability of forcing.

Also the jump is definable in arithmetic so there is a recursive

f such that Afunction

is generic and by itsA c A

means that weσ may

which is true iffa

the Godel number for this formula and let h be a function so that

Godel number e is

<—> h(g(<n,x>)) ∈

[1984]In Jockusch and Shore it was shown by a direct argument

using perfect forcing that

is this same result

the fact that 1-generics

do not bound non-recursive r.e. degrees.

inductive definition of α and the s

true, with

phrased more generally. It is the analog of

g and h recursive. Then x

the degree of an ω-REA set. Proposition 1.3

- Λ<n>

<n> ~ vσ<‰,x>)+1<0> ’ 

effectively in <n,x> find

x ∈ A^n∖ Let g(<n,x>) be

A^n). By the fact thatφf(<n,x>) iff x e 

definition, x

h(e) ∈ iff the sentence with

Λω .ω rtω rι0 , so A 0 . 

not every arithmetic degree a_ <& 0ω is

II· Φc∕> s∖)∙ This 11 rf(<n,x>)

formula of arithmetic

Proposition 1.3: Suppose that A is ω-REA, B is ω-ge∏eric, and A <a B.

Then A is arithmetic.

Proof: The fastest way to see this is to note that A is a 

singleton (this follows directly from the definition of ω-REA sets), 

and no non-arithmetic arithmetic singletons are bounded by ω-generics, 

for suppose A is an arithmetic singleton, B is ω-generic and A <a B. 

Then let ψθ(Y) <—> Y = A and ψ1<Bjx) <—> x ∈ A where ψθ, are 

arithmetic formulas. Thus B satisfies an arithmetic formula which 

says that ψ^(B) satisfies ψθ, so some σ £ B forces To calculate 
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A(x), take γ £ σ such that either γ ∣⅛- ψ1 (B;x) or γ II· ~Ψ1(Bjx). 

Then in the first case A(x) - 1 and otherwise A(x) = 0. (If not 

take a generic extension B of γ. Then Ψ1<B) satisfies ψθ, so 

ψ^(Β;χ) <—> x ∈ A, which is a contradiction.) Since there is a fixed 

n (which depends on the rank of ψ ) so that given x, such a γ can 

be found for x uniformly effectively in 0^n∖ we have A <a 0 as 

desired. 

Epstein [1975] showed that given an r.e. Turing degree a. > 0^, 

there is a minimal degree m such that £ v m = 0/ = m'. We show that 

the arithmetic version of this holds, but first isolate an important 

property of ω-REA sets needed in the proof. This property is a 

generalization of the well-known fact that Vn (X > 0^n^) ÷ X" 0ω, 

and is implicit in the proof of Proposition 1.13 of Jockusch and 

Shore [1984].

Proposition 1.4: Suppose A is ω-REA in Y and ¥n (X >τ A^) . Then 

X" >τ A.

Proof: Let f be a recursive function giving the indices of the columns 

of A. We will inductively define effectively in X" indices i^ such 

that {i }X - A^nJ. Let i∩ be any index such that {i∩}x - A^θ∖
n Γn+1] √<n3 X

Suppose we have defined i_.,...,i . Al j = W∖z > - W for some e 
r On f(n) e

which we can find uniformly from iθ,...,in∙ Use X" to find an index

X X X
i ,  such that {i 11} is total and Vx(x ∈ W <—> {i  } (x) = 1). n+1 n+i e n+1

There is such an index and the search can be carried out effectively 

in X". 
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The next result implies that any ω-REA set of intermediate 

degree is complemented in (< 0ω). It is unknown if a complement 

of ω-REA degree can always be found, but in Chapter 4 we show that 

some ω-REA degrees have ω-REA complements, in contrast to Lachlan's 

Non-Diamond Theorem.

Proposition 1.5: If A 0 is ω-REA then there is an arithmetically 

minimal set M such that A ® M ≡ 0ω ≡ Mω. 
a a

Proof: The proof is an elaboration of that of Theorem 3.2 of

Jockusch and Shore [1984]. By the previous proposition we have Vi Ηj 

(A^ 0^1)) . Let g(i) be the least such j. Note that

<τ 0^+^'^∖ We want the construction to be effective in 0ω, 

so note that g <τ 0ω. We construct pairs of binary trees <Tθ,Is> <τ 

0 (although not uniformly). [A binary tree is a function T from the 

set of binary strings to itself which satisfies T(σ) £ T(τ) <—> 

σ £ τ. For a set A, we let T[A] = U T(σ). The set of branches
0£A 

of T, [T], is {Τ[Α]|Α£ω}. We write Τ' £ T if range (T') £ range (T) . ]

We guarantee that

(1) vx ∈ [τ ] Vτ (x = τ (τ) + x(s) = I (τ)). 
s — s — s

M(n)
We show at the end of the proof that B <& M ÷ B = {n} for some n.

This observation allows the minimality requirements for M to be 

handled in a simple fashion - we need to consider only one reduction 

from each iterate of the jump applied to M.
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Let <T∩,I > - <id,id>. Suppose we are given <T ,1 > < 0S 
U U S S “1

such that (1) holds. Define the intermediate pair of trees

<T, ,,Γ > with T,1, ⊂ T by induction on levels. Let T' (0) 
s+1 s+1 s+1 - s s+1

= Tg(i), where i is chosen so that we diagonalize against the s 

arithmetic function, and let Ig^(0) - 0,. Say we have defined 

T’ and I,1  through level η, IτI = n, and T'(τ) = T (γ). Given
s+1 s+1 o ’ s+1 s'

Y, let Y* = {σ∣σ Y} (recall that σ,s Godel number is written as

σ when no confusion should result). is not r.e. in 0^s∖

for otherwise <τ 0(s). Thus either

r , x] I (b)
a) am[m k (ALg 5 )* and 3β γ * 0m *l({n} s (n)÷)]

r z x 1 ι (β)
or b) Sm[m ∈ (ALg^SJJ)* and ⊃ γ * Qm *l({n} s (n)+)].

Take the least m satisfying a) or b) and if a) holds, let β be

the least string satisfying the condition. If b) holds, let β = 

γ * 0m *1. Note that finding β is effective in 0^s'*^''^^ since 

(A[g(s)])* <τ 0(s+1) and Ig <τ 0(s). Let T^(t * j) =

Tθ(β * 0^s+^*^∖n) * j) for j = 0,1. 1g+]∕τ * Ϊ) i≡ defined in the

obvious manner i.e. 1' (τ * j) = I’ (τ) * i, where i - 1 if we s+1 s+1

could force convergence (case a) and 0 otherwise (note that I iss

not strictly speaking a tree, i.e. τθ ≠ τ1 need not imply I≡(τθ)

≠ W>∙
Before defining <T ,1 > c <T' ,I,1>, note that (1) holdss s+1’ s+1 — s+1 s+1

( s∖ 
for T' and I’ n replacing T and I , and note that if A Φ M > 0 ' s+1 s+1 r b s s -T
and M ∈ [Τ^^]» ^hen A Φ M >τ ^^^+l) ∙∏1is follows from the obser-

[ cr ( s ) 1 
vation that A , M and T are sufficient to recover the s 
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construction along the path of M, and 0 s+-*-) χs coded there. The 

next steps are simply to make M minimal. Either

a) There is a τ such that
1' (B)

i) 3χ 3 τ ({s+l} s+j∙ (x) + )
1' (B∩)

or ii) condition i) fails and ν^θ,^ ≡ τ ¥x ({s+l} (x)÷

1s+lζβli
& {s+l} (x)÷ implies they are equal)

1' (B∩) I’ (β1)
or b) Vτ τ 3χ ({s+l} (x)÷ ≠ {s+l} (x)÷).

0ω can tell which case we are in. If a) holds, let T =

Ext(T' ,τ) and I 11 = Ext(I 11 , τ) , where Ext(T,α) is the tree T, s+1 s+1 s+1

with T,(σ) = T(cx * σ) for all σ. If b) holds, build a splitting tree

inductively. Let Τ , (0) - T' (0) and I .,(0) = I,.1(0). If s+1 s+1 s+1 s+1

τs+liτ> " τiu<γ> and 1s+liτ> ^ 1U1<V) then τs+l<τ * 3) * τ^-√γ * ⅞>∙ 

where the β_. are least witnesses for a splitting above Iθ+^(Y), 2nd 

let 1s+√τ * j) = 1s+liγ * b-j)' ln either case <T3+1,Is+1> <τ 

and I still has the property that the (s+1)-jump of any branch of

Τ ,, conforms to what I 11 says about it, that is, (1) holds with s s+1 s+1 j ’

replaced by s+1.

Now let M be U T (0). Induction on s using the observation 
s s 

f g ∖
after the definition of T* and I’ gives Vs (A Φ M >_ 0 ). Thuss+1 s+1 β -T
(A G M)" >τ 0ω, and since A Φ M <^, 0ω, we have A Φ M ≡a 0ω.

Next we argue that M is minimal. Suppose B < M. Then there is 
M(n) "a

an n and an e such that B = {e} . Let g be recursive so that
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g(e,k) i≡

B =

(The

requirements.)point is merely that we actually handled all If, at

Hence B <a M implies that B - {k}M

recursion
- M∞ 

{k}M .

theorem, take k > n so that {g(e,k)} = {k}. Then 
(k) 

for some k.

M∞ 
arbitrary if k < n and otherwise B = {g(e,k)} . By the

stage k in defining <T^,I^> from <T£ we were in case a) then

(k) (k)B <,p 0 . Otherwise, B Φ 0 M, because using B and we can 

calculate the path of M in T- (for that matter we can even directly

(k)
calculate Mk 7). Hence B <a M implies B <a 0 or B = M. Finally, we 

observe that M ∈ [Tθ] ÷ <r^ Μ Φ 0^S\ and hence Mω ≡ Μ Φ 0ω

≡ 0ω. □
a

Remark: If we drop the part of the construction devoted to

making M minimal (i.e. let <T ,1,1 ,1> - <T’ ,I’ >), we can gets+1 s+1 s+1 s+1 o
A Φ M ≡^, 0ω, by coding g(s) into the path of M through Tg+^∙ That

is, the β we choose in the definition of T,l, should extends+1
γ * 0<m’8(s)> * 1. From this we'd get A Φ M > 0^s+^*^^ uniformly.

The refinement of <T' ,I'> into <T 11,I 11> keeps <T 11,I 11> s+1 s+1 s+1’ s+1 s+1’ s+1
0^s+"'^∖ but loses uniformity.

In the next three chapters we present the main construction of 

ω-REA sets, and its extensions which produce minimal pairs of 

ω-REA sets and solve the range of the ω-jump problem, for example. 

An individual column of any one of the ω-REA sets built must be given 

by an r.e. enumeration, by definition. Thus the mysteries of priority 

arguments are prominent in these chapters. It is interesting how the 
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enumerations of the columns can be made to fit together to achieve 

a common goal. One can, for instance, spread restraint for a certain 

goal throughout the constructions so that each construction is 

affected by only finitely many new negative requirements, and so 

not prevented from achieving its own goals. In Chapter 4 the 

columns use a signalling device to enable the next column in line to 

know whether it needs to act for a certain requirement.

It should be noted, however, that a construction of an ω-REA 

arithmetic degree could conceivably avoid r.e. constructions altogether. 

For example, full approximation constructions or constructions of 

sets ∆θ in the input could be used. Our next lemma shows that if one 

uses constructions of bounded arithmetic complexity for the columns 

of a set, it has ω-REA a-degree. This observation does not help for 

the present constructions, however. We will see that the construc-

tion of one of our operators depends on some other operator being 

specified by r.e. enumerations (since we build columns to have a 

specific jump, and this of course must be r.e. in the jump of the 

input).

Definition 1.6: A set A is ω-∆θ in X if there is a recursive function 
-------------------------- ----- n---------
f such that A^ = X and Vi(A^^^ = the Δθ(A∣'-'1'½ set whose index 

n
is f(i)). One defines ω-∑θ and ω-∏θ operators analogously. Thus an 

ω-∑θ operator is an ω-REA one.

Proposition 1.7: Suppose that A is uι-Δ^ in X. Then A has the same 

a-degree as a set ω-REA in X.
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Proof: Define the ω-REA set C by Ct°1 = X, C[1] - X', ...» Ctn^1∙l 

γ(n-l) [n]  [1] [n+l]  [<1], [2n-l]  [<l](n-l)

c[2nl = a [2]  τhen c >τ A and C[m^ <ιp A(n-1) for all m.

Thus C ≡ A (by Proposition 1.4 or just directly since is in 

fact recursive in A^n uniformly in m) . □



Chapter 2

Incomparable ω-REA sets

We present the simplest version of the main construction of ω-REA 

sets in this chapter. This is the foundation on which the extensions of 

future chapters rest. We prove the existence of incomparable ω-REA sets 

which join to 0ω. Harrington’s construction of incomparable ω-REA 

sets [1975] used explicit requirements to accomplish the diagonaliza-

tion. Surprisingly, the technique presented here which makes the 

sets join to 0ω also allows for a simplified construction since 

diagonalization occurs automatically.

The same basic lemma is employed iteratively to define the ω-REA 

operators. Roughly speaking, this lemma tells us how to build the 

first two columns. The result is fed in as input and the lemma 

builds the next two columns, and so on. When actually used, 

the constructions of the lemma need to be changed by adding 

finitely many new requirements. Therefore we are interested in not 

only the result of the lemma, but also in the constructions.

There are some notational difficulties Inherent in the material 

presented. For example, for the purposes of a construction of an 

individual column, set letters such as B and C are preferable. 

However, when we piece the constructions together to form an ω-REA 

operator, indexing of the columns is needed. Changes in notation 

which seem to improve readability in one place often have negative 

impacts in other places. After this word of caution, we now present 

"the ZjBjC-lemma" in order to give more detailed motivational remarks.

20
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Lemma 2.1 (Harrington [1975]): Given any set Z and W r.e. in Z,, 

there are B r.e. in Z and C r.e. in Z Φ B such that (Z Φ B Φ C)’ ≡ 

Z,ΦBθC≡j,Z'<BW. Furthermore, this result is uniform; that is, 

indices for B and C are obtainable effectively from an index for W 

as a set r.e. in Z', as are indices for the Turing equivalences. 

Moreover, these indices are independent of Z.

Recall that this lemma will be used iteratively to build an 

ω-REA operator two columns at a time. Z will always be J2τi(X) for 

some i and n. Given an ω-REA operator Jθ, we use this lemma to 

produce an ω-REA operator such that for all X and n

(1) j2n(X), ≡τ J^n(X) H X' ≡τ Jθ(X,) 

uniformly in X and n.

Note that for n = 1, setting Z - {θ} × X and taking W to be 

the first column of Jθ(X,), the lemma gives (1) directly (where B 

and C have been renamed J^(X)^j and J.(X)t2∖ respectively). To 

iterate, say we have (1) for n = m. Then J^+^(X,) is r.e. in J2m(X)’. 

Think of J2m(X) as Z. The lemma gives J^(X)^m+^^^, i.e. B, and 

Ji(X)t2m+2i, i.e. C, with J2m+2(X)’ ≡τ J2m(X), Φ J±(X)t2m+1] Φ 

J^(X) ∣∙2m+2∙∣ =τ J^m(χ) ’ φ Jθ(χ') im+ij , uniformly. Rewriting, we 

deduce (1) for n = m+l,. . By the uniformities present i is a recursive 

function of e. So by the recursion theorem we can produce an ω-REA 

operator A such that for all X, Φ (A2n(X),) A(X) Φ X' ≡ A(X’). To 

produce α>-REA sets with various properties we alter the constructions
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for each column slightly. For example, we can make A(X) , ≡^, Φ (A^n(X) ). 

Thus for all i, A(0) A(0) Φ 0^ ≡ A(0^^), uniformly in i (just

induct using the basic relation A(X)' ≡τ A(X) Φ X' A(X')). Hence A(0) 

is low. If we also guarantee that A(0) is not arithmetic (which 

follows if A(X) >τ X for all X: if A(0) <τ 0∞, then A(0(n)) ≡ 

A(0) Φ 0^n^ <τ 0^n∖ which contradicts A(0^n^) >τ 0^n^), then we have 

a solution to the analog of Post’s problem.

Proof of the Z,B,C lemma; The proof we give is Harrington’s, although

it has been simplified slightly by the use of Lachlan’s "hat trick."

The construction of B is similar to the usual one for the Sacks Jump

Theorem (e.g∙ see Scare [1986]) but needs to be jazzed up a bit.

Remark: We cannot simply choose B as in the usual Sacks Jump Theorem 

such that (Z Φ B)’ Z’ Φ W, and then choose C. For example, if 

W = Z", then Z’ = B would satisfy the above Turing equivalence, but 

the only C’s r.e. in Z Φ B satisfying Z' ΦBΦC ≡jz* ΦWdo not 

satisfy (Z Φ B Φ C) ’ ≡ Z' Φ W since the first equivalence gives

Z' Φ C ≡τ Z" and thus (Z Φ B Φ C)' = (Z Φ Z’ Φ C)’ ≡ z'" . The

construction of B must aid in controlling the jump of Z Φ B Φ C.

rel
There is an S r.e. in Z such that for all e, S = ω iff e I W

and S[e] = n = {θ,...,n-l} for some n iff e e W. B will satisfy

Γe] [ β 1
as in the usual Sacks construction B =* S for all e.
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The construction of C: We are given Z and B and must construct C

c c cr.e. in Z θ B. We have requirements Pθ, Nθ, P^, ... listed in order 
Q

of decreasing priority. Pθ is a positive requirement (in that its 

action is to cause elements to be enumerated into C) which attempts

[ θlto code in where B stops switching. In the end this coding will 

enable us to show that Z' Φ B Φ C W. The requirements of the
C

form Nθ are negative requirements (in that they attempt to prevent 

elements from entering C). These requirements help insure that 

(Z Φ B Φ C) ' does not get too high. The superscript "C" will be 

dropped when clear from the context.

Νθ: Nθ restrains y at stage s+1 if y 

and y < the C-use of {e}g(Z Φ B Φ 

greatest value of Cg consulted in 

trying to hold any convergences).

i C and {e} (Z Φ B Φ C ; e)Ψ 
s s s

C ; e) (where the C-use is the s

the computation — Nθ is merely

Ρθ: Pθ wants to put y into C at stage s+1 if y = <e,x> and

3x' (<e,x'> < S, x' > x, and x e B^ <—> x, 4 B^)·

Stage 0: Cθ = 0.

Stage s+1; We put y into Cg+^ if some Pθ for e < s wants to and no 

for i < e restrains y.

rel Γe]
Note that if ¥e(B =* S ), then C is given by a simple finite

[e]
injury construction, since B is either finite or cofinite.
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The construction of B: We are given Z, S r.e. in Z as defined from 

(an index for) W above, and an index for the r.e. operation C. That 

is, given sets Z and B, and given s, the above C-construction 

defines C^(Z,B).

Notation:

I
 least x such that x ∈ B - B .1 s s-1 

if B - B .1 ≠ 0 s s-1

s otherwise.

Let γ(t,Z,B) == μx > t Vx’> x (during the first t stages of the C 

construction applied to Z, B, the value of B(x,) is not consulted). 

If Z is understood, then we write just γ(t,B). In the specific 

construction with which we are now dealing, VBVt(γ(t,B) < t), and 

in fact in almost all recursion theoretic constructions of this type 

it is safe to assume that at least u stages are required in order to 

use the oracle up through u. Later, however, we will not be able to 

assume this. We will be adding a requirement to the C construction 

which will need more than β[t at stage t. Introducing γ now will 

make the discussion of the modified construction easier when

we need it in Chapter 4. For now, it is safe to think of 

nγ(t,B)" as "t".

Even though it abuses notation slightly, let
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'ies}(Z Φ Bs Φ Ct(Z,B≡); e)

if this converges and the

Φ (Z Φ B Φ C. (Z,B ); e) = ∕ B-use of the computation is
e,s sts ∖

less than b and γ(t,B ) < b .s s s

⅛ f otherwise.

Let T = "the set of true stages in the enumeration of B" -

{s∣Bsfbs = Bfbg}. Note:

(2) If s e I and Φ (Z Φ B Φ C (Z,B ); e)+, e, s s t s

then Vs, > s (Φ ,(Z Φ B , Φ C(Z,B ,); e)÷ = c, s s t s

Φ (Z Φ B Φ C (Z,B ); e) = {e}(Z Φ B Φ C (Z,B); e)), e,s sts t

by the same computation.

This is because, after stage s, B does not change in any way which 

could affect Cfc or the use of the computation.

We have requirements Pθ, Nθ, P^, ... listed in order of decreas-

ing priority. Again, the Pθ,s are positive and the Nθ,s are negative, 

and the superscript "B" is dropped when clear from the context.

[ β]Ρθ: Pθ wants to put <e,x> into B at stage s+1 if x e S≡

Νθ: If t < s, Nθ restrains y at stage s+1 because of t if y 4 B≡, 

y < γ(t,Bg) and
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(3) Φ (Z © B Φ C (Z,B ); e) + , u < t and e, s sts -
Vt,(u < t, < t ÷ Ct,(Z,Bs)fu ≠ Ct(Z,Bs)iu), 

where u is the use of the computation.

Note that if Nθ succeeds in keeping all such y out of B throughout 

the rest of the construction, then {e}(Z OB© L^,(Z,B) ; e) + = 

φ (Z Φ B © C (Z,B ); e) since B does not change below the use and e,s sts

B does not change in the part that C can view in the first t stages 

of its construction. The reason for the last clause of (3) is so 

that the same computation does not give rise to infinitely much 

restraint — we will be able to show that there are only finitely 

many t such that Nθ permanently restrains something because of t. 

B may permanently restrain something due to a false computation 

(C may not have settled down yet), but this will not happen too often.

The construction of B is as usual, that is, if a requirement 

Pθ for e _< s wants to put something into B at stage s+l, it does, 

unless restrained by some for i < e.

Sublemma 1: If Pθ wants to put y into B then Pθ puts y into B unless 

some stronger requirement restrains y because of some fixed t for 

all sufficiently large stages. In such a situation, y is said to be 

permanently restrained with cause.

Proof: Say Pθ wants to put y into B at stage s. Let sθ be the first 

true stage after s. If no for i < e restrains y at stage sθ+l,
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then Pθ puts y into B. If restrains y at stage sθ+l because of 

t then by (2), we have the same computation for all s’ > sθ+l, 

i.e. (3) holds with s' replacing s. Since B , ∣γ(t,B ) = 
s sθ

B ∣γ(t,B ) we have γ(t,B ,) = γ(t,B ) > y so y is restrained 
s0 s0 s s0

because of t at stage s’.

Sublemma 2: For each e,

{y∣y is permanently

Rθ - {y∣y Is

Γ e1 Γeli) B* l j and Sl differ on only a finite set.

ii) is finite.

iii) Only finitely many y are permanently restrained by Nθ.

g
iv) Only finitely many y are permanently restrained with cause by Nθ.

Let U be either Z'Φ W or Z' ® B ® C. and let = e

restrained with cause by some with i < e}, and
c 

permanently restrained by some with i < e}.

v) Canonical indices for C , B e , r JLo and Rθ+^ are computable 

uniformly from U.

vi) U can uniformly decide if {e}(Z G B G 0; e)ψ.

Proof: By induction. Assume i) through v) for e' < e. By sublemma 1 

(and the fact that Vt(lim γίί,Βθ) = γ(t,B) < ∞ so the set of y's
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permanently restrained because of some fixed t is finite) we

Γel 
immediately have i) and hence we have ii), since lim B (x) exists.

The standard argument now shows that iii) holds.

Γθl [θ]
Claim; U can compute the canonical indices for Cl and B

B CBy induction hypothesis we have canonical indices for Rθ and Rθ.

a  C ΓelCase 1: U = Z’ G B G C. Let χ = μx(x ⅛ Rθ & x <⅛ C ). U can compute

^ fe] a C Γe]X. Since C = x - Rθ, U can compute the canonical index for C .

^ [el
Since χ puts a bound on where B changes, U can compute a canonical

index for B .

Case 2: U = Z’ Φ W. = ω <—> e 4 W. If S^ = n, Z, can compute n.

f e j
So Z' θ W can compute the canonical index for Sl . By Sublemma 1,

[e] [el B [e]Bl = Sl - R so we have the canonical index for Bl . Let e
x = μx(Vx' > x(x' ε B^c—:>x ∈ B^e½. Since C^-^ = χ - RC we have 

e
[el

the canonical index for C .

r<e]
We have uniformly from U an index for B - as a recursive set.

[<e]
We have a canonical index for C - uniformly from U.

Let 0(e,s,t,u) assert:

(3) holds and B∣'-e∙' ∣γ(t,B ) = B^-e∙∣ ∣kγ(t,B ) and C^θ∖z,B ) fu =
S S SUS

C⅛el Ju.

Note that if {e}(Z Φ B Φ C; e)÷ then Θ(e,s,t,u) for some s,t,u,

for let u = use of the computation. Choose t > u so that C^-e^'['u =
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cJ-e] [u and Vt'(u < t' < t + Ct∣[u ≠ Ct∣u). Next choose s so that

Vs' > s(γ(t,Bs,) = γ(t,B)) and so that Β^-θ^ fγ(t,B) = B^-θ^ fγ(t,B) .

[<e]
Then Θ(e,s,t,u) holds. Also note that given indices for B - and 

c''-e∖ Z,, hence U, can effectively tell if Ηs,t,u(Θ(e,s,t,u)).

Claim 1: If Θ(e,s,t,u) then:

a) Vs' > s(γ(t,Bs,) = γ(t,B)).

b) Bfγ(t,B) = Bsfγ(t,B).

c) C∣tu = Ct(Z,Bs) [ςu.

d) {e}(Z φ B Φ C; e)Ψ = Φ (Z Φ B Φ C (Z,B ); e), by the6)8 8 L 8

same computation.

Let σ(χ) = μx,(x, > x and Bχ, fγ(x,B) = B[γ(x,B)).

e) Vs' > σ(t)(Θ(e,s,,t,u)).

f) Vs',u',t'(Θ(e,s',t',u') ÷ s' > σ(t) and t' = t and u' - u).

Proof: a) & b): Since no P^ for i < e puts anything into B below 

γ(t,Bs) after stage s by assumption, and since u < t < γ(t,Bθ), 

induct on s' to see that s' > s implies γ(t,Bg,) = γ(t,Bg) = γ(t,B) 

and Bs∣γ(t,B) = Bs,fγ(t,B). This is because Nθ protects against any 

action for positive requirements which could harm the computation.

c) : By b) C^(Z,B) = C^(Z,B^) . Thus {e}(Z Φ B Φ Ct(Z,B))÷≈

λ  r κ C
φ (Z Φ B Φ C (Z,B )), so N tries to preserve C∣u. Since P. fore s 8 t 8 e ι

i < e cannot change C^, ^u any longer, Nθ succeeds.

d) , e), f): These follow from b) & c) and the minimality of t

insisted on in (3).
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Let u,t = the unique u,t such that θ(e,σ(t),t,u), if they

[<e] 
exist. Since we have a canonical index for the finite set C - from

U and since B < Z' <^, U, we can effectively in U find t such that

C~-eJ(Z,B) = Ci-θ1.

c ^ ^
Claim 2: a) Nθ permanently restrains y <=> t exists and y e u-C^(Z,B).

β
b) Nθ permanently restrains y with cause <=> either

i) t exists and Nθ restrains y at stage σ(t) because of t, or

ii) Nθ restrains y at stage σ(t) because of t and t < t.

Proof: We have already established "<—' for a) and b).
Q

Assume Kθ permanently restrains something. Then {e}(Z Φ B Φ C; e)÷

Λ C ^
so t exists. But then Nθ restrains exactly u - C^(Z,B), so we have 

we

Since

t

the "only if" for a).

Assume Nθ permanently restrains y because of t. If t < t, 

have ii). If t > t, then = C^-e](Z,B) = (Z,Ba(t)) . 

βσ(t)= ΒΗϋ’Β>> we have that Nθ restrains y because of 

at stage σ(t), and for some u < t Θ(e,σ(t),t,u). Thus i) holds.

Since U can uniformly effectively decide the truth of the

assertions on the right of the equivalence in Claim 2, and since 

{e}(Z Φ B Φ C; e)Ψ <—>Ηs,t,u(Θ(e,s,t,u)) (so U can calculate the 

jump of Z Φ B ® C), we have finished the proof of Sublemma 2.

Since for all e, lim B^e∖x) = W(e), we have Z’ Φ W (Z Φ B) ' . 

Since Z' Φ W >q, (Z Φ B Φ C) ’ and Z' Φ B Φ C >τ (Z Φ B Φ C) ’ we get 

(Z Φ B Φ C) ' ≡^, Z' Φ B Φ C ≡τ Z' Φ W as desired. All of this was 

done with the proper uniformities, so Lemma 2.1 is proved.  
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Corollary 2.2; Given Z, W r.e. in Z', and D r.e. in Z with (ZGD),

< Z,, there are B r.e. in Z and C r.e. in Z Φ B satisfying the same 

Turing equivalences as in Lemma 2.1 and with -- D.

Proof: The proof is almost identical to the lemma, especially if 

we think of B^θ^ as B^ and B^+^'^'∣ as B^. The proof then goes 

through almost unchanged notationally. In the construction of B, put

x into B∣∙ as soon as it turns up in the enumeration of D from Z.

Γ<e]We then have in the proof an index for B - as a set recursive in D

uniformly in U. Since (Z Φ D), <τ Z,, U can still tell if 

gs,t,u(Θ(e,s,t,u)). 

Theorem 2.3: There are ω-REA sets Aθ and A^ such that Aθ ® A^ ≡1^ 

0ω and A^ ≡^, 0ω for i = 0,1.

Corollary 2.4 (Harrington [1975]): There are arithmetically 

incomparable arithmetic singletons.

The corollary follows immediately from Theorem 2.3 (recall that 

ω-REA sets are ∏θ-singletons). The proof of the theorem is somewhat 

simpler than Harrington's original construction of incomparable 

ω-REA sets, however. Use of Corollary 2.2 allows us to build the 

low ω-REA sets so that they join to 0^, and hence there is no need 

for explicit diagonalization, so Harrington’s construction can be

streamlined.
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Proof of Theorem 2.3: We construct ω-REA operators Aθ and and 

sometimes denote the set A^(0) by just A^ for simplicity. By the

Sacks Splitting Theorem (see Scare [1986]) there are indices and

that uniformly split X' into low r.e.-in-X sets. That is, for

all X, 

(⅛)∙ 

i

W^ Φ W∖ - X' (uniformly), and for i = 0,1, W? > X and
Xq Xj· a  X_£ a

≡T X’. Let d^ be a given integer parameter. The construction

of A^(X) is as follows. Column 2m+l and column 2m+2 are the B and

C respectively of the Z,B,C-lemma with Z = A^ (X) (recall 

that A^m(χ) denotes A^(X)) and with a^ (m) the index for W 

as a set r.e. in Z’ (recall that

γ (0 if {d } (m) +
W1 = < 1
°diw (⅛.}(m) *f <di><≡W∙

However, the B and C constructions are modified by the inclusion of 

finitely many negative requirements of strongest priority which try

to make {e](A^(X); e)Ψ for e < m. This part of the construction acts 

to make A (X)’ Φ (A^m(X),). The construction of column 1 is 
i T m i

such that A^(X)[1]tθ] - W^ . That is, we use Corollary 2.2 unaltered

[1] i [2] 
to construct A^(X) and A^(X) . The recursion theorem is used to

piece everything together, i.e. to insure that A^(X), ≡^, A^(X) Φ X' ≡^, 

A1(X,).

Perhaps we should discuss more fully the role of the integer 

parameter d^. We use the Z,B,C-lemma with Z - A^m(X) to define 

A^(X) ^di +1] and A^(X)^πhl^^∖ Our goal is to have A∣n(X), ≡^, A∣n(X)ΦX' 

≡T A^(χ,) for all n uniformly, for then, since we shall also insure 

that A (X)' = Φ (A^n(χ),), we would have A. (X)' ≡ A (X) Φ X' ≡ A.(X') 
A· X — X X XX- X X- 
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as desired. Assume by induction that we have A^m(X) ' ≡rp A^m(X) Φ X' 

≡τ A^(X') . Then A^(X' ) ∣∙πt+''^^ is r.e. in A^m(X) ’, since A^m(X) ’ ≡τ 

A^(X'), so use of the Z,B,C-lemma with Z = A^m(X) to establish the 

basic equivalences with n = m+1 is justified. However, an index for 

Ai<X,) [m^,^l-' as a set r.e. in A^m(X) ’ (as required for the sake of 

uniformity) does not present itself immediately.

There are two approaches that could handle this issue. One would 

involve rather extensive book-keeping, e.g. naming the recursive func-

tions which give the indices for the Turing equivalences of the 1 ,Y> 

lemma and using these to calculate what index we should be using for 

the next W. Clearly this would be quite unpleasant. The approach we 

use is to simply observe that there is some recursive function which 

does this, and use the parameter d^ as its index. In the end, the re-

cursion theorem (actually the Double Recursion Theorem (Smullyan [1961], 

or see Rogers [1967]) since we also use an index for the construction in 

the construction) applied to d^ gives the desired conclusions.

This seems to be one of the rare arguments in the literature which 

makes use of the Double Recursion Theorem. Actually in Chapters 3 and 4 

we even use a "Multiple Recursion Theorem" which can be proved using a 

straightforward generalization of the proof of the Double Recursion 

Theorem.

An important feature of both the and C^ constructions (i.e. 

the constructions of columns 2m+l and 2m+2, respectively) is that if 

Yθfs = Y^s, then using Yθ or Y^ as input into the enumeration will 

result in the same numbers being enumerated up through stage s. That 
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is, stage s of the r.e. operator associated with any column depends 

only on the input below s.

For the purposes of the new requirements, we need to consider 

in the construction of column n what would happen at stage t in the 

construction of column n,, for various t and n' > n, if the input 

looked a certain way. This is of course put on a sound footing via 

the recursion theorem. We can think of what follows as defining an 

index e. with {e.}^(n,s) - the canonical index of the set of numbers 
ι i

enumerated at stage s when applying the operator defined for column 
 γ  γ

n to input Y. The definition of (e^} (n,s) depends on (e^.} (n',t) 

for various n' > n, t < s and Y. If all computations with index 

e^ used in the definition of {ej (n,s) converge, then {e3 (n,s) 

converges. But since we only look at t < s, we can do an easy 

induction on s to show that the index e^ has the property that 

¥Y¥n¥s({e^} (n,s)Ψ). Thus use of the recursion theorem allows us 

to use stages of future columns as desired.

Definition 2.5; a) For i = 0 or 1, let A^(Y,n,s) - {x∣x is enumerated 

by stage s when we apply the operator associated with column n of 

A. to Y} = U {x∣x is in the set with canonical index {e. }Y (n, s’.)} .
i s'<s 1 i

b) For i = 0 or 1 and τ e αΛω, define A^,1(Y) by induction on ∣τ∣. 

A^,0(Y) = Y[-n] (note: A*,0(Y) ≠ A?(Y)) and A^,τ*s(Y) =

A^,τ(Y) u {n + ]τ∣ + 1} × A1(A^,1(Y), n + ∣τ∣ +1, s).
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In particular, A∏, (A∏(X)) is the approximation to A^(X) obtained 

by starting with A^(χ), feeding this into the enumeration of column 

n+1 and running for τ(0) stages, feeding the output of this and 

A^(X) into the enumeration of column n+2 and running for τ(l) 

stages, and so forth.

We now suppress writing "i" for the rest of the description 

of the construction, so we are given d.

The C^-construction: We define the r.e. operator associated with 

column 2m+2 (for m > 1 — recall that Cθ, or column 2, is constructed 

using Corollary 2.2 unaltered). We are given sets (- A^m(X) in 

practice) and B^ (= A(X)t^m+l] practice) and the index a^(m) 

for a set r.e. in Z^. We have new negative requirements Mθ for 

e < m, and a priority listing Mn, Mι , ..., M . , Pn, Nn, P1 , ... .
U J. m-J. U U 1

Definition 2.6: For τ e ω<ω, ψ(e,τ,n,Y) <—> τ(0) > τ(l) > ... > 

τ(∣τ∣-l), {e}(An’T(Y); e)÷ in exactly n + ∣τ∣ steps, and τ(∣τ∣-l) > 

n+∣τ∣. (By convention, if a computation converges in t steps, then 

it asks about neither any elements of the oracle in columns numbered 

greater than t, nor any elements greater than t in any column.)

The value of the set variable Y will depend on the context in

which ψ is used. For a B -construction Y will be Z . For a C - m mm

construction Y will be Z u ({2m+l} × B ). That is, Y will be the m m

input into the r.e. operator being defined. Note that if ψ(e,τ,n,Y)

holds, then there is an approximation of the ω-REA set being 
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constructed which yields a convergence for the jump. The idea is

that the Mθ requirements act to hold onto such approximated convergences.

Ρθ: Exactly as in Lemma 2.1.

Νθ: Exactly as in Lemma 2.1.

M : Let Y = Z u ({2m+l) × B ). At stage s+1 M restrains y if 
e m m e

y C∏1 s an^ t^ιere i≡ a T such that s > τ(0), ψ(e,ι,2m+l,Y) and y < τ(0) 

where τ is chosen so that τ(0) is least possible.

The specific choice of notation here perhaps obscures the idea.

In the construction of column 2m+2 (= C ) applied to A^m+'*'(X), say 
m

Mθ puts on restraint at stage s because ψ(e,ι,2m+l, A^m+^'^(X)) where 

τ is lexicographically least and ∣ι∣ >1. Then gfι(0) = cmtτ^0^ =

Sii τ(0) , because Mθ has higher priority than any positive

requirement and first acted at stage τ(0) + 1. Thus the approximation

to the next column obtained by using A^m+^(X) as input and running

for τ(l) stages is the same as the approximation obtained by using 

2m+l,<l(0)>. 2m+l. .. , , .
A (A (X)) as input and running for ι(l) stages. This

is because in τ(l) stages we do not use any part of column 2m+2

greater than 1(1), and τ(l) < 1(0). So the construction of the next

column will also act (at stage 1(1)) to hold the computation, and so

on down the line. It is for technical reasons (simplifying the proof 

of a future lemma)that we require the computation to take exactly 

n+∣ι[ steps. We could merely require that it take no more than 

n+∣l∣ steps.
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The B -construction: If m = 0, use Corollary 2.2. Otherwise, we are --------- m------------------------

given Z (= A (X) in practice), the index a,(m) for W as a set r.e. m α

in Z', and the index for the r.e. operation C . We have new require- m m

merits Mθ for e < m, and a priority listing Mθ, M^, ..., M Pθ, Nθ, 

pr ... ∙

P : Just as in Lemma 2.1. e

N : Just as in Lemma 2.1. e

Μθ: At stage s+l, Mθ restrains y if y ⅛ θ, and there is a τ such 

that ψ(e,τ,2m,Z^), s > τ(0), and y < τ(0) where τ is such that τ(0) 

is least possible.

A(X) is defined as previously indicated, i.e. A(X)= X and 

for all rn, A(X) ^m+l]  tjιe resuιt of appiyi∏g the B^-construction 

to input Z^ -- A^m(X), and A(X)  t∣ιe resu^t of applying the

C -construction to input Z = A2m(X) and B = A(X) ^≡ι+l] .
m mm

Claim 1: A(X) ' ≡τ (A2m(X) ' ) .

Proof: If {e}(A(X)j e)Ψ, then either {e}(A(X); e)+ in < 2e+2 steps, 

2e+2
or 3τ(ψ(e,τ,2e+2, A (X))) (the significance of 2e+2 is that it

gives the first place where Mθ is considered). We will show that 

the implication here can be reversed.
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Assume that in the construction of column n+1 (for some n), 

Mθ puts on restraint because ψ(e,γ,n,An(X)), where γ is lexico-

graphically least, and that ∣γ∣ >1. By the comments following the 
C

statement of Mθm, we have that ψ(e, <γ(l), ,.., γ(∣γ∣-l)>, n+1, 

A∏+l(χ)) holds. Thus in the construction of column n+2, Mθ acts at 

stage γ(l)+l. We therefore have that Mθ acts in the construction of 

column 2e+3 because of τ implies ¥m < ∣τ∣ (A2e+2*τ(X) [2θ+3+m] ['τ(m)  

A(X) [2e+3+m] ^∙τ(m)) . j∙n wor(jSj A^e+^,τ(X) and A(X) are identical as 

oracles as far as the computation {e}(∙je) is concerned. Thus

HTψ(e,τ,2e+2,A2e+2(X)) ÷ {e}(A(X); e)+. So we have

{e}(A(X)j e)÷ <—> either

a) {e}(A(X)j e)÷ in <2e+2 steps

or b) M acts in the construction of column 2e+3 (i.e.e
2e+2 3τψ(e,τ,2e+2,Aze+ (X))).

Thus we have a way to decide if {e}(A(X)j e)Ψ uniformly from 

Φ (A^m(X),). This establishes Claim 1.
m<ω

Next we note that the argument for Lemma 2.1 still goes through

with the addition of the new requirements M , because can effective-

ly determine what the actions of the appropriate Mθ,s are. This is 

clear for the new B construction, i.e. Z' can effectively determine
Bm m m

the action of M for e < m. At first glance it may appear to 
e C

require (Z Φ B^)' for the requirements Mθ . However, note that 

ψ(e,τ,2m+l,A2m+1(X)) ÷3t > τ(0) (ψ(e,t*τ,2m,A2m(X)) and

[ψ(e,γ, 2m, A2m(.X)) and we act for γ in construction of B ] ÷ 

∣γ∣ = 1 or ψ(e, <γ(l), ...» γ(∣γ∣-l)>, 2m+l, A2m+1(X)). Thus Z^
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(and hence "II " in either of the two possible cases) can effectively 
m

determine the action of the M 's in C s construction also. Hence e m
for all m and X, A2m+2(X), ≡τ A2m(X)’ Φ A(X) 2m+11 © A(X)[2m+2] ≡τ 

A2m(X)’ ΦW(a^(m)j A2m(X),) uniformly, and thus

(A) A2πi+2(X)∙ ≡t A2m+2(X) Φ X' ≡τ A2m(X)* Φ W(ad(m)i A2m(X)') 

uniformly.

Claim 2: We can choose d so that the ω-REA operator defined satisfies 

A(X)’ ≡τ A(X) Φ X' ≡τ A(X') uniformly in X.

Proof: Let e be an index such that J^ = A (so e is a recursive function ---------  e

of d). The proof is really just a computation which shows that the 

recursion theorem is applicable. We first define a recursive function 

f. Let f(,0) be such that W(f(0); {0} × X’) =p W(ad(0); ({θ} × X)'). 

Thus, from (4), Jg(X), ≡τ Jg(X) Φ X' ≡τ J (f,X,). Assume that ffm 

has been defined so that for all X

(5) J2m(X), ≡ J∣m(X) Φ X' ≡ jm(f,X,), uniformly.
e T e 1

Choose f(m) so that

(6) W(f(m); jm(f,X,)) = W(ad(m)i J∣m(X),)∙

Hence J∣m^2 * * 5 6(X), ≡^, J∣m+2(X) Φ X' ≡^, Jm*2(f,X,) uniformly. So we have
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by induction (5) and (6) for all m. Thus from (5) there is a 

recursive function g such that for all m

(7) W(g(m)5 J^m(X)’) -- W(as(m)i Jm(f,X'))∙ 
β β

An index for g as a recursive function is obtainable uniformly from d, 

that is g - {h(d)} for some recursive h. Choose 3 so that {d} - 

{h(d)}. (To be more precise, we are really using the Double Recursion 

Theorem (.Smullyan [1961]) so that the use of an index for the con-

struction in the construction is also justified.) Then by (6) and 

(7), W(f(m); Jm(f,X,)) =W(ag(m); J∣m(X),) =W(g(m); J∣m(X),) = 

W(ag(m); Jm(f,X,)) for all m. Thus J(f,X') = J^(X,), and so by (5) 

and Claim 1, we get Jg(X), = ∙ (J∣m(X)’) = J^(X) G X' = J√X,)
e τ m<ω e T e T e

uniformly in X. In other words we have

(8) A(X)' ≡τ A(X) G X' ≡τ A(X') uniformly in X.

This finishes the proof of Claim 2.

By induction on n, using (8), we easily get for all n and X

(9) A(X)(") ≡τ A(X) Φ X(n) ≡τ A(χ(n)) uniformly in X and n.

If we now "put i back in", we have defined for all X, Aθ(X)

and A^(X).
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Claim 3: Aθ(0) Φ A1(0) =t 0ω, and A^(0) is low for i = 0,1.

∕ ∖
Proof: First we show that 0k ’ <τ Aθ(0) Φ A^(0) uniformly in n for 

every n. Aθ(0) Φ A^(0) >τ 0' since we have coded a Sacks split of 

0' into the first columns of the A^(0). Thus Aθ(0) Φ A^(0) >τ 

Aθ(0') ® A^(0') by (8). Continue inductively. Assume that

Aθ(0) Φ A^(0) >τ Aθ(0^n^) Φ A^(0^n^). We can calculate (in a uniform 

way) 0^n+^*^^ from Aθ(0^n^) Φ A^(0^n^), so by (8) again we get

Aq (0) φ A1(0) >τ 0(n+1) H Αθ(0(η)) Φ A1(0inb >τ Αθ(0(η+1)) Φ A^(0^^) 

uniformly, and the induction continues.

The lowness of the A^(0) follows from (9). That is, 0ω 

A^(0) Φ 0^n^ >τ A^(0)^n^ uniformly in n, so 0ω >τ A^(0)ω. □

Remark: Rather than using Corollary 2.2 as above one might argue that we 

should proceed as follows. Simply define A^(X)to be . Next
1 Γ21 1 [31

use the Z,B,C-lemma with Z - A^(X) to produce A^(X)l and A^(X)l

1 3 3
Since A^(X)' =τ X,, we can guarantee that A^(X)' A^(X) Φ X'

X' B (,v) ,X, ) . The method of the theorem can now be used to 

define Aχ so that ¥m (A∣m+1 (X) ' ≡ψ A∣m+1 (X) φ X' ≡τ A^(X')) and A±(X) ’ ≡τ 

Φ (a Jπh ^1(X)'). Thus, again A (X), ≡ A (X) Φ X' ≡ A (X'), and A∩(0) 

and A^(0) are low ω-REA sets which join to φω. This approach requires 

less work since we need not check that the proof of the Z,B,C-lemma 

generalizes as claimed in Corollary 2.2. In Chapter 4, however, the 

approach would introduce some minor difficulties. The presentation 

chosen seems to allow for a more "uniform" exposition.



Chapter 3

The range of the ω-jump on degrees below 0ω

Jockusch and Shore [1983] showed that given i, there is an e 

such that VX(wx G W.wθ ≡rn X' and wx > X) , and in fact that e can be 
e i T e T

obtained uniformly from i. In our notation this says given j there 

is a k so that VX(J^(J^(X)) ≡ X' and J?(X) > X). In unrela- 
J k i κι

tivized form, this says intuitively that for any r.e. operation, we 

can find a cone (a cone of degrees is of the form {d_| <i > b} for 

some fixed b) with non-recursive r.e. base such that 0’ looks (up to 

degree) like that operation. Jockusch and Shore used this result 

to give a finite injury proof that all the standard jump classes

Ht, - H,L,.-L and I contain an r.e. set (an r.e. set A satis- n+1 n n+1 n
... * ττ ∙c * (∏) - rt(∏+l) * τ ... . (n) - rt(n) , . τ .j-fιes A ∈ H if A =_ 0 , A e L if A =_ 0 , and A e I ifη T n T

A⅛U(H ∪L)). In [1984], they point out that the analogous 
n

theorem for ω-REA operators would in the same way establish the 

non-triviality of the ω-jump hierarchy for ω-REA sets. In fact it 

does more than that — we will deduce the analog of the Sacks Jump 

Theorem and give a new finite injury proof of the standard Sacks Jump 

Theorem.

We first prove the analog of the Jockusch-Shore result: given i 

there is a cone with non-arithmetic ω-REA base such that 0ω looks 

like the operation J^ in that cone. This is a generalization of the 

fact that there is a non-arithmetic low ω-REA set, where i is simply 

the index for the ω-jump.

42
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Theorem 3.1: Given i, there is an e such that Ji(Jθ(X)) ≡τ X and 

Jθ(X) X. Further, this is uniform, in the sense that e is given 

by f(i) for some recursive f, and works for all X.

Before focusing on the lemma required to prove this theorem, we

try to give a rough indication of the approach. In Theorem 2.3,

we produced an ω-REA operator J such that J (X)’ - J (X) G X' - 
bg 1 e0 1

J (X')∙ We will show that the construction can be generalized so
e° 1

that given k, there is an ω-REA operator J so that J, (J (X)) =
6j K 6j J.

J (X) G x' =_ J (x') (from which the above of course follows: Let k 
eι τ eι

he an index for the Turing jump). It would be nice if, analogously

to the induction which establishes J (X)= 
eo τ

J (Xθ1)), we could show that J*1(J (X)) ≡ J
θ0 (n) 1 1

J (X', ), for this would establish the result, 
el

J (X) H X(n) ≡ 
u 1

(X) Φ x(n) ≡τ

However, the induc-

tion breaks down for two reasons. The first is because {k}(n) is

not necessarily constant and so we should be using different indices

on different "levels" of the construction; for example J (X,) 
el

should behave appropriately with respect to {k}(l), not {k}(0). The

solution to this is to build an array of ω-REA operators {j .∣j ∈ ω} 
el>J

with J used for handling {k} (n) . The second reason the induction

fails is that the 1-REA operators involved do not in general satisfy

⅛(Y-) ≡ J^(Y1) if Y∩ ≡ Y1 (indeed the question of whether there

are any nontrivial such k is open). For example, suppose we have that

J11(J n(X)) ≡ J n(X) Φ X’ = J .(X'). We would like to next
k e^,U T e^,u T e^,J-

argue that J.2(J n(X)) ≡ J n(X) « X" ≡ J 9(X"). The problem
k e^,U T e^,U T e^,z
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is that we do not know in advance what index J 1 should have been 
e1.l

constructed to handle, even though there is an index e such that

2 1 —
J.(J "(X)) =„ J (J -1(X,)). The index e depends (uniformly!)

1 el,° T e^ el,1
on the various parameters of the construction. By now the way to

deal with this should be clear — the recursion theorem.

~1 x
Definition 3.2: Let J (X) = X Φ W . This is so that we can avoid -------------------------- e e
writing "J^*^ (X) where {en}(0) = e". 

e0 °

Lemma 3.3: Given b and d, there is an ω-REA operator A such that for 

all X,A(X) >τ X and jJ(A(X)) ≡τ Φ (A2m(X),) ≡ψ A(X) 9 X' ≡ψ

-1 ^2m m<ω
Φ^ Ja (A (X)'), uniformly.

Proof; The proof is a modification of what we have already done. We 

use the M requirements to keep J^(A(X)) down, but must do some coding 

of X' to get J^(A(X)) > X*. The idea here is like the proof of the 

theorem of Jockusch and Shore discussed above. We reserve column 0 

in every for this coding.

X XFix a uniform 1-1 recursive-in-X enumeration {k s < ω} of K = s ,

X' (i.e. for any X use the same index). Again we use the recursion 

theorem (as explained before Definition 2.5) to justify the use of 

A ’ (γ) in the construction, where A ’ (Y) is defined analogously to 

A^,τ(γ) in Theorem 2.3.
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The C^-construction: We are given input Zffl and B^, and an index

a,(m) for a set r.e. in Z,. We have requirements M. for i < m, P, 
dm ι

and Pθ, Nθ for e < ω, with priority listing Mθ, ...,

P : Just as in the C -construction of Theorem 2.3, except that P e m e
-∣ . ^ [ θ-4-l 1 , ,.puts elements into (we are reserving for coding). That is,

Pθ wants to put y - <e+l, x> into at stage s+1 ifΗx,(<e,x,> < s & 

x' > x & x e B^e-1 <-> x' ⅛ B[e]). 
m m

N : Just as in the C -construction, e m

Definition 3.4: ψ(.e,τ,n,Y) <—> τ(0) > τ(l) > ... > τ(∣τ∣-l) and 

{b}(An,τ(Y)5 e)÷ in exactly n+∣τ∣ steps and τ(∣T∣-l) > n+∣τ∣. We 

are interested in ψ rather than ψ because we are trying to control 

J^(A(X)) rather than A(X)’. 
b

M : Just as in the C -construction with ψ, Z and B replaced respec- e m m m

tively by ψ, Z^, and B^.

P: Let r(s+l) be the least element of {<O,x>∣x e ω} which is greater 

than the restraint imposed by all the Mθ,s at stage s+1. At stage s+1, 

put r(s+1) in C if ≈ m (where X = Z^θ½. 
ms m
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The B -construction: We are given Z , an index for the C -construc- --------- m------------------------ m m

tion, and an index a^(m) for a set r.e. in Z^. If m = 0, to guarantee 

that A(X) >τ X, we use Corollary 2.2 unaltered to put a low-in-X, 

non-recursive-in-X set into column 0 of Bθ (here {0}×X is Zθ, of 

course). Otherwise, we have requirements Mθ, M^, ..., 

Pθ, Nθ, P^, ..., given in order of decreasing priority.

P , N , and M : Just as in the B -construction, but with the appro- θ θ θ HI

priate entities "hatted".

A(X) is of course now defined by applying the Bθ-construction to Zθ - 

{θ}×X to get A(X), and in general applying the B^-constraction to 

A2m(X) to get A(X) ^2∏ι+l], anj t∣ιe q -construction to A2m(X) and 

A(X) [2m^,^1 ] to get A(X)c2πri^21.

The argument for claim 1 of Theorem 2.3 gives us W(b;A(X)) < 

e (A2m(x)'), so

(1) ¾(A(X)) < § (A2m(X),)∙
b —T m<ω

Claim: J?(A(X)) >τ A(X) Φ X'. 
b -1

Proof: Suppose we wish to answer the question "is m e X’?" Let

R = {e < m∣e ∈ W(b; A(X)) and {b}(A(X)ς e)+ in greater than 2m+l 

steps}. In the ^-construction, Mθ imposes restraint if and only if 

e ε R. Once an Mθ imposes restraint, it never acts again. Look at 

the total restraint imposed by all the Mθ for e ∈ R. For a stage sθ 
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after all these M have acted, m e X' <—> 3 <0,y> < r(sn) (<0,y> ∈ C = 

A(χ)[2≡+2])This gives a uniform way to decide if m e X, effectively 

from ⅛(A(X)). 
b

Since Z, can decide the action of the new requirements in the C - m m

and B -constructions, m the argument for the Z,B,C lemma goes through

with almost

a 2πm ¾) ex’

we get for all m,A2m+2(X)' =τno change. So inductively

≡T ^a (m) (∆2in(X) ') uniformly, from the basic Turing equi- 

d
valences of the Z,B,C-lemma. Hence, we have

e (A2m(X)') ≡ A(X) G x' ≡ ΦjJ , (A2m(X)'), 
m^ω τ T m<ω a, (m)

d

from which the lemma follows, when combined with (1) and the Claim. 

Proof of Theorem 3.1: As in Harrington’s construction of incomparable 

ω-REA sets, we build an array {A^: k<ω} of ω-REA operators. Lemma 2.3 

is used to build A^ for each k. Given b and d as input, we use the 

lemma to construct A^ such that for all k 

∞ JL(k)<Ak<x)) ⅝Λ⅛⅛,>⅝

b

∖∞ sx' ≡T-Va (<k,≡>)<4m∞'>- ≡>M°"⅛∙ 

d

We can use the recursion theorem to obtain an index <J such that if we 

use d-d, then for all k,

(3) m^ω(Ak (X')) =τ A^(X) Φ X' =τ Ak+1(X,), uniformly in k and X. 
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The argument for this is almost identical to the analogous argument 

of Theorem 2.3 (i.e. the proof of Claim 2 of that theorem), so we 

omit it.

Next we show that the recursion theorem gives us a b so that if we 

take b = b, then for all k, J∖(Aθ(X)) =τ A^+^(Xk 7) uniformly and

thus Ji(Aθ(X)) ≡ Xω. As for most of these types of calculations, 

this is not particularly illuminating (nor is it presented in the way 

it was discovered), but is crucial to the proof.

We define a recursive function h. Let h(0) be such that

W(h(0); Aθ(X)) = W(a~(0); Aθ(X)) and thus Jx(h,Aθ(X)) ≡τ J^(0)(Aθ(X)) 
k . h

≡^, A^(X,), using (2) and (3). Suppose that h∣k has been defined 

so that

(4) Jk(h,Aθ(X)) ≡τ J* (k.1)(Ak.1(Xik"1b) ≡τ Ak(Xikb uniformly 

b

Let h(k) be such that W(h(k) , Jk(h,A∩(X)) = W(a^,(k); 

b
so (4) holds with "k+l" replacing "k" throughout. Now define a

(k) recursive function g so that for all k, W(g(k)j A^(X )) - 

W(a^(k); J (h,Aθ(X))). An index for g as a recursive function is 

obtainable effectively from b (formally, from b, d, and an index for 

the construction — we really are using a version of the recursion 

theorem which says that given recursive functions fθ, f^, ..., f∏, 

there are integers eθ, ..., e^ such that for all L e {0,.∙.,n}, 

{e0} = {f0(e∩,...,e )})∙ So take b such that if we used b = b,

then {b} = g. Then, for all k, W(h(k); J (h,Aθ(X)) = W(a^(k)5 Afe,(Xk ')) 

(k) k= W(g(k); Ak(Xw)) = W(ai(k)i J*(h,A√X))). Thus J(h,Aθ(X)) = 

k f⅛λ
Ji(Ao(X)) and J^(Aθ(X)) =^, (X ') uniformly, as desired.

A, (X ) ) , and
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Now, by an easy induction using the fact that for all Y and k,

Ak(Y) φ Y,

A∩(X) Φ = a (X^) uniformly. Thus J.(A∩(X)) ≡ Xω, and A∩(X)
U 1 K. lux u

>a X. The second part follows since for all Y and k, A^(γ) >τ Y, so

if Aθ(X) <t X(n), then X(n) >τ Aθ(X) φ X(n) >τ An<X(n)) and we have

a contradiction. If we take e so that J = A_, then we have Theorem e 0

3.1 (e is a recursive function of i by the recursion theorem with

parameters). 

Definition 3.5: For A < 0ω, n > 0, let A ∈ H if Aω n ≡ 0ω
-------------------------- -a- ~n a
A ε L if Aω*n ≡ 0ω ’ n and A ∈ I if A ⅛ U (H u L ). Define the

~n a ~ ~n ~n
XX x n 

relativized jump classes ∑n and I similarly.

=T A∣c+^(Y') uniformly, we get that for all k and X

Corollary 3.6: All the jump classes H 1, - H , L - L and I are ---------------i-------- j r ~n+l ~n ~n+l ~n 

non-empty. In fact, there are incomparable ω-REA sets in each one.

Proof: The argument that gives an ω-REA set in each ∏n+j ~

L ., - L , and in I is just as in Jockusch and Shore [1983] for the ~n+l -n

corresponding result for r.e. sets, so we state it only briefly.

index for

def

something

τX L and~n

If f is as in the statement of Theorem 3.1, and jrt is an j0
X 

the ω-jump, then by induction on n, J , 1 (X) ε L 1
rZ∏τl ∕ l ∖ ~∏τl
f (⅞)

J 0  (X) ε h x  - Hx for all X (here of course fm(jn)
-zn+zx. s ~n+l ~n 0
f ζjQ>

f(f(...<Jq ))...), where f is applied m times). To produce
V XX

in I , let eθ be such that eθ} = {f(eθ)} for all X. Then
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V
J (X) ε I , since for all n, 
e0

J (J (...J (X))...) - xω'n, 
e0 0 0

2n applications 

so for all n

xω*n < j (j (...j (x))...) < xω,(n+1).
a eo eo e0 a

2n+l applications

To get incomparable ω-REA sets in each jump class (other than

Hrι or L_) one defines functions f_ and f, just like f, but also we 

guarantee that column 0 of column 1 of A. 1 (X) is W? , where £ and 
l»k U

£ are chosen so that W? ® W? ≡ X' uniformly. (In other words, 
1 z0 X1 i

we can use the trick of Theorem 2.3 in this context.) Then for

T

Therefore

incomparable

1,0®(X) I A. 
aevery i with J^(Y) >a Y for all

= J_ , ..(X). To see this, we 
f1(ι)

A. (Y,)) uniformly, as before, to show that A( 
j > k+1

Then if J ...
tollj

would have Xω =_ J.(J ,..
T ι f j (ι)

Actually, we even have J , .
totlcr α j^ιyj^ι

for j = 0,1, Ji (Y) >a Y for every Y, by the same argument, 
j a

the first part of the proof applied to fθ and to f^ produces

Y, we have Jf (X) d=f Aθ θ 

use the fact that ¥k¥Y(A_. ^(Y) ® Y' 

o,o∞ * ai,o <x > ≡t  
(X) and (1)(X) were arithmetically comparable, we 

(X)) > J_ ,..(X) ≡ Xω for either j = 0 or 1.a f (i) a j

(X) I J_ ,. . (X) for any in, i1 such that 
la f,(ι,) j 0 1

ω-REA members of every jump class; indeed, all the sets with indices 

given by an iterate of f_. are incomparable with any set with index given 

by an iterate of f 1 .. 
1-1
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Corollary 3.7: There are recursive functions f and g such that for 

all i and X, J^(Jf (X) ) ≡^, X^, and this Turing equivalence has 

index g(i) (that is, g(i) codes a pair of indices for Turing 

reductions establishing the equivalence).

Proof: We have already argued for the existence of f. We need only 

examine the proof of Theorem 3.1 to see that we actually have such 

a g as well. This follows from all of the uniformities and the fact

that when applying the recursion theorem, the fixed points may be

expressed as recursive functions of the parameter i. 

Theorem 3.8: A Turing degree t> is the degree of the ω-jump of an 

ω-REA set if and only if ]> is the degree of a set ω-REA in 0ω.

Proof: If A <τ 0ω then the set C given by C^ -- 0ω, = A and

¥n(C [n+l-∣ -- A,(^)) is ω-REA in 0ω and has the same Turing degree 

(1-1 degree even) as Aω.

Suppose now that deg(J^(0ω)) ≈ b. We will (uniformly in i) 

produce an ω-REA set whose ω-jump has degree b. See Figure 3.1 as

an aid in visualizing the proof.

There is a recursive

establishing the equivalence) thenpair of indicesk codes a

all Y and

J1(0ω) ≡τ jh(i k) ' f and g as in Corollary 3.7 so that for

j,Jj(Jfij)(Y)) ≡τ Yω via g(j). Thus (Jf(j)(Jf(f(j))(0)))

 j, , .∖. (0)ω. By the recursion theorem, take so that {jn} =
T f(f(j)) 0 0

h such that if 0ω ≈ D via k (that is,
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Figure 3

Figure 3.

(0))))

1. a) The dots represent sets, the ovals represent degrees, 

and the arrows are the appropriate pseudo-jump operators.

1. b) The situation after the invocation of the recursion

theorem.
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Thus

{h(i,g(f(jθ))}. Note that Jf^ )(Jfj,f^ >)(0)) =τ via g(f(jθ)).

jf(f(□0))(0)W xτ jj0cσf(□0)<Jf(f(jo))(0)))

Jh(i,g(f(jo)))(Jf(jo)(Jf(f(jo))(0)) =τjι^ ∙

s° jf(f(□0))(0) is the ω-REA set whose ω-jump has degree By the

recursion theorem with parameters, we have the index uniformly from

i.

Corollary 3.9: (Sacks Jump Theorem) Given i, 

in i) an e such that Jθ(0), ≡^, J^(0,)∙

there is (uniformly

Proof: The argument given for Theorem 3.8, combined with the 

Jockuscħ-Shore analog of Theorem 3.1 and the observation that their 

proof has the extra uniformity analogous to that of Corollary 3.7, 

gives the result (with the "--" notation, we need the uniform 

relativized version of the recursion theorem). 

It is interesting that the set J^ n (0) 
t(t(] Q' '

is really constructed

via the finite injury method (in fact, by a particularly simple

construction). Of course, the argument that we did the "right" finite

injury construction appeals to the properties of the finite injury

j ∙χi construction J,.,. λ
f<⅛>

However, we need to know only one (parametrized)

finite injury construction in order to prove the Sacks Jump Theorem.
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We may think of a pseudo-jump operator as a "hop". Some hops 

go nowhere and some hops are jumps, but all hops go (non-strictly) 

up in degree. Jockusch and Shore taught us that for every choice of 

second hop, there is a first hop such that (up to Turing degree) 

two hops are a jump. That is, "all hops have mates". Theorem 3.1 

says the same thing in the context of arithmetic degrees. The proof 

given here of the Sacks Jump Theorem and its arithmetic analog, i.e. 

that a jump followed by a hop is the same (up to degree) as some hop 

followed by a jump, succeeds by showing that they both are the same 

as a sequence of three appropriately chosen hops.

It is possible that an argument along these lines would give an 

easier proof of the Z,B,C-lemma. However, it is not immediately 

clear that this would serve any useful purpose, since the result of 

the Z,B,C-lemma is not all that the overall constructions use. We 

also need to mix in new requirements, and it is not clear how this 

could be accomplished with a proof in the above style.

The following corollary was pointed out by Jockusch [1984]. He 

thought perhaps that if e is such that X < Jθ(X) for all X then there 

would exist an r.e. minimal pair A,B with Jθ(A) ≡^, Jθ(B) ≡τ 0,.

This would give, for example, a pseudo-jump-style proof of the 

existence of a minimal pair in every non-trivial jump class. The

proof of Corollary 3.9 can be used to show that at least the conjecture 

does not hold uniformly.

is no recursive function f such that forCorollary 3.10: There

X' uniformly and [VY(Y <τ Jθ(Y)) →-

(A degree is cappable if it is half of

all e and X,J (J,z .(X)) ≈, ’ e f(e) τ

deg(Jf(θ)(0)) is cappable].

a minimal pair.)
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Proof: The argument given in Corollary 3.9 for the Sacks Jump 

Theorem applied to such an f would show that every degree 1-REA 

in 0' is the jump of a cappable degree. However, this is not true

by Shore [1987] or Cooper [1987]. 

Corollary 3.11: An a-degree (T-degree) 1j is in the range of the 

ω-jump on a-degrees (T-degrees) below 0ω iff 1j is the a-degree 

(T-degree) of a set ω-REA in 0ω.

Proof: The only part of the statement which has not been proved 

above is that A 0ω implies Aω has arithmetic degree that of some 

set ω-REA in 0ω. Suppose A <τ 0ω+n. Define C by C^ = 0ω, 

C[1] = 0qh "1, ..., C^ = 0α*n, C[n+1+1l = a∞ for ι > o. Then C 

is ω-REA in 0ω and C ≡ AW.  
a

Note: It is not the case that A 0ω implies Aω has T-degree that 

of some set ω-REA in 0ω. Take m such that m <τ 0ω+3, m 0ω+2, and 

m is a minimal cover of 0ω. Then by a standard forcing-and-coding 

argument, there is an ω-generic A with Aω ≡τ A Φ 0ω ≡τ M, where M is 

such that deg M = m. Thus A 0ω, but Aω ≡^, M is not of ω-REA

in 0ω T-degree. If so, M is above a set B, say, which is r.e. in 

0ω and strictly above 0ω, and thus M is not a minimal cover of 0ω.

(Recall that if all columns of a set ω-REA in Y are recursive in X, 

then the set is recursive in X". If Aω = J (0ω), let B = Jn(0ω), 
T e e

where n is the number of the first column not recursive in 0ω.)
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We have shown that not only does the arithmetic analog of the 

Shoenfield Jump Theorem hold, but the analog of the Sacks Jump 

Theorem holds as well. The fact that the same basic argument for 

the range of the ω-jump also gives a new proof of the Sacks Jump 

Theorem is surprising. This gives a very striking analogy between 

ω-REA operators and ω-jump, and r.e. operators and Turing jump.

The weakness of the argument seems to be that it does not really give 

a direct construction of the ω-REA set with the desired ω-jumρ.

Such a construction would probably be quite illuminating. It most 

likely would yield new insights into the operation of ω-jumρ and would 

also employ techniques which could perhaps be used to deduce new 

facts about the ω-REA sets. A more direct construction for the analog 

of the Shoenfield Jump Theorem would also be illuminating, even though 

the result is weaker. Both of these problems seem difficult, 

especially since the range of the ω-jump on degrees below 0ω had been 

an open question for some time, and it has proved quite resilient 

to direct attack.



Chapter 4

Minimal Pairs and Diamond

In this chapter we extend the basic construction further to 

show that there is an arithmetically minimal pair of ω-REA sets 

which join to £ .

Theorem 4.1: There are ω-REA sets 

a minimal pair, i.e. VB((B <& Aθ &

Aθ and A^ such that Aθ, A^ form 

B<aA1)÷B<a0) andA0∣aA1,

- rtω moreover A„ Φ A. = 00 la

Proof: We construct two arrays of ω-REA operators {A. , ∣k e ω} for 
i, k .

i - 0,1, and let A^ = A^ θ(0). We will guarantee that Aj ^(X) '

A. , (X) H X' ≡ A. 1(X,) uniformly, and hence, by induction, we 

get A.jk(X)∞ ≡τ A k(X) G X(n) ≡τ A. k^(X^) uniformly in X, 

n, k and i.

We also fix (an index for) some (partial) recursive function α,

and guarantee that if ®a(0>k) (A0,k(X)) = φa(ijk) <a1λ∞ > ≡ D> then 

D <τ X’∙

Suppose then that D < A„ and D < A,. Then there is an e and an -a 0 -al
n such that Φθ(Aθn^) = D = Φ^(A^^) (note: the trick of Chapter 1, 

namely that we can assume e = n, serves no purpose here). Let 

k = <e,n> (by convention k > n)∙ Then, for i = 0 or 1, D < A^^ =

A. ∩(0)(n) <τ A ∩(0) ≡ A v(0θς)) ∙ By the uniformities we

(k)have D recursive in A^ k(0 ) uniformly in e, n, i and k, hence

57
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uniformly in i and k. Th„s D - '⅛(ljl0⅛iιk<*w)) for some recursive

α (whose index is computable effectively from the various parameters 

of the construction). But by the recursion theorem, we can take (the 

index for) α so that α = α. Therefore, D <^, 0^+1), and hence D is 

arithmetic. This style of argument is similar to Harrington’s 

diagonalization technique. In his construction, diagonalization for 

a given index was taken care of at another level of the construction, 

and the recursion theorem tied things together in much the same way.

For now we suppress the mention of the parameter k, and attempt 

to motivate the constructions. We have the P ,s and N ,s of the C e e m

and Bm constructions, as well as the Mθ's for controlling the jump 

of the ω-REA set under construction. The new idea is that we try 

to force {oc(O)}(Aθ(X) ;χ)Ψ ≠ {α(l)}(A^(X);x) for some x if it is 

possible, and if it is not (and ζ∙q  (j∖(X)) is total for i = 0,1),

then what is computed is recursive in X’. This is accomplished by 

using a single requirement Q of strongest priority. Q is both a 

positive and a negative requirement. The negative aspect of Q is 

to hold a diagonalization if found. The positive aspect is to "leave 

word" so that the next column can do its job in holding the diagonali-

zation.

As in the Mθ requirements, Q uses approximations of the form 

0 τA√ (X) for τ a decreasing string (i.e. τ(0) > τ(l) > ... >τ(∣τ∣-l)) in

0 T τthe construction. We will often abbreviate A^, (X) as A^(X). Suppose

in the construction of column 1 of Aθ(X), we see at stage s+1

decreasing strings τθ and and an x < s such that s = τθ(0) = T^(0) 
T τ0 1and {α(0)}(Aθ (X)jx)÷ ≠ {a(l)}(A^ (X);x)+ where the computation with
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parameter i for i = 0 or 1 converges in fewer than ∣τ^∣ and fewer than

τi<∣τi∣-D steps. We would like to make these computations permanent

to guarantee that (Aθ(X)) ≠ φct(i)(Aχ(X))∙ Perhaps at first 

it seems that there is no problem in doing this just as in the Mθ 

requirements. Unfortunately, without doing something else, columns 

numbered greater than 1 will not know to cooperate. For example, if 

Iτ I >1, the construction of column 2 of Aθ(X) must impose restraint 

at stage τθ(l)+l. Column 2 could even look back at column 1 and 

calculate a stage t by which the enumeration of column 1 has settled 

down on τθ(l), but this information would not help. It may be the 

case that the stage s in the enumerations of the first columns at 

which we noticed the chance to diagonalize is much greater than t 

due to the first column of A^(X) not settling down. Since in the 

enumeration of Aθ(X)^ we do not have access to A^(X)^^ we could 

wait forever at stage τθ(l)+l trying to decide if it is a critical 

1 β 1stage in some diagonalization. Of course, holding Aθ,p(Aθ(X)) whenever 

1 β 1{α(0)}(Aθ p(Aθ(X)) ;χ)Ψ so that we need not decide this at all would entail 

infinitely much restraint. The reason the Mθ's did not have this 

problem is that any one column only had to worry about finitely many 

convergences. Here we must worry about any x being the argument for 

a potential diagonalization.

The solution to the problem outlined above is straightforward,

but it introduces new difficulties into the construction. If we act 

to diagonalize in each column 1, we code this fact in simply by

enumerating into column 1 an appropriate member of the current 

complement of column 1. Let 8. , - the set enumerated in the
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construction of column 1 of A.(X) after stage s. Let B.  =
1 1 9 u, s

0 12{Γg < Γs < Γs < ...}, thus we are now thinking of markers sitting

on the complement of B. ∩ . If we act to diagonalize at stage
i,U>s T.(l)

s+1 because of τr,, T. , then if lτ. I > 1, enumerate Γ into
01 , i, s

T 1(1)
B. 11 , that is "kick" the markers. Note that Γ > τ.(l), soι,0,s+1 s - ι

we are not changing the part of B. θ ≡ that we’d like to protect.

Now at stage r+1 in the enumeration of column 2 of Aθ(X), we need 

s tonly wait for a stage t by which the r+1 element of the complement 

of B^ θ t has settled down. If Q has not acted by this stage in 

column 1, then r is not τ(l) in any string τ giving an approximated 

computation that we are trying to hold, so it is safe to continue.

The new problem the above coding strategy introduces is that we 

have lost the seemingly crucial property that stage t of the 

enumeration of a column depends only on the oracle up through t.

This is why the proof of the Z,B,C -lemma was written in the way that 

it was, so we have foreseen some of the troubles at least. We will 

see that the property still holds in a restricted sense.

The constructions

We will still code a low-in-X set into A^(X) ∣∙θ∙∣ . This again

makes explicit diagonalization unnecessary, as well as establishing 
"diamond", i.e. that the diamond lattice φ is embeddable into the 

ω-REA a-degrees preserving top and bottom. In the present context, 

however, Q will perhaps keep some finite part of the low-in-X set 

out. We shall think of the coding as being controlled by a requirement 

L. Explicit diagonalization as in Harrington [1975] would mesh into 
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this construction easily (the reader may want to try this as an 

exercise, using the last sentence of the third paragraph of this 

proof as a hint), but we use the present technique since it establishes 

more.

Let L>o and be as in the proof of Theorem 2.3, i.e. W^ G W^ 

≡τ X' uniformly and for i = 0,1, W^ X and 

i 
integers dθ, d^ and indices for αθ, be given. We can again by the 

recursion theorem use an index for the construction in the con-

struction. More on this point later.

(Wj )’ ≡τ X’. Let

The ^-construction: We have requirements Q, L, Pθ, Nθ, P^, ... 

listed in order of decreasing priority. We are given Zθ (- {0}×X) 

and an index a, (0) for a set W r.e. in Z', and the index for the r.e.
d. 0ι 

operation CL θ to be defined later.

as in Theorem 2.3 (so just asand

in the Z,B,C - lemma).

stage s+l, L wants to put <0,x> intoL: At

stage s+l, if Q has not yet acted, QQ: At

and the computation with parameter j for j = 0,1 converges 

3J

P e

s - T^(0), both

in fewer than jτ and fewer than τ√∣T∖∣-l) steps. 

t,s'

Ξx,

B. „ if x e wr ι,0 

wants to act if

τθ, τ1 such that x < s, τθ(0) =
τ0

decreasing strings, {α(0)}(Aθ (x);x)+ ≠ {a(l)}(A∙∣x(X);χ)Ψ

Νθ: These requirements are just

τ are 
τι
1
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staS∙e--°1 Bi,0,0 = 0∙

stage s+1: First, determine if Q wants to act at this stage. If so,

Q acts for τ (where x, τθ, τ1 is the least triple which satis-

fies the definition of Q wanting to act) as follows.

case 1: If ∣τ^∣ = 1, then Q permanently restrains future 

elements from entering B^ oJτi^°^, so Bi 0 s Γτi∕°) = Bi 0^τi^°^- 

case 2; If ∣τ ∣ > 1, then Q permanently restrains future elements 

_  0 12
from entering B fτ (1) . Also, if B ∩ = {Γ < Γ < Γ < ...},

1 M V 1 X ⅜ U ⅜ O O o ⅛
τ. (1)

then Q enumerates Γ 1 into B. ∩ 1. (The slight awkwardness
S 1 9 v 9 S-r_L

here is forced by the need for coding. It would be nice to be

able to restrain up to τ^(0) in both cases, but the positive

action may interfere. Of course, one could take the positive

action and then restrain but this is also awkward.)

Next, determine what elements the other negative 

requirements restrain, and what elements the positive requirements 

want to put into B, n Put in those elements not restrained r i,0,s+1

by a requirement of higher priority.

The B. -construction (for m > 0): We have requirements Q, Mλ , Μ , ..., --------- ι,m------------------------ u 1

M j, Pθ, Nθ, P^, ... listed in order of priority. We are given

Z. (=A^m(χ) in practice), an index a, (m) for a set r.e. in Z'. ,
ι,m ι d^ ι,m

and the index for the r.e. operation C. to be defined later, i,m

Μ , P , and N : Just as in Theorem 2.3. e e e

Q: C, .. is the r.e. operator associated with column 2m of the i,m-l

construction. To avoid confusion, the Q’s for different columns may be 
B.

labelled with superscripts. At stage s+1, if Q 1,m has not yet acted,
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st calculate the stage δ(s) by which the s+1 element of the complement

of C. n) has settled down, that is the stage δ(s) by which Γs 
i,m-l i,m

has reached its limit in the construction of C. , with input the

columns of Z up to 2m-l. This calculation is intended to proceed 
m

as follows. Calculate C. 1 (z[<2m∙∣) for t = 0,l,2,... until t
ι,m-l,t ι,m

is found so that the s+lst element of the complement of C. . Cl ∖ 
ι,m-l,t ι,m

st , - „[2m]
is the same as the s+1 element of the complement of Z± m

(with pathological Z^ ,s δ(s) will not become defined, i.e. this 

stage will stall, but if Z^ really is A^m(X), δ(s) will be defined). 

If Q i^,m 1 does not act in the C. ,-construction with input
x ι,m-l ι,m

by stage δ(s), do nothing. If Q i,m 1 does act before δ(s) in the

Ci m-1
C. .-construction, let τ be such that Q ’ acted for τ. ι,m-l

case 1: ∣τ∣ - 2m. Then we need not do anything, since the

column 2m+l which we are constructing is not involved with the

diagonalization Q tries to hold.

case 2: ∣τ∣ > 2m. If τ(2m) ≠ s then we need not do anything
βi m

at stage s+1. If τ(2m) - s, then Q ’ wants to act for τ at 

stage s+1.

stage-0: B.,m,0 - 0.

stage s+1: First see if for some τ Q wants to act for τ at 

stage s+1. If so, we have two cases. If τ = 2m+l, then Q acts 

for τ by permanently restraining future elements from entering 

B. Γτ(2m). If ∣τI > 2m+L (so the next column needs signalling) 
ι,ml

then Q acts for τ by permanently restraining future elements from 

entering m[τ(2m+l) and enumerating r≡^2∞÷l) -jjlto where
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Next, determine the restraint of the negative requirements and 

desired actions of the positive requirements and act accordingly, 

as usual.

The C. -construction: We have requirements Q, M„, ..., M ,, Pλ , --------- i,m------------------------ 0 m-1 0

N_, P1 , ... (if m = 0, there are no M ’s). We are given Z. and
U 1 i ι,m

B. (=A2m(X) and A.(X)^m+l] practice) and the index a, (m) 
ι,m ι ι d. ι

for a set r.e. in Z! . The Μ , P and N requirements are just as
1 }1∏ θ θ θ

in Theorem 2.3. Q acts just as in the description given above for
Bi m Ci m

Q ’ . That is, at stage s+l, Q ’ looks back at the enumeration of

the previous column to calculate a stage δ(s) by which Q in that 
C.

column would need to act if Q ’ was to act at stage s+l. The 
C.

action of Q ’ is as described there.

As in Theorem 2.3, we think of the construction as defining 

an index e^ such that {θi) (n,s) - canonical index for the set of 

numbers enumerated at stage s, when applying the operator defined for 

column n to input Y. So in the construction when we used, for example, 

C. 1 (Z^2mJ) we really meant U {x∣x e the set with canonical
ι,m--L,s t<s

zt<2m] 
index (e^) (2m,t)}. As usual an application of the recursion

theorem allows this. We also want however that ¥n > 1 Vs

A1(X)^nl

({e^} (n,s)+). In fact, we need more to show that the

approximations that the Mθ and Q requirements use are such that these 

requirements achieve their goals. In Theorem 2.3 the required conver-

gences followed easily by induction on s since a convergence on s 
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relied only on various convergences with lower stage numbers. Here 

in the requirement Q we look back at the previous column at higher 

stage numbers, however. The next lemma deals with these issues.

Definition 4.2: If Y is the input to the enumeration operator 

associated with column n+1 of construction i, call Y a good input 

to column n+1 if Y = A™’T(A™(X))t-n^ for some m < n and some string τ. 

That is, Y is good if it is an approximation to A^(X) of the type 

we use in the construction.

We say a stage s in the application of the operator for 

column n to input Y stalls if {e^}Y(n,s)+.

Lemma 4.3: For all n, if Y is a good input to column n+1 and Yl j 

γ
is coinfinite, then ¥s({e_^} (n+l,s)4∙).

Proof: The only worry is that the "looking back" aspect of Q may 

make a stage stall. If Y is a good input, this will not happen, 
τ

however. Proceed by induction on s. For all n and T, (e^) (n+l,0)Ψ = 

the canonical index for 0. Suppose that we have the statement of the 

lemma for all s’ < s. The definition of stage s+1 of the enumeration 

operator associated with column n+1 applied to Y requires calculation 
A1}>τ(Y) l≤n']

of {e^} (n,+l,t) for various τ, n, > n and t < s (in the

requirements Mθ (and Q if n = 0)). If Y is good, so is A^,τ(γ)[-n 

(for column n,) and the last colι≡π is coinfinite. So all of these 

computations terminate by the induction hypothesis. The only other 
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way that stage s+1 in column n+1 with good input could stall is in 

the calculation of δ(s). This entails examining column n of the 

input and enumerating from columns less than n until things settle 

down appropriately. The key point is that Y good implies the last column 

is defined by the same enumeration we are comparing it to. If some 

stage in the enumeration of column n stalls, we do not get this far

because things settle down at the stage just before the first stalling 
γ[<∏]

stage. (Suppose sθ is least so that (e^) (n,sθ+l)l. Then, by

definition, Y^ =

γ[<∏] 
{ej (n,s')}.

Γ<n 1from Yl , we get

il {x∣x e set with canonical index
s'-s0

When we check γtn∙∣ against the enumeration of Y^

s tthese equal at stage sθ, so the s+1 element of 

the compliment has settled down, so the calculation of δ(s) termi-

nates .) Otherwise the assumption that Y^^ is coinfinite implies

s t that the s+1 element of the compliment exists, so we still

terminate. 

Definition 4.4: If Q acts in the first columns in the constructions 

of Ai<X) for i = 0,1, suppose Q acts for τθ, τ^. For 1 < n < ∣‰∣, 

let q(n,i) = the critical stage for column n of construction i - 

τi(n-l)+l. For n > ∣τi∣ let q(n,i) = ω. If Q does not act, let 

q(n,i) = ω for all n and for i = 0,1.

Lemma 4.5: Let tθ < q(i,n) be given, and suppose that Tθθ^ =T^θ^=X, and 

that Tθ[tθ - T^^tθ. Suppose further that no stages t, for t' < to 

stall in the application of the operator for column n of construction 
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i to Tθ, and similarly for T^. Then the set enumerated after tθ 

stages with input Tθ is the same as the set enumerated after tθ 

stages with input T^.

Proof: By induction on n, if  χ, tγιen ιn the enumeration of 

column n with input Y, Q can act for T only if Q acts for T in 

column 1 of A^(X)∙ The definition of Q acting guarantees that Q can 

act for τ only at the critical stage. Thus the requirement Q does not 

act in the first tθ stages since tθ is before the critical stage. 

The only other requirements which might possibly involve the input 

above the stage number are the Mθ,s (in the approximations).

But, Q does not act in column n until after tθ implies Q does not 

act in any column n' > n in any approximation of the form

^*^,t *Y(A^(X)[ n⅛ where t' < tθ (the δ(s) calculations will all 

involve stages before Q acts in the previous approximated column). 

Since also no stages stall whether the input is Tθ or T1 the effect 

of the construction is the same as if Q were not present in the 

instructions. Thus, since Tθ∣tθ = T^ftθ, Tθ and T^ are inter-

changeable as input to the first tθ stages of the construction of 

column η. ∏

The next lemma shows that the approximations Q uses are indeed 

useful.
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Lemma 4.6: Assume that ¥n 1 (A.(X) n is coinfinite). If Q acts
1 τ∙ r 1

for T∖ in column 1 of A^(X), then ¥n (1 < n < |t _J - 1 ÷ A^1(X) n ∣kT^(∏) 

- A.(X)[n][τ.(n) and n = ∣τ.∣ ÷ A x(X)[n]∖τ (n-l) = A (X)(n][τ (n-l)).
i ι ιιιιι

Thus Q acts --> Φ^θ^ζΑθζΧ)) ≠ φα(1) <a1∞) ∙

Proof: We proceed by induction on n. If n = 1, then in the construc-

tion at stage τ^(O)+l Q acts and permanently restrains elements less 

than either T^(l) or τ^(0) depending on whether ∣T∖∣ > 1 or 

∣τi∣ = 1. Since this occurs at stage τ^(0)+l, we have the desired 

conclusion. Suppose we have the appropriate equalities for all 

n ε {l,...,nθ}, and that Q acts for in the construction of column 

n with input A (X)^<n0^, at stage τ.(n∩-l). Then by Lemmas 4.3 and 

τι [no+1]
4.5, and the fact that is decreasing, we have A^ (X) =

n0,<τicn(P> n0 [n0+U
A^ (A^ (X)) . In words, we have that the set

enumerated after τ.(n∩) stages is the same whether we apply the
1 τi tino] lino]

operator for column nθ+l to input A^ (X) or A^(X) . Since

Q acted at stage τ.(n∩-l)+l in the construction of column n∩ with 
[<n0] 1

input A (X) , Q at stage τ.(n∩)+l in the construction of column
[≤∏01

nθ+l with input A^(X) calculates δ(l∖(nθ)) > τ^(nθ-l)+l, so Q 

knows to act. Thus Q acts at stage ∙*∖(n.)+l and preserves the 

appropriate (depending on the length of τ∖) amount of the set being 

enumerated to establish the equality for n = n„+l.

Since the above establishes that if Q acts then the sets con-

structed equal the approximations we act for, on the part which the

φc (1)<a 1∞>∙

computations can see, we have chat Q acts implies Φαζθ) (Aθ(X)) ≠
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Lemma 4.7: Suppose that Q does not act in the construction of the 

first columns of the A^(X) for i = 0,1. Suppose also that (∙∖)(X)) 

= Φ (A1(X)) - D. Then D <τ X’.

Proof: We show how to calculate D(x) effectively in X’. Let τθ be 
τ0

any decreasing string with ∣τθ∣ > 1, such that {α(0)}(Aθ (Χ);χ)Ψ, and 

(i.e. the

If the computationis such a

converges not. Then let be

τθ since Φ^θ^ζΑθζΧ)) is total.

to y, then D(x) = y, for suppose

this computation takes fewer than ∣τθ∣ and fewer than τθ(∣τθ∣—1) 

steps to converge, and such that Bθ θ ψ (0) f"r0(1) = b q

first column of Aθ(X) has settled down on τθ(l)). There

defined as above, but with the parameter 0 changed to 1, and with

the stipulation that the computation be the correct one. Again 

Φα(l)(Aι<χ)) total implies the existence of such a Let u =

max{τθ(0),τ^(0)}. Note that at stage u of both constructions, 

si nce  bi,0,Λ1∞ ■ Β1,θΜ> ■ δi,0,τi<0) bi<1) k°r 1 - 0,1, 

we would have wanted to act for Q because of x,<u,τθ(l) , ... ,

Tq ( ∣Tq  ∣>τιd) , ∙∙∙ , τι< ∣τι ∣ ~1)> (this last assertion uses

Lemma 4.5). This is a contradiction since Q wants to act implies

Q acts. Thus to calculate D(x) we find the least τθ satisfying the 

above restrictions, and the value calculated is correct. Finding 

such a τθ is effective in Aθ(X) -lj, hence in X'. □
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In the way we have phrased the construction, the Mθ,s still act 

at most once, so if Q acts in column n, it may (by signalling 

column n+l) interfere with the Mθ,s of column n. However, Q’s 

interference is limited to some finite number of columns 

(corresponding to ∣τ∖∣). Furthermore, X' can determine uniformly if 

Q acts and if so for what Ι∖. The mode of argument of Lemma 4.6 

establishes that if Mθ acts in a column n > ∣Ι∖∣, then {e}(A^(X) ;e)4-. 

Conversely we get that if {e}(A^(X)je)÷ in more than 2e+2 steps then 

Mθ acts in column 2e+2. Hence, as in Theorem 2.3, A^(X)’ ≡τ

Φ (A^m(X)') uniformly, 

m<ω
Next we note that the argument for the Z,B,C-lemma still goes 

through with the addition of the Q requirements, since X’, hence 

(Z. )' can determine the action of Q in the C. or B. construe-1A in 1., m i y m

tions. (Note: Since each column of C. is finite, C. is coinfinite.ι,m ι,m

If W(a, (m), Z' ) = W is infinite, then B. is coinfinite since d^ ι,m i,m

[ θ Ί —
lim (B. (x) = W(x)). So it is an easy matter to get the coinfiniteness
x ι>∞

of the columns required to make sure that the calculations of δ stop, 

and keep uniformity; just use W Φ ω in place of W.) Thus, if we put 

the parameter k back in, we have for all m and X, A^m^^(X)' ≡1j,

A?m (X)’ Φ A k(X)t2^11 Φ A (X√2π*21 ≡ A2® (X)’ Φ W(a (<k,m>); 
1, λ  1, ** lj X X, K.

α |^(Χ)’), uniformly. A recursion theorem argument, applied to the 

parameters d^ in the style of Clai· 2 of Theorem 2.3 establishes 

A. . (X)' = A. (X) Φ X' = A .j,(X,) for i = 0,1 and all k,
1,K 11, K 11, IL. - — 
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uniformly in i and k. Thus we have, after an application of the 

recursion theorem to an index for α, using Lemmas 4.6 and 4.7 and 

the argument given in the motivation for the proof that Aθ θ(0) >a D 

and θ(0) >a D imply that 0 >a D.

Finally we argue that A_ ∩(0)∣ A. ∩(0) and A (0) Φ A1 „(0)

≡ 0ω. The fact that A. ∩(0)^n^ ≡τ A. ∩(0) Φ ' uniformly implies 

that A^ θ(0) is low. In the construction of column 1 of A^ ^(X), 

all but finitely much of ⅛ζ is coded in (since Q acts at most once).

i
Thus VXVk(A∩ , (X) Φ A. , (X) > X'), but not necessarily uniformly.

Still, induction on n shows that Vn(A∩ ∩(0) Φ A (0) > A∩ (0) Φ

-T Ao n^ φ A1 >τ 0 )∙ Therefore

Aθ q (0) Φ A1 q (0) >a 0ω. Thus we have a low minimal pair joining to

0ω in the a-degrees. ∏

Corollary 4.8: The theory of the r.e. T-degrees and the theory of the 

ω-REA a-degrees are not elementarily equivalent.

Proof: Immediate from Theorem 4.1 and Lachlan's Non-Diamond Theorem

(see e.g. Soare [1986]). 

Corollary 4.8:

A I B.
'a

Given B with 0 is an ω-REA A withB < 0ω, there 
a a

Proof: The result is again in immediate consequence of Theorem 4.1.

A would be either Aθ or Aχ of the tneorem, since if both are 

above B then B 0, if both are below B then B 0ω, and if B is 

between them, Aθ and A^ are comparable. 
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It is unknown whether the result holds uniformly for ω-REA sets

(as it does for r.e. sets and Turing reducibility), i.e. whether

there is a recursive f such that ¥e (0 < J (0) < 0ω ÷ J (0) I J_, . (0)).
a e a e a f (e)



Chapter 5

Introduction to initial segments

The study of initial segments of various degree structures has 

been of major interest to recursion theorists. The Turing degrees 

naturally have received the most attention, and some of the major 

milestones on the road to our present-day list of possible initial 

segments of the T-degrees are as follows: a minimal degree, 

Spector [1956]; all countable distributive lattices, Lachlan [1968]; 

all finite lattices, Lerman [1971]; all countable upper semi-lattices 

with 0, Lachlan and Lebeuf [1976]; all ^-size upper semi-lattices 

with 0 and the countable predecessor property, Abraham and Shore 

[1985]. These results are not only interesting philosophically 

(the initial segments of the T-degrees are as rich as possible) 

but have also been put to powerful use such as in analysing the global 

structure of the T-degrees (S. Simpson [1977] or Nerode and Shore 

[1979])∙ Perhaps the ultimate application has been Shore’s refuta-

tion of the homogeneity conjecture [1979] .

The tools developed to embed various lattices as initial segments 

of the Turing degrees have in general been applicable to other 

degree structures as well. For instance, the Abraham-Shore result 

holds of the tt- and wtt-degrees also, as can be shown with almost no 

extra effort. In the other direction (more general reducibilities) 

the changes needed are not quite as straightforward.

Sacks [1971] introduced the technique of perfect forcing and used 

it to establish, for example, the existence of minimal arithmetic, 

hyperarithmetic, and constructibility degrees (the latter of course 

73
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requires some extra set theoretic hypotheses or can be seen as a 

relative consistency result). It can be argued that these proofs 

are really just Spector’s minimal degree construction translated 

into the appropriate setting, although the translation (especially 

for hyperarithmetic and constructability degrees) is somewhat deli-

cate. Indeed for hyperarithmetic or constructability degrees, it is 

unknown which countable upper semi-lattices may be embedded as 

initial segments. Note, however, that by recent work of Lubarsky and 

Shore, it is a theorem of ZFC that some countable upper semi-lattices 

are not embeddable as initial segments of the c-degrees.

We continue with the translation of initial segments results 

into the arithmetic degree case by showing that all upper semi-lattices 

(u.s.l.’s) of size with least element and the property that each 

element has at most countably many precedessors, are isomorphic to 

initial segments of the arithmetic degrees. The previous best result 

was that of Harding [1974] that all countable distributive lattices 

with 0 are embeddable as initial segments of the a-degrees. His proof 

uses the framework of Yates [1976]. The approach we follow is in the 

style of Lerman,s book [1983], or more accurately we follow Abraham 

and Shore [1985], which is basically in the style of Lerman.

The proof uses local forcing on arithmetic trees (or Cohen 

forcing for arithmetic relativized to arithmetic trees) as in Sacks 

[1971]. The main contribution here seems to be the explication of the 

similarity between a Turing computation {e}τ(x) converging for τ on a 

tree and the et^1 arithmetic sentence (with a function parameter) being 

forced by a string on a tree of generic paths. To control the arith-

metic degree of a function g one of course must control g^ for 
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every n. Using the idea of local forcing and controlling Φe(g), 

however, allows for a proof which is remarkably similar notationally 

to the Turing degree case.

As a corollary to the embedding of countable non-distributive 

lattices as initial segments of the arithmetic degrees we solve, 

using techniques of Shore [1981] and [1982], Problem 2 of Odifreddi 

[1983]: ι>τ (< Q^) t V^(< 0ω), that is, the orderings of the a- and 

T-degrees below 0ω are not elementarily equivalent. This relies on 

the fact that our embedding may be carried out in the a-degrees below 

the degree of a presentation of the given lattice.

We start by giving a brief discussion of local forcing on arith-

metic trees, which is essentially standard. For more details see, 

e.g., Odifreddi [1982]. We do, however, use a function symbol in our 

language rather than a unary predicate symbol since we do not 

restrict ourselves to binary trees. Next we prove Sacks’ theorem 

that there is a minimal a-degree since we feel that it shows the 

exploitation of the analogy between arithmetic and Turing computations 

mentioned above most clearly. We will follow the notation of Abraham 

and Shore [1985] as closely as possible.

Definition 5.1: a) S is the set of all strings.

b) If f: ω ÷ [ω]<ω (where [ω]<ω denotes the set of all finite subsets 

of ω), then is the set of f-strings, that is all σ such that

¥x < ∣σ∣ (σ(x) ∈ f(χ)).

c) An f-tree (for f: ω ÷ [ω]<ω) is a map T: ÷ Sf such that

Vσ,τ ∈ Sf (σ £ τ <—> T(σ) ⊂ T(τ)).

d) τ e T, i.e. τ is on T, iff 3 σ(τ = T(σ)).
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e) [T] = the set of branches of T = {h∣ag(h - u T(σ) d=f T[g])}.
σcg

f) T is arithmetic if it is arithmetic as a function. (All trees we 

mention will be arithmetic.)

g) T' is a subtree of T, T, £ T, if range T’ £ range T.

Definition 5.2: Let 1* be a language for first-order arithmetic 

augmented by a function symbol £, We assume that L* includes a 

constant symbol n for each non-negative integer n. The only terms 

allowed as arguments for G are variables or constant symbols (this 

allows for a simplified definition of forcing). For T an arithmetic 

tree with T: →- we define the forcing relation σ |pT ψ for ψ a

sentence of L* and σ ∈ T as follows.

i) If ψ is an atomic formula that does not contain £, then 

σ |pT ψ iff ψ is true in arithmetic.

ii) σ ∣Hr G(n) - m iff σ(n) - m.

iii) σ ∣p ψθvψ1 iff σ ||-T ψθ or σ ||-T ψχ.

iv) σ |pT 3xψ(x) iff Ηn(σ |p\i(n)).

v) σ ∣∣-τ~ψ iff ¥p 2 σ(p e T ÷ (p |pT ψ)).

Given g ∈ [T], g ∣∣- ψ iff σ ∣p ψ for some σ £ g. g is T-generic

if Vψ (g ∣μτ ψ or g ∣μτ~ ψ) , and g is n-T-generic if ¥ψ (rank(ψ) < n 

T T T τ-» g ∣p ψ or g ∣P ~ψ). if σ ∣p ψ or σ ∣p ~ ψ we say that

σ T-decides ψ or just σ decides ψ and similarly for g∙

Clause v) is where the change as been made from standard Cohen 

forcing in arithmetic (Feferman [1965]). The definition of local 

forcing is due to Sacks [1971].
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Proposition 5.3 (definability of local forcing): Let <ψθ: e e ω> be 

an effective Godel numbering of the sentences of L. If T is an arith-

metic tree, then for fixed n, {< σ,e>∣rank(ψθ) < n and σ ∣[-^ is 

arithmetic (uniformly in n, and hence {<σ,e>∣σ ∣∣~^ ψθ} < 0ω) .

Proposition 5.4: If g is n-T-generic and rank(ψ) < n, then g ∣= ψ iff 

g l∣-τψ∙

Proof: A straightforward induction establishes this result. 

Definition 5.5: Given a formula ψ(x,y) of L* with free variables x 

and y, ψg -- {(m,n)∣g ∣= ψ(m,n)}.

σ
Note: ψ is not necessarily a function, although when building initial 

segments we are mostly concerned with those cases in which ψs is a 

function (e.g. for the sake of diagonalization). We also define ψg 

to be the set {m∣g [= ψ(m)} when ψ has just one free variable. This 

will allow for a reduction in technicalities in some cases.

Proposition 5.6: Given an arithmetic tree T and a fixed integer n, 

there is an arithmetic tree T, £ T such that ¥g ∈ [T,] (g is n-T- 

generic). Also if ψ has rank at most n, then for some fixed m, ¥g ∈[T,] 

(ψ8 <τ g φ 0(m)).

Proof: To build T,, use Proposition 5.3. That is, define T, induc-

tively so that for all σ with ∣σ∣ = L, T,(σ) ∣[-^ v ~Φ^ where Φ 

is the βth formula of rank at most n. Hence all branches of T, are 
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n-T-generic, and the rest of the statement follows from Propositions

5.3 and 5.4. 

We now give a short proof of Sacks' theorem that there is a 

minimal a-degree. Our proof shows clearly how the standard argument 

for a minimal T-degree can be transformed into a proof of the 

analogous result for a-degrees. This same basic theme underlies all 

of the initial segment results to come.

Theorem 5.6 (Sacks [1971]): There is a minimal arithmetic degree.

Proof: We build a sequence Id = Tθ □ T^ □ ... of arithmetic binary 

trees, and take g ∈ ∩ [T ]. Let {φ : e ∈ ω} be an effective 
n∈ω

listing of all formulas of L* with free variable x, with rank(φθ)

< e for all e. For σ,τ e T, we say σ and τ T-e-split if

Ηx(σ ∣Fτ φθ(x) & τ ∣kτ ~φθ(x), or vice versa).

Given T , we construct T 11 ⊂ T so that ¥g ∈ [T l1] (φ® < 0 or 
e e+1 — e & e+1 τe -a

g < Φθ). Let Tθ be the standard e-Tθ-generic subtree of Tθ given by

Proposition 5.6. Now either

i) aσVτn,τ-, => σ(T'(τn) and T'(τ1) do not T -e-split) 0 1— e 0 el e

or ii) Vσ 3τn,τ. ≡ σ(T'(τ∩) and T'(τ.) T -e-split). Ul— e(J el e

If i) holds, let T = Ext(T',σ) (i.e. T (τ) = T,(σ*τ)). Note e+1 e e+1 e
that then ¥g ∈ [T 1 ] (φ® < 0). In fact, φ® is the same for all 

θτ _L Θ “EL θ

such g.

If ii) holds, define Tθ+^ inductively by levels. Let 1^(0) =

T'(0). Given T 11(γ) = T'(σ), let τn and τ. be the first pair we find e e+1 e 0 1 r
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extending σ which yield a T -e-splitting. Let T (γ*i) - T,(τ.) €» θ ∣ -L Ο 1

for i = 0,1. Note that T is arithmetic, by the definability of 

local forcing, since Tθ is arithmetic. Also, given φ∣ for some 

g e [T 1], we have g < φ®. To calculate the path of g arithmetically 

in φ®, proceed by induction on levels. Say we know T (γ) <≡ g. Now 
θ ιp θ * X 1

there is an x such that T  (γ*0) ∖∖- e φ (x) and T - (γ*l) ∣∣- e ~φ (x) 

(or vice versa). Since g is e-T-generic (and rank (φθ) < e) φ∣ 

agrees with what is forced along its path, so we know which of γ*0 or 

γ*l follows the path of g. Since the forcing relation for formulas 

of bounded rank is arithmetic, we have g <τ φ∣ θ for some m.

Now if g = U T (0), then g ∈ ∩ [T ] and thus Ve (φ® is arithmetic 
θ 6 θ θ θ

or g <a φ∣). Hence g has minimal arithmetic degree (g is not arithmetic 

since ¥n ST (g is n-T-generic)). 

Note the similarity of this proof to the standard one for the 

existence of a minimal Turing degree. Indeed given a computation lemma 

saying that if T is an e-splitting tree (defined appropriately) 

then ¥g ∈ [T] (g <a φ∣), then we could arrange the construction nota-

tionally to be identical to that of a minimal T-degree. One benefit 

of working in the a-degrees is that we may arrange for the minimal 

degree to be below 0ω essentially for free since 0ω can answer all 

questions needed in the construction. The analogous result for the 

T-degrees, that there is a minimal m < 0_’ actually takes some work, 

and lattice embeddings below 0/ take a considerable amount of work 

(Lerman [1983]). We will see that the lattice embeddings in the 

a-degrees can be done below 0_ω, again for free, as long as the lattice 

has a presentation arithmetic in 0ω.
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Note also that the proof guarantees that Ve 3m (φ∣ < g Φ 0^). 

Hence ¥n (g^n^ <^, g Φ 0ω). Thus gω g Φ 0ω, i.e. g ∈ GL^ (the 

arithmetic generalized high-low hierarchy is defined in analogy with 

the Turing case, that is, g e Gl∙n iff gω n ≡ (g G 0ω)ω and 

g e GHn iff gω n ≡a (g Φ 0ω)ω n). All known arithmetically minimal 

functions are in GL^.



Chapter 6

Initial segments

We classify in this chapter the possible initial segments of the 

a-degrees of size p by proving the analog of the Abraham-Shore 

Theorem [1985]. Thus any j^-size upper semi-lattice with least element 

and the property that each element has at most countably many 

predecessors is isomorphic to an initial segment of the a-degrees.

We start by classifying the countable initial segments. Even 

in this case we follow the approach of Abraham and Shore quite 

closely. Rather than working on one tree as in Lerman [1983], we 

will have trees for each x in the given u.s.l. We follow this 

approach for two reasons. One is that the set-up is tailor made for 

the extension to 5^-size u.s.l.’s. The other reason is our belief that 

even without larger u.s.l.’s in mind, the approach is superior.

The definition of the reductions G < G , for x X y in the u.s.l. x - y -

and G ,Gx y candidates for where x,y are sent by the embedding map, is

more natural, and technicalities are reduced.

We need several definitions. We follow notation of Abraham and

Shore [1985] as closely as possible. In fact, definitions 6.1 - 6.5 

are taken directly from that paper except for minor changes, some 

necessitated by the consideration of arithmetic computability (e.g. 

we use arithmetic rather than recursive trees).

81
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Definition 6.1; Let L be a finite u.s.l. with 0 (and thus a lattice 

with 1).

a) ϋ ⊂l ωlj is a u.s.l. table for L iff

i) Va,b e θ (α(0) = β(0) = 0)

ii) Va,β ∈ θ ¥x,y ∈ L [x <. y & a(y) = β(y) ÷ a(x) = β(x)]

ill) Wx,β ∈ θ Vx,y,z ∈L [x v y = z & a(x) = β(x) &

a(y) -- β(y) ÷ a(z) -- β(z))]

iv) Vx,y eL[x^y÷Ha,βeθ (a(y) = β(y) & a(x) ≠ β(x))].

b) If L' £ L and 6 is a table for L then θf‰, is the table 

{oι[L, ∣α ε θ}. If x e L, then θ [x is {a(x) ∣a ε θ } .

c) If a,β € θ and x ∈ L then a is congruent to β modulo x, 

a ≡ β, iff a(x) = β(x).

Every finite u.s.l. has a finite table (Lerman [1983], Appendix 

8.2.2). We will use trees with branchings given by a table 6 for L, 

i.e. the tree Tχ associated with x e L will have (essentially) branch-

ings given by θ∣x (actually the tables will be more complicated).

Then if G ∈ [T ] and y ∈ L satisfies y A x, the associated G on T x x j - y y

can be defined from the path of G in T . That is, the path of G xx y
at the nt^h level is given by α(y), where a is any row of the table 

such that α(x) matches the path of Gχ at the nt*1 level. The listed

order to handle infimum

to be extended (so

z ÷ G Φ G = G . Also, condition iv) allows x y a z

i.e. if x -⅛ y we can insure that G t G . In 
4■ j x *a y

requirements and to allow the finite lattice L

conditions then guarantee that G_ = ⅛, y^ x ÷ G < G, and x v y = u a y -a X

for diagonalization, 
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that we can embed a given countable u.s.l∙ L) we require that the 

tables satisfy additional conditions.

Definition 6.2:

a) If 6 and ψ are tables for L then ψ extends θ if θ <=_ ψ.

Ψ is an admissible extension of 0, θ ψ, if Vα e Ψ 3β ∈ θ Vγ e θ ¥x 

∈L(a≡ γ÷a≡ β).x x

b) θ -- <θ^]i e ω> is a sequential (weakly homogeneous) table

for L iff

i) Each is a finite table for L.

11) VI < ω (θi =a θi+1)

iii) ¥i e ω Vα,β ∈ θi Vx,y,z e L [x a  y = z & a ≡z β ÷ 3Yq ’\l ’^2

∈ θ.., (a ≡ γ∩ ≡ γ, ≡ γo ≡ β)].ι+l x'0 y 1 x 2 y

iv) Vieωv aθ,a1,B0,β3 ∈ θ± [Vχ e L (aθ ≡χ a1 * 8θ ≡χ β3) ÷ 

Ηβ1>β2 e θi+l 3f0,fl,f2ι θi ^*^ θi+l tf(∕a(P ⅛ & f(∕aP ⅛ & 

f1(aθ) = β1 & f1(a1) = β2 & f2(aθ) = &2 & f2(aχ) = β3 & vy ∈ l

va,β e 6 (a ≡ S ÷f (a) ≡ f (β) & f (a) ≡ f (β) & f (a) ≡ f9(β))]].
X λ  U X U X X X X X A

As Abraham and Shore point out, condition iv) is taken from

Lerman [1971] rather than Lerman [1983] or Lachlan-,Lebeuf [1976] since 

three functions rather than two are actually required. However, the 

role this condition plays in the proof is the same, and will not 

concern us.
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Definition 6.3:

a) A sequential table θ = <θ1∣i e ω> is recursive if there is a

recursive function

b) If θ is a sequential table for L we write

is a mapx

6 is a sequential table for L and Ψ isIf one

Ψ1∣LΨ refines θ if there is a recursive h such that

for L’ □ L then

θh(i)∙

giving canonical indices for the θ^∙

θ[,L, = <θi[V ∣i ∈ ω>

ω> for L’ ⊂ L and x ∈ L. Thusand θ fx = <θ fx ∣ i e

 r ,<ωfrom ω to [ω]

We can now give precise definitions of the trees and forcing condi-

tions. We use abstract forcing machinery since it is useful in the 

size-^ case, and besides is quite standard (see, e.g. Lerman [1983]).

Definition 6.4: Let L be a countable u.s.l. with least element 0. We 

define the notion of forcing ? appropriate to L as follows.

a) A condition P consists of a finite sub u.s.l. Lp of L 

containing 0, a recursive (extendible) sequential table θp = 

<6 ∣ieω> for L (the definition of an extendible table, given in 

Abraham-Shore, will not concern us here), for each x e Lp a (uniform) 

arithmetic θpfx tree (we define uniform trees in Definition 6.5), and 

a commutative system of maps Fp χ : [Tχ] o¾-to [τ^] for each y X x 

in L which are induced by the table θ_. That is, if G = T [g] then P P x x o

F fG ] = G is T [ħ] where h(n) = α(y) for any α e θ with a(x) = r ,x, y x y y n

g(n). Property ii) of Definition 6.1 insures that this is well defined. 
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Intuitively, to calculate G^ from Gχ, just use Tχ to see which way Gχ 

turns at a given level, and then the table to look up an appropriate 

row giving the direction that the path of G^ turns. The computation is 

arithmetic since the trees are.

b) A condition Q refines P, Q < P, if L„ = Ln, Tn c T for------------- - Q — P Q,x — P,x

x ∈ L , F = F ∣,[τ ] for y x X in L.
P Q,x,y P,x,y' Q,x - P

c) A set of conditions is dense if all conditions P have an 

extension Q in the set.

d) If C is a class of dense sets then G c P is a C-generic 

filter if

i) ¥P ∈ G VQ > P (Q e G)

ii) VP, Q ∈ G 3ReG(R<PδR<Q)

iii) VD ∈ C (G ∩ D ≠ 0) .

As usual the goal is to define an appropriate countable class

C of dense sets such that from any C-generic filter one may define 

the embedding map. The map will be x H- U {Tp χ(0)∣P ∈ G and

x e Lp}, so in particular the image of x is a branch of every tree

T_ with P e G and x e L_.P,x P

θQ

We will often refine a condition P to one Q with - Lp and 

θp by defining a suitable subtree of Tp (where 1 is 1,.) and

taking projections. We now define the required terminology.
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Definition 6.5:

a) An f-tree T, is uniform if Vn ¥j ∈ f(n) (Vσ ∈ with 

∣σ∣ = n) (T,(σ * j) = T,(σ) * r). Moreover, the Ι∖,s associated 

with a given level must have constant length as j varies. Thus the 

possible extensions of a node on a given level in a uniform tree all 

have the same length and are the same across the level.

Let 6 be a sequential table for L.

b) If x A y in L and σ e Se\y then the y-projection of σ on x,

f (σ)
y>×

is the τ e Sn ·. with θ ∣x
∣τ∣ = ∣σ∣ and τ(n) = α(x) for any

α ε θ with a(y) = σ(n). This is well defined by property ii) of 

the tables.

c) If x y in L and σ,τ ∈ Sθ then σ is congruent to τ modulo 

x,y, σ ≡ τ, if f (σ) - f (τ). If y is clear from the context ~  χ,y y,χ y,χii

we often write σ ≡ τ and f (σ). x x
d) A uniform θ[^l-tree, S, is distinguished if ¥x e L Vσ,τ ∈ Sθ

(σ ≡χ τ <-> S(σ) ≡χ S(τ)).

e) If θ ≡ θp, L = Lp, T = Tp and S is a distinguished θfl-tree

we can define a condition Q = S(P) < P by setting = L, = 6,

F = F Γ[T 1 rP,x,y P,x,yllQ,xj and Tλ - T_, o S whereQ,x P,x x Sχ is defined by

Note isσ.

well defined since S foruniform

fχ(-Γ) that S xSχ(σ) - fχ(S(τ)) for any τ ∈ Sθ with 

is distinguished, and that T. is Q,x

all x ∈ L. Not also that the projection maps work out precisely

as required.

We now start to define and prove dense the sets that will

guarantee that any generic filter defines an embedding onto an initial

segment of the a-degrees.
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Definition 6.6: Let D∩ = {P: ∣T (0)∣ > n for each x ∈ L }, 
-------------------------- U,n lP,x'- P

and let Cθ consist of all such sets. These sets guarantee that the

functions defined by a Cθ-generic filter are total.

Lemma 6.7: Each Dr, is dense.—---------------0, n

Proof: Let P ∈ P and define Q < P by taking T - Ext(T ,o)
X>∙L * 9 -*-

for some σ ε ∙^θ H with ∣fχ(Tp j (σ)) I > n for every x ε Lp and project

to define the trees TλQ,x (recall that Ext(T,σ) is the tree T'

defined by T,(τ) = T(σ*τ)). 

Lemma 6.8: If 6 is a recursive extendible sequential table for L and

L, is a finite extension of L then there is a recursive extendible 

sequential table ψ for L' which refines θ.

Proof: This result is Lemma 2.9 of Abraham-Shore. They prove a 

more general version of it as Theorem 4.1. 0

Definition 6.9: Let C1 contain Cn and the sets D1 = {P∣x ∈ Ln} -------------------------- 1 0 l,x 1 P

for x e L.

Lemma 6.10: Each D. is dense. ------------------- l,x

Proof: Let P ∈ P and x ∈ L-L be given. Extend to L by adding x v y

(if needed) for all y ε Lp. Then L is a finite sub u.s.l. of L containing 
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x. By Lemma 6.8 we can take ψ to be a recursive sequential table for L 

refining by means of the recursive function h. To define

Q < P with Q ε D1 , let Lo = L and 0 = Ψ. For y ∈ L_, let- l,x Q Q j P
T c T be defined as follows. To (0) = T (0h^°^) and if 
Q.y - P,y Q,y P,y

T^ (σ) = Tp (τ) witk ∣σ∣ = n and ∣τ∣ = h(n), then for i ε [ky 

⊂ θ, . . ∖y, T (σ*i) = Tn (τ * 1h<n+1>-h<n>). Note that the maps 
— h(n)'j Q,y P,y

Fλ for y λ  z in L_ induced by Ψ are the restrictions of Fτ, to 
Q>z,y - P P,z,y

[T ] as required. This follows from the definition of the phrase
Q, Z

"ψ refines θ." The tree T^ for y ∈ L-Lp is simply the ψ f^y- 

identity tree.

We now define what it means for a condition P to force a sentence 

of arithmetic (with function parameters). This use of the term 

"force" is of course not to be confused with the local forcing on 

the arithmetic trees which are part of the condition P. As usual 

local forcing is used to make the condition P force something.

Definition 6.11: Let P ∈ P and φ(G ,...,G ), a sentence of arith- 
-x1 -^n

metic with function parameters Gχ for x^ e L^, be given. Then

P forces φ, written P ∣[- φ, if for any G e [T ], φ(G ,...,G )
P,l χ1 χn 

holds where G = Fτ, 1 [G].
χi P>1>*i

Definition 6.12: Let {f Ie <uj be a recursive list of all the formulas ---------------------------- e'

of arithmetic with one function parameter and two free variables u and

v. Let

fθ = {(m,n)∣G ∣= f e<θ,>m,n) } .
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In order to make the embedding an isomorphism we wish to guarantee
G

that for any e e ω and x,y ∈ L with y x, f x ≠ G . It may of course 
G e y

be the case that f x is not even a function. The next lemma shows 
e

that we can diagonalize, but first we define the appropriate dense 

sets, as called for by our abstract forcing machinery.

Definition 6.13: For e ∈ ω and x,y ∈ L, let D? = {p ∣y 1 x ÷ P ∣∣-
q  z,e,x,y -»

f x ≠ G }. Let C_ contain C1 and all D_ 
e y 2 1 2,e,x,y

Lemma 6.14: The D„ are dense.------------------- 2,e,x,y

We first give a construction which we need repeatedly. We simply 

show how to refine a given condition so that a desired tree in it is 

comprised of branches which are sufficiently generic.

Definition 6.15: A tree T is an n-decision tree via T, (or simply an 

n-decision tree or decision tree) if T' ≡ T and ¥f ∈ [T] (f is 

n-T'-generic).

Lemma 6.16; Fix n. Given a condition P and x e Lp, there is a

Q < P such that L^ - L , 6 -- 6 and T^ is an n-decision tree, κ - Q P Q P Q,x

Proof: The idea is that if a tree is uniform, then it has a uniform 

decision subtree. We define a distinguished uniform θpfl-tree S and 

take Q to be the condition S(P) so that T_ is such a subtree of T_ x Q,x P,x
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Let <ψθ∣e ∈ ω> be a recursive listing of all sentences of arithmetic 

with rank at most n and one function parameter. Let T, = T and r ,x 

τ " = t p,i ∙ τ .
Let p be the least element of Sθ ∣χ such that T,(p) ∣[- ψθ v ~ψθ 

(such a p exists by the definition of forcing the negation of a

sentence). Let S(0) - τ where f (τ) = p. Suppose that S(σ) has been 

defined for 

for all σ e

σ ∈ of length n. We first define a string τ such that

Sθ∣1 with ∣σl = n, τ,<fx<S(σ) * τ)) IP Ψn+1 V ~Ψn+1∙ This 

is straightforward; we define ιθ c c ... τ so that T'(f (S(^)*t)) 

decides Ψn+^ by letting run through the possible strings σ of length 

n (or if desired take only enough σ,s to insure that their images under 

f o S run through the possibilities in T,). Then set S(σ * j) =

S(σ) * τ * j for j ∈ θ ∣1. The definition of one τ is for uniformity, 
n τ ’

The consistency of local forcing (i.e. (τ' n. p’ & p, ∣p ψ) ÷
T'

τ, ∣p ψ) implies that fχ(S(σ * j)) decides for all σ of length n.

One can prove by induction on the length of the strings that

Vx ∈ Lp Vσ,τ ∈ sθ ↑1 (σ =χ τ<->S(σ) = S(τ)), so S is distinguished.

If we let T = Tλ = T_ o S , then T is an n-decision tree Q,x P,x x

via T' - T . The definability of local forcing and the fact that 
P >x

all trees in P are arithmetic imply that all trees in Q are arith-

metic. 

Proof of Lemma 6.14: Let e∈ω, p and x,y ∈ L with y ∙jr, x be given.

We may assume by Lemma 6.10 that y,x ∈ L^, and by Lemma 6.16 that

Tp χ is an n-decision tree via T' for some T' where n = rank(fθ). Since 

y -px, we have tz ∈ θp θ such that α(x) - b(x) but α(y) ≠ β(y). The
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idea is the standard one, i.e. we can change G while keeping G 
y G x

the same and thereby force a difference between fθx and G . Now

τp (α(y)) ≠ τ (b(y)) while T (α(x)) ≈ T (β(x)). Let m, n
i, y i j y 1,λ  χ,x u

n be such that n -- T (α(y))(m) ≠ T (β(y))(m) = n . Take an ± ur,y , y ±

extension T_ (σ) of T_ (α(x)) on T_ which decides both f (G,m,n-) P,x P,x P,x e —’ ' 0

and f (G,m,n-), and e — 1 1st τ∩ 2. <"(1)> and τ1 ⊃, <β(l)> be elements of
0 1 T’

Sq h with 
θpl1 0fχ(τθ' fz<τl> - σ. If T (σ) 11— ~ f (G,m,n ) for either 

P,x e — i

i = 0 or 1 (or both) let S(γ) = τ * γ for all γ and Q = S(P). Then 
G G

Q ∣∣- f x ≠ G since f x(m) ≠ G (m) for any G ∈ [Tλ ] and G ∈ [T_ ].
11 e y evy y'z j x Q,x y l Q,yj

m I  
Otherwise Tp χ(σ) II· ίθ((3,πι,ηρ for both i = 0 and i = 1. Then

taking S(γ) = τ. * γ for either
G 1

Q |l· (fθx i≡ not a function).

i finishes the proof since then 

Definition 6.17: For e ∈ ω and x ∈ L, let D„ = {P∣Hy χx 
0 J,θ>x “

(p II· Φex
a

G )}, where <Φθ(G,v)∣e ∈ ω> is an effective listing

of all formulas 

variable v, and

of arithmetic with one function parameter and free
G 

φ x = {m∣G φ (G,m)}. L contains C„ and the
θ X θ J z

sets D3,e,x'

Lemma 6.18: The D„ are dense. ------------------ 3,e,x In fact, if x e Lp then there is

a Q < P in D, with L = L and θrι = θ . 3,e,x Q P Q P

Proof: We closely follow Section 3 of Chapter VII of Lerman [1983], 

but need some notational changes since the conditions consist of 

trees for each element rather than just the top element of the lattice 

and since we are using arithmetic computations.
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Definition 6.19: If T is a θfx-tree from some condition L and

Tχ is a rank(φθ)-decision tree via T’ then Tχ is an e-splitting tree 

for y ∙⅛ x via T’ , where y e L if

i) ¥σ e Sθpχ Vq,r ε θ∣σ∣ [x

[q ? r ÷ <Tχ(c7 * q) , Tχ(σ * r)> forms an e-splitting via T,, 

that is, am(Tχ(σ * q) ∣f∙ φθ(G,m) and Tχ(o * r)

~φθ(G^,m) or vice versa)]

and ii) ¥σ,T e Sflr [<T (σ), T (τ)> is an e-splitting via T’ ÷ 
t∕ x X X

σ ⅛y τ].

Subleτ∏ma 6.20 (.Computation Lemma): Let Tχ be an e-splitting tree for 

y x x, where T is the tree associated with x in some condition.
x G

Then ¥G ε [T ] (φ x ≡ F (G )), where F is the appropriate map 
x x θ 3. x,y X x 9 y

from the condition.

and the definability of local forcing. First

Proof: The result follows from the definition of e-splitting tree
G 

we show that φ < ψe -T

F (G ) Φ for some fixed m for all G x,y x x

forcing equals truth on Tχ, so to decide if

τ to decide if Gχ ∣f- φθ(£,η). For any level

ε [T ]. We know that 
XG

n ∈ φθ , we only need

L we may calculate

∣PjJ = L- and

(arithmetically) from Fχ (Gχ) (or recursively from 

for large enough m) a with ∣σ^∣ -- 

F (G ) φ x,y x

≡ pn where 
y *

p0 is such that G ≡, T (p0). Now just take Z large enough so thatΛ∕ X X Az
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Next we show that F

in the definition of e-splitting tree allows us to eliminate one-by-

one the equivalence classes mod y as possible extensions of the

□

Thus to prove lemma 6.18 it suffices to extend P to a condition

Q with X x.

We may some

T,, by change our notation so as to conform

with the Turing degree case and save much repetition of proofs

from Ferman.

Definition 6.21:

(m) = 0x

this is an e-splitting mod y.τ then

With this notation there is one

q e θβbx such that σ

case. There can be no σ ,m such that

otherwise. Also if <Tχ(σ),Tχ(τ)

G 
∣ x n ∈ φ e

forms an e-splitting and σ =

from some y ∈ = with y

a rank(φθ)-decision tree via

σ2 =y Pβ5 we can a 

process of elimination.
G 

. X φe

G”
S° Φe <τ F (G ) ® where m is chosen large enough,

χ»y χ q

(G ) < φ x Φ 0. We can inductively calcu- 
x,y x -T e

late the path which Gχ induces in the tree for y because property i)

current path in Tχ, until just one remains. That is, if we know that

O 0^m^ for every Gχ

We say that 

τ (σ) [f φ (G,m) V ~φ (G,m) .
T' - ? (σ)

Tχ(σ) ∣f Φe(G,m) and <t>b

T an e-splitting tree 
Q>x

assume that T_ - T is P,x x

Lemma 6.16. We will now

Φ e

l * q ≡y pi+l by a

Hence we may calculate F (G ) from χ,y x

∈ [T ] (for some appropriate fixed m).

change from the Turing degree 
Τ (σ)

¥ T σ (φ θ (m)+) . Other

. x
-----------------√e.

(m) ψ then φθx (m) - 1 if

Tχ(σ^) decides φθ(G^,n) . Property ii) of Definition 6.19 and the 

genericity of G guarantee that T (σfl) ∣∣- φ (G,n) if and only if 
_X X X, 6

τχ(o) Tχ(σ)
(m) converges, φ (m)ψ, if 

' τ (σ) τe(σ)
if Φ x 

e
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than this we could follow Lerman’s treatment given in VII 3.2 -

this sequence of lemmas he shows

(with some notational changes) how to construct a distinguished

out the construction we only need to

relations hold between certain strings. The table is recursive and 

this construction. We point out,

VII 3.10 almost word for word. In 

some y A x, and thus Q e Dn- 3,e,x

dispense with the repetition of

(m)Ψ, when for σ,T ∈ Sακ1, <T (f (σ)), σ 11 xx

Tχ(fχ(τ))> forms an e-splitting, and whether various congruence 

tree S such that if Q = S(P) then T is an e-splitting tree for
Q»x

by the computation Lemma. We will 

however, that in order to carry 
τ (f (γ)) 

be able to tell when φ ψe

so by the definability of local forcing the entire construction may 

be carried out arithmetically in the trees which comprise the given 

condition P. Hence the trees of Q are arithmetic as desired. 

Theorem 6.22: If L is a countable upper semi-lattice with least 

element then L is isomorphic to an initial segment of the arithmetic 

degrees.

Proof: Let 6 be a C^-generic filter. The map x ∙÷ deg(Gχ) where 

Gχ = U {Tp χ(0)∣P e G & x ∈ Lp} gives an isomorphism by C^- 

genericity. By C^-genericity the range of the map is an initial 

segment. Q



95

We now will show that the orderings P^,(<0ω) and Ρ^(<0ω) are 

not elementarily equivalent. The result will follow from the fact 

that any lattice that has complexity arithmetic in 0ω is embeddable 

as an initial segment in the a-degrees below 0ω, while any lattice 

initial segment in the T-degrees below 0ω has a more restricted 

complexity.

Definition 6.23: Given a countable lattice L, a presentation of L 

is an isomorphic lattice L, - <ω, <^,, with domain ω.

The degree of the presentation is <^, Φ Φ v^, .

Corollary 6.24: Suppose L is a lattice with a presentation arithmetic 

in 0ω. Then L is embeddable as an initial segment of the a-degrees

, . rtω below 0 .

Proof: Lerman ([1983] 3.3.29) points out that we may divide a

lattice L' into finite approximations {i^∣i e ω} to it with

iθld∣j ∈ ω> a sequential table for each such that there is a

function h with h(i,j) a canonical index for θl.J with h recursive

in a presentation of the lattice. Note that then the embedding

construction may be carried out recursively in 0ω Φ h (since, e.g., 

0ω can (uniformly) decide what y to make Tχ an e-splitting tree for, 

and similarly can answer all other questions needed in the construc-

tion) , and hence L may be embedded arithmetically below 0ω as 

claimed.  
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Corollary 6.25. The orderings of the a-degrees below 0ω and the 

T-degrees below 0ω are not elementarily equivalent. This solves 

Problem 2 of Odifreddi [1983].

Proof: We use the machinery developed in Nerode-Shore [1980] and 

Shore [1981], [1982]. Shore [1981], Definition 1.10 defines what 

it means for a degree e. to effectively code a model of arithmetic 

(the details need not concern us here). Lemma 1.12 of that paper 

provides a proof that if £ effectively codes a model and e^ <τ 0ω 

ω+3 0ω
then there is an f <τ 0 such that deg{f(n)}p codes the integer n.

The subsets of ω coded by a model are the ones picked out by exact 

pairs, so if eλ effectively codes a standard model then the subsets 

of ω coded by that model in Vr^, (< 0ω) are of the form W = 

{n∣{f(n)r <τ X,Y} where X <τ 0ω and Y <τ 0ω. Now <τ on indices 

0ω 0ω
below 0 is , so all W coded in this way satisfy W e Σ^ . In 

t>a(< 0ω) however, there is an j≡ which effectively codes a standard 

model and an exact pair u,v 0ω such that u,v codes a set of 

degree 0ω+∖ [Suppose we are given a presentation of a lattice that 

effectively codes a standard model of arithmetic, with v and ^ given 

by ∪ and ∩ respectively and the atom {a } representing the integer n, n

as in the Remark before Theorem 4.1 of Shore [1982]. We need only 

add the set ian∣n e 0ω+^} as a new generator to obtain an arithmetic- 

in-0ω presentation of a lattice that effectively codes a standard 

model and codes 0ω+^ (there is a single element, so an exact pair, 

above the appropriate set of atoms) . Since this lattice is embeddable 
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below 0ω in the a-degrees we have the claim. The definition of a 

lattice effectively coding a model of arithmetic guarantees that it 

is not distributive, so we need the embedding result of Corollary 

6.24].

Given a sentence φ of second order arithmetic, one can effec-

tively translate it to a sentence of partial orderings φ,(e) (φ' has 

other parameters in addition to e) such that if e effectively codes 

a standard model then P^,(< 0ω) φ,(∈i) if and only if Μ H Φ5 where

M is the 2nd order model <ω,S,∈,+,×,<>. Here S (the class of sets 

over which the set quantifiers range) is the class of subsets of ω 

that are coded by some exact pair u,,v 0ω. Similarly, if an a-degree 

e <a 0ω effectively codes a standard model then V^(< 0ω) ∣= φ'(e) 

if and only if M’ φ where M, -- <ω,S,,∈,+,×,<>and S’ is the class 

of sets coded by exact pairs in V^(< 0^). Tor details of the 

translation procedure see Nerode-Shore [1980].

Let ψ(e) be the sentence of orderings which says that e_ 

effectively codes a standard model (so in addition to saying that 

e effectively codes a model, it says that every proper initial 

segment of the ω-like ordering given by the model that has an exact 

pair has a top element). Let φ be the following sentence of second 

order arithmetic: 3X[Xt°i = 0 & Vn(Xfn+1∙1 -- X^ ') & VY(Y ∈ ∑*) ]. 

Let γ ≡ ¥e (ψ (e) ÷ φ’(£)). Now Vr^ (< 0ω) ∣= γ while (< 0ω) ∣≠ γ: 

That ι>a (< 0ω) ∣≠ γ is clear since there is an e_ that effectively codes 

(a ) ω+5
a standard model below and such that the set 0 is coded in this 

model. Suppose that (< 0ω) ψ(e) for some e_. Then e_ actually

does code a standard model in (< 0ω) because the ideal generated by 
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the codes for the standard integers has an exact pair below 0ω. This

is proved in Shore [1981], i.e.: the set of indices for the 

(representatives of the) degrees in the ideal is Σ^, where E e e_, 

and so there is an exact pair for the ideal recursive in E Φ 0’ 0^

by Lemma 2.1 of that paper. Similarly 0ω is coded by some exact

pair below 0ω for every effective standard model. Thus Dr^ (< 0ω)

∣= Y∙ 

Section 3 of Abraham-Shore [1985] shows how to embed any con-

ceivable ^-size upper semi-lattice as an initial segment of the 

T-degrees (to be deemed conceivable, a u.s.l. need only satisfy 

the obvious requirements: it has a least element and satisfies the 

countable predecessor property). The main points are:

i) Given L of size there is an end extension L' of L that may 

be divided up in a sufficiently nice way as U{Lα∣α < with each

L a countable u.s.l.
a

ii) Define the sequence of forcing notions <P^,ct < and C^- 

generic filters G& by simultaneous induction. Pθ is the notion of 

forcing appropriate for Lθ (as defined in the countable case) and 

Gθ is any (^-generic filter (where is defined later). If P^ is 

defined and G is a Cc-generic filter on P then P ,1 is the collectionα 5 6 a a+1

of conditions P in the notion for forcing appropraite for i-α+^ such 

that there is a P, e G& that represents P in the proper way.

iii) can be defined so that C^-genericity of G& implies the 

existence of a Cc-generic 6 ι1 c P ,n. Here Cc contains the Turing5 α+l — ot+1 5

degree analog of our C^.
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Thus one gets an initial segment of the Turing degrees isomorphic 

to the u.s.l. L, (and so also one isomorphic to L) by sending 

x e L' to G - U{Tτ, (0) I aα(P ∈ G ) and X ∈ L }.
x P,x ' α P

With very minor notational changes the same proof works in our 

setting. Indeed i) and ii) do not change at all. The only real 

changes come in proving the density of the D„ and D_ in2,e,x,y 3,e,x

that we need to talk about arithmetic computations, but the density of 

these for G^ imply the density of G in exactly the same manner 

as in Abraham-Shore. We thus get the following result.

Theorem 6.25: If L is a u.s.l. with least element and the countable 

predecessor property, and ∣L∣ < , then L is isomorphic to an initial 

segment of the arithmetic degrees.
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